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Probing Fermi liquid exceptional points through AC conductivity
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Exceptional points, which are topological non-Hermitian degeneracies, show up in the collective mode
spectrum of Fermi liquids with high angular momentum interactions. In this paper, we look for signatures of
these nontrivial singularities by computing the AC conductivity of Fermi liquids with dipolar and quadrupolar
interactions in a narrow slab. We show that the finite size of the slab imprints clear signatures of the structures
of the collective mode spectrum in the conductivity as well as in the dephasing between the electric field and
the current density in a wide range of coupling constants. In particular, we show the fingerprints of exceptional
points, observed in the weak attractive dipolar and/or quadrupolar regime. The main result does not depend on
the specific model of quasiparticle interactions. We also discuss some actual compounds where these phenomena
could be experimentally observed.
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I. INTRODUCTION

The Landau theory of Fermi liquids states the paradigms
to describe the normal state of metals since the late 50’s [1,2].
Although in the last 30 years states of matter which do not
follow this paradigm have been in focus, Fermi liquids still
attracts interest and hosts unexpected phenomena. One of the
most recently reported is the emergence of non-Hermitian
degeneracies, the so-called exceptional points (EP), in the lon-
gitudinal polarization channel of the collective mode spectrum
of a two-dimensional Fermi liquid with quadrupolar interac-
tions [3,4].

Exceptional points are singularities of the Hilbert space
characterized by a level degeneracy where not only the energy
eigenvalues coalesce but also the eigenvectors. Therefore, at
these special points of the parameter space, the Hamiltonian
cannot be diagonalized. This type of singularities cannot oc-
cur in Hermitian systems where, even at a degeneracy, the
Hamiltonian eigenvectors should be orthogonal. In correlated
electron systems, non-Hermitian phenomena can emerge in
different ways. One example is the inelastic electron-electron
or electron-phonon scattering. These channels trigger damped
collective excitations as well as EPs explicitly [5]. Another
example is the collective mode spectrum of Landau Fermi
liquids. Collective modes are not a closed system, since they
can exchange energy with individuals quasiparticles. In this
way, damped modes appear in the spectrum. This mechanism,
known as “Landau damping,” is the main source of non-
Hermiticity.

From the experimental perspective, the study of collective
modes of strongly correlated systems is quite involved [6]. In
principle, momentum-resolved dynamic susceptibility in the
meV scale [7] should give us information about collective
excitations. Another possibility could be the use of pump-
probe spectroscopy [8–10] to observe the dynamic response
in the time domain. Also, spatially nonlocal electromagnetic
response at low temperatures, such as the anomalous skin

effect [11,12], should encode these excitations as well. On the
other hand, recent advances in the quality of crystal growth
have allowed experimentalist to reach new regimes of metallic
transport [13–15]. We will argue that these ultraclean samples
are good candidates for obtaining signatures of collectives
modes. In particular, recent studies of microwave photore-
sistivity in ultraclean GaAs quantum wells [16,17] reported
singular resonances. The cause of these effects has been
pointed out to be caused by transverse zero sound waves in
highly nonideal Fermi liquids, in the presence of a magnetic
field [18,19]. This is the type of effect that we are looking for.

In this paper we look for signatures of the collective mode
structure of a Fermi liquid and, in particular, signatures for
EPs in transport properties. Specifically, we compute the AC
conductivity of a narrow slab. In principle, the bulk con-
ductivity should not give information about collective modes
since this observable is essentially related with the “center of
mass” dynamics. Thus, electron-electron forward scattering
interactions could not play a relevant role. However, the finite
width of the slab, W , introduces a natural scale of momentum
q0 ∼ 1/W and, correspondingly, an energy scale ω0 = vF q0,
where vF is the Fermi velocity. We expect that the AC con-
ductivity could in principle provide signatures of collective
modes provided their frequency ω ∼ ω0. Indeed, this kind
of set up was recently used to study shear modes in Fermi
liquids with dipolar interactions [20]. In this work, we are
interested in probing longitudinal polarized modes in a model
with dipolar and quadrupolar interactions. In particular, a rich
structure of collective modes was recently reported [3,4] for
quadrupolar modes. For dipolar interactions, we will show
a similar structure in the same polarization channel of the
collective modes.

Using the setup shown in Fig. 1, we have computed the
frequency dependent current density using linear response
in the context of Landau theory of Fermi liquids within a
model of dipole and quadrupolar interactions. The first result
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FIG. 1. Two-dimensional Fermi liquid confined in a slab setup.
The width of the slab is W and the electric field is applied in the
horizontal direction. The darker areas in the sample are the walls that
we will describe through the collision integral Ibd in the transport
equation

of the paper is given by Eq. (36), where we show an explicit
expression for the AC conductivity σ (ω) in terms of the
Green function of the longitudinal polarized dipolar modes,
G+

11(ω, q). We have exactly computed this Green function and
we have numerically evaluated the modulus of the conductiv-
ity |σ (ω)| and the dephasing angle ϕ = arctan[�(σ )/Re(σ )]
for different values of the parameters of the model. We have
analyzed three distinct regimes: a strong repulsive regime in
which there is only one stable collective mode, the so-called
zero sound excitation (Fig. 4), a weak attractive regime, in
which there are two stable collective modes (Fig. 5) and fi-
nally, as our main result, we display in Fig. 6 signatures of
the exceptional point, where both stable modes coalesce in a
double pole structure.

We have confirmed that, depending on the boundary condi-
tions on the walls of the slab, the conductivity and especially
the dephasing angle is very sensitive to the presence of col-
lective modes. The repulsive and attractive regions are clearly
differentiated by the peak structure of the conductivity and
the structure of the dips of the dephasing angle. Moreover, the
exceptional point imprints clear signatures in the complex AC
conductivity.

The paper is organized as follows. In Sec. II we define
our setup and briefly review how to deal with transport in
Fermi liquid theory. In Sec. III we show how to introduce bulk
and boundary conditions in the model and how to compute
the current density. We define our model of interactions and
compute the conductivity as a function of Green functions in
Sec. IV. In Sec. V we compute the collective mode spectrum
from the poles of the Green function, and in Sec. VI we
numerically compute the conductivity for different values of
the parameters of the model. Finally we discuss our results in
Sec. VII.

