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Valley-contrasting interband transitions and excitons in symmetrically biased dice model
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We study the exciton states in the symmetrically biased dice model, the electronic structures of which have an
isolated flat band between two dispersive bands. At 1/3 or 2/3 filling, the model describes a two-dimensional
semiconductor with the band edge at two degenerate valleys. Because of qualitative changes in the eigenvectors
resulting from the bias term, the interband transition between the flat band and a dispersive band is valley
contrasting under circularly polarized light. In terms of an effective-mass model and a realistic electron-hole
interaction, we numerically calculate the spectrum and wave functions of the intravalley excitons, which are
treated as Wannier-Mott excitons. We also discuss the fine structures of the exciton spectrum induced by the
intravalley and intervalley exchange interactions. The symmetrically biased dice model thereby proves to be a
new platform for valley-contrasting optoelectronics.
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I. INTRODUCTION

Two-dimensional (2D) electronic systems with flat bands
feature a plethora of intriguing single-particle properties and
many-body phases. Among others, these include the super-
Klein (or, all-angle Klein) tunneling [1–4], the high Chern
number quantum anomalous Hall states [5–7], novel quantum
Hall series [8–12], prone to itinerant ferromagnetism at weak
interaction strength [13,14], possible high-temperature super-
conductivity [15,16], and so on.

The two-body or few-body bound states, such as the exci-
tons or trions in 2D semiconductors and insulators, are another
important kind of states. Because of the reduced dielectric
screening in 2D systems, the exciton binding energies of 2D
semiconductors are usually much larger than those in 3D
systems [17–19]. The excitons therefore have profound influ-
ence on the optoelectronic properties of 2D semiconductors
and insulators [20–35]. In addition, the high exciton binding
energy also makes 2D semiconductors more promising than
3D semiconductors to become excitonic insulators [36–38].
Excitons in 2D systems with flat bands were considered theo-
retically in the case where electrons and holes are both inside
completely flat bands [39,40]. The excitons were found to
have remarkably large binding energies and are extremely
localized small (Frenkel) excitons [39]. Another theory stud-
ied the exciton binding energy in systems with a nearly flat
band as the valence band and a dispersive conduction band,
concluding that the flatness of the valence band reduces the
exciton binding energy [41]. The excitons were treated as
Wannier-Mott excitons in the latter work. Recently, there have
been several experiments on the exciton effects in systems
with flat bands [42–44].

In this work, we study the excitons in a special 2D
semiconductor with an isolated flat band and neighboring
dispersive bands. Specifically, we consider the symmetri-
cally biased dice model, in which a bias term breaks the

inversion symmetry of the dice model and opens an energy
gap between the flat band and the dispersive bands [4,12].
The band extrema of the model are located at two corners
(K and K′) of the Brillouin zone (BZ), which define a
valley pseudospin 1/2. We study the interband transitions
between the flat band and a dispersive band, which we
find to be valley contrasting under circularly polarized light,
similar to the valley-contrasting optical transitions in transi-
tion metal dichalcogenides monolayers [45–50] and gapped
graphene [51].

The valley-contrasting interband transitions suggest the
symmetrically biased dice model to be another model system
to study valley-contrasting optoelectronics. We thereby study
the spectrum and wave functions of the excitons, considering
a realistic attractive electron-hole interaction for 2D systems.
By calculating the dielectric functions in the random-phase
approximation, we show that the attractive electron-hole in-
teraction is extended compared to the lattice parameter for
weakly biased dice model. This implies that the excitons
bound by the attractive interaction are also extended and may
be considered as large Wannier-Mott excitons and studied in
terms of a proper effective-mass model. Because the Wannier-
Mott excitons are localized in the momentum space on one
hand, and the interband transitions are valley contrasting on
the other, we study the two valleys separately and calcu-
late numerically the spectrum and relative wave functions of
the intravalley excitons. For realistic parameters, the exciton
levels are all within the semiconducting gap. The qualitative
effects of the exchange interaction to the exciton spectrum are
also discussed.

The remaining part of the paper is organized as follows.
In Sec. II, we describe the symmetrically biased dice model,
show the valley-contrasting interband transitions, and intro-
duce the formalism for calculating the spectrum and wave
functions of the intravalley excitons. In Sec. III, we present
our results and discussions for the properties of intravalley
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FIG. 1. (a) The dice lattice. (b) Brillouin zone (BZ) of the dice
lattice. The high symmetry points of the BZ are indicated. (c) The
band structures for the parameters |t0| = 1 and |�| = 0.2|t0|, along
several high-symmetry directions of the BZ.

excitons. Then we discuss in Sec. IV, the qualitative effects
of the exchange interaction, including a numerical calculation
of the variation of the intravalley exciton spectrum with the
intravalley exchange interaction. Finally, the main results are
summarized in Sec. V.

II. MODEL AND METHOD

A. Model and band structures

As shown in Fig. 1(a), the dice lattice is a 2D lattice
with three sublattices A, B, and C [52–55]. The nonvanishing
hopping integrals consist of those connecting A or C sites
with nearest-neighboring (NN) B sites. The low-energy band
structures of electrons in these lattices are described by the
following tight-binding model

Ĥ =
∑

〈i, j〉,σ
(tbab†

iσ a jσ + tbcb†
iσ c jσ + H.c.)

+
∑
i,σ

(εaba†
iσ aiσ + εcbc†

iσ ciσ ). (1)

The summation 〈i, j〉 runs over NN intersublattice sites. The
index σ labels the two spin components of the electrons.
aiσ , biσ , and ciσ separately annihilates a σ -spin electron on
the A, B, and C sublattice of the ith unit cell. H.c. means
the Hermitian conjugate of the terms explicitly written out.
We have taken the on-site energies for the B sublattice sites
as reference, so εab = εa − εb and εcb = εc − εb. The three

vectors connecting NN sites of two different sublat-
tices include δ1 = (−1, 0)a0, δ2 = ( 1

2 ,−
√

3
2 )a0, and δ3 =

( 1
2 ,

√
3

2 )a0. The two primitive lattice vectors are a1 = δ2 −
δ1 = (

√
3

2 ,− 1
2 )a and a2 = δ3 − δ1 = (

√
3

2 , 1
2 )a, where a =√

3a0.
We consider the parameter combinations tba = tbc = t0 and

εab = −εcb = �, which defines a symmetrically biased dice
model [4,12]. Making Fourier transformation to the reciprocal
space, and introducing the basis ψ

