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A recent experiment has reported oscillations of the thermal conductivity of α-RuCl3 driven by an in-plane
magnetic field that are reminiscent of the quantum oscillations in metals. At first glance, these observations
are consistent with the presence of the long-sought-after spinon Fermi surface state. Strikingly, however, the
experiment also reported vanishing thermal Hall conductivity coexisting with the oscillations of the longitudinal
one. Such absence of the thermal Hall effect must originate from crystalline symmetries of α-RuCl3. But if
the system was a traditional spinon Fermi surface state, these symmetries would also necessarily prohibit the
emergence of a magnetic field acting on the spinons, in stark contradiction with the presence of quantum
oscillations in experiments. To reconcile these observations, we introduce a new class of symmetry enriched
“pseudoscalar” U(1) spin liquids in which certain crystalline symmetries act as a particle-hole conjugation on
the spinons. The associated pseudoscalar spinon Fermi surface states allow for the coexistence of an emergent
Landau quantizing magnetic field while having an exactly zero thermal Hall conductivity. We develop a general
theory of these states by constructing Gutzwiller-projected wave functions and describing how they naturally
appear as U(1) spin liquids with a distinctive projective symmetry group implementation of crystalline symme-
tries in the fermionic parton representation of spins. We propose that the field induced quantum disordered state
in α-RuCl3 descends from a pseudoscalar spinon Fermi surface state that features compensated spinon-particle
and spinon-hole pockets possibly located around the M points of its honeycomb Brillouin zone. These points are
connected via a wave vector associated with the emergence of the competing zig-zag antiferromagnetic state.
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I. INTRODUCTION

A recent remarkable experiment [1] has detected oscilla-
tions of the thermal conductivity of α-RuCl3 induced by an
in-plane magnetic field. Some of its key observations that will
serve as cornerstones for our theoretical construction are:

Observation 1. Quantum oscillations of the longitudinal
thermal Hall conductivity are induced by fields either along
the a or the b axis, but their periods are largely independent
of the out-of-plane component along the c′ axis (see Fig. 1).

Observation 2. Quantum oscillations separate into two
regimes, one with smaller amplitudes and frequency, in the
field region of B ∼ 4 T − 7 T that would coexist with the zig-
zag AFM state [2–5]. And another with larger amplitudes and
frequencies for fields B ∼ 7 T − 11.5 T.

Observation 3. Thermal Hall effect is seen for fields along
the a axis, in agreement with Refs. [6–10], but it is essentially
absent for fields along the b axis, in agreement with Ref. [9].
When present, the thermal Hall conductivity is much smaller
than the oscillatory part of the longitudinal one (by about
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four orders of magnitude at T ∼ 1 K), and it decreases as the
temperature is lowered in a way that anticorrelates with the
relative growth of the oscillatory longitudinal conductivity.

The above observations provide a strong motivation to
conjecture the existence of a field induced quantum spin liq-
uid featuring a Fermi surface of neutral fermions [1], which
have also been argued to be present in numerical studies
of the Heisenberg-Kitaev models of α-RuCl3 [11–14]. The
oscillations also indicate that these fermions experience an
emergent magnetic field different from the externally applied
one, and therefore, that there is an emergent U(1) gauge field
coupled to these fermions. Since α-RuCl3 is a layered van der
Waals material it is also natural to expect that much of the
essential physics occurs within a single α-RuCl3 layer, and
therefore, that the state is essentially 2D in nature. Notice that
while spin liquids with Z2 gauge structures can also feature
neutral Fermi surfaces, they are typically incompressible to
flux insertion, and therefore do not naturally have a magnetic
field that can be increased continuously and smoothly over
the system. Therefore, the presence of quantum oscillations
in α-RuCl3 is in itself an indication that the gauge structure
is U(1).

At first glance, the aforementioned characteristics are
present in a phase of matter that has been a holy grail of con-
densed matter research since the pioneering work of Anderson
and collaborators [15–17], known as the spinon Fermi surface
state (see [18–20] for reviews). The traditional version of this
state can be understood from a slave boson (or the closely
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FIG. 1. (a) α-RuCl3 lattice and axis convention. (b) Summary of
phase diagram and observations in Ref. [1]. (c) Point symmetries
of the contracted (mirror M and π rotation C) and uncontracted
(π/3 rotoreflection R) α-RuCl3 lattice. (d) Bravais lattice vectors
(R1,2) and magnetic Bravais vectors (X1,2) for the zig-zag AFM
state depicted in lower inset. (e) Pseudoscalar spinon Fermi surface
particle- and hole-like pockets and the corresponding spinon Landau
level spectrum resulting from an emergent magnetic field. Figure
(a) and lower inset (d) were taken from Ref. [3].

related slave rotor [21]) parton decomposition of the electron
operator (c†) into a product of a spinful fermion (spinon f †)
and a spinless boson (chargon b†):

c†
rs = f †

rsb
†
r. (1)

Here r is the lattice site and s ∈ {↑,↓} the spin. The spinon
Fermi surface state appears when the chargons form a triv-
ial bosonic Mott insulator, while the spinons form a Fermi
surface state. In spite of being an insulator to DC charge
transport, the spinon Fermi surface state can display quantum
oscillations in response to applied magnetic fields [22–24]
(see Refs. [25–27] for other amusing properties). One could
therefore be tempted to conjecture that α-RuCl3 harbours a
spinon Fermi surface state, albeit with a rather peculiar cou-
pling between the applied and emergent magnetic fields, such
that a purely in-plane applied magnetic field in the a-b plane,
induces a large orbital component of emergent magnetic field
along the c′ direction.

There is, however, a striking observation that strongly
clashes with the traditional spinon Fermi surface scenario.
Namely, Observation 3, according to which the system dis-
plays no thermal Hall effect when the external field is along
the b axis and a negligible one when it is along the a axis
(see Fig. 1 for the axis convention). In fact, at small fields,
one expects that the spinons would contribute to the thermal
Hall conductivity with a typical value κxy ∼ (ωcτ )κxx [23],
where ωc is their effective cyclotron energy scale associated
with the emergent magnetic field. However, the visibility of

quantum oscillations requires that ωcτ � 1, and therefore, one
typically expects a comparable contribution of the spinons to
the oscillatory component of both κxx and κxy in the regime in
which these are experimentally detectable.