II. TRANSPORT IN A NARROW METALLIC SLAB

Transport properties of Fermi liquids have been studied for
a long time by using the Landau-Silin-Boltzmann-equation
approach [21]. However, two-dimensional Fermi liquids with
high angular momentum interactions have unique properties,
especially related with the collective excitations.

We will focus on charge transport in a metallic slab in
which we suppose that electron-electron interactions are well
described by a Fermi liquid. To be concrete, we consider
a rectangular system, as shown in Fig. 1. Linear response

provides the general form of the current density,

Ji(r, t ) =
∫

d2r′dt ′σi j (r, r′, t, t ′)Ej (r′, t ′) (1)

where Ji is the ith component of the current density, with i =
x, y. Ej (r, t ) is the jth component of an applied electric field
and the conductivity is given by the tensor σi j (r, r′, t, t ′).

The system is invariant under translations in the x direction.
On the other hand, it breaks this symmetry in the y direction
due to the boundaries of the slab. In this situation, and in the
stationary regime, we expect that

σi j (r, r′, t, t ′) ≡ σi j (x − x′, y, y′, t − t ′). (2)

Fourier transforming Eq. (1), we have

Ji(qx, qy, ω) =
∫

dq′
y σi j (qx, qy, q′

y, ω) Ej (qx, q′
y, ω). (3)

Thus, the presence of boundary conditions induces a nonlocal
expression in momentum space. In the absence of magnetic
fields or magnetic impurities, the conductivity tensor is diag-
onal. Choosing the electric field in the x direction (as shown
in Fig. 1), we are led with the computation of the nonlocal
conductivity

σ (q, q′
y, ω) ≡ σxx(qx, qy, q′

y, ω). (4)

In addition, if we consider that the contacts are uniformly
distributed along the whole transverse section W , then the
electric field has the form Ex(q) = Ex(qx )δ(qy). In this situ-
ation the conductivity is a local function of the momentum
σ (q, ω).

In order to compute the current density, we take advantage
of the usual Landau theory of Fermi liquids [1,2]. Within this
theory, we can write the nonhomogeneous local quasiparticle
energy as

εk(r, t ) = εk +
∑

k′
fk,k′ nk′ (r, t ) − e φ(r, t ) (5)

where εk is the bare dispersion relation, e is the quasi-
particle charge, nk(r, t ) is the nonhomogeneous occupation
number, φ(r, t ) is an external scalar potential, and fk,k′ cod-
ifies short-range forward scattering interactions (notice that
this expression could describe a wider range of interactions
in the almost ideal gas [22]). In the spirit of semiclassical
description, the momentum |k| ∼ kF, where kF is the Fermi
momentum, and the distance r � 1/kF. For simplicity, only
the quasiparticles charge degree of freedom is taken in ac-
count. That means that we can average over the spin variables,
ignoring exchange and spin-orbit interactions.

The particle-hole dynamics is given by the Boltzmann
equation

∂nk(r, t )

∂t
(6)

= ∂εk(r, t )

∂r
· ∂nk(r, t )

∂k
− ∂εk(r, t )

∂k
· ∂nk(r, t )

∂r
+ Icoll[nk],

where Icoll is the collision integral. This is a nonlinear equa-
tion for nk. Within linear response, we can write nk(r, t ) =
n0

k + δnk(r, t ), where n0
k = 
(ε(k) − μ), with μ the chemical

potential, is the occupation number of free fermions at zero
temperature and δnk(r, t ) are small perturbations strongly
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peaked at k ∼ kF. Linearizing Eq. (6) in δnk and using the def-
inition of the Fermi velocity vF = ∇kεk, we find the reduced
Boltzmann equation,

∂ δnk(r, t )

∂t
+ vF · ∇

[
δnk(r) − ∂n0

∂εk

∑
k′

fk,k′δnk′ (r)

]

− e
∂n0

∂εk
vF · E(r, t ) = Ibk[δn] + Ibd[δn], (7)

where ∂n0/∂εk = −δ(εk − μ). The delta function projects the
momentum k into the Fermi surface k = kF. We assume a cir-
cular Fermi surface and, since r � 1/kF, boundary conditions
do not significantly modify this symmetric shape. There are
two collision operators in the r.h.s. of Eq. (7); one of them
describes electron-impurity scattering in the bulk (Ibk), and
the other one describes collisions within the boundary of the
sample (Ibd).

It is worth noticing that in our model we have not con-
sidered any interaction that could lead to a superconducting
instability [22]. The competition between interactions in the
forward scattering particle-hole channel (described by Landau
parameters) and in the particle-particle channel that could lead
to superconductivity is an interesting subject [23]. We will
not address this point in this paper since we are essentially
interested in the metallic phase.

Once Eq. (7) is solved for δnk(r, t ), the current density can
be easily computed from

J(r, t ) = e
∑

k

jF δnk(r, t ) (8)

where

jF = vF −
∑

k′

∂n0

∂εk′
fk,k′ v′

F. (9)

By explicitly computing Eq. (8) and by comparing it with
Eq. (3), we can read the AC conductivity. In the following
sections we show how to work out expressions Eqs. (7) and
(8) in order to give them and explicit computational form.

III. FERMI SURFACE FLUCTUATIONS, COLLISION
INTEGRALS, AND THE ANGULAR MOMENTUM BASIS

It is convenient to parametrize fluctuations as

δnk(r, t ) = δ(εk − μ) vF mk(r, t ) (10)

where mk(r, t ) represent the normal displacement of the
Fermi surface at the point k = kF . In order to Fourier trans-
form from mk(r, t ) to mk(q, t ), it is necessary to take into
account the boundary conditions. Assuming that the electric
field in the x direction has reflection symmetry Ex(x, y) =
Ex(x,−y), it is simple to verify that mk (x,W/2, t ) =
mk (x,−W/2, t ). Thus, the momentum is discretized in the
y components, qy = nq0, with n = 0,±1,±2, . . . and q0 =
2π/W . The Fourier transformed version of Eq. (7) is

∂ mk(q)

∂t
+ i vF · q

[
mk(q) +

∑
k′

Fk,k′ mk′ (q)

]

= e

vF
vF · E(q) + Ibk[mk(q)] + Ibd[mk(q)] (11)

FIG. 2. Notation convention for angles. E is chosen in the x
direction. q = q(cos ϕ, sin ϕ), vF = vF(cos θ, sin θ ), and vF · q =
vFq cos θk . Thus, θ = θk + ϕ.

in which, as we have already pointed out, q = (qx, qy = nq0)
and |q| � kF.