†
kσ = [a†

kσ , b†
kσ , c†

kσ ], we
have

Ĥ =
∑
kσ

ψ
†
kσ h(k)ψkσ , (2)

where

h(k) =
⎛
⎝ � ξab(k) 0

ξ ∗
ab(k) 0 ξbc(k)

0 ξ ∗
bc(k) −�

⎞
⎠. (3)

The off-diagonal elements are

ξ (k) = ξab(k) = ξbc(k) = t0(eik·δ1 + eik·δ2 + eik·δ3 ). (4)

For � �= 0, the band structure consists of one flat band at
E0(k) = 0 and two dispersive bands at

Eν (k) = ν
√

�2 + 2|ξ (k)|2 ≡ νE (k), (5)

where ν = ±. All three bands are two-fold degenerate by spin.
The band structures for a typical set of parameters are shown
in Fig. 1(c). At a filling fraction of 1/3 or 2/3 the system is
in an insulating state. The band gap attains the minimum |�|
at K = (

√
3

2 ,− 1
2 ) 4π

3a and K′ = (
√

3
2 , 1

2 ) 4π
3a of the BZ, where

ξ (k) = 0. The band edges thus situate at these two distinct
K points, which define a two-fold degenerate valley degree of
freedom. We will focus on the 1

3 -filled systems, in which the
flat band is empty and the impact of the on-site correlation
may therefore be neglected more safely. We then focus on the
long-range part of the Coulomb interaction responsible for the
formation of excitons.

The (biased) dice model of fermions may be realized in
several systems. Firstly, as was pointed out by Wang and Ran,
three consecutive (111) layers of a cubic lattice constitutes
the displaced dice lattice [5]. The dice model is realized if
a tight-binding model up to hoppings between NN pairs of
sites provides an excellent description for the low-energy elec-
tronic structures. The symmetrically biased dice model is then
obtained by applying a uniform electric field perpendicular to
the layer planes. Secondly, we may imagine to fabricate a tri-
angular lattice of quantum dots with the connections between
the dots following the pattern of the dice lattice [56,57]. When
all the quantum dots have the same energy level structures
with a single orbit close to the chemical potential, the dice
model is realized. By biasing the on-site energies of the A
sublattice sites and the C sublattice sites oppositely, we get the
symmetrically biased dice model. Thirdly, the dice model may
be realized in optical lattices of fermionic cold atoms [54].
In particular, both the pure dice model and the symmetrically
biased dice model may be realized by fermionic cold atoms
on a tunable displaced optical dice lattice [58]. Since we are
mainly interested in the electronic systems, we will keep the
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first and second systems in mind in the following discussions.
In this work, we assume a negligible spin-orbit coupling in
the system. A finite spin-orbit coupling may render the model
topologically nontrivial [5,59].

B. Valley-contrasting interband transitions

Manipulating the valley degrees of freedom constitutes the
basis of valleytronics [60]. Several materials, including the
gapped monolayer graphene [51] and the monolayer transition
metal dichalcogenides [45–50], allow the optical implementa-
tion of valleytronics. These systems both have a band structure
containing two valleys and lack the inversion symmetry. A
circularly polarized light selectively excites interband transi-
tions in one of the two valleys, while the oppositely polarized
light excites the interband transitions in the other valley.
The crucial importance of broken inversion symmetry to
the valley-contrasting interband transitions was pointed out
by Yao et al [51], who showed that the degree of circular
polarization of the interband transition at a wave vector k
in the BZ is proportional to the orbital magnetic moment
morb(k) at k. Since the orbital magnetic moment as an axial
vector is symmetric with respect to the inversion operation,
valley-contrasting interband transitions can occur only if the
inversion symmetry is broken [51].

The symmetrically biased dice model, while having a com-
pletely flat band, also has broken inversion symmetry and
two valleys. To see whether the symmetrically biased dice
model has valley-contrasting interband transitions, we firstly
write down the eigenvectors of the states in the three bands.
Hereafter we neglect the dummy spin label. Up to an arbitrary
U(1) phase factor, we take the eigenvectors for states of the
flat band as

|ψ0(k)〉 = 1

E (k)

⎛
⎝−ξ (k)

�

ξ ∗(k)

⎞
⎠. (6)

For states of the band Eν (k) (ν = ±) defined by Eq. (5), we
choose the eigenvectors as

|ψν (k)〉 = |ξ (k)|
E (k)

⎛
⎝

ξ (k)
E (k)−ν�

ν
ξ∗(k)

E (k)+ν�

⎞
⎠. (7)

The parameter � brings dramatic changes to the eigenvec-
tors close to the K and K′ points of the BZ. To see this, we
expand the eigenvectors into the polynomials of the relative
wave vector q = k − Kτ (τ = ±, K− = K and K+ = K′).
We have

|ψ0(Kτ + q)〉 	 1

|�|

⎛
⎝

√
3

2 at0e−i π
6 (qx + iτqy)
�

−
√

3
2 at0ei π

6 (qx − iτqy)

⎞
⎠ (8)

and

|ψν (Kτ + q)〉 	
√

3
2 a|t0|q
|�|

⎛
⎜⎜⎜⎜⎝

−
√

3
2 at0e−i π

6 (qx+iτqy )

[1−νsgn(�)]|�|+ 3a2t2
0 q2

4|�|
ν

−
√

3
2 at0ei π

6 (qx−iτqy )

[1+νsgn(�)]|�|+ 3a2t2
0 q2

4|�|

⎞
⎟⎟⎟⎟⎠. (9)

q =
√

q2
x + q2

y . Close to the K or K′ points, where qx, qy 	 0,

states of the flat band come mainly from the B sublattice.
In contrast, as is clear from Eq. (6), the weight on the B
sublattice is zero for states of the flat band at � = 0. This
is the most dramatic change brought to the states of the flat
band by a finite �, although the band is still completely flat.
For � = 0, the states of the dispersive band defined by Eq. (7)
are linear combinations of the A, B, and C sublattices at the
probability of 1

4 : 1
2 : 1

4 for all k. For � �= 0, however, states
in the dispersive bands close to the band edges consist only
of states of the A or C sublattices. More specifically, for
νsgn(�) = 1 [νsgn(�) = −1], the state defined by Eq. (9)
comes mainly from the A (C) sublattice.

