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We present a method of extracting information about topological order from the ground state of a strongly
correlated two-dimensional system represented by an infinite projected entangled pair state (iPEPS). As in
previous works [A. Francuz et al., Phys. Rev. B 101, 041108(R) (2020) and A. Francuz and J. Dziarmaga
ibid. 102, 235112 (2020)] we begin by determining symmetries of the iPEPS represented by infinite matrix
product operators (iMPO) that map between the different iPEPS transfer matrix fixed points, to which we
apply the fundamental theorem of matrix product states to find zipper tensors between products of iMPO’s that
encode fusion properties of the anyons. The zippers can be combined to extract topological F symbols of the
underlying fusion category, which unequivocally identifies the topological order of the ground state. We bring
the F symbols to the canonical gauge, and also compute the Drinfeld center of this unitary fusion category to
extract the topological S and T matrices encoding mutual statistics and self-statistics of the emergent anyons.
The algorithm is applied to Abelian toric code, Kitaev model, double semion, and twisted quantum double of
Z3, as well as to non-Abelian double Fibonacci, double Ising, and quantum double of S3 and Rep(S3) string-net
models.
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I. INTRODUCTION

Topologically ordered phases [1] support anyonic exci-
tations that open the possibility of realizing fault-tolerant
quantum computation [2] by braiding of non-Abelian anyons.
Aside from the class of exactly solvable models [2–4], ver-
ifying if a more general microscopic Hamiltonian has a
topologically ordered ground state was traditionally regarded
to be an extremely hard task. Recently, observation of quan-
tized Hall effect in Kitaev-type ruthenium chloride α-RuCl3
in magnetic field [5] granted the problem with urgent ex-
perimental relevance. Intensive experimental search for other
Kitaev-type materials is under way [6].

The density matrix renormalization group (DMRG) [7,8]
on a long cylinder used to be the numerical method of choice
[9–24]. In the limit of infinitely long cylinders, DMRG nat-
urally produces ground states with well-defined anyonic flux
from which one can obtain characterization of a topological
order via so-called topological S and T matrices [25]. Since
the proposal of Ref. [25], this approach has become a common
practice [26–43].

Unfortunately, the cost of a DMRG simulation grows ex-
ponentially with the circumference of cylinder, limiting this
approach to thin cylinders (up to a circumference of �14
sites) and thus to short correlation lengths (up to ξ = 1∼2
sites), since the circumference has to be at least ≈6ξ to reach
convergence in the cylinder width. Instead, infinite projected
entangled pair states (iPEPS) in principle allow for much
longer correlation lengths [44–46]. A unique ground state on
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an infinite lattice can be represented by an iPEPS that is either
a variational ansatz [47] or a result of numerical optimization
[48–51].

When wrapped on a cylinder, the iPEPS becomes a su-
perposition of degenerate ground states with definite anyonic
fluxes. In the realm of the string-net models it is possi-
ble [49,52] to produce a PEPS-like tensor network for each
ground state with well-defined flux (see Fig. 1). Such ten-
sor networks are suitable for extracting topological S and T
matrices by computing overlaps between the ground states.
Furthermore, they allow for computation of topological sec-
ond Renyi entropy directly in the limit of infinite cylinder’s
width. The approach of Refs. [49,52] does not assume clean
realization of certain symmetries on the bond indices, in con-
trast to [53–56]. This has been demonstrated in Ref. [49] by
examples of toric code and double semions perturbed away
from a fixed point towards a ferromagnetic phase as well as
for the numerical iPEPS representing the ground state of the
Kitaev model in the gapped phase. The same approach was
generalized to non-Abelian topological order in Ref. [52].
The method does not require restoring the symmetries by
suitable gauge transformations of a numerical iPEPS, a feat
that was accomplished in Ref. [57] for the toric code with a
perturbation. It is also not necessary to optimize symmetry-
constrained iPEPS tensors as in Ref. [58]. Finally, it also has
much lower numerical cost than methods based on the tensor
renormalization group [59].

In this work we reconsider the string-net models. Similarly
as in Refs. [49,52], for a given iPEPS we numerically ob-
tain its infinite matrix product operator (iMPO) symmetries.
Products of the iMPO symmetries realize fusion rules of the
corresponding anyons of a unitary fusion category (UFC) C.
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FIG. 1. The method of Refs. [49,52]. From the unique ground
state on an infinite lattice, represented by an iPEPS |�〉, vari-
ous states inserted with infinite MPO symmetries, Zh and Zv , are
constructed. Their linear combinations, whose coefficients are de-
termined by fusion rules of the iMPO symmetries (corresponding to
anyonic fusion rules), become a basis of states with well-defined any-
onic flux. Overlaps of these infinite states determine the topological
matrices S and T . Here physical indices are not shown for simplicity.

We use the fundamental theorem of matrix product states
(MPS) [60,61] and apply it to the iMPO products in order to
classify topological order through its related fusion categories.
The fundamental theorem of MPS has already been widely
used in characterization of phases of both one-dimensional
(1D) and two-dimensionl (2D) gapped systems [62,63] as
well as the construction of exact renormalization fixed-point
representations of string nets with iPEPS [53,54]. The the-
orem allows us to construct gauge transformations (zippers)
between products of iMPO’s and their fusion outcomes. The
zippers encode information on fusion properties of the cor-
responding anyons, and they can be combined in order to
extract the F symbols of the underlying UFC C describing the
topological order unequivocally. The different ground states
and possible anyonic excitations of the string-net model are
actually described by the Drinfeld center Z (C), and different
UFCs C associated to the iMPO symmetries can give the same
topological order if their centers are isomorphic [64]. To deal
with this redundancy, we compute the center by constructing
idempotents of the tube algebra and compute invariants such
as the topological S and T matrices which encode mutual
statistics and self-statistics of the emergent anyons. While the
S and T matrices provide a useful characterization of the type
of topological order, in general they do not uniquely specify
the modular category Z (C) [65]. By explicitly constructing
Z (C), our approach does not suffer from this problem.

The method we use has similarities with previous ap-
proaches where one looks for stringlike operators on the
physical level that commute with the Hamiltonian called
ribbon operators [66]. An important fact is that in these ap-
proaches, when moving away from the fixed point, these
ribbon operators get dressed [67] and their width is propor-
tional to the correlation length. In contrast, in our approach,
the iMPO symmetries are not fattened when perturbing the

system away from the fixed point since they act purely on the
virtual level.

The paper is organized in Secs. II–IX where we gradually
introduce subsequent elements of the algorithm. In Sec. II
we give a brief review of (2 + 1)-dimensional [(2 + 1)d]
topological order in PEPS and virtual MPO symmetries, the
properties of which are governed by the F symbols of a UFC
C that we aim to numerically determine for a generic iPEPS.
In Sec. III we define fixed points of the iPEPS transfer matrix
in the form of iMPS and introduce iMPO symmetries that
map between different fixed points. We also identify fusion
rules of the iMPO symmetries that are isomorphic with the
fusion rules of some input category C. In Sec. IV we introduce
X zippers that are gauge transformations between products
of two iMPO symmetries acting on a trivial fixed point of
the transfer matrix and a single iMPO symmetry applied to
the same trivial fixed point. We distinguish between up and
down X zippers for, respectively, up and down fixed points.
In Sec. V we introduce and construct more elementary Y
zippers. Each Y zipper is a gauge transformation between
a product of an iMPO symmetry and a fixed point of the
transfer matrix and the resulting fixed point. X zippers can be
constructed out of the elementary Y zippers. In Sec. VI pairs
of complementary left and right X zippers are normalized to
become pairs of gauge and inverse gauge transformations. In
particular, a nontrivial normalization between up and down
zippers is imposed. In Sec. VII we construct F symbols out
of the normalized up and down X zippers. The fusion sym-
bols have arbitrary/random numerical gauge. In Sec. VIII we
parametrize the gauge freedom and outline how the F symbols
can be brought to some canonical gauge that allows to identify
the topological order. In Sec. IX we algebraically construct the
gauge-invariant central idempotents of the tube algebra made
of the zippers, which when inserted into iPEPS, as in Fig. 1,
can be thought of as projectors onto minimally entangled
states (MES). However, here we do not construct the MES
but use the central idempotents of the tube algebra to directly
extract topological S and T matrices [54,68]. Unlike the F
symbols, the S and T matrices are gauge-invariant observables
with a physical interpretation of statistics of the emergent
anyons. In contrast to Refs. [49,52], here they are obtained by
algebraic manipulation from the F symbols, the calculation
of which is a purely 1D problem, which significantly reduces
the complexity of the numerical algorithms. The route via F
symbols therefore provides an alternative that is potentially
more stable numerically. The paper is closed with a brief
summary of the algorithm in Sec. X and an outlook towards
future applications.