To give a more explicit expression for Eq. (11), we need
to specify how to measure angles. We sketch this in Fig. 2.
We parametrize vF · q = vFq cos θk , q = q(cos ϕ, sin ϕ), and
vF = vF(cos θ, sin θ ), in such a way that θ = θk + ϕ. Thus,
Eq. (11) takes the form,

∂ mk(q)

∂t
+ i vF q cos θk

[
mk(q) +

∑
k′

Fk,k′ mk′ (q)

]
= e vF E (q)(cos ϕ cos θk − sin ϕ sin θk ) + Ibk[mk(q)]

+ Ibd[mk(q)]. (12)

Finally, we need to specify the collision integrals. The bulk
component in the relaxation time approximation [2] describes
electron-impurity collisions and it is given by

Ibk[δn] = − δnk(r, t ) (13)

where  is the collision rate. Electron-electron collisions
could lead the system to an electronic hydrodynamic regime
where interesting features associated with collective modes
could appear [24]. However, electron-electron collision rate
scales with T 2. Therefore, in this paper we will disregard
this mechanism. In the same approximation, the boundary
collision term is a linear function of δnk . It reads

Ibd[δnk (r)] = b δ

(
|y| − W

2

)
×

∑
�=±1

∫
dθk′

2π
ei�(θk−θk′ )δnk′ (r), (14)

where cos θk′ = k′ · q/k′q. The delta function has support
on the boundaries y = ±W/2. The transparency factor b
[20,25,26] codifies the impurity collision rate at the bound-
ary of the sample. The physical interpretation of Eq. (14)
is that impurities at the boundaries damp linear momentum
fluctuations, given by

∑
k e±iθk δnk(q). Fourier transforming

Eqs. (13) and (14), and substituting them into Eq. (12), we
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find the explicit equation for mk (q, t ),

∂ mk(q)

∂t
+ i vF q cos θk

[
mk(q) +

∑
k′

Fk,k′ mk′ (q)

]
= − mk(q) + eE (q)(cos ϕ cos θk − sin ϕ sin θk ) − b

W

×
∑

q′
y,�=±1

∫
dθk′

2π
ei�(θk−θk′ ) cos

[
π (qy − q′

y)

q0

]
mk′ (qx, q′

y).

(15)

This is a linear equation for mk (q, t ), however it is not triv-
ial. The interaction term Fk,k′ mixes all points of the Fermi
surface. This is typical of Fermi liquid interactions. On top
of that, the last term, coming from the boundary collision
integral, is not local in q′

y, mixing in this way all possible
values of the transverse momentum.

It is possible to give a more appealing form to this equation
by rewriting it in an angular momentum bases. Observing that
mk(q) is periodic in k due to the closed Fermi surface, we can
expand

mk(q, t ) = m0(q, t )

+
∞∑

�=1

{m+
� (q, t ) cos(�θk ) + m−

� (q, t ) sin(�θk )}. (16)

The symmetric modes m+
� = m+

−� parametrize the longitudi-
nal polarization channel and the antisymmetric modes m−

−� =
−m−

� parametrize the transverse one. Using the same reason-
ing, we note that Fk,k′ = F (θk − θk′ ) and it is periodic in these
variables. Thus, we can expand it as

Fk,k′ = F0 +
∞∑

�=1

Fl cos[�(θk − θk′ )] (17)

where F� = F−�, with � = 0, 1, 2, . . ., are the well known di-
mensionless Landau parameters of a Fermi liquid. Rewriting
Eq. (15) using the multipole expansions given by Eqs. (16)
and (17), we find

∂2m±
� (q, t )

∂t2
+ 2

∂m±
� (q, t )

∂t
+ �2

� m±
� (q, t )

+ C�−1m±
�−2(q, t ) + C�+1 m±

�+2(q, t )

= (
∂t + 

)
K±

1 (q, t )δ1,�, (18)

where δ1,� is the Kronecker delta, and

�2
� =

(
vFq

2

)2

α�(α�−1 + α�+1) + 2 (19)

C� =
(

vFq

2

)2

α�

√
α�+1α�−1 (20)

K+
1 (q, t ) = 1

2
e Ex (q, t ) cos ϕ

− b

W

∑
q′

y

cos

[
π

q0

(
qy − q′

y

)]
m+

1 (qx, q′
y, t ) (21)

K−
1 (q, t ) = i

2
e Ex (q, t ) sin ϕ

− b

W

∑
q′

y

cos

[
π

q0

(
qy − q′

y

)]
m−

1 (qx, q′
y, t ) (22)

where we have introduced the coupling constants
α� = 1 + F�.

Equation (18), with the definitions of Eqs. from (19) to
(22), represents a system of damped driven coupled harmonic
oscillators. The natural frequency �� of each mode m±

� is
given by Eq. (19) in terms of the coupling constants α�.
Moreover, the coupling between modes are given by Eq. (20).
The damping is described by two terms: The second term of
Eq. (18), proportional to , codifies the effect of bulk impuri-
ties. On the other hand, the second term of K±

1 [Eqs. (21) and
(22)], proportional to b/W , includes the boundary collision
effects.