We are interested in the resonant interband transitions close
to the two valleys. The interband transition between the flat
band and the dispersive bands may be induced by applying an
optical field with a frequency resonant with the transition. For
the 1/3 or 2/3 filled system, this corresponds to h̄ω 	 |�|. In
the dipole approximation, the strength of the vertical interband
transition is proportional to [45,51]

〈ψ f (k)|n · ∇kh(k)|ψi(k)〉, (10)

where |ψi(k)〉 and |ψ f (k)〉 are the initial and final states of
the interband transition at k. For 1/3-filled bands, ψi = ψ−
and ψ f = ψ0. For 2/3-filled bands, ψi = ψ0 and ψ f = ψ+.
The unit vector n is the polarization vector (Jones vector) of
the light. In particular, n = (1, iη)/

√
2 with η = ±1 corre-

sponds to circularly polarized light. η represents the chirality
of the circularly polarized light. By substituting Eq. (3) and
the eigenvectors Eqs. (6)–(9) into Eq. (10), and expanding the
results close to the two valleys, we get, up to the leading order
of q = k − Kτ ,

〈ψ0(k)| 1√
2

[
∂h(k)

∂kx
+ iη

∂h(k)

∂ky

]
|ψν (k)〉

=
√

3a

2
√

2
|t0|[sgn(�) + νητ ]

qx + iηqy

q
. (11)

This is one of the central results of the present work. For
states of the τ valley, the matrix element is nonzero only
for circularly polarized light satisfying η = ντ sgn(�). As the
valley index τ changes sign, the chirality index η changes
its sign alongside. Therefore the interband transition close
to the band edges between the flat band and one dispersive
band is valley contrasting. This valley-contrasting interband
transition is a direct consequence of the changes brought to the
eigenvectors by the parameter �, as was explained above. In
contrast, the current operator is unchanged by �. Consistent
with this picture, the matrix elements between the flat band
and the linearly dispersive bands are zero at the two valleys
for � = 0.

We also note that, which may be verified directly, the ma-
trix element of Eq. (10) vanishes between the two dispersive
bands at the band edges. This is again consistent with the
character of the eigenvectors of the two dispersive bands,
since the current operator couples states of the A or C sub-
lattices to states of the B sublattice whereas the states of the
two dispersive bands consist separately of states of the A and
C sublattices.
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Overall, we have seen that the bias term (� �= 0) leads
to valley-contrasting interband transitions close to the band
edges at K and K′. This suggests that the symmetrically
biased dice model is another very interesting model sys-
tem that supports valley-contrasting optoelectronics. For this
purpose, it is important to study the properties of exciton
excitations in this system. We will focus in what follows on
the excitons in systems at 1/3 filling.

C. Effective-mass model for intravalley excitons

Apart from excitons in molecular crystals and excitons in
ionic crystals with small dielectric constants (such as the alkali
halides), excitons in most insulators and semiconductors may
be treated as large Wannier-Mott excitons [61,62]. The wave
functions for the relative motion of the electron and hole states
of the large excitons are very extended in the real space,
covering a region much larger than the unit cell of the lattice.
In the k space, correspondingly, the electron and hole states
relevant to the formation of large excitons are highly concen-
trated and only consist of the states close to the extrema of the
conduction and valence bands [61,62]. The present studies of
the excitons have two major objectives. Firstly, we show that
the Wannier-Mott model is applicable to the excitons of the
present system at weak bias (i.e., for small |�|), despite the
presence of the completely flat band. Secondly, we want to
compare the band gap |�| and the binding energy of the lowest
energy exciton states. When |�| is larger than the binding
energy of the lowest energy exciton states we have a typical
semiconductor. Otherwise, the semiconductor is unstable to
the transition to an excitonic insulator.

The symmetrically biased dice model at 1/3 filling has a
flat band as the conduction band and a dispersive band as the
valence band. The spatial extension of the exciton state should
be a compromise between localized electron state of the flat
conduction band and extended hole state of the dispersive
valence band. Since the dispersive band becomes increasingly
flat as |�| increases, we suppose the composite electron-hole
pairs to be increasingly compact as |�| increases. Conversely,
for small |�| the excitons may be sufficiently extended to
allow for a description as large Wannier-Mott excitons. We
firstly assume that it is indeed the case for the 1/3-filled
system. Criterion supporting this view is provided in the fol-
lowing discussions.

The Wannier-Mott excitons may be studied in terms of
a low-energy effective-mass model defined in terms of the
states in the neighborhood of the band extrema. In the present
system, in view of the valley-contrasting interband excita-
tions under circularly polarized light and the localization of
states in the k space relevant to the exciton formation, the
Wannier-Mott excitons may be studied by focusing on the
states close to a single valley. We thus treat the two valleys in-
dependently and get two series of exciton modes distinguished
by the valley index. This is similar to the procedure taken for
monolayer transition-metal dichalcogenides [47]. Besides the
presence of a completely flat band in the present system, an-
other difference lies in the negligence of spin-orbit coupling,
in contrast to the strong spin-orbit coupling in monolayer
transition-metal dichalcogenides [45].

The hydrogenlike effective-mass model for the intravalley
excitons of one valley is written as

Ĥ = Ĥc(pe) + Ĥv (ph) − Veff(re − rh). (12)

−Veff(re − rh) is the effective electron-hole interaction, which
contains both attractive long-range Coulomb interactions and
the exchange interaction [61,62]. For large Wannier-Mott ex-
citons, we may retain only the long-range attractive Coulomb
interaction in −Veff [18,62]. The exchange interaction pro-
duces fine structures of the exciton spectrum and will be
discussed in Sec. IV. Ĥc(pe) and Ĥv (ph) are separately the
effective-mass models for the electron state in the nearly
empty conduction band and the hole state in the almost full
valence band. Taking the top of the valence band E−(k)
as the energy reference point, the dispersion of the elec-
tron band and the hole band are separately Ee(k) = E0(k) +
|�| and Eh(k′) = −E−(k′) − |�| = E (k′) − |�|. E0(k) = 0,
E−(k) and E (k) are defined in Eq. (5). In the neighborhood
of the band edge at Kτ (τ = ±), we expand Ee(k) and Eh(k′)
to the quadratic order of k − Kτ and k′ − Kτ . By defining
pe = h̄(k − Kτ ) and ph = −h̄(k′ − Kτ ), and taking them as
the momentum operators for the motion of the electron and
hole states close to Kτ , we obtain Ĥc(pe) and Ĥv (ph) from
Ee(k) and Eh(k′) as follows:

Ĥc(pe) = |�| + p2
e

2me
,

Ĥv (ph) = p2
h

2mh
, (13)

where mh = 2h̄2|�|/(3t2
0 a2) is the effective mass of the hole

states, me = +∞ is the infinite mass of the electron states in
the flat conduction band, |�| is the band gap. Equation (13) is
the same for both of the two valleys.