II. MPO SYMMETRIES IN PEPS

A necessary condition for a tensor network to exhibit topo-
logical order is the existence of stringlike operators on the
virtual level that can be freely moved through the lattice.
These operators are represented as MPO symmetries, that at
the level of the local PEPS tensors satisfy the pulling-through
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condition:

(1)

With periodic boundary conditions these MPO symmetries,
which we denote as Za, form a representation of a fusion ring

ZaZb =
∑

c

Nc
abZc, (2)

where, for the remainder, we will restrict to the multiplicity-
free case, i.e., Nc

ab = 0, 1. Locally this implies the existence of
a fusion tensor X c

ab that satisfies the zipper condition

(3)

Multiplication of these MPO symmetries is associative,
which imposes the following condition on the fusion tensors:

(4)

where F abc
de f = (F abc

d ) f
e is a unitary matrix from e to f . These

F symbols satisfy a consistency condition known as the pen-
tagon equation: ∑

f

F abc
de f F bci

h f jF
a f i

gdh = F ab j
geh F eci

gd j , (5)

which turns the data Nc
ab and F abc

de f into consistent a unitary
fusion category (UFC) C. This UFC completely determines
the topological order of the PEPS, and it is the goal of this
work to numerically determine its data for an arbitrary PEPS
tensor.

III. NUMERICAL MPO SYMMETRIES

The iPEPS representing the ground state on an infinite
lattice |ψ〉 is assumed to be normalized: 〈ψ |ψ〉 = n. Its norm,
which is a contraction between the iPEPS (ket) and its com-
plex conjugate (bra), is a 2D tensor network made of double
iPEPS tensors shown in Fig. 2(a). Each row of the network
is a horizontal transfer matrix �h in Fig. 2(b). The transfer
matrix has several leading up eigenvectors |vU

i ) numbered
by i, whose degenerate leading eigenvalue is 1 (hence the
double iPEPS with n leading eigenvectors is normalized to
n). These boundary fixed points can be reshaped as iMPO’s,
vU

i , acting between virtual bra and ket indices. Together with
their corresponding biorthonormal down eigenvectors (vD

i |,
that can be also reshaped as iMPO, vD

i , they satisfy

�h ≈ 1
n∑

i=1

∣∣vU
i

)(
vD

i

∣∣, (6)

δi j = (
vU

i |vD
j

) = Tr
(
vU

i

)T
vD

j . (7)

(a)

(b)

(c)

FIG. 2. Transfer matrix. In (a), graphical representation of a dou-
ble iPEPS tensor A that is made out of an iPEPS tensor A contracted
through a physical index with its complex conjugate A∗. In (b) and
(c), a horizontal row of A makes a horizontal transfer matrix �h. Its
leading up eigenvectors (vU

i | and down eigenvectors, (vD
i |, with the

leading degenerate eigenvalue 1, can be obtained with the VUMPS
algorithm [69,70]. The eigenvector can be reshaped into an iMPO
form vU

i . The uniform vU
i is made of tensors MU

i with bond dimen-
sion χi.

The first and the most important step to identify the topo-
logical order is finding the virtual iMPO symmetries of the
iPEPS as their existence is a necessary condition for the iPEPS
to exhibit topological order. As described in Refs. [49,52],
the iMPO symmetries Za are found numerically as operators
mapping between different iMPO boundary fixed points vi:

vU
i Za =

∑
k

δiakv
U
k ,

vD
i ZT

a =
∑

k

δ̄iakv
D
k . (8)

Here δiak and δ̄iak take values either 0 or 1 and in general they
do not have to be the same. A trivial vU,D

1 can be identified
such that its trace with all the iMPO symmetries is equal 1:
Tr(vU

1 Zav
D
1 Z†

a ) = 1. In particular, for the up eigenvector vU
1 all

other vU
i>1 are obtained from it by the action of corresponding

iMPO symmetries:

vU
1 Za = vU

a , (9)

while at the same time for the down eigenvectors

vD
1 ZT

a = vD
ā . (10)

Each symmetry Za, including the trivial Z1 = I, represents
certain anyon type a. Here ā is an inverse of anyon type a
that in general can be different than a. We note that these
numerical iMPO symmetries defined in this way are only re-
quired to be symmetries of the iPEPS in the sense that they can
be pushed through an entire row/column of the network, and
in general will not satisfy the local pulling through condition
of (1).
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The iMPO symmetries can be obtained by variational min-
imization of a cost function that follows from Eqs. (9) and
(10): ∣∣vU

1 Za − vU
a

∣∣2 + ∣∣vD
1 ZT

a − vD
ā

∣∣2
. (11)

Here Za is made of tensors za and va of MU
a . The cost func-

tion is quadratic in the infinite MPO symmetry Za but highly
nonlinear in its tensor za. The minimization is performed with
respect to za in a quasilocal manner. Namely, we choose one
tensor za in the infinite Za and minimize with respect to it as if
it were independent of all other tensors za. As the cost function
is quadratic in the chosen tensor, its derivative with respect to
z†

a yields a linear equation for za. Its solution is a candidate
to be substituted in place of all tensors za. In practice, we
substitute its linear combination with the previous za with
coefficients optimized to minimize the global cost function.
This optimization is done in the same way as in Ref. [48].
This quasilocal procedure is iterated until convergence of
the cost function. In order to avoid local minima, the whole
minimization is repeated several times, with different random
initial conditions.

In order to minimize the effect of the unnecessary modes
in the null space of an iMPO symmetry acting on the up and
down boundary eigenvectors the bond dimension of Za, χa,
has to be the minimal one that still allows the cost function
to be nullified. By definition, this cost function guarantees the
correct action of the symmetries on the boundary fixed points
but not the “abstract” fusion ring (2). However, the algebra is
satisfied in a weaker sense:

vU
i ZaZb =

∑
c

Nc
ab vU

i Zc, (12)

vD
i ZT

a ZT
b =

∑
d

Nd
ba vD

i ZT
d , (13)

i.e., when applied to any boundary fixed point. This is all that
we need in the following construction.

Just as (2) is replaced by (12) and (13), in the realm of
numerical iMPO symmetries, the definition of the F symbol
is replaced by

.

(14)
This diagram includes up and down boundary fixed points in
order to execute the weaker “numerical” algebra (12) and (13).
Accordingly, we introduce more general up and down zippers,
XU and X D, that realize the fusions in (12) and (13). Their
construction is the subject of Secs. IV, V, and VI.

Before proceeding to the X zippers in Sec. IV, we first
illustrate this numerical procedure for iMPO symmetries in
the following models. Some of the examples are the same as
in Ref. [52] but notice that here the symmetries have to be
recalculated because the cost function in (11) is in principle
more demanding as it has two terms instead of just one.
Indeed, in Refs. [49,52] it was enough for an iMPO symmetry
to satisfy only one of conditions (9) and (10) because the

iMPO symmetries were inserted in an iPEPS as in Fig. 1 and,
therefore, it was enough that they acted properly on either
the up or the down boundary of the iPEPS. In the present
method we use them in the diagrammatic equation (14) where
on the left-hand side they act on the up boundary and on the
right-hand side on the down one. Therefore, for the equation
to make sense, both their up and down action has to be correct.

Finally, as a last remark before we proceed to the examples,
numerically there is a freedom of the global phase of the
eigenvectors vU,D

i , which can be partially eliminated (up to
minus sign) by requiring their Hermiticity (when applicable).
In general, the random global phases change the fusion rules,
so that only their magnitudes are 0 or 1, |Nc

ab| = 0, 1. How-
ever, in all the examples below the random global phases are
adjusted so that all Nc

ab are real, either 0 or 1.