Such clear absence of thermal Hall effect when the field
is along b must be the result of symmetries of α-RuCl3 that
remain unbroken throughout the range of in-plane fields that
includes both the zig-zag AFM and the quantum spin liquid
state. There are two different symmetries of the underlying
Hamiltonian of α-RuCl3 that are present when the field is
along b (but are broken when the field is along a), that would
forbid the thermal Hall effect. Namely, the mirror that sends
b → −b, and a π rotation around b, that sends a → −a
(in the AFM this symmetry survives in combination with a
half-translation see Fig. 1). However, in the traditional spinon
Fermi surface scenario [Eq. (1)], the emergent orbital mag-
netic field is odd under these symmetries, and therefore it
would be altogether absent if these symmetries were present,
in contradiction with the very presence of quantum oscilla-
tions when the external field is applied along the b axis.

The above leads us to conjecture that the emergent mag-
netic field experienced by spinons in α-RuCl3 is not a
pseudoscalar (or equivalently and out-of-plane pseudovector
along the c′ axis), as it is the case of the familiar magnetic
field experienced by electrons or the emergent magnetic field
of the traditional spinon Fermi surface scenario, but rather
that it is a scalar (even) under the aforementioned mirror and
π -rotation symmetries. In order to naturally combine such
transformation law with an emergent U(1) gauge structure, we
will postulate that the spinon particle number is a pseudoscalar
(odd) under these symmetries, or, in other words, that these
symmetries act on the spinon as a particle-hole conjugation.
Because of this property, we will refer to these states as
“pseudoscalar U(1) spin liquids”.

But how could the spinons in such “pseudoscalar spinon
Fermi surface state” experience an emergent orbital magnetic
field with its associated Lorentz force, while at the same have
no net thermal Hall conductivity?. As we will show, these
states naturally feature pairs of spinon particle-like and hole-
like pockets of equal size related by point group symmetries.
Therefore there would be an amount of particle-like spinons
executing say clockwise cyclotron motion that is exactly bal-
anced by the same amount of hole-like spinons executing
the opposite counter-clockwise cyclotron motion, leading to
an exact vanishing of the Hall conductivity enforced by the
symmetry in question [see Fig. 1(c)]. This, however, does not
preclude the existence of oscillations of the spinon density of
states near the chemical potential, and hence the presence of
quantum oscillations.

We will not provide a detailed justification for why these
states are energetically favorable in α-RuCl3 starting from
a specific microscopic Hamiltonian. This is clearly a very
important question, but at the moment we believe it is a
conservative standpoint to remain partly agnostic on this issue
given the uncertainties surrounding the ideal microscopic of
model α-RuCl3 [28], not to mention the challenges of solv-
ing such ideal models that feature large deviations from the
ideal Kitaev model [29] and the relatively poorly understood
emergence of even the traditional spinon Fermi surface state
from ideal microscopic models (see however Refs. [30–35] for
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analytical and numerical studies). We will however make an
effort to provide not only an effective low-energy field theory
description but also to understand microscopic aspects of the
lattice scale anatomy of these states, because we view these
experiments as an unprecedented opportunity to deepen our
understanding of the emergence of U(1) spin liquids featuring
gapless neutral fermions from real materials and also from
microscopic models.

We have organized our paper by introducing first some of
the most general ideas in Sec. II. This section can be read
independently from the rest of the paper and does not rely on
details of α-RuCl3. This section introduces the notion of pseu-
doscalar U(1) spin liquids and describes some of its properties
in a general setting that could be relevant to other materials
and models. The subsequent sections, however, rely heavily
on the ideas from Sec. II. Specifically, Sec. III deals with
the symmetries of α-RuCl3 and discusses a concrete possible
pseudoscalar state that features Fermi pockets at the M points,
which are connected by the wave vector that naturally explains
the emergence of the zig-zag state via a spinon particle-hole
pair condensation. Section IV introduces a simplified low-
energy model that makes calculations more amenable, and
also provides certain rationale for why the M points are natural
locations for the spinon pockets. This section provides explicit
calculations for the quantum oscillations of equilibrium ther-
modynamic quantities like the magnetization. Finally, Sec. V
discusses the relation of the pseudoscalar U(1) spin liquids
to ideal models and theories, and also describes suggestions
for future experiments in α-RuCl3 and the possible rele-
vance of the pseudoscalar U(1) spin liquids to other material
candidates.

II. PSEUDOSCALAR U(1) SPIN LIQUIDS

To formulate our ideas we will imagine that the physics of
interest can be described within a Hilbert space of spin-1/2
degrees of freedom residing at lattice sites labeled by r. We
will also imagine that the system is two dimensional. We will
employ the fermionic parton representation of the spins [36],
by writing the spin operators at each site as follows:

σα
r = σα

ss′ f †
rs frs′ , (2)

where σα
ss′ are the elements of the α Pauli matrix. The fermion

operator f †
rs creates a spinon with spin s at site r. Only the

subspace with a single spinon at each site is physical, and
therefore given a state of spinons |�0〉, the physical state |�〉,
can be obtained via Gutzwiller projection as follows:

|�〉 =
∏

r

(
1 − (−1)

∑
s f †

rs frs

2

)
|�0〉. (3)

The Gutzwiller projection is a nontrivial operation that
generically impedes exact calculation of expectation values
of the Hamiltonian or other physically relevant operators. It
is possible, however, to develop a precise understanding of
the symmetry properties of the Gutzwiller projected physical
state, and this will be the working horse of our study. The
action of symmetry in fractionalized phases can be quite rich,
and includes possibilities beyond the black-and-white distinc-
tion of symmetric versus symmetry breaking of traditional

phases, such as the fractionalization of quantum numbers via
projective symmetry implementations [37,38] and even more
subtle patterns such as “weak-symmetry breaking” [29,39–
41].