Each mode m±
� (q, t ) parametrizes a Fermi surface defor-

mation with a definite symmetry. m+
� describe symmetric

deformation in relation to the direction of the particle-hole
momentum q, while m−

� represent antisymmetric deforma-
tions related to the same axes. On the other hand, the
index � = 0, 1, 2, . . . parametrizes different components of
the angular momentum excitations, which are reflected in
the residual symmetries of the Fermi surface deformation.
For instance, m0 represents isotropic deformations (or charge
density excitations); it is invariant under continuous rotations.
m±

1 represents dipolar excitations; it has vector character and,
as a consequence, it is invariant under 2π rotation. Moreover,
m±

2 denotes quadrupolar collective excitations. Symmetric
and antisymmetric components built up a traceless symmetric
second rank tensor and then it is invariant under rotations by
π (nematic symmetry).

Some observations are in order. Due to parity symmetry,
symmetric (m+

� ) and antisymmetric (m−
� ) modes, as well as

odd and even angular momentum modes, are completely de-
coupled. This structure enormously simplifies the analysis of
the dynamics. The presence of a magnetic field breaks parity,
mixing all modes in a nontrivial way [27]. On the other hand,
the electric field only couples with m±

1 . The same happens
with the boundary collision term. Moreover, these are the only
terms in Eq. (18) that break rotation invariance. For this rea-
son, we have grouped both terms in the definition of K±

1 . This
will simplify the evaluation of Green functions. Interestingly,
the dipolar mode m±

1 is the only one that contributes to the
current density. In fact, by replacing Eqs. (10), (16), and (17)
into Eq. (8) and integrating over k, we find

Jx(q) = eñ

m
{m+

1 (q) cos ϕ + m−
1 (q) sin ϕ} (23)

Jy(q) = eñ

m
{m+

1 (q) sin ϕ − m−
1 (q) cos ϕ} (24)

where m is the mass of the bare electron and ñ = k2
F

4π
is the

electron density of a circular Fermi surface. For an arbitrary
orientation of the particle-hole momentum q, both compo-
nents, symmetric as well as antisymmetric, contribute to the
current density. If we chose to apply the electric field in the
x direction and there is no parity or time-reversal symme-
try breaking, then Jy(q) = 0. This condition implies that the
current density Jx(q) is completely determined by m+

1 and is
given by

Jx(q) =
(

eñ

m

)
m+

1 (q) sec ϕ. (25)
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IV. DIPOLE AND QUADRUPOLE INTERACTIONS

In general, there can be an infinite number of Landau
parameters to parametrize interactions. However, in prac-
tice, only a few Landau parameters are taken into account.
In fact, most of the properties of a normal metal can be
described by considering just F0, i.e., density-density interac-
tions. However, novel strongly correlated compounds call for
the consideration of higher angular momentum interactions
[28]. Usually, in Galilean invariant Fermi liquids, F1 renor-
malizes the effective mass, m∗ = (1 + F1)m [1]. So, systems
with a relatively moderate electron mass renormalization,
such as GaAs/AlGaAs quantum wells or MgZnO/ZnO het-
erojunctions, could have F1 �= 0. Moreover, the quadrupolar
interaction F2 is related to nematicity, observed in several
strongly correlated systems. Therefore, in this section we
present a specific model of a Fermi liquid with both dipolar
and quadrupolar interactions and show how to compute the
current density and the conductivity. In terms of the coupling
constants α�, our model is characterized by two parameters
α1 = 1 + F1 and α2 = 1 + F2, with α� = 1 for all � �= 0, 2.

Our interest is to compute m+
1 (q, ω). Since odd and even

modes are decoupled, we can consider Eq. (18) only for
the odd components � = 1, 3, 5, . . .. Fourier transforming in
time and defining the dimensionless variable z̃ = s − i/vFq,
where s = ω/vFq with the frequency ω, we can rewrite
Eq. (18) in matrix notation.

∑
�′

[G+ (̃z 2)]−1
�,�′m+

�′ (q, ω) = −i
1

vFq
z̃ K+

1 (q, ω)δ1,� (26)

where

[G+ (̃z 2)]−1
�,�′

=

⎛⎜⎜⎜⎜⎜⎝
z̃ 2 − α1(α2+2)

4 −α2
√

α1

4 0 0 ...

−α2
√

α1

4 z̃ 2 − α2+1
4 − 1

4 0
0 − 1

4 z̃ 2 − 1
2 − 1

4 . . .

0 0 − 1
4 z̃ 2 − 1

2
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠.

(27)

We have indicated a block structure of Eq. (27) by means of
auxiliary vertical and horizontal lines inside the matrix. The
first quadrant is a 2 × 2 matrix, encoding the coupling of the
modes m+

1 and m+
3 . The fourth quadrant, which is a block

with infinite components, encodes all the odd higher angular
momentum modes, acting as a “heat bath” for the modes of
the first quadrant. Both blocks are coupled by off-diagonal
elements −1/4.

Using the Green function formalism and due to the fact that
the inhomogeneous term of Eq. (26) is a vector with only one
nonzero component, the solution can be formally written as

m+
1 (q, ω) = −i

1

vFq
z̃ G+

1,1(̃z)K+
1 (q, ω). (28)

This equation is not trivial for two reasons. Firstly, in order
to compute G+

1,1(̃z), it is necessary to invert the infinite matrix
of Eq. (27). Secondly, the inhomogeneous term K+

1 , given by
Eq. (21), contains m+

1 summed over all the possible values
of the transverse momentum qy. Therefore, this is an implicit
nonlocal equation for m+

1 (q, ω). In the following subsections
we treat both problems separately.