A. Toric code and double semions

For analytic fixed-point tensors defined in Appendix A
transfer matrix �h has two numerical boundary fixed points
vU,D

1,2 and one nontrivial numerical iMPO symmetry Z2 which
fulfils the Z2 algebra:

vU
1 Z2 = vU

2

vU
2 Z2 = vU

1

}
⇒ Z2Z2 = I. (15)

The cost function (11) was minimized to zero within machine
precision. The fusion rules can be summarized as

N1
11 = N1

22 = 1 (16)

with all possible permutation of indices. It has to be strongly
emphasized that in general the numerical Z2 iMPO symmetry
is not necessarily nullified outside the support subspace of the
boundary eigenvectors, therefore, the ring on the right of (15)
is valid only in the sense of the equalities on the left. The
same reservation applies to all fusion rules to be identified
numerically in the rest of this paper.

B. Kitaev model

As a realistic example of the toric code universality class
we consider the Kitaev model on a honeycomb lattice defined
by the following Hamiltonian:

H = −
∑

α=x,y,z

Jα

∑
α links

σα
i σα

j . (17)

Here, σα
i , α = x, y, z, are Pauli matrices acting on site i. We

set Jz = 1 and study the model along the line J = Jx = Jy ∈
(0, 0.5). The iPEPS ground state was obtained in Ref. [49] by
variational optimization. For iPEPS bond dimension D = 4
we find that the bond dimension χ = 4 of boundary iMPO’s
vU,D

1,2 suffices to faithfully capture the entanglement properties
of the phase. An accurate iMPO symmetry Z2 is found with
the minimal nontrivial bond dimension χZ = 2. Its error can
be quantified by two numbers:

εU
Z = ∣∣1 − �

[〈
vU

1 Z2

∣∣vU
2

〉]∣∣,
εD

Z = ∣∣1 − �
[〈
vD

1 ZT
2

∣∣vD
2

〉]∣∣. (18)

Here �(x) is the leading eigenvalue of a transfer matrix of
overlap x. The errors are listed in the following Table I. Even
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TABLE I. The errors (18) of the fusion ring of the numerical
iMPO symmetry Z2 with the corresponding up and down eigenvec-
tors vU,D

1 . Here J = Jx = Jy is the coupling constant in the Kitaev
model with Jz = 1 (17). The iPEPS approximating its ground state
with bond dimension D = 4 was obtained by variational optimization
[49]. Here ξ is the correlation length calculated from the second
leading eigenvalue of the iPEPS transfer matrix in the environment
of the boundary eigenvectors.

J ξ εU
Z εD

Z

0.4 0.21 O(10−3) O(10−3)
0.42 0.22 O(10−2) O(10−2)
0.44 0.23 O(10−4) O(10−4)
0.46 0.25 O(10−2) O(10−2)
0.48 0.26 O(10−3) O(10−3)

though the numerical iPEPS tensors do not assume any sym-
metry or any special gauge, and their bond dimension is small,
the iMPO symmetries turn out to be very accurate.

C. Twisted quantum double of Z3

For this example, the transfer matrix �h has three boundary
fixed points vU,D

1,2,3, out of which only one, vU
1 and corre-

sponding vD
1 , is Hermitian and it plays the role of the trivial

boundary. The other two boundary fixed points are their
own Hermitian conjugates: vU,D

2 = (vU,D
3 )†. Here the labels

in Eq. (11) are not self-inverse, i.e., a 
= ā for a = 2, 3. The
iMPO symmetry has bond dimension χ = 2 and it fulfills

vU
1 Zq = vU

2 ,

vU
2 Zq = vU

3 ,

vU
3 Zq = vU

1 ,

vU
1 Zq∗ = vU

3

vU
2 Zq∗ = vU

1

vU
3 Zq∗ = vU

2

⎫⎪⎬
⎪⎭ ⇒ ZqZq∗ = I, (19)

vD
1 ZT

q = vD
3 ,

vD
2 ZT

q = vD
1 ,

vD
3 ZT

q = vD
2 ,

vD
1 ZT

q∗ = vD
2

vD
2 ZT

q∗ = vD
3

vD
3 ZT

q∗ = vD
1

⎫⎪⎬
⎪⎭ ⇒ Zq∗Zq = I. (20)

The two iMPO symmetries Zq, Zq∗ , are denoted with the
subscripts q, q∗ = e±2iπ/3. Despite different fusions with the
eigenvectors δiak 
= δ̄iak the fusion rules of the iMPO symme-
tries are given by the following nonzero elements of the fusion
tensor:

∀i=1,q,q∗ Ni
1i = Ni

i1 = 1,

N1
qq∗ = N1

q∗q = Nq∗
qq = Nq

q∗q∗ = 1. (21)

In this case the anyon types q and q∗ are the inverses of each
other, which justifies the labeling.

D. Fibonacci string net

Here we employed the iPEPS tensors for a fixed point
Fibonacci string-net model presented in Appendix A. The
transfer matrix �h has two numerical boundary fixed points
vU,D

1,2 and one nontrivial numerical iMPO symmetry Zτ which
fulfills

vU
1 Zτ = vU

2

vU
2 Zτ = vU

1 + vU
2

}
⇒ Zτ Zτ = I + Zτ . (22)

TABLE II. The errors (18) of the fusion ring of the the numerical
iMPO symmetry with the corresponding up and down eigenvectors
vU,D

1 . Parameter β represents the perturbation strength from Eq. (24),
while ξ is the corresponding correlation length calculated from the
second leading eigenvalue of the iPEPS transfer matrix in the envi-
ronment of the boundary eigenvectors.

β ξ εU
Z εD

Z

0.01 0.23 O(10−7) O(10−7)
0.05 0.42 O(10−4) O(10−3)
0.12 1.04 O(10−4) O(10−2)
0.15 2.32 O(10−2) 0.05

Again, the cost function (11) was minimized to vanish up to
machine precision and the fusion on the right holds only in
the sense of the equalities on the left. The fusion algebra on
the right of (22) allows us to label the iMPO symmetry with
a non-Abelian Fibonacci anyon τ . The fusion rules can be
summarized as

N1
11 = N1

ττ = Nτ
ττ = 1. (23)

with all possible permutation of indices.

E. Fibonacci string net with local filtering

In order to drive the iPEPS away from a fixed point and in-
troduce a finite correlation length, we apply the local filtering
[71–73] to the fixed point of the Fibonacci string-net model.
The modification has the following form:

|�〉 →
∏

i

eβσ z
i |�〉, (24)

where i runs over all physical indices, σ z is the Pauli ma-
trix, and β is a parameter. Correlation lengths ξ are listed in
Table II. In the table we also present errors (18) of the two
terms appearing in the cost function. The difference between
errors of εU

Z , εD
Z arises from the fact that with growing cor-

relation length it becomes harder to nullify both errors at the
same time, therefore, in order to ensure convergence, in the
step where we find an optimal update of tensor za we use only
one of the conditions (18), namely, εU

Z .

F. Ising string net

Here again we employed the iPEPS tensors for a fixed-
point Ising string-net model presented in Appendix A. This
time, each transfer matrix has three numerical boundary fixed
points, vU,D

1,2,3, corresponding to three anyon types of the input
category: 1, σ, ψ . We found two nontrivial iMPO symmetries,
labeled as Zσ and Zψ . The fixed points and the symmetries are
related by the following set of equations:

vU
1 Zψ = vU

2

vU
2 Zψ = vU

1

vU
3 Zψ = vU

3

⎫⎪⎬
⎪⎭ ⇒ ZψZψ = I, (25)

vU
1 Zσ = vU

3

vU
2 Zσ = vU

3

vU
3 Zσ = vU

1 + vU
2

⎫⎪⎬
⎪⎭ ⇒ Zσ Zσ = I + Zψ. (26)
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The cost function (11) was minimized to machine precision.
Furthermore, we verified that with machine precision the
symmetries satisfy

vU
i Zσ Zψ = vU

i Zσ ⇒ Zσ Zψ = Zσ . (27)

The equations justify labeling of the symmetries. The fusion
rules can be summarized as

N1
11 = N1

σσ = N1
ψψ = Nσ

ψψ = 1 (28)

with all possible permutation of indices.

G. Quantum double of S3 and Rep(S3) string net

In this section we analyze two different iPEPS represen-
tations from Ref. [64] for the quantum double S3 and the
Rep(S3) string-net model, with MPO symmetries, respec-
tively, given by UFCs C1 = Rep(S3) and C2 = VecS3 . These
two iPEPS representations describe the same topologically
ordered phase since Z[Rep(S3)] = Z (VecS3 ).