To illustrate the possible nontrivial symmetry implemen-
tations in our context, let us consider the action of a spatial
mirror symmetry M normal to the y axis, namely one acting
on the physical spins as follows:

Mσ y
r M−1 = σ

y
Mr, Mσ x,z

r M−1 = −σ x,z
Mr, (4)

where Mr is the image of the site r under M. One possible
representation of the action of this symmetry on the spinons,
that we denote as M+, is that it acts as it would on ordinary
electrons:

M+ f †
rs(M+)−1 = eiϑ+

r iσ y
ss′ f †

Mrs′ , (5)

where the factor eiϑ+
r accounts for possible extra phases in the

implementation. There is, however, another possible represen-
tation of this same physical symmetry, that we denote as M−,
which acts on the spinons as a particle-hole conjugation:

M− f †
rs(M−)−1 = eiϑ−

r fMrs, (6)

where eiϑ−
r accounts for possible extra phases. One can readily

verify that that these two operations lead to an identical action
on all the physical spin operators defined in Eq. (2). Because
both representations lead to the same transformation of the
physical spins, and because all the spin operators are left
invariant under two consecutive actions of M, it follows that
the product M+M− leaves all the physical spins invariant. The
group containing all of such operations that act nontrivially
on the fermions but that leave all the spin operators invari-
ant is called the the parton gauge group. These operations
act trivially within the physical subspace and therefore are
not physical symmetries. Let us denote by Pr the aforemen-
tioned element of the parton gauge group, M+M−, but with
the eiϑ phase factors removed, namely the following unitary
operation:

Pr f †
rsP

−1
r = iσ y

ss′ frs′ . (7)

Thus we see that Pr is a gauge particle-hole conjugation
that does not change the physical spins. From the existence of
this operation, we conclude that for any symmetry, which is
implemented by acting on the spinons without a particle-hole
conjugation, there is another implementation, which acts as
a particle-hole conjugation, that can obtained by a composi-
tion of the original implementation with Pr. Since such two
implementations would differ by the action of a gauge group
element, they can be viewed as distinct projective symmetry
group (PSG) implementations [37,38] of the same underlying
physical symmetry.

In addition there is a U (1) subgroup of the gauge group
acting as

U (θr ) f †
rs(U (θr ))−1 = eiθrτ f †

rs. (8)

The gauge transformations in Eqs. (7) and (8) are elements
of the larger SU(2) parton gauge group of the fermion rep-
resentation of spins [42,43]. We will call pseudoscalar U(1)
spin liquids those states in which there is deconfinement of
the U(1) gauge field associated with the above U(1) subgroup
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and at least one of the underlying symmetries of the problem
is implemented on the spinons via a particle-hole conjugation,
such as that in Eq. (6). Notice that in order for the Gutzwiller
projected physical state |�〉 in Eq. (3) to be invariant under M
it is sufficient to enforce either M+ or M− as a symmetry of the
unprojected state |�0〉, but not both. By following the ideas of
PSG [37,38], it is clear that even within the pseudoscalar U (1)
spin liquids, there is a large landscape of possible symmetry
enriched phases realizing different PSG implementations of
physical symmetries.

A. Symmetries of emergent magnetic fields

A crucial property distinguishing the pseudoscalar U (1)
spin liquids from those with traditional implementation [e.g.,
Eq. (5)] is that the emergent magnetic field strength, which
we will denote by B, transforms in the opposite way to that
expected for the ordinary magnetic field experienced by elec-
trons. To show this and to generalize the considerations of the
previous section, let us now imagine a general physical sym-
metry operation, O. From our discussion, it follows that there
are two kinds of symmetry implementations on the spinons
denoted by O+ and O−, and given by

O+ f †
rs(O+)−1 = U (+)

r,ss′ f †
Ors′ , (9)

O− f †
rs(O−)−1 = U (−)

r,ss′ fOrs′ . (10)

Here Or is the image of site r under O and U (±)
r,ss′ are unitary

matrices. We consider the possibility that the symmetry is
anti-unitary, by writing

OiO−1 = pi, p = ±1, (11)

where p = 1(−1) when the symmetry is unitary (anti-
unitary). Let us now consider a set of trial U (1) spin liquid
states that are parametrized by a free fermion Hamiltonian of
the form:

H
[{

t s,s′
r,r′

}] =
∑
rr′ss′

t s,s′
r,r′ f †

rs fr′s′ . (12)

Here the hopping matrix elements t s,s′
r,r′ are viewed as a set of

variational parameters for the physical trial state, |�[{t s,s′
r,r′ }]〉,

which is obtained from the free fermion Slater determinant
ground state of Eq. (12), |�0[{t s,s′

r,r′ }]〉, after the Gutzwiller
projection as defined in Eq. (3). As discussed in Refs. [37,38],
whenever they are stable against gauge confinement, the
above states are expected to describe U(1) spin liquids be-
cause the effective spinon Hamiltonian in Eq. (12) has a global
U(1) symmetry associated with total spinon number conserva-
tion, namely they feature a global U(1) invariant gauge group
[37,38]. Importantly, since the Gutzwiller projector by con-
struction always has the same symmetries of the microscopic
Hamiltonian written in terms of spin operators, it follows
that the Gutzwiller projector commutes with any symmetry
implementation O±. Therefore, in order to guarantee that the
physical state is symmetric under the O symmetry, it is suffi-
cient to impose that the free fermion Hamiltonian in Eq. (12)
is invariant under either one of the symmetry implementations
O±. However, different symmetry implementations will im-
pose different constraints on the variational parameters and

thus generally lead to physically distinct states. For unitary
symmetries (p = +) these constraints are

O+ : t s,s′
Or,Or′ =

∑
s1,s′

1

U (+)
r,s1st

s1,s′
1

r,r′
(
U (+)

r′,s′
1s′

)∗
, (13)

O− : t s,s′
Or,Or′ = −

∑
s1,s′

1

U (−)
r′,s′

1s′t
s′

1,s1

r′,r

(
U (−)

r,s1s

)∗
. (14)

While for anti-unitary symmetries (p = −) the constraints
follow from those above by replacing t → t∗ in the right-hand
side. Because the constraints are distinct for the two imple-
mentations, O±, we conclude that the trial physical states will
generically be distinct for these two symmetry implementa-
tions.