A. Computation of m+
1 (q, ω)

Using Eq. (21), we can explicitly write Eq. (28) as

m+
1 (q, ω) = 1

2
e G̃11(q, ω)Ex(q, ω) cos ϕ

− bqo

2π
G̃11(q, ω) cos

[
π

q0
qy

]
C(qx, ω). (29)

C(qx, ω) =
∑

q′
y

cos

[
π

q0
q′

y

]
m+

1 (qx, q′
y, ω), (30)

where we have rescaled the Green function as

G̃11(q, ω) = −i
1

vFq
z̃ G+

11(q, ω). (31)

Equations (29) and (30) form a nonlocal linear system for
the functions {m+

1 (q, ω),C(qx, ω)}. We strengthen the fact
that the nonlocality is in the transverse momentum qy, and
it is produced by the scattering at the boundaries of the slab.
Solving the system self-consistently for m+

1 we find

m+
1 (q, ω) = 1

2
e G̃11(q, ω)

[
Ex(q, ω) cos ϕ − bqo

2π
cos

[
π

q0
qy

]∑
q′

y
cos

[
π
q0

q′
y

]
G̃11(qx, q′

y, ω)Ex(qx, q′
y, ω) cos ϕ′

1 + bqo

2π

∑
q′′

y
G̃11(qx, q′′

y , ω)

]
. (32)

where ϕ′ is the angle subtended by the electric field Ex and the
momentum (qx, q′

y ). Thus, as expected from linear response
theory, the symmetric mode m+

1 is a linear function of the
applied electric field. The first term of Eq. (32) is local in
frequency and momentum. The coefficient G̃1,1 will be related
to the bulk component of the conductivity tensor. On the other
hand, the second term is nonlocal in the transverse momentum
qy, encoding the effect of the boundaries on the conductivity.
If we choose to apply an electric field in the x direction, which

is homogeneous in the transverse y direction, Ex(qx, qy) ≡
Ex(qx )δ(qy), Eq. (32) localizes, getting the simpler expression

m+
1 (qx, nq0, ω) = 1

2
e G̃11(qx, ω)Ex(qx, ω)

×
{

δn,0−bqo

2π

(−1)nG̃11(qx, nq0, ω)

1 + bqo

2π

∑
q′′

y
G̃11(qx, q′′

y , ω)

}
(33)
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with n = 0,±1,±2, . . .. In the absence of boundaries, the
only contribution is n = 0, producing a current density
J (x, y) ≡ Jx(x), uniform in y. However, the finite width of
the slab induced a nontrivial distribution of Jx(x, y) in the
transverse direction. The detailed distribution depends on in-
teractions through the structure of the Green function G̃1,1.
Provided we are not interested in observing this detailed ef-
fect, we can define a current linear density

J linear
x (x) =

∫ +W/2

−W/2
Jx(x, y) dy. (34)

This is equivalent to observe only the n = 0 component of
Eq. (33). From Eqs. (23) and (33) we have for the conductivity

σ (qx, ω) =
(

e2ñ

m

)
G̃11(qx, ω)

×
{

1 − bqo

2π

G̃11(qx, ω)

1 + bqo

2π

∑
q′′

y
G̃11(qx, q′′

y , ω)

}
. (35)

In the homogeneous limit qx → 0, the AC conductivity finally
reads

σ (ω) =
(

e2ñ

m

)
G̃11(0, ω)

×
{

1 − bqo

2π

G̃11(0, ω)

1 + bqo

2π

∑
q′′

y
G̃11(0, q′′

y , ω)

}
. (36)

This is one of the main results of the paper. It express the
AC conductivity in terms of the Green function G̃11(0, ω).
While the first term in Eq. (36) is the bulk contribution to the
conductivity, the second term codifies the boundary effects.
We will see that this last term is responsible for the signatures
of the Fermi liquid collective mode structure.

B. Green function

It is clear from Eq. (32) or Eq. (33) that the Green function
G+

1,1(q, ω) plays a central role in the determination of trans-
port properties in a Fermi liquid. In order to compute it, we
have to invert the infinite range matrix given by Eq. (27) and
pick up just the first component. There are several methods to
compute this quantity. Here we closely follow the decimation
procedure described in Ref. [3]. The main idea of the deci-
mation technique is actually simple. In practice, we truncate
the matrix of Eq. (27) to order n � 2. Then, we compute the
inverse by usual procedures. Due to the band structure of the
matrix, there is a recurrence relation between the inverse of
the matrix truncated to order n + 1 and that one truncated to
order n. Formally,

G+(n+1) = F[G+(n)] (37)

where G+(n) and G+(n+1) are the inverse matrices of Eq. (27)
truncated to order n and (n + 1), respectively. F is a well
behaved matrix function. The calculation is completed by
taking the limit

G+ = lim
n→∞ G+(n) (38)

in Eq. (37). We obtain an algebraic equation for the the exact
Green function G+.

G+ = F[G+] (39)

From its solution we can read the first element G+
1,1. The result

is the following:

G+
11(̃z) =

z̃ 2 − (α2 + 1)

4
− �(̃z)

D+ (̃z)
, (40)

with the denominator

D+ (̃z) =
(̃

z 2 − α1(α2 + 2)

4

)(̃
z 2 − (α2 + 1)

4
− �(̃z)

)
− α1α

2
2

16
(41)

and

�(̃z) = 1

2

{̃
z 2 − 1

2
±

√̃
z 2 (̃z 2 − 1)

}
. (42)

Equation (42) shows up a branch point singularity at z̃ = 1.
In the absence of collisions, this point is simply ω = vFq,
which is the threshold for Landau damping. The square root
singularity is typical of a two-dimensional system. In three
dimensions, Landau damping is characterized by a logarith-
mic singularity. This completes all the necessary ingredients
to compute the conductivity σ (ω) given by Eq. (36).

V. COLLECTIVE MODE SPECTRUM: EXCEPTIONAL
POINTS

We can compute the collective modes of the system by
looking for the zeros of the denominator of the Green func-
tion, D+ (̃z) = 0. From Eqs. (41) and (42), we obtain

z̃ 6 −
(
α2

2 + α1α
2
2 + 2α1α2 − 4α1

)
4(α2 − 1)

z̃ 4

+ α1
(
(α1 + 4)α2

2 − 4α1
)

16(α2 − 1)
z̃ 2 + α2

1α
2
2

16(1 − α2)
= 0. (43)

which reduces to a cubic polynomial for z̃ 2. Let us explicitly
show the normal modes in two simple particular cases: pure
dipolar and pure quadrupolar interactions.