1. Rep(S3) MPO symmetries

In this representation iPEPS tensor has virtual bond di-
mension D = 6 and its related transfer matrix �h has three
leading eigenvectors vU,D

1,2,3 corresponding to three anyon types
1, π, ψ . There are two nontrivial iMPO symmetries, with
corresponding labels π,ψ and they fulfill the following fusion
rules with the eigenvectors:

vU
1 Zψ = vU

3

vU
2 Zψ = vU

2 + vU
3

vU
3 Zψ = vU

1

⎫⎪⎬
⎪⎭ ⇒ ZψZψ = I, (29)

vU
1 Zπ = vU

3

vU
2 Zπ = vU

1 + vU
2 + vU

3

vU
3 Zπ = vU

1

⎫⎪⎬
⎪⎭ ⇒ Zσ Zσ = I + Zψ + Zπ . (30)

The same set of equations can be written for the down eigen-
vectors. Moreover, we observe that

vU
i ZπZψ = vU

i Zπ ⇒ Zπ Zψ = Zπ , (31)

which enables identification of all allowed fusion rules:

N1
11 = N1

ππ = N1
ψψ = Nσ

ψψ = Nπ
ππ = 1 (32)

with all possible permutation of indices.

2. VecS3 MPO symmetries

In this representation the iPEPS tensor has bond dimen-
sion that is just D = 4 while its related transfer matrix �h

has degeneracy 6 corresponding to six leading eigenvectors
vU,D

1,2,3,4,5,6. There are five nontrivial iMPO symmetries Za,
which are all product iMPOs. There is only one eigenvector,
which we label as identity, for which Tr(vU

1 Zav
D
1 (Za)†) = 1

for all a = 1, . . . , 6. All the remaining up and down eigenvec-
tors can be obtained from vU,D

1 by proper action of the iMPO
symmetries:

vU
1 Za = vU

a , ∀ a = 1, 2, 3, 4, 5, 6

vD
1 ZT

a = vD
a , ∀ a = 1, 2, 3, 4

vD
1 ZT

5 = vD
6 , vD

1 ZT
6 = vD

5 . (33)

FIG. 3. Contraction of Y zippers that makes an X zipper. Here we
show only U zippers but similar equations hold for their D counter-
parts. We distinguish between left l and right r zippers. Contraction
of a left zipper with its corresponding right zipper yields an identity.
One is a pseudoinverse of the other.

In this case the fusion ring is non-Abelian in the sense that
Nc

ab 
= Nc
ba and apart from trivial fusion rules Na

1a = Na
a1 = 1,

there are 25 nontrivial ones, all equal 1:

N1
22, N1

33, N1
44, N1

65, N1
56, N2

63, N2
54, N2

35, N2
46,

N3
52, N3

64, N3
45, N3

26, N4
62, N4

53, N4
25, N4

36,

N5
32, N5

43, N5
24, N5

66, N6
42, N6

23, N6
34, N6

55. (34)

From this we notice that iMPO symmetries Za for a =
1, 2, 3, 4 are self-inverse, while Z5 is the inverse of Z6.

IV. NUMERICAL X ZIPPERS

In this work we employ the fundamental theorem of MPS
[60,61] according to which there exist an invertible gauge
transformation Gl between two tensors Ai and Bi, where i
is the “physical” index, both in a canonical form, generating
equal iMPS’s such that

Ai = GlB
iGr, (35)

where Gr = G−1
l . It can be further extended to iMPO and

products of iMPO’s where, e.g., A = viZa and B = vk . In
that case the bond dimension of the product viZa is usually
bigger than the bond dimension of vk: χiχz > χk . Therefore,
the gauge transformation Gl is actually a composition of an
isometry U of dimensions (χiχz, χk ) and an invertible χk × χk

matrix g. Gr is a pseudoinverse of Gl and vice versa.
Due to the algebra of iMPO symmetries (2), which is

fulfilled only when acting on the boundary fixed points (13),
our goal is to find zipper tensors X c

ab which serve as gauge
transformations between products v1ZaZb and v1Zc:

v1ZaZb
X c

ab←→ v1Zc. (36)

Here we consider only the trivial fixed point v1 to make sure
the fusions actually occur only between the iMPO symmetries
Z .

This goal can be achieved in two steps, first by obtaining
smaller zippers Y k

ia which fuse a product viZa into a single
MPO vk . The second step is the proper contraction of zippers
Y k

ia to form X c
ab as shown in Fig. 3.

V. NUMERICAL Y ZIPPERS

The iMPO symmetry algebra Za includes a trivial sym-
metry Z1 = I corresponding to the trivial anyon type. This
identity iMPO is a product of identity matrices and has bond
dimension χ1 = 1. Therefore, all the zippers (Yl )

j
j1, together

with their r (inverse) counterparts, are trivial identity matrices
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of dimensions χ j × χ j . We emphasize again that Z1 as a
product of identity matrices is sufficient for our construction
because it still acts as the identity on the support subspace of
PEPS, but it is not an exact MPO symmetry from Ref. [54],
where a larger bond dimension is needed to encode the iden-
tity action on the relevant subspace only.

From now on we focus the attention on nontrivial zippers
between the left- and right-hand sides of the equation v jZa =∑

k δ jakvk with a > 1. The product MPO tensor M = v jZa is
either normal, for which a transfer matrix of TrMM† has only
one leading eigenvalue equal 1, or a direct sum of normal
tensors, so the transfer matrix has several degenerate leading
eigenvalues equal 1. In both cases we proceed by bringing
the tensors M into left-canonical form using a repeated QR
decomposition. For a fixed point of QR decomposition the
relation between the initial tensor and the converged canonical
form is

LMi = Mi
LL, (37)

which means that the transformation bringing the tensor Mi

into its canonical form Mi
L is

LMipinv(L) = Mi
L. (38)

Here i denotes “physical” indices of tensor M. The pseudoin-
verse deals with singularity due to too large bond dimension
of M: χ jχa >

∑
k χk .

In the next step we reduce the bond dimension for Mi
L and

find the gauge transformation relating it with one of the vi
k

tensors. Towards this end we construct a mixed transfer matrix
for TrMLv

†
k . Its left fixed point σL is an isometry of dimension

χ jχa × χk truncating the left-canonized product ML to vk:

σ T
L Mi

Lpinv
(
σ T

L

) = vi
k . (39)

Putting the isometry together with the gauge transformation L
we can write

(Yl )
k
ja(v jZa)i(Yr )k

ja = vi
k, (40)

where

(Yl )
k
ja = σ T

L L, (41)

(Yr )k
ja = pinv(L)pinv

(
σ T

L

)
. (42)

In diagrammatic form (40) is

(43)

In all equations above we did not include the labels of the
eigenvectors vi, as there are two sets of them: vU

i and vD
i .

However, the procedure is the same for both sets with a sole
difference that for the down eigenvectors we need to use the
transpose ZT

a in place of Za.

VI. NORMALIZATION OF X ZIPPERS

Having the full set of required Y zippers {Y U
l ,Y U

r ,Y D
l ,Y D

r },
we construct the X zippers according to Fig. 3. From this

FIG. 4. Normalization conditions for the Xl and Xr zippers. The
projectors XU

l XU
r and X D

l X D
r in the top row act like identities when

inserted between the left Lc and right Rc fixed points of the transfer
matrix Tr(vU

1 ⊗ Zc ⊗ vD
1 ⊗ Z†

c ). Here the Z†
c , which is necessary for

the diagram to be nonzero is represented by the dashed line. The
mixed products XU

l X D
r and X D

l XU
r in the bottom row yield n and 1/n,

respectively. The arbitrary n can be brought to 1 by rescaling the right
X zippers.

construction we get that

∑
a,b

(
XU

l

)c

ab

(
XU

r

)c

ab = (
Y U

r

)c

1c

(
Y U

l

)c

1c, (44)

which is not necessarily equal to identity matrix Iχ1·χc . How-
ever, it is a projector that acts like an identity when inserted
between the left Lc and right Rc fixed points of the transfer
matrix Tr(vU

1 ⊗ Zc ⊗ vD
1 ⊗ Z†

c ), as shown in the top row of
Fig. 4 that includes also the complementary X D case.