Introducing the center-of-mass (COM) coordinate R and
the relative coordinate r,

R = mere + mhrh

me + mh
	 re,

r = re − rh, (14)

and the COM momentum and the relative momentum

P = pe + ph,

p = mhpe − meph

me + mh
	 −ph, (15)

the full model is also decomposed into the part for the COM
motion and the part for the relative motion

Ĥ = ĤR + Ĥr,

ĤR = P2

2M∗ = − h̄2

2M∗ ∇2
R,

Ĥr = |�| + p2

2m∗ − Veff(r) = |�| − h̄2

2m∗ ∇2
r − Veff(r),

(16)

where the total mass for the COM motion M∗ = me + mh 	
me = ∞, and the reduced mass of the relative motion m∗ =
memh/(me + mh) 	 mh. Correspondingly, the wave function
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(re, rh) of the hydrogenlike electron-hole pair is decom-
posed into the part ψ (R) for the COM motion and the part
ϕ(r) for the relative motion. The Coulomb interaction acts
only on the relative motion and so the COM motion corre-
sponds to a free particle. Therefore ψ (R) = A exp(ikex · R).
For finite COM momentum h̄kex, the kinetic energy for the
COM motion is h̄2k2

ex/(2M∗) = 0. The excitons are there-
fore completely immobile as regards their COM motion. In
other words, the intravalley exciton bands are completely flat.
We therefore focus on the relative motion and take kex = 0.
kex = 0 is consistent with excitons generated by light.

In q space, the screened long-range Coulomb interaction in
an isotropic purely 2D system is known to be [18]

φ2D(q) = 2πe2

ε(q)|q| , (17)

where the 2D dielectric constant is q-dependent and related to
the 2D polarizability α2D of the system via

ε(q) = 1 + 2πα2D|q|. (18)

Fourier transformation of φ2D(q) gives the real-space effective
Coulomb interaction between two electrons or holes [18,63]

Veff(r) = Veff(r) = πe2

2r0

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
, (19)

where r = |r| is the length of r, r0 = 2πα2D. H0(x) is the
zeroth-order Struve function, and Y0(x) is the zeroth-order
second-kind Bessel function [64]. Equation (19) was origi-
nally derived by Keldysh for thin semiconductor films [63].
Recent analysis show that it provides a very accurate de-
scription for the effective screened Coulomb interaction for
very thin quasi-2D systems [18,19]. We will take this form of
interaction throughout the calculations.

The characteristic length r0 = 2πα2D defines the length
scale of the effective Coulomb interaction Veff(r), which goes
from an asymptotic logarithmic function for r � r0 to the
conventional 1/r behavior for r � r0 [18]. Since the electron
and hole states are bound by the effective Coulomb inter-
action into the exciton states, r0 should also determine the
spatial extension of the excitons. If r0 is much larger than
the lattice constant, it is a signal that treating the excitons as
Wannier-Mott excitons is reasonable. It is therefore desirable
to make an estimation over r0 for the symmetrically biased
dice model. This asks us to estimate α2D, which is the static
polarizability of the electrons in the symmetrically biased dice
model at 1/3 filling. From Eq. (18), α2D may be defined as the
limit [18,19]

α2D = lim
|q|→0

1

|q|
ε(q) − 1

2π
. (20)

The dielectric constant may be estimated in terms of
the random phase approximation (RPA) by the following
formula [65]:

ε(q, ω) = 1 − V (q)χ0(q, ω), (21)

where the bare 2D Coulomb interaction V (q) = 2πe2/(εr |q|),
the free polarizability χ0(q, ω) in the RPA corresponds to
a bubble diagram [65]. Depending on the lattice structure
and the model, the static dielectric constant evaluated by this
approach may depend on the direction of q. Correspondingly,

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0
13.27

13.28

13.29

2π
α 2

D

θ/π

Δ=0.2|t
0
|

2π
α 2D

Δ/|t
0
|

FIG. 2. The evolution of the 2D polarizability α2D with �, at
fixed t0 = −1. The inset shows the evolution of 2πα2D with the angle
θ , defined in terms of Eq. (22), for � = 0.2|t0|. 2πα2D = r0 is the
length scale of the effective Coulomb interaction, which is in unit
of e2/|t0| = aE0/|t0|. In other words, the vertical axis represents the
ratio γ between two lengths r0 and aE0/|t0|.

instead of the q-independent α2D in Eq. (18), we may define
a 2D polarizability which depends on the direction angle θ

along which the wave vector q approaches zero

α2D(θ ) = −lim
|q|→0

e2

εr |q|2 χ0(q, 0), (22)

where q = |q|(cos θ, sin θ ). The relative dielectric constant
εr depends on the medium surrounding the 2D material. For
graphene deposited on SiO2, εr = 4 was used in calculations
[65]. For suspended 2D systems, it is reasonable to take
εr = 1. For simplicity, we will set εr = 1 in what follows. A
larger εr does not change any qualitative conclusions. When
the anisotropy in α2D(θ ) is weak, we may approximate α2D by
α2D(θ ) at a particular value of θ or by an average of α2D(θ ) at
its maximum and minimum [66].

In terms of Eqs. (20)–(22), we study the variation of the
2D polarizability α2D with the parameter �, at fixed filling
fraction of 1/3. We fix |t0| = −t0 = 1 as the energy unit and
a = 1 as the length unit. For all the � studied, no discernible
θ -dependence is found in α2D(θ ) defined by Eq. (22). The
results for � = 0.2|t0| is shown as an example in the inset of
Fig. 2. The present model therefore gives an ideally isotropic
α2D. As shown in Fig. 2 is the evolution of 2πα2D = r0 with
�, in unit of

e2

a|t0|a = E0

|t0|a. (23)

Namely, Fig. 2 gives the variation of the ratio γ between two
lengths r0 and E0

|t0|a. For a = 3 Å, the static electric energy (the
formulas are in the Gaussian units)

E0 = e2

a
	 4.8 eV. (24)