Now, let us imagine that we have found a set of hoppings
satisfying one of the above implementations of the O symme-
try. Let us refer to the trial state associated with such hoppings
as a parent state. Now, let us consider another mean field
state weakly perturbed away from the parent state by adding
a small and smooth spatially dependent emergent magnetic
field B(x). Namely, we consider a new trial state in which the
set of hoppings differs from the parent state by adding a trial
emergent two-component vector potential A that leads to the
following change of variational parameters:

t s,s′
r,r′ → ei

∫ r
r′ dx·A(x)t s,s′

r,r′ . (15)

Here we are viewing A(x) as a function of the continuous
coordinate x in the ambient space where the lattice model is
embedded, and the line integrals are taken along the straight
lines joining the initial r′ and final r lattice sites associated
with the spinon hopping. In order for the new hoppings to
satisfy the conditions of Eqs. (13)–(14) we can choose the trial
vector potentials to satisfy the following conditions:

O± : OA(x) = ±pA(Ox), (16)

where we have assumed O is a 2 × 2 orthogonal matrix. From
the above it follows that the emergent magnetic field strength,
B = ∂x × A, would satisfy

O± : B(x) = ±p det(O)B(Ox), (17)

The case of lattice translations (which are unitary) can
also be worked out similarly and one obtains two possible
implementations TR,± : B(x) = ±B(x + R). In particular, if
we consider a uniform trial magnetic field B(x) = B0, we see
that emergent magnetic field has the opposite transformation
law for the pseudoscalar spin liquids with O− symmetry im-
plementation, with respect to the traditional U(1) spin liquids
with electron-like symmetry implementations, O+.

In particular, for the mirror M and π -rotation C, which are
symmetries of α-RuCl3 when the physical field is along the
b axis [see Fig. 1(b)], it is possible to have pseudoscalar spin
liquids with symmetry implementations M− and C−, which
allow for a nonzero average emergent magnetic field B0 in
their ground state, even though such symmetries forbid the
existence of thermal Hall effect, in agreement with experiment
[1], as we will discuss in more detail in Secs. III A–IV.
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B. Stability of U(1) pseudoscalar spin liquids

Let us now discuss whether pseudoscalar U(1) spin liquids
are stable phases of matter against gauge confinement or other
instabilities that are potentially present in lattice models with
emergent gauge fields [44–46]. In the absence of an average
magnetic field, pseudoscalar U(1) spin liquids are expected
to be subjected to similar kind of stability considerations as
ordinary U(1) spin liquids [47–49]. In particular, states with
Fermi surfaces are expected to be stable phases of matter [49].

In the presence of an average emergent magnetic B0,
the spinon Fermi surface would disappear at low energies
due Landau quantization. In traditional spinon Fermi surface
states where the spinons transform as electrons under symme-
try, there will be generically an allowed value of the spinon
proper Hall conductivity and consequently an associated al-
lowed Chern-Simons term in the effective low-energy action
for the emergent gauge fields. This means that ideally at low
energies the ordinary spinon Fermi surface states can gener-
ically give rise to chiral spin liquids, which can be viewed
as the spinon analogues of quantum Hall states and are also
stable phases of matter. However, as we argue below, in the
case of pseudoscalar U(1) spin liquids a different and curious
state of affairs occurs. Namely the symmetries that allow for a
nonzero B0 can generically forbid the presence of the proper
spinon Hall conductivity and consequently also of the Chern-
Simons term in the effective low-energy action of the gauge
fields, and thus these spin liquids do not necessarily evolve
into chiral spin liquids at low energies in the presence of B0.

To argue for this, we begin by noticing that the Chern-
Simons term in the action is proportional to the following
product:

φ(x)B(x), (18)

where φ(x) is the scalar part of the emergent gauge field.
Since φ(x) transforms under symmetries in the same way
as the spinon density,

∑
s f †

rs frs, it will be even under an
ordinary symmetry implementation O+ and odd under a pseu-
doscalar one O−. Now suppose that the Chern-Simons term
was allowed by some ordinary symmetry implementation,
O+, which is possible if B(x) is even under O+. Let us denote
the pseudoscalar couterpart of this symmetry by O−. Under
O− both φ(x) and B(x) would now be odd, and therefore the
Chern-Simons term would also be allowed. On the other hand,
imagine now that certain symmetry with ordinary implemen-
tation O+ forbids the Chern-Simons term, which happens
when the emergent magnetic field B(x) is odd under O+.
Then in this case under the pseudoscalar counterpart, O−,
B(x) would be even and the scalar potential φ(x) would be
odd, and therefore the Chern-Simons term will be forbidden
as well. In other words, the Chern-Simons term is allowed
or forbidden only depending on the physical nature of the
underlying symmetry and not on whether it is implemented
in an ordinary fashion or a pseudoscalar one on the spinons,
in contrast to the emergent field itself B(x), which might be
allowed for one implementation but forbidden for the other.
In particular, the Chern-Simons term of 2D U(1) spin liquids
satisfies the same symmetry constraints of the physical ther-
mal Hall conductivity κxy.

The above leads us to the curious situation that pseu-
doscalar spin liquids with a symmetry implementation that
allows for an average emergent magnetic field B0, but which
forbids the thermal Hall conductivity κxy and consequently
the Chern-Simons term, do not have to generically become
chiral spin liquids at low energies. The absence of the Chern-
Simons term leads therefore to expect that when the Landau
quantization gaps out the spinons while preserving the cor-
responding symmetry forbidding κxy, the leading term in the
effective gauge action after integrating out the spinon fields
will be the Maxwell term. However, due to the ubiquitous
confinement expected for ordinary 2D compact QED [44–46],
the true low-energy ground state would be a confined phase,
and then generically the ultimate low-energy state will dis-
play some form ordinary spontaneous symmetry breaking (or
some symmetry preserving paramagnetic phase if the sym-
metries allow it). If one could artificially make the spinon
coupling to gauge fields weak, this instabilities would occur
at low-energy scales typically below the effective cyclotron
energy of the parent pseudoscalar spinons Fermi surface state,
and might lead to a rather rich and delicate sequence of
phase transitions (spinon-gauge coupling is however generi-
cally strong). To picture this more intuitively the reader could,
very roughly speaking, imagine the formation of stripe or
bubble phases in high Landau levels [50] as analogues of these
instabilities of the pseudoscalar spin liquids with forbidden
Chern-Simons terms, except that rather than having long-
wavelength charged ordered structures the spinons would
have some order of the spin densities. Curiously, a somewhat
reminiscent phenomenon is also encountered in the case of
strong unidirectional spin density wave states subjected to
magnetic fields, which display some form of quantum oscil-
lations that are expected to evolve into a sequence of phase
transitions at low temperatures [51,52].