A similar normalization between XU
l and its corresponding

X D
r is not automatic (see the bottom row of Fig. 4). Here the

number n depends on somewhat arbitrary normalization of Y
zippers making the X zippers. The number can be brought to
1 by rescaling, e.g., X D

l → nX D
l and X D

r → (1/n)X D
r . Having

thus properly normalized all of the X zippers we can proceed
with the calculation of the F symbols.

VII. NUMERICAL F SYMBOLS

The last step of the algorithm is to calculate the F symbols
in the equation in Eq. (14). This is a coupled set of equations
for F abc

de f with different index f . In order to decouple them we

project both sides onto ((X D
l )d

ag(X D
l )g

bc | from the left. At this
point we verify that ((X D

l )d
ag(X D

l )g
bc | (X D

r )g
bc(X D

r )d
ag) = δgf and

we obtain an explicit formula

(45)
Here we have immersed the equation in the environment
of left Lc and right Rc fixed points of the transfer matrix
Tr(vU

1 ⊗ Zd ⊗ vD
1 ⊗ Z†

d ), the same as was used to find relative
normalization of XU and X D zippers. The dotted red line
denoted by d∗ is the trace over indices corresponding to Z†

d .

195152-7



ANNA FRANCUZ et al. PHYSICAL REVIEW B 104, 195152 (2021)

A similar formula for an inverse of the matrix F is

(46)
Both F and F ′ satisfy the pentagon equation∑

f

F abc
de f F bci

h f jF
a f i

gdh = F ab j
geh F eci

gd j , (47)

and describe the same topological order, although the value
of their elements is in general different. The difference is
manifestation of “gauge freedom” of F abc

de f due to remaining
freedom in normalization of X zippers:

{
XU

l , XU
r , X D

l , X D
r

} →
{
λXU

l ,
1

λ
XU

r , λX D
l ,

1

λ
X D

r

}
. (48)

Here arbitrary λc
ab ∈ C depend on the labels of X = X c

ab.
Their values cannot be fixed by the Pentagon equation. λc

ab
parametrize gauge freedom of the F symbols:

F abc
de f → λ

f
bcλ

d
a f

λe
abλ

d
ec

F abc
de f , F ′abc

de f → λe
abλ

d
ec

λ
f
bcλ

d
a f

F ′abc
de f . (49)

A straightforward way to proceed is to look for a gauge
λc

ab that brings the F symbols, within numerical error, to a
textbook form characteristic for a given type of topological
order. This is what we do in the next section.

It is important to point out that the topological order is
given by the monoidal center Z (C), meaning that two fusion
categories C1 and C2 that a priori look completely different
may describe the same topological order [64], in which case
C1 and C2 are said to be Morita equivalent. In order to deal
with this redundancy, we compute the monoidal center in
Sec. IX, as well as the corresponding S and T matrices.

VIII. F SYMBOLS IN CANONICAL GAUGE

We use the gauge freedom in (49) to bring F symbols to
a canonical gauge where, for a unitary fusion category, the
matrices F abc

d are unitary and most elements of F are one,
especially if any of a, b, c, d is trivial. To begin we notice that
Eq. (49) implies that a product

F abc
de f F ′abc

de f (50)

is gauge invariant. Therefore, its square root will be used later
to eliminate some of the gauge freedom of the F symbols.

Additionally, all X c
ab where either a = 1 (b = 1) are chosen

as identities between b and c (a and c). This choice fixes
the gauge partially as λc

1c = 1 = λc
c1 but we are still left with

freedom to choose the λc
ab where both a 
= 1 and b 
= 1. This

residual gauge freedom leaves invariant all the F abc
de f where one

of a, b, c is equal to 1.
Moreover, when there are only two anyon types in the input

category, then also the F abc
1e f are left invariant by the residual

gauge transformation. The only F symbols that transform in a
nontrivial way are

F 222
212 → λ1

22

λ2
22λ

2
22

F 222
212 ≡ μF 222

212 , (51)

F 222
221 → λ2

22λ
2
22

λ1
22

F 222
221 ≡ 1

μ
F 222

221 . (52)

In the unitary gauge for every fixed set of indices a, b, c, d
the matrix F abc

de f is unitary in indices e f . We can choose |μ|
such that magnitudes of F 222

2e f become the same as square roots
of corresponding products in (50). With a proper phase of μ

the matrix F 222
2e f can be made unitary making manifest that the

obtained F symbols describe unitary fusion category.
When there are more than two anyon types then there is a

freedom

F abc
1e f = F abc

1ca → λc
abλ

1
cc

λa
bcλ

1
aa

F abc
1ca . (53)

For a = c this freedom is given by a simple ratio:

F aba
1aa → λa

ab

λa
ba

F aba
1aa ≡ μ(a, b)F aba

1aa , (54)

which allows to determine first nontrivial gauge transforma-
tion and eliminate it from all F abc

de f in which it appears, by
a substitution λa

ab → μ(a, b)λa
ba. The remaining scheme is

largely model dependent, but the general idea is to replace un-
known λ’s with known ratios μ as we present on the examples
below.

A. Toric code and double semions

We obtain the Y and X zipper tensors. For those two
Abelian models there are two trivial Y zippers: Y 1

11,Y 2
21 = I

and two nontrivial Y zippers: Y 2
12,Y 1

22 giving rise to four
nonzero X zippers: X 1

11, X 2
12, X 2

21, X 1
22. For both the toric code

and the double-semion model all gauges λ in Eq. (48) cancel
each other in the expressions for F symbols. We obtain numer-
ically exact F symbols immediately in the canonical gauge for
toric code:

F abc
de f = Ne

abNe
cd N f

ad N f
bc (55)

and the same for double semions with the exception for
F 222

211 = −1.

B. Kitaev model

We obtain the same set of Y and X zippers as for the toric
code phase and then use them to find F symbols with an error
calculated as the Frobenius norm:

εF = ||Fnumerical − Fcanonical||. (56)

Here Fcanonical are the exact F symbols in (55). Their errors are
listed in Table III. Not quite surprisingly, good accuracy of the
iMPO symmetry (see Table I) results in accurate F symbols.

C. Twisted quantum double of Z3

We find three trivial Y zippers with both up and down
eigenvectors Y i

i1 for i = 1, q, q∗ and six nontrivial with up
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TABLE III. The error of the numerical F symbols, defined as the
Frobenius norm of the difference with respect to the exact ones (56).
Here J = Jx = Jy is the coupling in the Kitaev Hamiltonian (17) with
Jz = 1.

J εF

0.40 O(10−3)
0.42 O(10−3)
0.44 O(10−4)
0.46 O(10−2)
0.48 O(10−2)

eigenvectors:

(Y U )2
12, (Y U )3

13, (Y U )1
23, (Y U )1

32, (Y U )3
22, (Y U )2

33 (57)

and with down eigenvectors

(Y D)3
12, (Y D)2

13, (Y D)3
23, (Y D)2

32, (Y D)1
22, (Y D)1

33, (58)

which altogether give rise to a unique set of X zippers:
trivial X a

1a, X a
a1 for a = 1, q, q∗ and X 3

22, X 2
33, X 1

23, X 1
32. There-

fore, there are four random residual gauges: λ1
23, λ

1
32, λ

3
22, λ

2
33,

which appear in only two combinations:

ρ1 = λ1
23

λ1
32

, ρ2 = λ1
32

λ3
22λ

2
33

, (59)

where ρ1 and its inverse fully fixes F 222
133 , F 323

311 , F 232
211 , F 333

122
while ρ2 fully fixes F 332

321 , F 322
213 and there are only two remain-

ing F symbols:

F 223
231 → ρ1ρ2 F 223

231 ,

F 233
312 → 1

ρ1ρ2
F 233

312 . (60)

This procedure allows us to obtain F abc
de f = Ne

abNe
cd N f

ad N f
bc with

the exception of

F 222
133 = F 333

122 = (
F 332

321

)∗ = (
F 223

231

)∗ = e
2iπ

3 . (61)

The obtained F symbols necessarily satisfy the pentagon
equation, both before and after the gauge transformation. This
is the only example we present, in which the F symbols
and their inverses F−1 are not equal, but actually (F abc

de f )−1 =
(F abc

de f )∗.

D. Fibonacci string net

We obtain two trivial Y zippers: Y 1
11,Y 2

21 = I and three
nontrivial Y zippers: Y 2

12,Y 1
22,Y 2

22 giving rise to five nonzero
X zippers: X 1

11, X 2
12, X 2

21, X 1
22, X 2

22. With X zippers we obtain
F symbols that satisfy the pentagon equation within machine
precision. However, the obtained F symbols turn out to be in
a random nonunitary gauge.