In comparison to the typical values of the hopping ampli-
tudes in 2D solids, for example |t0| 	 2.8 eV for a0 	 1.42 Å
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(a = √
3a0 	 2.46 Å) in graphene [67], we should have E0 >

|t0| in general. With the increase of a, the hopping amplitude
in a solid decays usually faster than a−1 [68]. And so E0 > |t0|
should survive the increase of a. If the dice lattice is realized
as a metamaterial, such as a coupled array of quantum dots,
the lattice parameters may be much larger than typical lat-
tice constants of solids. In these metamaterials, the hopping
amplitude may depend on the lattice constant in a manner
different from that in solids. However, taking advantage of
the high controllability in these artificial lattices, it should
be able to satisfy the condition E0 > |t0|. Then, if the value
of 2πα2D (i.e., γ ) in Fig. 2 is appreciably larger than 1, so
that r0 is much larger than a, it is reasonable to treat the
excitons as Wannier-Mott excitons. From Fig. 2, γ 	 13.3 for
� = 0.2|t0|. It therefore seems justified to treat the excitons in
the symmetrically biased dice model for � close to 0.2|t0| or
smaller as Wannier-Mott excitons. In numerical calculations
for the energy spectrum and the wave functions of the exci-
tons, we take r0 = βa which amounts to E0 = β|t0|/γ . From
the above discussions, we should usually have β > γ . Setting
the lattice constant a as the length unit, we have

h̄2

2m∗a2
= 3t2

0

4|�| ,

e2

r0
= |t0|

γ
. (25)

Now, r0 = βa appears explicitly only in the Struve function
and the second-kind Bessel function of Eq. (19).

We are now justified to calculate the spectrum and wave
functions of the intravalley excitons by solving the eigen-
problem of Ĥr. Because Ĥr has the rotational symmetry in
the 2D plane of the dice lattice, we work in the 2D polar
coordinate to study the relative motion of the excitons. In
the polar coordinate (ρ, θ ), r = ρ(cos θ, sin θ ). Because the
potential is independent of the angle θ , the wave function ϕ(r)
for the relative motion should be the eigenstate of the angular
momentum operator lz = −ih̄ ∂

∂θ
. We therefore take

ϕ(r) = ϕ(ρ, θ ) = ϕnm(ρ)
eimθ

√
2π

, (26)

where n = 1, 2, 3, . . . is the principal quantum number and
m = 0,±1,±2, . . . is the angular quantum number character-
izing the quantized lz. The differential equation for the radial
wave function of the relative motion is{

|�| − h̄2

2m∗

[
d2

dρ2
+ 1

ρ

d

dρ
− m2

ρ2

]
− Veff(ρ)

}
ϕnm(ρ)

= Enmϕnm(ρ). (27)

For m �= 0, the above equation is invariant under m → −m, all
excitonic states with m �= 0 are therefore at least doubly de-
generate. Only the excitons for m = 0 can be optically active
bright excitons and contribute to optical absorption, whereas
all other exciton states are dark excitons [62]. Enm increases
with n for fixed m. For each m, n takes values among |m| + 1,
|m| + 2, . . ..

No exact analytical solution to Eq. (27) is known, be-
cause of the complexity of the potential Veff(ρ) defined by
Eq. (19). Solutions were found in previous works by taking

proper variational ansatz [18,30,33,34], or purely numerical
approaches [35,69,70]. Here, we follow Cudazzo et al and
expand the solutions to Eq. (27) into linear combinations of
the eigenfunctions of the corresponding 2D hydrogen problem
[18,71]. For this purpose, note that the effective Coulomb
interaction of Eq. (19) becomes in the limit of large radius
(i.e., ρ � r0) [64]

Veff(ρ)|ρ�r0 	 e2

ρ
= VC (ρ), (28)

which is the Coulomb interaction between two unit charges.
By substituting VC (ρ) for Veff(ρ), Eq. (27) becomes the differ-
ential equation for the radial wave function of a 2D hydrogen,
the exact analytical solutions of which give its spectrum
E (0)

nm and the corresponding normalized radial wave functions
unm(ρ) [64,71]. Taking unm(ρ) as the basis set for the unknown
solutions to Eq. (27), we have

ϕnm(ρ) =
∑

n′
a(m)

nn′ un′m(ρ). (29)

The quantum number n′ = |m| + 1, |m| + 2, . . . runs over all
the compatible states, the number of which is infinite. In
practical numerical calculations, we truncate the summation
over n′ up to the N lowest values. This turns Eq. (27) into
the eigenproblem of an N × N Hermitian matrix, which is
the sum of a diagonal matrix with diagonal elements E (0)

nm
(n = |m| + 1, . . . , |m| + N) and a matrix whose elements are
the matrix elements of

δV (ρ) = −[Veff(ρ) − VC (ρ)] (30)

with respect to unm(ρ). That is

δV (m)
n1n2

=
∫

u∗
n1m(ρ)δV (ρ)un2m(ρ)ρdρ. (31)

The integration over ρ ranges from 0 to +∞. In practical
calculations, we restrict the integration within a finite region
ρ ∈ [0, L], with L � r0.

The solutions of the above N × N eigenproblem are ap-
proximations to ϕnm(ρ). We then increase N and test the
convergence of the lowest several eigenvalues, until the
changes in them are all smaller than a preset precision (e.g.,
smaller than 10−7|t0|). L is chosen so that ϕnm(L) is vanish-
ingly small for the lowest several eigenstates. The convergent
solutions are reliable approximations to the lowest several
eigenstates under consideration.

With the relative wave function calculated in the above
manner, the total wave function of the excitons are obtained
by multiplying it with the Bloch wave function ψ0(re) of
the electron in the flat conduction band and the Bloch wave
function ψ−(rh) of the hole in the dispersive valence band,

 (n,m)
ex (re, rh) = ϕnm(ρ)

eimθ

√
2π

ψ0(re)T ψ−(rh). (32)

ρ and θ are separately the modulus and polar angle of r =
re − rh. T is the time-reversal operation. In the effective-mass
method, the Bloch wave functions are evaluated at the valley
(i.e., at Kτ ). The eigenvectors defined by Eqs. (7) and (9)
are however not well defined at K and K′. This singularity
is easily removed by multiplying the following ν-dependent

195155-6



VALLEY-CONTRASTING INTERBAND TRANSITIONS AND … PHYSICAL REVIEW B 104, 195155 (2021)

phase factor to Eqs. (7) and (9),

1 + νsgn(�)

2

ξ ∗(k)

|ξ (k)| + 1 − νsgn(�)

2

ξ (k)

|ξ (k)| . (33)

The same phase factor is to be multiplied to Eq. (11)
after making this modification. No qualitative conclusion is
changed by this phase factor. Since the present model [i.e.,
Eq. (1)] is independent of spin, each exciton level has a four-
fold degeneracy in the total spin, one for the singlet channel
and three for the triplet channel [62].