III. PSEUDOSCALAR U(1) SPIN LIQUIDS IN α-RuCl3

We will now apply the ideas described in Sec. II to
α-RuCl3. We begin by reviewing some of the general prop-
erties of this material. Each layer of α-RuCl3 contains a
honeycomb lattice of RuCl octahedra [see Fig. 1(a)]. A Hilbert
space with one effective spin-1/2 degree of freedom per octa-
hedron and a Hamiltonian with exchange couplings ranging
up to about ∼10 meV [28,53–57], are believed to describe
well its low-energy properties. Crucially, the material is a
good electrical insulator with transport and optical gaps rang-
ing on the order of ∼0.1 eV − 2 eV [58–60]. We will therefore
imagine that the physics emerges from a spin Heisenberg-like
model of the form:

HJ + HZ =
∑
all

Jαα′
r,r′ σ

α
r σα′

r′ − μαα′
Bασα′

r . (19)

Here σα
r denotes the α ∈ {x, y, z} Pauli matrix at hon-

eycomb site r. Jαα′
r,r′ and μαα′

are exchange couplings and
magnetic moment tensors, and Bα is the experimentally ap-
plied magnetic field along axis α. We will take the spin axes
to be aligned with the crystal axes as follows: {x, y, z} ↔
{a, b, c′} (see Fig. 1).
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A. Symmetries of α-RuCl3

The honeycomb lattice of α-RuCl3 is slightly contracted
along the b axis [see Fig. 1(a)]. In order to understand the
implications of symmetries it is useful to imagine an ideal
model with all the symmetries of the uncontracted lattice
and view the terms that break these as smaller corrections.
Namely, we partition the exchange part of the Hamiltonian
into

HJ = H (0)
J + H (1)

J . (20)

The symmetry group of H (0)
J contains the following opera-

tions:

{Mb, Mc′C6c′ , T , TR} → {M, R, T , TR}. (21)

Here Mh denotes a mirror that leaves the h axis invari-
ant, Cnh is the rotation by an angle 2π/n around axis h, T
is the usual anti-unitary time reversal (T 2 = −1), TR is a
shorthand for the honeycomb lattice translations Tn1R1+n2R2 as-
sociated with the Bravais lattice vectors R1,2, and the symbols
following the “→” are simplified notations for future conve-
nience. All of the above symmetries are viewed as acting in
the three-dimensional space embedding the two-dimensional
honeycomb lattice. The more realistic Hamiltonian HJ for the
contracted lattice has all of the above except the rotoreflection
R = Mc′C6c′ . There is however direct experimental evidence
that the breaking of this rotoreflection is weak, from detailed
angular dependence measurements of the specific heat [61].
Now, in the presence of an externally applied field B along
the b axis, the full Hamiltonian HJ + HZ has the following
remnant symmetries:

B ‖ b : {M,C, TR}, (22)

where C denotes the π -rotation C2b, which can be expressed
in terms of the original symmetries as follows:

C = MR3. (23)

The thermal Hall conductivity is odd with respect to either
M or C operations and would therefore vanish if at least one
of these symmetries remains unbroken in the ground state.
In contrast when the external field is along the a axis, the
remnant symmetries are

B ‖ a : {MT ,CT , TR}. (24)

However the thermal Hall conductivity is even under all of
the above operations and will therefore generally be present
in this case. Finally, the zig-zag AFM state in the presence
of fields along the b axis [2–5] is expected to break sponta-
neously the symmetry group from Eq. (22) down to{

M,CTR1 , Tn1X1+n2X2

} → {
M,CTR1 , TX

}
, (25)

where X1 = R1 − R2, X2 = R1 + R2 are the new Bravais
lattice vectors translating the enlarged magnetic unit cells [see
Fig. 1(d)] and the symbols after “→” are simplified notations.
The thermal Hall conductivity is odd under either the M or
the nonsymorphic CTR1 , explaining its absence in experiments
[1,9]. And when the field is along the a axis the zig-zag AFM
is expected to contain the following operations:{

MT TR1 ,CT , TX
}
. (26)

B. pseudoscalar spinon Fermi surface state
with the symmetries of α- RuCl3

In this section we will present a specific example of a pseu-
doscalar spinon Fermi surface state with all the symmetries of
α-RuCl3. We caution that this example is simply meant to il-
lustrate the previous general ideas in a concrete setting. There
is a wide landscape of symmetry enriched states even within
each of the scenarios we have previously outlined and also
uncertainties in the precise microscopic model of α-RuCl3,
hindering a detailed energetic analysis.

Moreover, the very nature of the state that is realized in
experiments suggests that its precise energetics is hard to
capture microscopically. This is in part because the emergent
magnetic field presumably plays an important role in tilting
the energetic balance in favor of the pseudoscalar spin liquid
states. However, because its strength can adjust as a contin-
uous variable the system can have very large and variable
magnetic unit cells comprising many atomic unit cells. There
is also no expected simple commensurability between the size
of the spinon Fermi surface and the Brillouin zone. In fact, if
one performs a naive estimate of the area of the Fermi surfaces
in experiment [1], by naively assuming that magnitude of the
emergent magnetic field equals the in-plane physical field,
one obtains a Fermi surface area of about ∼0.3% the size of
the Brillouin zone. This is a very rough estimate, but it is a
compelling indication that the Fermi pockets are small and
the spinons are dilute compared to lattice spacing (the typical
inter-spinon distance would be ∼10 nm). Another way to state
this is as follows: suppose we would like that the spinons
have a Fermi surface that is half of the α- RuCl3 Brillouin
zone. Then, in order to match the experimental QO’s period
[1], one would need to assume that the effective constant α

controlling the proportionality between the magnitude of the
emergent field B0 and the physical in-plane field B

|B0| ≈ α|B| (27)

is about α ≈ 103. This would be a tremendous enhancement
of the amount of orbital flux experienced by spinons, notwith-
standing the fact that the applied field is strictly in-plane.
Therefore, it seems more natural to assume that the pockets
are relatively small compared to the Brillouin zone while
the enhancement of flux is not so gigantic. All of the above
indicates that a good portion of the energetics behind the
precise Fermi surface ground state realized experimentally is
“long wavelength”, and therefore hard to capture in numerical
studies of small system sizes or in uncontrolled numeri-
cal or analytical calculations. Moreover, as we discussed in
Sec. II B, the pseudoscalar spinon Fermi surface states have a
stronger tendency to form broken symmetry states in their ul-
timate low-energy ground states in the presence of an average
magnetic field, due to the absence of the spinon Chern-Simons
term that would otherwise allow for the formation of a stable
chiral spin liquid at low energies via spinon Landau quantiza-
tion.