As the double Fibonacci model has two anyon types, the
residual gauge freedom in Eq. (52) can be employed to adjust
both F abc

de f or F ′abc
de f to the absolute values obtained from a

square root of the product (50) and then to fix their phase
in such a way that F abc

de f and F ′abc
de f become unitary in in-

dices e, f within numerical precision. This way we obtain

TABLE IV. The error (56) of numerical F symbols. Here the first
column represents the perturbation strength β.

β ξ εF

0.01 0.23 O(10−7)
0.05 0.42 O(10−5)
0.12 1.04 O(10−2)
0.15 2.32 O(10−2)

F abc
de f = Ne

abNe
cd N f

ad N f
bc except for

F τττ
τ11 = −F τττ

τττ = 1

dτ

, F τττ
ττ1 = F τττ

τ1τ = 1√
dτ

. (62)

Here the quantum dimension dτ = (
√

5 + 1)/2.

E. Fibonacci string net with local filtering

We applied the same algorithm for the local filtering that
introduces a finite correlation length ξ and drives the state
away from the fixed point. Errors of the obtained F symbols
are listed in Table IV. The error remains small up to the cor-
relation length ξ = 2.32. Better results for longer correlations
lengths would require further improvement of the algorithm to
obtain iMPO symmetries. We leave this refinement for future
work.

F. Ising string net

As the double Ising model has three anyon types in the
input category C, there are five random residual gauges:
λ1

ψψ, λ1
σσ , λσ

ψσ , λσ
σψ, λψ

σσ . They appear in only three combi-
nations:

ρ1 = λσ
ψσ

λσ
σψ

, ρ2 = λ1
σσ

λσ
σψλ

ψ
σσ

, ρ3 = λ1
ψψ(

λσ
σψ

)2 . (63)

Starting with ρ1, which fully fixes F σψσ

1σσ , F σψσ

ψσσ , and F σσσ
σψψ ,

we find ρ2 fixing F σσψ

ψ1σ , F σσσ
σ1ψ , and finally ρ3 which is fully

fixing F σψψ

σσ1 . The remaining F symbols are fixed by proper
combinations:

Fψψσ

σ1σ → ρ3

ρ2
1

Fψψσ

σ1σ ,

Fψσσ

1σψ → ρ1ρ2

ρ3
Fψσσ

1σψ ,

Fψσσ

ψσ1 → ρ1

ρ2
Fψσσ

ψσ1 ,

F σσσ
σψ1 → ρ1

ρ2
F σσσ

σψ1 ,

F σσψ

1ψσ → ρ3

ρ2
F σσψ

1ψσ . (64)

This way we obtain F abc
de f = Ne

abNe
cd N f

ad N f
bc except for

F σσσ
σ11 = F σσσ

σ1ψ = F σσσ
σψ1 = −F σσσ

σψψ = 1√
2
, (65)

Fψσψ
σσσ = F σψσ

ψσσ = −1, (66)

all with numerical precision.
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G. Quantum double of S3

1. Rep(S3) MPO symmetries

Apart from the trivial X zippers with an identity
symmetry X a

1a = X a
a1 = Ia there are six nontrivial ones

X 1
22, X 1

33, X 2
22, X 3

22, X 2
32, X 2

23, all with its corresponding gauge
freedom λc

ab. However, there are only four independent vari-
ables:

ρ1 = λ2
23

λ2
32

, ρ2 =
(
λ2

22

)2

λ1
22

, ρ3 = λ1
22

λ3
22λ

1
33

, ρ4 = λ1
33(

λ3
22

)2 . (67)

After elimination of the gauge freedom from all possible F
symbols containing the aforementioned ratios we obtain that
F abc

de f = Ne
abNe

cd N f
ad N f

bc, except for

F 322
222 = F 232

222 = F 223
222 = F 222

322 = −1,

F 222
211 = F 222

231 = F 222
213 = F 222

223 = 1
dπ

,

F 222
221 = F 222

212 = −F 222
232 = −F 222

223 = 1√
dπ

,

F 222
222 = 0, (68)

where dπ = 2 is the quantum dimension of π and the remain-
ing quantum dimensions are d1 = dψ = 1.

2. Vec(S3) MPO symmetries

There are 25 nontrivial fusion rules Nc
ab giving rise to

corresponding X zippers X c
ab, hence, 25 random gauges λc

ab,
which can be eliminated using only 20 ratios ρi. It can be done

by subsequent substitution of certain ratios ρi = λe
abλ

d
ec

λ
f
bcλ

d
a f

, so

that the final F symbols are all trivial: F abc
de f = Ne

abNe
cd N f

ad N f
bc,

with every index taking up to six values. All the quantum
dimensions are da = 1.

At first glance the F symbols in both examples above may
seem to describe completely different topological orders as
they describe different unitary fusion categories UFC. How-
ever, the calculation of the Drinfeld center in the following
sections proves that this is not the case.

IX. S AND T MATRICES FROM F SYMBOLS

The topological S and T matrices are gauge-invariant
quantities, which in principle could be obtained from the
F symbols in arbitrary gauge by considering proper gauge-
canceling factors [74]. Here instead, we make use of the F
symbols in canonical gauge, obtained in Sec. VIII, to derive a
simpler expression.

An important observation is that the labels of all nonzero
elements of both X and Y zippers define the possible fusions
Nc

ab of the anyons in the category, from which we obtain their
quantum dimensions da, as the largest magnitude eigenvalue
of the Na matrix. In this sense, fusion rules and quantum
dimensions are exact independently of the correlations in the
models.

In order to obtain all the anyons or definite anyonic sectors
(MES) in the tensor network ansatz we need to find central
idempotents of the algebra generated by elements Aabcd ∝
Nb

daNb
cd ∝ (Xr )b

da(Xl )b
cd (connected through the index b, but

not summed over b), where we omit possible multiplicities

as they are all equal 1 in our examples. Central idempotents,
when inserted into PEPS, can be thought of as projectors
onto states with well-defined anyon flux along the torus. The
multiplication of the basis elements ei := Aabcd defines some
algebra, from which we find both central and simple idempo-
tents as described in Appendix B. The algebra of Aabcd can be
used to calculate the action of the Dehn twist on a state with a
symmetry Za along the torus [68]:

T̃ (Aabad ) = Aa1aāAabad

=
∑
e,c

√
dadādcdd

dedb

(
F āad

d1b

)−1
F āda

deb F aād
d1e Aacaeδcd ,

ei =
∑

j

T̃i je j . (69)

This formula gives rise to the T̃ matrix in the basis of ei ≡
Aabcd . In the eigenbasis (the MES basis) this matrix is di-
agonal and contains the phases corresponding to topological
spins: T = diag(θ1, . . . , θN ). However, at this point we do not
possess enough knowledge to assign anyon labels to them
and certain topological spins belonging to multidimensional
particles in non-Abelian anyon models are repeated (e.g., θτ τ̄

in the double Fibonacci string net and θσ σ̄ in the double Ising
string net). Therefore, we proceed with the calculation of the
topological S and T matrices in the MES basis. If we denote
central idempotents inserted in PEPS to create a minimally
entangled state in y direction by Py

i and similarly in the x
direction by Px

i , then the transformation between these two
bases is actually an S matrix:

Py
i =

∑
j

Si jPx
j . (70)

We can further write this expression in terms of the basis
elements ek := Aabcd :

Py
i =

∑
a

ci
aey

a =
∑

j

Si j

∑
b

c j
bex

b, (71)

which written in the matrix forms without summations, with
Ex,y being the basis in x and y, respectively, B the basis change
between x and y, P the matrix of coefficients of the central
idempotents in the E basis, is

PEy = PBEx = SPEx ⇒ S = PBP−1. (72)

Similarly we obtain the expression for the T matrix in the
MES basis:

T = PT̃ P−1. (73)

The T̃ is given in Eq. (69) and the basis change B is given by
the combination of F symbols, as shown in [68]

S(Aabad ) =
∑

e

da

√
dd dd̄

dedb

(
F add̄

ab1

)∗
F dd̄a

a1e F dad̄
abe Ad̄ed̄a. (74)

For non-Abelian anyon models, the inversion P−1 for two-
or more-dimensional idempotents actually means the sum
of inverted simple idempotents. Unlike the matrix of central
idempotent, the matrix of simple idempotents Psimple in most
cases is square and invertible. Technically, it means that the
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matrix Psimple is made of rows of all simple idempotents,
which makes it block diagonal with two (or more) rows in
different blocks corresponding to the same anyon type. Next,
we invert the matrix of simple idempotents Psimple, so that the
columns of P−1

simple correspond to the inverses of simple idem-
potents. In the end we sum up the columns that correspond
to the same anyon flux to get P−1. Moreover, the rows of
P corresponding to anyon types that are supported on these
multidimensional spaces have to be normalized (divided by
their dimensionality).