III. PROPERTIES OF INTRAVALLEY EXCITONS

For the symmetrically biased dice model, only the states
close to the Kτ (τ = ±) points are relevant to the formation
of large Wannier-Mott excitons. Since these two valleys are
well separated, it is a good approximation to focus on a
single valley in the first place and taking the influence of the
intervalley interactions into consideration afterwards. In par-
ticular, because of the valley-contrasting interband transitions,
the intravalley excitons are relevant to the excitons generated
in experiments by a circularly polarized light. We therefore
study the spectrum and wave function of intravalley excitons
in terms of the effective-mass model defined in the previous
section, which is applicable to both of the two valleys.

In terms of the formulas of Sec. II C, we have calculated
leading eigenstates of the intravalley excitons for several m,
for � = 0.2|t0|. We first take r0 = 15a (β = 15 > 13.3). For
|m| ranging from 0 up to 6, the four lowest exciton states
are shown in Fig. 3(a). The band gap |�| is subtracted from
the exciton levels, so that the negative of the results are the
corresponding binding energies. Convergence of the spectrum
with respect to N and L are tested to ensure a precision in each
of the five lowest eigenenergies to be smaller than 10−7|t0|.
Because the magnitude of the energy gap is 0.2|t0|, all the
exciton levels are within the gap. The four exciton levels
increase monotonically with |m|, so that the binding energies
of the exciton levels decrease monotonically with |m|.

To see the dependence of the exciton spectrum on the
parameter β = r0/a, we study the variation of the three low-
est exciton modes with β from β = 10 to β = 20. All the
other parameters are the same as those for Fig. 3(a). Together
with the results for β = 15, the variation of the spectrum are
plotted in Fig. 3(b). The exciton levels (the binding energies)
increase (decrease) monotonically with r0. Down to r0 = 10a,
the exciton levels are all within the energy gap. It is therefore
reasonable to take β = 15 to see the qualitative properties of
the excitons.

As shown in Fig. 4 are the square modulus of the relative
wave function, |ϕnm(ρ)|2, for several {n, m} combinations.
The parameters are the same as those for Fig. 3(a). For the
same |m|, the wave function becomes more extended and
develops more nodes as n increases. As the quantum number
|m| increases, all the wave functions become increasingly
more extended. Since electronic states in the flat band are
spatially localized, the relative wave functions give mainly the
distributions of the hole states of the dispersive valence band.
The position of the electron states of the flat band defines the
COM location of the exciton.

(a)

(b)

FIG. 3. (a) The four lowest intravalley exciton modes, for |m|
ranging from 0 to 6. The energies are measured relative to the
band gap, in unit of |t0|. t0 = −1, � = 0.2|t0| and r0 = βa = 15a.
(b) Variations of the three lowest exciton modes with r0/a = β.

The approach we used to obtain the exciton spectrum and
wave function, explained in Sec. II C, makes it very conve-
nient to make a comparison between the above results and the
results for the corresponding 2D hydrogen problem defined by
setting δV (ρ) of Eq. (30) as zero. The energy spectrum of the
corresponding 2D hydrogen is [71]

En − |�| = − 1

2
(
n − 1

2

)2

m∗e4

h̄2 = − 1(
n − 1

2

)2

|�|
3

(
β

γ

)2

,

(34)
where n = 1, 2, 3, . . . . The lowest energy level, for n = 1, is
nondegenerate. For n > 1, the energy level is (2n − 1)-fold
degenerate. In terms of the angular quantum number, these de-
generate states correspond to m = 0,±1,±2, . . . ,±(n − 1).
Comparing to the results shown in Figs. 3(a) and 3(b), the de-
viation from the pure Coulomb interaction of Eq. (28) brings
three major modifications to the spectrum. Firstly, the binding
energies are reduced. From Eq. (34), E1 − |�| < −|�| for all
β � γ . However, the binding energy of the lowest exciton
mode is smaller than the energy gap, as shown in Fig. 3(b).
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(a)

(b)

(c)

FIG. 4. Square modulus of the relative wave functions of the
three lowest energy excitons, for (a) m = 0, (b) |m| = 1, (c) |m| = 2.
t0 = −1, and � = 0.2|t0|. The lattice constant a is taken as the length
unit. r0 = βa = 15a. The inset of (a) is a magnified plot of the small
magnitude part of |ϕ10(ρ )|2.

Secondly, the spacings between the consecutive energy levels
shown in Fig. 3(a) do not follow the 2D hydrogenic model
[18]. Thirdly, as is clear from Fig. 3(a), the degeneracy in
the exciton levels for n > 1 is broken. For the same n, the
exciton level (exciton binding energy) decreases (increases)
with increasing |m|.

The radial part of the excitons’ relative wave functions
are also changed qualitatively compared to the radial wave
functions of the 2D hydrogen. On one hand, the s-like (i.e.,
m = 0) exciton modes are more extended. In particular, in-
stead of purely exponential decay, |ϕ10(ρ)|2 for the lowest
exciton state has a local maximum away from ρ = 0, as shown
in Fig. 4(a) at around 11a. This results from the reduced

attraction of the effective Coulomb interaction, which has
the asymptotic behavior Veff(ρ) ∼ − ln(ρ) instead of 1/ρ for
small ρ [18]. Another finer change lies in the tails of the
wave functions. For example, compared to the purely expo-
nential decay of the wave function for the lowest level of the
2D hydrogen, there are additional oscillations in the tail of
|ϕ10(ρ)|2, as shown in the inset of Fig. 4(a). The enhanced
spatial extension of the exciton states is consistent with treat-
ing the intravalley excitons as large Wannier-Mott excitons for
small �.

Note that only the transverse spin-singlet m = 0 excitons
are optically active bright excitons and contribute to optical
absorption for one-photon processes [62]. The dark exciton
states, which contain all the remaining exciton modes, may
be probed by nonlinear two-photon processes via a virtual
state [62,72] or mediated by an intermediate state of the
system [73]. In semiconductor quantum dots, manipulation
of the dark exciton states in terms of single optical pulses
are also possible, in the presence or absence of a magnetic
field [74,75].

The intravalley excitons studied in this section differ from
their counterparts in gapped monolayer graphene and the
monolayer transition metal dichalcogenides in their com-
pletely localized COM motion. Consequently, the valley
polarization generated by a circularly polarized light is spa-
tially localized. This is peculiar in at least two aspects. Firstly,
the valley polarized intravalley excitons are localized both in
the real space and in the k space. This does not contradict
the Heisenberg uncertainty principle because the localization
in the real space is for the COM motion, while the local-
ization in the k space corresponds to the spatially extended
relative motion of the electron and hole states. Secondly,
the spatially localized valley polarization associated with the
intravalley excitons may allow for new applications in val-
leytronics and quantum information technology. For example,
when the bright exciton generated by a circularly polarized
light is turned to a dark exciton state through a mechanism
such as those listed above, we get a long-lived valley-
polarized state that can be used to store quantum information
locally. The two intravalley exciton modes constitute a single
qubit, which may be exploited to implement local quantum
information processings through optical means.