With the above caveats in mind, we would like, however,
to present a concrete toy illustration of a pseudoscalar spinon
Fermi surface state in this section, consistent with all the sym-
metries of α-RuCl3. To do this we begin by considering the
following possible symmetry implementations for the ideal
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TABLE I. Symmetry action on the spinon operator f †
rs at hon-

eycomb site r and spin s. τ z
r = 1(−1) when r belongs to the A

(B) sublattice and z = ei2π/3. The last columns denote by + (–)
whether the emergent field B0 and the thermal Hall conductivity κxy

are allowed (forbidden). The subscript +/− in the symmetry oper-
ation denotes whether it is implemented in an ordinary electron-like
fashion (+) or in a “pseudoscalar” fashion (−) involving a spinon
particle-hole conjugation. Only {M−,C−, TR+} remain symmetries
with a field along the b axis.

Symmetry Symmetry action B0 κxy

M− M− f †
rsM

−1
− = τ z

r fMrs + –
R+ R+ f †

rsR
−1
+ = −iσ z

s zσ z
s /4 f †

Rrs + +
T+ T+ f †

rsT −1
+ = iσ y

ss′ f †
rs′ – –

TR+ TR+ f †
rsT

−1
R+ = f †

r+Rs + +
C− = M−(R+)3 C− f †

rsC
−1
− = τ z

r fCrs + –

fully symmetric Hamiltonian H (0)
J with symmetries listed in

Eq. (21):

{M−, R+, T+, TR+}, (28)

where subscript “–” indicates that the symmetry is pseu-
doscalar, namely that it acts as particle-hole conjugation, and
“+” indicates that is does not act as a particle-hole conjuga-
tion on the spinons. From Eq. (17) it follows that the emergent
magnetic field B0 is only odd and hence forbidden by T+,
but allowed by all of the other symmetries. Here we will
concentrate on the situation when the physical field is along
axis b, which tends to impose more constraints on the physics,
although related considerations can be developed when the
field is along axis a. Thus in the presence of the Zeeman field
along b, the symmetries are lowered to those listed in Eq. (23)
and, therefore, we have the following remnant symmetries
acting on the spinons:

B ‖ b : {M−, M−R3
+, TR+} → {M−,C−, TR+}, (29)

where the symbols after the “ →′′ are shorthand notations.
From the experimental absence of κxy one concludes that at
least one of the two symmetries M or C is present but not
necessarily both. It is in principle possible that one of them
is spontaneously broken in the spin liquid state, but we will
assume that the spin liquid respects all the symmetry of the
Hamiltonian. Thus we see that both these symmetries force
κxy = 0, but their pseudoscalar implementations allow for a
finite B0 and thus the existence of quantum oscillations, in
agreement with experiment [1]. Moreover, notice that the time
reversal operation T+, which is the only symmetry, which
forbids B0, is broken explicitly by the external in-plane field.
This can be viewed as part of the mechanism allowing to
understand the growth of the emergent magnetic field B0 with
increasing applied in-plane fields seen in experiment [1].

To be able to define a simple notion of spinon dispersion,
we will consider a parent state with zero flux per honeycomb
unit cell and B0 = 0. The state realized in experiments is
then viewed as a perturbed version of this parent state with
a finite but small B0. We choose the specific action for the
symmetries to be that listed in Table I. This symmetry action
dictates via Eqs. (13)–(14) the allowed hopping terms, {t s,s′

r,r′ },
parametrizing the variational wave function of Eq. (3). It is

convenient to organize these hoppings by their spatial range
in the lattice, since shorter range hoppings are typically dom-
inant. The leading terms are the on-site terms. If one imposes
all the symmetries from Table I there is no allowed on-site
term. However for the lower symmetry group that is present
when the external field is along the b axis [see Eq. (29)] the
following on-site term becomes allowed:

H
[{

t s,s′
r,r′

}] = −
∑
rss′

t0⊥σ
y
s,s′ f †

rs frs′ . (30)

Even though the above term has the same form as a Zee-
man field along the b axis, the parameter t0⊥ should not be
viewed in general as the bare Zeeman coupling entering the
microscopic Hamiltonian from Eq. (19), but as a variational
parameter to be optimized to minimize the total energy. Using
Eqs. (13)–(14) one can in this way continue finding the nearest
and further neighbor spin dependent hoppings, to enlarge the
allowed parameter space describing the variational wave func-
tion. The symmetry allowed hoppings up to second neighbors
are shown in Fig. 2. There are four independent and real
nearest-neighbor spin-preserving hoppings {t1↑, t ′

1↑, t1↓, t ′
1↓}

allowed by symmetries from Eq. (29) when the field is in-
plane [see Fig. 2(a)]. In the absence of external in-plane field,
namely under the full symmetry group from Eq. (28), these
four terms collapse onto a single independent real parameter:

t1↑ = t ′
1↑ = t1↓ = t ′

1↓. (31)

There is one real t1⊥ and two complex {t ′
1⊥, t ′′

1⊥} spin-
flipping nearest-neighbor hoppings when the field is along the
b axis [see Fig. 2(b)]. Upon the imposing the full symmetry
group from Eq. (28) these five independent real parameters
collapse onto a single one t1⊥, as follows:

t ′
1⊥ = zt1⊥, t ′′

1⊥ = z−1t1⊥, z = ei2π/3. (32)

There are two complex second-neighbor spin-preserving
hoppings {t2↑, t2↓} when the field is along the b axis [see
Fig. 2(c)]. These hoppings are actually forbidden when the
full symmetry group from Eq. (28) is imposed, namely t2↑ =
t2↓ = 0. Lastly, there are three complex second-neighbor spin-
flipping hoppings {t2⊥, t ′

2⊥, t ′′
2⊥} when the field is along the

b axis [see Fig. 2(c)]. Upon the imposing the full symmetry
group from Eq. (28) these six independent real parameters
collapse onto a single one t2 ∈ R, as follows:

t2⊥ = z−1/2t2, t ′
2⊥ = z−1t2, t ′′

2⊥ = t2, (33)

Here we use the convention z−1/2 = e−iπ/3. Figure 3 shows
the dispersion of the spinons for some specific choice of
parameters for the full symmetry from Eq. (28) and for some
other choice with the lower symmetry corresponding to B ‖ b
from Eq. (29). The parameters for this figure have been ad-
justed by hand so as to have small Fermi surfaces located
at the M points, because these locations are consistent with
the instability of the spinon Fermi surface into the zig-zag
AFM, as we discuss next. We also note that for this choice of
parameters the Fermi surfaces at M points coexist with Dirac
nodes at the K points [see Figs. 3(a) and 3(f)].