A. Toric code, double semion, Fibonacci, and Ising string net

For all the RG fixed-point wave functions of toric code,
double semion, double Fibonacci, and double Ising we obtain
correct topological S and T matrices within machine preci-
sion. All the results are listed below.

(i) Toric code:

STC = 1

2

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎠,

TTC =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ .

(ii) Double semion:

Sds = 1

2

(
1 1

1 −1

)⊗2

, Tds =
(

1 0

0 i

)
⊗

(
1 0

0 −i

)
.

(iii) Double Fibonacci, with ϕ = 1+√
2

2 :

SdFib = 1

ϕ + 2

(
1 ϕ

ϕ −1

)⊗2

,

TdFib =
(

1 0

0 e
4iπ
5

)
⊗

(
1 0

0 e
−4iπ

5

)
.

(iv) Double Ising:

SdIs = 1

4

⎛
⎜⎜⎝

1
√

2 1
√

2 0 −√
2

1 −√
2 1

⎞
⎟⎟⎠

⊗2

,

TdIs =

⎛
⎜⎝

1 0 0

0 e
iπ
8 0

0 0 −1

⎞
⎟⎠ ⊗

⎛
⎜⎝

1 0 0

0 e
−iπ

8 0

0 0 −1

⎞
⎟⎠.

B. Kitaev model

With the F symbols whose errors are listed in Table III we
can recover topological S and T matrices. The same matrices
were obtained in Ref. [49] by a different method. Interestingly,
for J = 0.44 where the errors of the iMPO symmetries happen

TABLE V. Maximal errors of the elements of the topological S
and T matrices in the Kitaev model (17). Here J = Jx = Jy for a fixed
Jz = 1.

J εS εT

0.40 O(10−3) O(10−3)
0.42 O(10−4) O(10−3)
0.44 O(10−4) O(10−4)
0.46 O(10−3) O(10−3)
0.48 O(10−3) O(10−2)

to be the most accurate (see Table I) the topological matrices
obtained here are one order of magnitude more accurate (see
Table V) than those in Ref. [49].

C. Fibonacci string net with local filtering

By direct application of the described procedure for pertur-
bations β = 0.01, 0.05 we can recover topological modular
matrices with satisfying precision as shown in the Table VI.
For higher β in order to obtain the SFib and TFib matrices we
need to improve the quality of F abc

de f to satisfy the pentagon
equation (47) with better accuracy. Here we perform a simple
Monte Carlo (MC), where we sweep over all nonzero ele-
ments of F tensor, apart from F 111

111 , F 211
221 , F 121

222 , F 112
212 , which

are all equal 1 by construction. In a single MC move we
change an element of F tensor F ′abc

de f = F abc
de f + δr1, where r1

is a random complex number and δ = 0.01ε(F ) is the MC
step with ε(F ) being the error of the pentagon equation. We
calculate the new error of the pentagon equation ε(F ′) and
accept it if ε(F ′) < ε(F ) or check if the ratio ε(F )

ε(F ′ ) is smaller
than another random real number r2 and accept the move if
this is fulfilled. We perform such sweeps over all aforemen-
tioned elements of F tensor, which enables to obtain an error
low enough to calculate the topological S and T matrices. We
list the new error of F symbols together with the errors for the
topological S and T matrices in Table VI. For β = 0.15, where
the correlation length is ξ = 2.32, we can make a comparison
with Ref. [52] and we see that the error of topological S matrix
is of the same order while the error of topological T matrix
is an order of magnitude bigger though the latter one is still
negligible.

TABLE VI. The error of the final S and T matrices, εS and
εT , respectively, calculated as the Frobenius norm of the difference
between the numerical and the exact ones for different perturbation
strengths β. Here χ is the bond dimension of the boundary eigenvec-
tors vU,D

i used for the calculations. The numerical S and T matrices
for bigger perturbations β = 0.12, 0.15 can be obtained only after
the error of the numerical F symbols is reduced up to the value of
εMC

F by simple Monte Carlo minimization of the error of pentagon
equation.

β ξ χ εS εT εMC
F

0.01 0.23 8 O(10−7) O(10−7)
0.05 0.42 12 O(10−5) O(10−5)
0.12 1.04 16 O(10−3) O(10−6) O(10−3)
0.15 2.32 20 O(10−3) O(10−6) O(10−3)
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D. Twisted quantum double of Z3

For the twisted quantum double of Z3 we obtain the following T and S matrices:

diag(TZ3 ) = (
1, 1, 1, e

4iπ
9 , e

−8iπ
9 , e

−2iπ
9 , e

−2iπ
9 , e

−8iπ
9 , e

4iπ
9

)
,

arg(SZ3 )

2π
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 0 0 − 1
3 − 1

3 − 1
3

1
3

1
3

1
3

0 0 0 1
3

1
3

1
3 − 1

3 − 1
3 − 1

3

0 − 1
3

1
3 − 4

9
2
9 − 1

9
1
9 − 2

9
4
9

0 − 1
3

1
3

2
9 − 1

9 − 4
9

4
9

1
9 − 2

9

0 − 1
3

1
3 − 1

9 − 4
9

2
9 − 2

9
4
9

1
9

0 1
3 − 1

3
1
9

4
9 − 2

9
2
9 − 4

9 − 1
9

0 1
3 − 1

3 − 2
9

1
9

4
9 − 4

9 − 1
9

2
9

0 1
3 − 1

3
4
9 − 2

9
1
9 − 1

9
2
9 − 4

9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|(SZ3 )i j | = 1

3
.

E. Quantum double of S3

For both iPEPS representations we obtain the topological S
and T matrices which agree with machine precision with the
exact ones up to the simultaneous permutation of columns and
rows:

diag(TS3 ) = (
1, e

−2i·π
3 , 1,−1, e

2i·π
3 , 1, 1, 1

)
,

SS3 = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 1 2 3 2 2

3 3 0 −3 0 −3 0 0

2 0 4 2 −2 0 −2 −2

1 −3 2 1 2 −3 2 2

2 0 −2 2 −2 0 −2 4

3 −3 0 −3 0 3 0 0

2 0 −2 2 −2 0 4 −2

2 0 −2 2 4 0 −2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The algorithm we present in Appendix B fails to decompose
the two-dimensional central idempotent corresponding to the
anyon flux (1, π ) into simple idempotents, which should be
done as shown in [68]:

(1, π ) = (1, π )00 + (1, π )11,

(1, π ) = 1

3
(2A1111 − A1515 − A1616), (75)

(1, π )00 = 1

3

(
A1111 + e

−2i·π
3 A1515 + e

2i·π
3 A1616

)
, (76)

(1, π )11 = 1

3

(
A1111 + e

2i·π
3 A1515 + e

−2i·π
3 A1616

)
. (77)

However, that is a necessary step to do in order to obtain
correct modular S and T matrices shown above.

X. CONCLUSION AND OUTLOOK

The numerical method to obtain the F symbols of the
fusion category fully characterizing the topological order can
be summarized in the following few steps:

(i) Finding all boundary fixed points, both up and down,
vU

i , vD
i of the double iPEPS horizontal transfer matrix �h.

(ii) Calculating all iMPO symmetries Za mapping between
different boundary fixed points: vU

i Za = vu
j and vD

j ZT
a = vD

j .
(iii) Finding the gauge transformations Y k

ia between equal
iMPOs M = viZa and vk for both up and down eigenvectors
and combining them to yield zippers X c

ab fusing the product of
iMPO symmetries v1ZaZb into single iMPO symmetry v1Zc.

(iv) Calculating the F symbols using the associativity of
the fusions of iMPO symmetries Za.