The fact that the present intravalley excitons are dispersion-
less in their COM motion also makes these excitons stable to
many perturbations that may change their COM momentum.
This is because a process changing the COM momentum of
the excitons must conserve both momentum and energy. We
may consider changing the COM momentum of an exciton
by coupling it to an internal (such as phonons) or external
(such as photons) source of perturbation. The perturbation in
general has a dispersion, and a finite momentum transfer ac-
companies a nonzero energy transfer. Since the dispersionless
intravalley exciton has a flat spectrum, a usual perturbation
with a dispersion cannot implement the momentum transfer
because it would violate the energy conservation. As a result,
the dispersionless excitons studied in this section should be
stable to a large class of momentum transfer processes.

It is also interesting to compare with the core excitons,
which appear in the core level spectra. In this case, an electron
of a deep valence band, associated with a core atomic level, is
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optically excitated (e.g., by an x ray) to an unoccupied state of
the conduction band. The core hole in the deep valence band
may be considered as having an infinite mass, similar to the
states in the flat band of the present system. As a result, the
core excitons are completely localized in their COM motion,
also similar to the intravalley excitons of the present system.
On the other hand, the gap between the core hole level and the
conduction band is much larger than the small gap considered
here. Another more fundamental difference lies in the decay
of the core hole by the Auger effect [76]. In consequence, it
is of crucial importance to use dynamically screened inter-
actions to make a realistic calculation for the core excitons,
which are usually carried out by solving a Bethe-Salpeter
equation [31,32,76,77]. In comparison, the hole states for the
intravalley excitons of the symmetrically biased dice model
considered in this work are at or close to the top of the valence
band, and are not influenced by the Auger effect. As a result,
a statically screened interaction like Eqs. (17) and (19) is
reliable, and a treatment based on a hydrogenlike effective
mass model is the standard formalism for the Wannier-Mott
excitons [18,61,62].

IV. EFFECTS OF THE EXCHANGE INTERACTION

The exchange interaction neglected in the previous discus-
sions may introduce fine structures to the exciton spectrum.
These include the splitting between the spin-singlet and spin-
triplet excitons, and the splitting between the longitudinal
and the transverse spin-singlet exciton modes [62,78]. For
excitons of the symmetrically biased dice model, the exchange
interaction also couples the intravalley excitons of the two
valleys and therefore cause valley depolarization of the exci-
ton states excitated by circularly polarized light, similar to the
case of the monolayer transition metal dichalcogenides [47].

We firstly write down the definition of the exchange in-
teraction as a term in the matrix element of the Coulomb
interaction hybridizing two electron-hole pair states, where
the electron state and the hole state of each pair belong to
the same valley. As there is no spin-orbit coupling in the
model, the total spin M of the electron-hole pair is a good
quantum number. The value of M may be 0 (singlet states)
or 1 (triplet states). The exchange interaction is nonzero only
for singlet electron-hole pairs [62,78,79]. Suppose �

(M )
cke,vkh

is the many-body wave function (i.e., a Slater determinant)
of the state with an electron of wave vector kh annihilated
from the fully occupied valence band and an electron of wave
vector ke created in the otherwise empty conduction band. The
exchange interaction for the hybridization between �

(M )
cke,vkh

and another state �
(M )
ck′

e,vk′
h

is [62,78]

〈
�

(M )
cke,vkh

∣∣Ĥ ∣∣�(M )
ck′

e,vk′
h

〉
ex

= 2δM〈ψckeψvk′
h
| e2

r12
|ψvkhψck′

e
〉

= 2δM

∫∫
dr1dr2ψ

∗
cke

(r1)ψvkh (r1)
e2

r12
ψck′

e
(r2)ψ∗

vk′
h
(r2),

(35)

where ψcke (ψck′
e
) and ψvkh (ψvk′

h
) are separately the Bloch

functions for an electron of wave vector ke (k′
e) in the conduc-

tion band and an electron of wave vector kh (k′
h) in the valence

band. ke − kh = k′
e − k′

h = kex is the total wave vector of
the electron-hole pairs. δM = 1 (δM = 0) for M = 0 (M = 1).
When all the four wave vectors belong to the same valley Kτ ,
the exchange interaction couples electron-hole pairs of the
same valley. We denote the intravalley exchange interaction as
J (kex)δM . When ke and kh are close to one valley Kτ whereas
k′

e and k′
h are close to the other valley K−τ , the exchange in-

teraction couples two electron-hole pairs of different valleys.
We denote the intervalley exchange interaction as J̃ (kex)δM .

By expanding the Bloch functions in the above definition
into a linear combination of Wannier functions, and retaining
the leading order terms, it can be shown that both J (kex) and
J̃ (kex) have two parts, the long-range part and the short-range
part [62,78,79]. The short-range part is the same for J (kex)
and J̃ (kex), and is independent of kex. The long-range part of
the exchange interaction, also known as the nonanalytical part
or the polarization term, depends on the COM momentum kex

of the exciton [62,78,79].
Quantitative calculation of the short-range exchange inter-

action requires an accurate knowledge of the atomic orbitals
on the lattice sites [47,80]. Because our discussions are
based on a model rather than a concrete material, realis-
tic evaluations of the short-range parts of J (kex) and J̃ (kex)
can not be made. The long-range exchange interaction for
Wannier-Mott excitons of semiconductors, on the other hand,
may be evaluated by the formula of Pikus and Bir in terms
of the continuum approximation to the tight-binding model
at the two valleys Kτ (τ = ±) [79–81]. Direct application of
the formula gives the following results for the intravalley and
intervalley long-range exchange interactions

JLR(kex) = 3a2t2
0

4�2
V (kex)k2

ex,

J̃LR(kex) = 3a2t2
0

4�2
V (kex)k2

exe2iφτ (kex ). (36)

We have multiplied Eq. (9) by the phase factor of Eq. (33)
in calculating the eigenvector of the lower dispersive band at
Kτ (τ = ±). The phase φτ (k) of a wave vector k is defined
as k exp iφτ (k) = kx + iτ sgn(�)ky. The bare 2D Coulomb
interaction V (k) = 2πe2/(εrk). Both the intravalley and the
intervalley long-range exchange interactions vanish linearly
with kex as kex → 0, which is well-known for 2D systems
[32,48,80–82].