The zig-zag AFM is believed to break the translational
group of the honeycomb producing an enlarged unit cell with
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b

ac

t1↑ t1↓

t1↓

t1↑

t1↓

t1↑

t1⊥t1⊥

t1⊥

t1⊥

t1⊥

t1⊥

−t2↑

−t2↓

−t2↑

−t2↓

b

t2↑

t2↓

t2↑

t2↓

t2⊥

t2⊥

t2⊥

t2⊥ −t2⊥

−t2⊥

−t2⊥

−t2⊥

−t2⊥

t2⊥
t2⊥

−t2⊥

(a)

(c)

(d)

(b)

FIG. 2. Symmetry allowed spinon hoppings for an in-plane field
along the b axis. Solid lines without arrows denote real hoppings,
while directed lines denote complex hoppings. Nearest neighbor
spin-preserving (a) and spin-flipping (b) hoppings. Second-neighbor
spin-preserving (c) and spin-flipping (d) hoppings.

four inequivalent sites and a new rectangular Bravais lattice
generated by lattice vectors X1,2 [see Fig. 1(d)]:

X1 = R1 − R2, X2 = R1 + R2. (34)

This can be achieved by starting from the pseudoscalar
U(1) parent and Bose-condensing a spinon particle-hole bilin-
ear, which reduces the symmetry down to that of the zig-zag
AFM listed in Eq. (25). Such condensing boson operators
can be viewed as a new term added to the bilinear spinon
Hamiltonian from Eq. (12) that parametrizes the trial state.
The scattering vector associated with such reduction of trans-
lational symmetry is shown in Fig. 3(b) and is given by

QAFM = G1 + G2

2
, (35)

where G1,2 are the reciprocal Bravais lattice vectors of the
honeycomb [see Fig. 3(b)]. The allowed leading terms de-
scribing the zig-zag AFM are simple onsite terms such as
that from Eq. (30) except that they break the translational
symmetry and have the form of the local staggered Zeeman

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) Spinon dispersion iso-energy contours at E = 0 (or-
ange Dirac points at K and K ′), E = 0.2t1↑ (green) and E = 0.4t1↑
(blue), and dispersions (c) and (e) for the state without in-plane field
with all the symmetries of Table I. The nonzero spinon hoppings
are t1↑ (unit of energy) [from Eq. (31)], and t1⊥ = 0.6t1↑ [Eq. (32)].
(b) Spinon Fermi surfaces for the lower symmetry state (in-plane
field along the b axis) located at M1 and M2 points (orange contours)
coexisting with Dirac nodes (orange dots at K and K ′) and iso-energy
contours at E = 0.1t1↑ (green) and E = −0.1t1↑ (blue). Cuts of the
dispersions are shown in (d) and (f). The nonzero spinon hoppings
are t1↑ = t ′

1↑ = t1↓ = t ′
1↓ [from Eq. (31)], t0⊥ = 0.1t1↑ [Eq. (30)],

t1⊥ = 0.6t1↑, t ′
1⊥ = 0.66t1↑z, t ′

1⊥ = 0.66t1↑z−1 [Eq. (32)], t2↑ = t2↓ =
0.1t1↑ (see Fig. 2). We have verified that properties are robust against
small changes around the above parameters.

fields associated with the spin moments in the zig-zag AFM,
exactly like those depicted in Fig. 1(d). If the spinon Fermi
surface is fully gapped as a result of such condensation, the
resulting phase will generically have strong confinement for
the U(1) gauge field and the spinons will be strongly bound
with a linear potential [44–46]. If the spinon Fermi surfaces
do not fully gap as a result of the condensation of the spinon
particle-hole bilinear, one would have a state with coexistence
of AFM order and reconstructed spinon Fermi surfaces. As a
result of the partial gapping of the Fermi surface, this state
would naturally have Fermi surfaces enclosing a smaller area,
and therefore would naturally have smaller frequencies of
oscillation (see subsequent discussion in Sec. IV). Therefore
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this partially gapped spinon Fermi surface coexisting with
the AFM order is a plausible candidate for the intermediate
AFM state [62,63], which gives rise to different oscillations
at lower fields with smaller frequencies, as summarized in
Observation 2 from Sec. I.

One important caveat is that the rationalization of the emer-
gence of the zig-zag AFM state via a particle-hole instability
from the spin-liquid parent state relies on weak coupling
intuition. Namely it visualizes a hypothetical dispersion of
noninteracting spinons and imagines adding spinon interac-
tions as a perturbation. However, in the current context the
spinons are inherently strongly coupled and there is no clear
way to deform the problem to turn off their interactions.
Nevertheless, if the transition in a realistic model of α-RuCl3

is proximate to an ideal continuous transition from a parent
spin liquid state to the zig-zag AFM, then it is reasonable to
expect that near such transition there are spinon pockets that
are connected via the QAFM wave vectors. This is, however,
not necessarily the only possibility. One could for example
imagine an alternative scenario in which the spinon pockets
are at other locations of the Brillouin zone that are not con-
nected by the QAFM vector, and the transition into the zig-zag
AFM proceeds via a condensation of another bosonic spinon
particle-hole mode that has wave vector QAFM but that is
not naturally associated with the gapless excitations from the
spinon Fermi surfaces.