A. Dipolar interaction

By choosing α2 = 1, we end up with a model with only
dipolar interaction α1. In the clean limit, i.e., in the colli-
sionless regime of transport ( = 0), Eq. (43) reduces to a
quadratic polynomial equation in s2, whose roots are

s2
± = 1

8

1

α1 − 1

{
3α2

1 − 4α1 ±
√

9α4
1 − 8α3

1

}
. (44)

Interestingly, Eq. (44) displays a square-root singularity with
a branch point at αc

1 = 8/9. This singularity is a signature of
an exceptional point. We depict the real and imaginary part of
s2
±(α1) in Fig. 3. For repulsive interaction, α1 > 1, the roots

with s2 > 1 is the analog of the Landau zero sound for the
dipolar interaction. The other root, s2 < 0 is an overdamped
mode. In the weakly attractive region, we see two real modes.
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FIG. 3. Symmetric collective dipolar modes. Solutions of the
equation D+(s) = 0. In (a) we plot [s2(α1)] while in (b) we depict
�[s2(α1)]. In both panels we have fixed α2 = 1 and  = 0.

One of them is the continuation of the Landau zero sound to
the attractive region. The other one, with greater velocity than
the Fermi velocity can only exist in the attractive region and
s → +∞ in the limit α1 → 1−. For increasing values of at-
tractive interaction, both modes merge in the exceptional point
and, after that, they develop an imaginary part as shown in
Fig. 3. Therefore, at the exceptional point, both level crosses
in the complex frequency plane.

B. Quadrupolar interaction

Another simple case is to consider just quadrupolar inter-
actions. In fact, by solving Eq. (43) for α1 = 1 and arbitrary
α2 we find the same qualitative structure as the dipolar case,
with the presence of an exceptional point. In the collisionless
regime and expanding the dispersion relation in the neighbor-
hood of s ∼ 1, we find the roots [4]

s2
± = 1

25
{(16 + 10α2) ±

√
20α2 − 19}. (45)

We see that s2
±(α2) have a square root singularity (branch

point) at αc
2 = 19/20. At this point, both zeros are degener-

ated, s2
±(αc

2) = 51/50. Thus, the collective modes in the pure
quadrupolar case have the same qualitatively global structure

than in the pure dipolar case, i.e., they display two stable (real)
modes for weak attraction merging into an exceptional point.

The exact solutions of Eq. (43) in the plane {α1, α2} are
much more involved, displaying complex exceptional lines. It
is worth noting that in Refs. [3,4], we have studied a related
model with charge density and quadrupolar interactions. In-
terestingly, we have found that the quadrupolar susceptibility
in the {α0, α2} plane also have exceptional lines displaying
branch point singularities. In fact, the presence of square root
singularities in the spectrum of collective modes is a general
feature of two-dimensional Fermi liquids with higher angular
momentum interactions.

From a mathematical point of view, Eqs. (44) and (45) are
simple poles of the Green’s function, Eq. (40), in two different
channels: pure dipolar and pure quadrupole, respectively. At
the exceptional points, αc

1 and αc
2, the Green’s function have a

double pole structure. Our main focus is to study the effect
of the analytic structure of the Green functions on the AC
conductivity.

VI. AC CONDUCTIVITY

The purpose of this section is to explicitly compute the
expression of Eq. (36) for the AC conductivity for different
interaction regimes. We present results for the simpler cases
of pure dipolar and pure quadrupolar interactions. The case
of mixed multipolar interactions is more involved and we will
treat it in a future presentation. In Eq. (36), we can recognize
two contributions.

σ (ω) = σ bk(ω) + σ bd(ω). (46)

The first contribution comes from the bulk and is given by

σ bk(ω) =
(

e2ñ

m

)
G̃11(0, ω). (47)

Explicitly computing the homogeneous limit of the Green
function we find

σ bk(ω) =
(

e2ñ

m

)
1

iω + 
(48)

which is the very well known Drude expression for the
conductivity. As expected, electron-electron interactions do
not contribute to the bulk conductivity. The second term of
Eq. (36) comes from boundary collisions and is given by

σ bd(ω) = − bqo

2π

(
e2ñ

m

)(
1

iω + 

)2

×
{

1

1 + bqo

2π

∑
q′′

y
G̃11(0, q′′

y , ω)

}
. (49)

In order to explicitly compute this quantity we use a spectral
decomposition,∑

q′′
y

G̃11(0, q′′
y , ω) =

∑
j

∞∑
n=−∞

Aj (ω, nq0)

ω − ω j (nq0) − i
, (50)

where ω j (q) are the collective modes represented in Fig. 3 and
Aj are the spectral weights computed by expanding Eq. (40)
in simple fractions. It is convenient to define a dimensionless
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expression. For this, we rescale the conductivity as

σ (ω) =
(

e2ñ

m

)(
1

vF q0

)
σ̃ (ω/vF q0). (51)

Notice that the finite size of the sample is introducing an
energy scale, vF q0, that we are using to scale the conductivity
and the frequency, in such a way that the dimensionless AC
conductivity σ̃ is a function of the dimensionless frequency
ω̃ = ω/vF q0. Moreover, we have two dimensionless param-
eters that characterize the collision terms: The dissipation in
the bulk is controlled by ̃ = /vF q0 and γ = b/vF is related
with dissipation at the boundaries of the sample. In these units,
the Drude conductivity reads

σ̃ bk(ω̃) = 1

iω̃ + ̃
. (52)

The relation between the dimensionless parameters {̃, γ }
distinguishes different electronic dynamical regimes. When
γ → 0, electrons rapidly scatter off of impurities and we have
a diffusive transport. In this case, the conductivity should
follow a Drude law. However, when ̃ ≈ γ , the mean free
path of the quasiparticle-impurity scattering is comparable
to the material width (W ) and a ballistic transport regime is
approached. Moreover, when ̃ � γ , the electron-boundary
scattering dominates over all others scales of the problem.
In this regime the Fermi liquid collective modes imprint very
sharp signatures in the conductivity. It is worth noting that we
disregard quasiparticle scattering in the collision integral. For
this reason, our results do not cover hydrodynamic transport
regimes [26].