The four channels of the exchange interaction, intraval-
ley versus intervalley and long-range versus short-range,
introduce rich fine structures to the excitonic spectrum and
dynamics. Firstly, since the exchange interaction is nonzero
only for singlet excitons, there will be a singlet-triplet split-
ting (STS). Secondly, the intravalley long-range exchange
interaction JLR(kex) gives a weak dispersion to the otherwise
dispersionless intravalley exciton spectrum. Interestingly, this
dispersion is linear and isotropic in kex. On one hand, this
implies the absence of longitudinal-transverse splitting (LTS)
by JLR(kex) in the intravalley excitons. On the other hand,
the intravalley excitons gain mobility through JLR(kex). So,
the prospective applications mentioned at the end of the last

195155-9



LEI HAO PHYSICAL REVIEW B 104, 195155 (2021)

section apply only when the mobility from JLR(kex) is suffi-
ciently small. Noth that, the dispersion induced by JLR(kex)
corresponds to the nonanalyticity in the dispersion of the
excitons of monolayer MoS2 found by Qiu et al. [32]. Thirdly,
the intervalley exchange interactions J̃ (kex) mediate nontrivial
coupling between the intravalley excitons of the two valleys.
On one hand, for the intravalley excitons generated by cir-
cularly polarized light, the intervalley exchange interaction
acts as a mechanism of valley depolarization [80]. On the
other hand, the intervalley exchange interaction brings hy-
bridization and level splitting to the two intravalley exciton
modes, when the system is excited by a linearly polarized light
which excites the two intravalley excitons simultaneously in
equal strength. As was demonstrated in the corresponding
case of monolayer transition-metal dichalcogenides, the two
levels resulting from this splitting are separately longitudinal
and transverse combinations of the two intravalley excitons
[48,50,81]. Therefore the intervalley exchange interactions
lead to a longitudinal-transverse splitting in the hybridized
non-valley-polarized exciton modes. Only the transverse sin-
glet excitons can be excited by light and may be bright
excitons [62]. In addition, this hybridization and splitting of
the two degenerate intravalley exciton modes tends to es-
tablish a coherence between the two valleys, such that the
photoluminescence following the excitation retains the linear
polarization of the stimulus light pulse [47].

Now, by taking J as a free parameter, we make a quan-
titative calculation of the variation in the intravalley exciton
spectrum induced by the intravalley exchange interaction. For
the intravalley singlet excitons, the intravalley exchange inter-
action adds the following term to the effective-mass model of
Eq. (16),

Jδ(r), (37)

where δ(r) = δ(x)δ(y) is the 2D Dirac delta function
[61,62,78]. If we are interested only in the kex = 0 excitons,
the parameter J contains only the short-range component. The
Dirac delta function implies that the exchange term has a very
mild impact on the spatially extended Wannier-Mott excitons,
which somehow justifies the omission of the exchange term
in studying large Wannier-Mott excitons [18]. To incorporate
Eq. (37) into the formalism of Sec. II C, we approximate the
Dirac delta function as the limit of a Gaussian,

δ(r) = δ(x)δ(y) = lim
σ→0

1

2πσ
e− x2+y2

2σ = lim
σ→0

1

2πσ
e− ρ2

2σ . (38)

In this manner, for each definite σ > 0, the exchange interac-
tion depends only on the polar radius ρ and can be directly
added to the residual potential of Eq. (30). For a specific value
of J , we calculate the modified spectrum of the intravalley
excitons for successively decreasing and positive σ , until the
lowest eigenenergies attain convergence. We therefore test
simultaneously the convergence of the spectrum with respect
to the number N of retained basis and the parameter σ , for
sufficiently large L for the integration of Eq. (31).

We have made extensive numerical calculations for the
modified spectrum of singlet intravalley excitons by incor-
porating the exchange interaction in the above manner. One
central conclusion is that only the s-wave (i.e., m = 0) in-
travalley excitons are slightly changed after including the
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FIG. 5. Dependency of the three lowest s-wave (i.e., m = 0) ex-
citons on J . What is plotted is the variation of the energies, δEn0(J ) =
En0(J ) − En0(J = 0), in unit of |t0|. The Dirac delta function is ap-
proximated by Eq. (38), with σ = 10−6a2. The other parameters are
the same as those for Figs. 3(a) and 4.

intravalley exchange interaction. This is consistent with the
local nature of the exchange interaction and the radial distri-
bution of the relative wave functions shown in Fig. 4, from
which only the s-wave excitons have nonzero value at ρ = 0
(i.e., at r = 0). The convergence in the exciton energy levels
is attained when σ � 10−3a2. As shown in Fig. 5, there are
the variations of the three lowest s-wave excitons with J ,
evaluated at σ = 10−6a2 to ensure the convergence of the
results. From Fig. 5, and in comparison to Fig. 4(a), the
variation of the energy levels δEn0(J ) = En0(J ) − En0(J = 0)
is roughly proportional to the product J|ϕn0(0)|2/a2, in partic-
ular for small J . This is in agreement with the above picture
for why the excitons with |m| � 1 are not affected by the
exchange term.

Because the exchange interaction acts only on the spin-
singlet excitons, the results in Fig. 5 imply a singlet-triplet
splitting (STS) for the s-wave excitons (m = 0). The STS is
absent for |m| > 0. For J > 0, the triplet s-wave excitons,
which are dark excitons, have lower energy and are the lowest
energy exciton excitations. For J < 0, the singlet s-wave ex-
citons, which are bright excitons (the transverse branch), have
lower energy and are instead the lowest energy exciton excita-
tions. Since there is a sign reversal in the exchange interaction
compared to the attractive direct Coulomb interaction [62], the
parameter J is expected to be positive in usual cases.

V. SUMMARY

In summary, we have studied the interband transitions and
excitons in the symmetrically biased dice model. We find
valley-contrasting interband transitions between the flat band
and one dispersive band, under excitations by circularly po-
larized light. In terms of the static polarizability obtained by
RPA calculations, the excitons in the system may be regarded
as Wannier-Mott excitons when the bias is small compared
with the hopping amplitude of the dice model. Based on the
effective-mass model for the intravalley excitations, we cal-
culate the spectrum and the wave functions of the intravalley
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excitons. Fine structures in the exciton spectrum, induced by
the exchange interaction, are also discussed. The present study

indicates that the symmetrically biased dice model is a new
platform for studying valley-contrasting optoelectronics.
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