(v) The numerical F symbols in the random gauge can
be brought into canonical gauge by proper inspection of
the freedom in the normalization of X c

ab zippers. They
can also be used to calculate gauge-invariant topological
data in the form of S and T matrices encoding mutual
and self statistics of the emergent anyons of the doubled
category.

After slight purification of the F symbols, by minimiz-
ing the error of the pentagon equation, the method proved
to give accurate results for states with correlation length up
to ξ = 2.3. Their accuracy is comparable with those from
Refs. [49,52]. On the other hand, in the realistic case of the
numerically optimized iPEPS representing the ground state
of the Kitaev model, we were able to obtain topological S
and T matrices with accuracy an order of magnitude better
than with the previous method [49]. A possible explanation is
that the present method consists of significantly less numeri-
cal steps, therefore, it leaves less room for the accumulation
of errors. Apart from the first step of finding the boundary
fixed points, all the remaining steps are based on contrac-
tions of one-dimensional tensor networks. Finally, it provides
not only topological S and T matrices, but also F symbols
that allow for an unambiguous identification of topological
order.
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As mentioned in the Introduction, by studying the vir-
tual iMPO symmetries rather than the physical Wilson line
operators, we avoid the complications that arise due to the
broadening of these Wilson lines away from the fixed point.
Although we have shown that the method is applicable with
nonzero correlation length, the correlation lengths for which
the correct results are recovered are still rather small and it
is clear there is still much room for improvement in several
aspects of the algorithm.

Such improvements would allow us to study the change
in topological order when driving a certain state through a
phase transition. These phase transitions are characterized
by the breaking and emergence of MPO symmetries,
which should be reflected in the fixed-point structure.
This becomes particularly interesting when considering
variationally optimized iPEPS, where a specific choice of
PEPS representation and corresponding MPO symmetries is
not imposed but rather chosen by the algorithm. Close to a
phase transition, we expect the algorithm to prefer the PEPS
representation that most naturally allows the relevant MPO
symmetries to be broken or emerge.
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APPENDIX A: iPEPS TENSORS

iPEPS tensors, shown in Fig. 5, are given by the
following combination of F symbols and quantum

FIG. 5. Tensors forming the iPEPS are defined via combination
of F symbols and corresponding quantum dimensions di. All bond
indices and the physical index are in fact a triple index. The bond
dimension can be reduced by applying projectors on the nonzero
bond indices.

FIG. 6. The tensors Aabcd are proportional to Nb
daNb

cd and can be
represented by the zippers connected by, but not summed over, the
index b.

dimensions di:

Ai
αβγ =

(
dadb

dc

)1/4

F dab
f ec δaa′δbb′δcc′δdd ′δee′δ f f ′ , (A1)

Bi
αβγ =

(
dadb

dc

)1/4

F dab
f ec δaa′δbb′δcc′δdd ′δee′δ f f ′ . (A2)

By construction, each tensor has a triple of bond indices along
each of the three bonds towards nearest-neighbor (NN) lattice
sites. We concatenate each triple into a single bond index,
e.g., α = (a, e, d ′). The physical index is also a triple index
i = (a′, b′, c′). These basic tensors are forming the topological
state after proper contraction of bond indices with respect to
their triplet structure. For the toric code and double Fibonacci
string nets the bond dimension D = 23 = 8 is redundantly
large and can be reduced to D = 4 and 5 after applying
projectors on the bond indices, namely, the only nonzero
combinations of bond indices (i, j, k) are those, in which the
fusion product i × j × k = 1 + · · · contains the trivial anyon.
For the double Ising string net, on the other hand, the original
bond dimension D = 33 = 27 can be reduced to D = 10.

APPENDIX B: ALGORITHM FOR CENTRAL
IDEMPOTENTS

In this Appendix we present an algorithm for numerical
calculation of central idempotents from fusion rules Ni

jk and F
symbols in a random gauge. When inserted into iPEPS, central
idempotents can be thought of as projectors onto minimally
entangled states. Central idempotents are built from elements
Aabcd , which form an algebra A (more precisely it is a C∗
algebra). The algorithm can be divided into several points as
follows.

(i) In the first step we determine all nonzero elements of
the algebra A generated by Aabcd :

Aabcd ∝ Nb
daNb

cd , (B1)

as shown in Fig. 6. Those nonzero elements are the basis
vectors of the algebra A, so we can make assignments ei =
Aabcd 
= 0 and find their multiplication table.

(ii) When treated as matrices in the a, c indices, the mul-
tiplication of Aabcd satisfies

Aabcd Ae f ah = eie j =
∑

k

f k
i j ek =

∑
k

f k
i j Aencl . (B2)

Using the tensor network diagrammatic expressions, as shown
in Fig. 7, we can derive the formula for the structure factors
f k
i j , which are given by the F symbols:

f k
i j =

√
dndadd dh

d f dbdl
F dhe

nl f

(
F dah

nb f

)−1
F cdh

nbl . (B3)

195152-13



ANNA FRANCUZ et al. PHYSICAL REVIEW B 104, 195152 (2021)

FIG. 7. Derivation of the algebra generated by the tensors Aabcd

including proper normalization by the quantum dimensions.

(iii) Now we find the center Z (A) of the algebra A, i.e.,
we look for such elements z = ∑

a zaea that ∀ b : zeb = ebz.
We observe that this simplifies to an equation involving only
the structure factors:∑

a

za(eaeb − ebea) = 0 ⇒ ∀ b, c :
∑

a

(
f c
ab − f c

ba

)
za = 0.

(B4)
Therefore, the vector of coefficients of z in ea basis belongs
to the kernel of the matrix F : c(z) := (z1, . . . , zn) ∈ Ker(F ),
whose elements are Fb⊕c,a = f c

ab − f c
ba with b ⊕ c index go-

ing through all the combinations of b, c indices.

(iv) From now on we work only with the commutative
algebra Z (A), with elements Zk = ∑

a zk
aea, which are lin-

ear combinations of the original basis with coefficients from
c(z) ∈ Ker(F ). We construct its adjoint representation, which
is given by the structure factors

[ad (Zk )]ab =
∑

c

f b
aczk

c . (B5)

(v) Due to commutation of the elements of the center
Z (A), if we take random element from the center Z ∈ Z (A) :
Z = ∑

k ckad (Zk ) and find the transformation bringing it into
the diagonal form U −1ZU , we know that this transformation
is diagonalizing all other elements from the center:

∀ k : U −1ad (Zk )U = Dk, (B6)

where Dk is diagonal.
(vi) We now have to find linear combinations of the ma-

trices Dk to obtain idempotents. Defining dk as the vectors
containing the diagonal elements of Dk , finding idempotents
boils down to finding orthogonal linear combinations of the
vectors dk that only contain 1’s and 0’s. To do this, we build
a matrix D with dk as its row vectors, and compute the row
reduced echelon form of the augmented matrix

D′ = [D | I], rref(D′) = [rref(D) | M]. (B7)

(vii) The central idempotents are now obtained as

Pi =
∑

j

Mi jZ j =
∑

ja

Mi jz
j
aea. (B8)

These central idempotents can be further split into simple
idempotents by grouping the different ea according to the
a = c string of the associated tube algebra elements Aabcd . We
note, however, that this does not always work, as exemplified
by the case of VecS3 in the main text; an alternative general
algorithm will be provided in Ref. [76].
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bonacci anyons and charge density order in the 12/5 and 13/5
quantum Hall plateaus, Phys. Rev. B 95, 115136 (2017).

[37] Y.-C. He, F. Grusdt, A. Kaufman, M. Greiner, and A.
Vishwanath, Realizing and adiabatically preparing bosonic in-
teger and fractional quantum Hall states in optical lattices, Phys.
Rev. B 96, 201103(R) (2017).

[38] E. M. Stoudenmire, D. J. Clarke, R. S. K. Mong, and J. Alicea,
Assembling Fibonacci anyons from a Z3 parafermion lattice
model, Phys. Rev. B 91, 235112 (2015).

[39] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Sig-
natures of Dirac cones in a DMRG Study of the Kagome
Heisenberg Model, Phys. Rev. X 7, 031020 (2017).

[40] S. N. Saadatmand and I. P. McCulloch, Symmetry fraction-
alization in the topological phase of the spin-1/2 J1 − J2

triangular Heisenberg model, Phys. Rev. B 94, 121111(R)
(2016).

[41] C. Hickey, L. Cincio, Z. Papić, and A. Paramekanti, Haldane-
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