A. Dipolar interactions

Let us consider a model with strongly repulsive dipolar
interaction: α1 = 4 and α2 = 1. As can be seen from Fig. 3,
there is only one stable collective mode, corresponding with
the analogous of the Landau zero sound, and one dissipative
mode. In Fig. 4, we show the dimensionless conductivity,
computed from Eq. (36), for different values of the pa-
rameters. In panel (a) we depicted |σ̃ | =

√
(σ̃ )2 + (�σ̃ )2,

while in panel (b), we plotted tan ϕ = �(σ̃ )/(σ̃ ), where ϕ

is the dephasing between the current density and the elec-
tric field. We have fixed ̃ = 0.001, and different curves
correspond to different values of the boundary parameter
γ = 0.05, 0.2, 0.3, 0.8, 10, ranging from a ballistic regime
to a strong-boundary scattering regime. Moreover, we have
rescaled the dimensionless frequency with the value of the
pole s+ = ±1.76, given by the positive root of Eq. (44). This
was done in order to simplify the visualization of novel fea-
tures that are expected to appear at integer values of the rescale
frequency.

For small values of the boundary collision term, (γ =
0.05), the conductivity is qualitatively similar to the Drude’s
law, since the dissipation in the bulk dominates the dynamics.
For moderate values of b/vF (γ = 0.2, 0.3), we observe a
sensible reduction of the central peak of |σ̃ | and very small
features appear in the wings of the distribution at frequen-
cies very near integers multiples of the “zero sound mode.”
However, we observe a huge signature of the presence of the
collective mode in the dephasing angle ϕ, plotted in panel (b).
There is a clear deviation from the Drude behavior, with very

FIG. 4. Conductivity as a function of frequency in the strongly
repulsive regime α1 = 4, α2 = 1. In this case, the collective modes
spectrum has only one stable real mode. There are two dimensionless
free parameters that control the collision terms: /vFq0 = 0.001 and
γ = b/vF that we fixed as indicated in the inset of the figure. In panel
(a) we computed |σ̃ | =

√
(σ̃ )2 + �(σ̃ )2. In panel (b) we computed

the phase tan ϕ = �(σ̃ )/(σ̃ ).

well defined dips and peaks exactly at integers multiple of
the resonant frequency ω = ns+vFq0, with n = ±1,±2, . . ..
Moreover, a very interesting effect can be observed for greater
values of γ . For instance, for γ = 0.8, two lateral peaks of
|σ̃ | begin to grow, producing a depletion at ω ∼ 0. For higher
multiples of the natural frequency, other smaller peaks can
be seen. In this way, with growing γ , the system becomes
more insulating at small frequencies and the conductivity
have maxima approximately at ω/vFq0 ∼ ns+. On the other
hand, the dephasing angle behaves in essentially the same
way, approximating zero for higher values of γ , except at the
integer multiples of the collective mode frequencies, where
peaks and dips are developed. The tendency of propagating
at definite frequencies increases when γ growth. Indeed, for
huge values of this parameter, for instance γ = 10, as shown
by the thinner line in Fig. 4, the conductivity is peaked at well
defined frequencies. In this regime, boundary effects dominate
over the bulk dissipation, and the transport properties strongly
differs from Drude prediction. In fact, for small frequencies,
we observe that the linear dephasing [shown in panel (b)]
changes sign with respect to the Drude result. Therefore, in
this extreme regime, the system is almost an insulator for
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FIG. 5. Conductivity as a function of frequency in the weakly
attractive regime α1 = 0.8899, α2 = 1. In this case, the collective
modes spectrum has two stable real modes. There are two dimension-
less free parameters that control the collision terms: /vFq0 = 0.001
and γ = b/vF that we fixed as indicated in the inset of the figure. In
(a) we computed |σ̃ | =

√
(σ̃ )2 + �(σ̃ )2. In (b), we computed the

phase tan ϕ = �(σ̃ )/(σ̃ ).

most frequencies, except for some selected modes that can
propagate through the strip. In this sense, the system turn out
to be a kind of electronic wave guide.

Let us now analyze another regime. We focus now in the
weak attractive dipolar regime, given by α1 = 0.8899 and
α2 = 0. As shown in Fig. 3, α1 � αc = 8/9. In this regime,
the system has two real collective modes that collapse to an
exceptional point in the limit α1 → αc. In Fig. 5 we show
the conductivity using the same collision parameters as in
the previous case. For small and moderated values of γ , |σ̃ |
behaves similarly to the repulsive case. We can observe a clear
signature of the two pole structure in the dips and peaks of
the dephasing angle. However, the valleys between dips and
peaks approach zero for decreasing values of γ ; this tendency
is the opposite to the repulsive case. For γ = 0.8, a unique
feature at low frequencies can be observed. Due to the fact
that the poles in the Green function are very near and the
residues have opposite signs, the conductivity develops lateral
peaks whose structures are displayed in Fig. 5(a). For extreme
higher values of γ ∼ 10, this effect saturates, displaying two
very well define peaks near ω/s+vFq0 ∼ ±1, and a sharp deep
at ω = 0, where the system become insulating. This unique

FIG. 6. Conductivity as a function of frequency at the excep-
tional point α1 = 8/9, α2 = 1. There are two dimensionless free
parameters that controls the collision terms: /vFq0 = 0.001 and
γ = b/vF that we fixed as indicated in the inset of the figure. In panel
(a) we computed σ̃ =

√
(σ̃ )2 + �(σ̃ )2. In panel (b) we computed

the phase tan ϕ = �(σ̃ )/(σ̃ ).

behavior characterizes collective mode structure at the weak
attractive regime.

Finally, let us analyze the exceptional point at α1 = αc =
8/9, which is the main goal of the paper. At this point there
is a single second order pole in the Green function. We de-
picted the conductivity for this case in Fig. 6. The behavior
of the conductivity is very similar to the two pole structure
at moderated values of γ . At sufficiently strong values of
boundary terms γ � 0.8, |σ̃ | displays lateral peaks, however
much flatten than the two stable collective mode case. Even
at very strong γ = 10, we observe a huge depletion at ω = 0,
very similar to the previous case, however with rounded lateral
peaks produced by the second order pole. The dephasing an-
gle, shown in Fig. 6(b), displays the same usual dip and peak
structure similar to the preceding examples, with a different
structure of the peaks. In this case, differently from the simple
pole of the repulsive region, the peaks are not symmetric
around the collective mode frequency.

B. Quadrupolar interactions

Another simplified situation is the case of pure quadrupo-
lar interactions α1 = 1, for arbitrary values of α2. In Fig. 7
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FIG. 7. Conductivity as a function of frequency in the quadrupo-
lar strongly repulsive regime α1 = 1, α2 = 4. Similarly to the dipolar
case, the collective modes spectrum has only one stable real mode.
There are two dimensionless free parameters that control the colli-
sion terms: /vFq0 = 0.001 and γ = b/vF that we fixed as indicated
in the inset of the figure. In (a) we computed |σ̃ | =

√
(σ̃ )2 + �(σ̃ )2.

In (b) we computed the phase tan ϕ = �(σ̃ )/(σ̃ ).

we show the case of strong repulsive quadrupolar interaction
α2 = 4. Since we have rescaled the frequency in the horizontal
axis with the position of the pole, this result is essentially
indistinguishable form the pure dipolar case, depicted in
Fig. 4. In fact, it is signaling the presence of the quadrupolar
equivalent of the Landau zero sound.

In Fig. 8, we show the results for the weakly attractive
case, α2 = 0.946819 > αc. Although this figure is qualita-
tively similar to Fig. 5, there are some differences due to
the fact that the ratio between the poles and their residues
have changed. The lateral peaks of the conductivity are more
rounded than its dipolar equivalent. However, the dephasing
angle is much more sensitive to the presence of two collective
modes, given stronger and more defined signatures.

Finally, in Fig. 9, we show the results for the quadrupolar
exceptional point. Again, we observe the insulating character
when the impurities at the border dominates the transport
(γ = 10), however the peaks are more rounded than the dipo-
lar results (Fig. 6). On the other hand, as observed in the other
interaction regimes, the dephasing is more sensitive to the
analytical structure of the Green functions, producing steepest
asymmetrical peaks and deeps when the exceptional point is
fined tuned.

FIG. 8. Conductivity as a function of frequency in the quadrupo-
lar weakly attractive regime α1 = 1, α2 = 0.9468. In this case, the
collective modes spectrum has two stable real modes. There are
two dimensionless free parameters that controls the collision terms:
/vFq0 = 0.001 and γ = b/vF that we fixed as indicated in the inset
of the figure. In (a), we computed |σ̃ | =

√
(σ̃ )2 + �(σ̃ )2. In (b), we

computed the phase tan ϕ = �(σ̃ )/(σ̃ ).

VII. SUMMARY AND DISCUSSIONS

We have computed the AC conductivity in a narrow slab
in which the electronic interactions are described by a Fermi
liquid. Dissipation enters the Boltzmann equation through two
collision integrals. One of them represents dissipation in the
bulk, that we treated in the relaxation time approximation. The
other collision integral is concentrated at the boundaries of the
slab.

One of the main results of the paper is Eq. (36), which
expresses the AC complex conductivity in terms of the Green
function of longitudinally polarized fluctuations G+

1,1(ω, q).
This expression clearly displays two contributions: The first
one has a characteristic energy scale given by the bulk dissi-
pation . The second one comes from the boundaries of the
slab. This term is characterized by a different energy scale,
vFq0 where vF is the Fermi velocity and q0 ∼ 1/W is fixed by
the width of the slab.

We have exactly computed the Green function G+
1,1 for a

specific Fermi liquid model given by the Landau parameters
F1 and F2. Two-dimensional Fermi liquids with higher angular
momentum interactions display collective mode excitations

195150-10



PROBING FERMI LIQUID EXCEPTIONAL POINTS … PHYSICAL REVIEW B 104, 195150 (2021)

FIG. 9. Conductivity as a function of frequency at the quadrupo-
lar exceptional point α1 = 1, α2 = 0.93681. There are two dimen-
sionless free parameters that control the collision terms: /vFq0 =
0.001 and γ = b/vF that we fixed as indicated in the inset of the fig-
ure. In (a) we computed σ̃ =

√
(σ̃ )2 + �(σ̃ )2. In (b) we computed

the phase tan ϕ = �(σ̃ )/(σ̃ ).

whose dispersion relation has square root singularities. These
complex level crossings, generally called exceptional points,
appear in the weak attractive regime of definite angular mo-
mentum channels. We have shown that, in this sense, the pure
dipolar model is qualitatively similar to the pure quadrupolar
one.

Using the spectral representation of the Green function,
we computed the conductivity |σ | and the dephasing angle

ϕ = arctan(�σ/σ ). In Figs. 4, 5, and 6, we show the results
for different interaction regimes of a single dipole interaction
model. In Figs. 7, 8, and 9, we show the corresponding results
for the pure quadrupolar case. In the repulsive case, we ob-
serve clear signatures of the “Landau zero sound mode” such
as well defined dips in tan ϕ, when the frequency is commen-
surate with the energy of the collective mode ω = s+vFq0.
On the other hand, the conductivity has peaks for moderated
and strong values of the transparency parameter γ = b/vF. In
the weak attractive case, the conductivity and the dephasing
clearly shows signatures of the double pole structure of the
Green function. Finally, by fine tuning the exceptional point,
we have also a clear signature of the second order pole.

It is worth noting that the signature of the collective mode
structure in the complex AC conductivity of a Fermi liquid
in clean narrow slabs is model independent. The main result
is that non-Hermitian degeneracies, the exceptional points,
which appears in a wide class of Fermi liquid models leave
particular fingerprints in the conductivity, as well as the de-
phasing angle. This could be a promising tool for searching
this class of Hilbert space singularities in real setups.

We expect that the plethora of phenomena described in this
paper could be probed in different types of materials, such
as GaAs/AlGaAs quantum wells [15–17,29,30], dilute sili-
con [31,32], or MgZnO/ZnO heterojunctions [33,34], where
a weak renormalization of the bare mass could indicate a
fine tuning in the weak attractive dipolar region. Moreover,
metallic compounds which presents electronic nematic phases
could in principle be used to search for these signatures, such
as for instance, iron-based superconductors [35,36], heavy
Fermion systems such as Sr2RuO4 [37,38] and ultracold
fermionic atoms [39,40].
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