Notice, in connection to the above discussion, that the
spinon dispersion illustrated in Figs. 3(a), 3(c), and 3(e) with
all the symmetries of Table I in the absence of in-plane field,
does not display any spinon Fermi surfaces or gapless spinon
nodal points with the nesting that would give rise to the
zig-zag AFM. This is not necessarily an issue since in the
absence of in-plane field the parent spin liquid is not supposed
to be a very close energetic competitor to the true ground state
zig-zag AFM. As described above, if indeed the transition pro-
ceeds continuously via the spinon Fermi surface particle-hole
instability picture, then the spinon pockets only need to be
connected by QAFM for the parameters that describe the state
proximate to the transition. These dispersions in Figs. 3(a),
3(c), and 3(e) feature, however, low lying spinon particle-hole
excitations with a small gap and wave vector QAFM, which can
be viewed as remnants of the energetic proximity of the parent
spin liquid state deeper into the zig-zag antiferromagnetic
state.

IV. SIMPLIFIED LOW-ENERGY MODELS AND QUANTUM
OSCILLATIONS OF PSEUDOSCALAR SPINON

FERMI SURFACES

As we have seen the pseudoscalar spinon Fermi surface
states feature pairs of particle and hole spinon pockets that are
related by the space symmetries, which act as particle-hole
conjugations. Let us consider a simple scenario in which each
of these individual pockets is small and can thus be approx-
imated as an ellipse. When the field is along the b axis we
have two particle-hole conjugating symmetries M− and C−
described in Table I. The action of these symmetries in crystal
momentum basis is

M− f †
p,τzsM

−1
− = τz f−Mp,τzs, (36)

where p is the crystal momentum in the first Brillouin zone
of the honeycomb lattice, τz = ±1 denotes the A and B sub-
lattices, and the action for C− can be obtained by replacing
M → C above. Notice that because of their particle-hole con-
jugating nature these symmetries relate states at “minus” the
momenta expected for ordinary symmetry action. Generically
when a Fermi surface is not centered at a special momenta in
the Brillouin zone one expects four pockets related by these
symmetries. Let us denote the crystal momenta location of
these pockets as Pi, with i = {1, ..., 4}. Take the pocket i = 1
to be particle-like, its low-energy dispersion will be

E1(p + P1) ≈ (p · n1)2

2m1
+ (p · n1⊥)2

2m2
− E0, (37)

where n1 and n1⊥ ≡ ẑ × n1 are the two principal axes of the
ellipse with respective masses {m1, m2} and E0 controls the
size of the Fermi surface obtained from E1(p + P1) = 0. The
momenta and parameters of the other pockets follow from the
C− and M− action. Specifically the other two hole-like pockets
and their principal axes are

P2 = −CP1, P3 = −MP1 = −P2, (38)

n2 = −Cn1, n3 = −Mn1 = −n2. (39)

The pocket 2 has hole-like dispersion given by

E2(p + P2) ≈ − (p · n2)2

2m1
− (p · n2⊥)2

2m2
+ E0. (40)

And similarly pocket 3 has an identical dispersion to
pocket 2 but centered at P3. On the other hand the fourth
pocket is particle-like and is located at

P4 = CMP1 = −P1. (41)

And the principal axes and the dispersion of this pocket are
the same as in pocket 1 but centered at P4.

On the other hand, when the momenta of the particle-like
pockets 1 and 4 differ by a reciprocal Bravais lattice wave
vector they are then just one and the same pocket, which is
left invariant by the inversion symmetry implemented by the
product C−M−, and similarly the hole-like pockets 2 and 3 are
also only a single pocket. There are only two special locations
in the Brillouin zone of the honeycomb lattice that satisfy
this, namely the two M points depicted in Fig. 3(b). More
precisely, these are the only crystal momenta that equal minus
themselves up to a reciprocal vector, and are thus invariant
under the product MC, but which are not invariant under the
individual C and M symmetries. Notably these special M
points are exactly connected by the wave vector associated
with the spinon particle-hole instability that would drive the
formation of the zig-zag AFM state and are the locations of the
Fermi pockets for the example discussed in III B and depicted
in Fig. 3. Therefore this scenario is nicely consistent with the
phenomenology of α-RuCl3.

Let us describe now in more detail the quantum oscillations
for both of the scenarios of either four or two small elliptical
pockets described above. The Landau levels of spinons that
form in the presence of the emergent field B0 come in pairs of
positive and negative energies [see Fig. 1(e)] and are given by

Ei,n = si(ωc(n + 1/2) − E0), (42)
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where i labels the elliptical pockets, si = +1(−1) for parti-
cle (hole) pockets, ωc = |B0|/√m1m2 is the spinon cyclotron
energy scale, and n = 0, 1, 2... is the cyclotron index of each
Landau level within a pocket. One useful difference between
the pseudoscalar spinons and ordinary electrons or scalar
spinons is that the chemical potential is fixed to be zero in
the former case due to the particle-hole symmetries. In the
case of electrons or scalar spinons the chemical potential can
oscillate in the physical system, which typically are better
approximated by an ensemble with fixed density, and this
tends to complicate the precise analysis of quantum oscilla-
tions [64–67]. We will also assume here for simplicity that the
system has a fixed B0, although we also expect the same kind
of behavior described in Refs. [22,24], in which B0 adjusts
itself energetically and it is not directly experimentally fixed.
Such behavior can lead to complex staircase dependence of B0

as a function of the experimentally controlled physical field,
and also to the possibility of multiple metastable states with
slightly different values of B0 as described in Refs. [22,24]
at low temperatures. This behavior could be in part related
to the complex hysteric behavior of the thermal conductivity
reported in Ref. [1] at the lowest temperatures. Such behavior
tends to disappear when the temperature exceeds the cyclotron
energy [24], and therefore our current treatment can be justi-
fied in this regime. We will also ignore here the low-energy
confinement instability that is expected for pseudoscalar spin
liquids discussed in Sec. II B. We would like to caution, how-
ever, that such confinement can lead to crucial modifications
of the behavior of quantum oscillations at lower temperatures
because the spinons would cease to behave as free itinerant
quasi-particles. This behavior could in fact be related to the
experimentally reported reduction of the amplitude of oscilla-
tions at lower temperatures [1,10].

We follow Ref. [68], which summarizes Shoenberg’s
derivation of two-dimensional quantum oscillations [69]. We
begin by writing the spinon DOS per unit energy per unit area
as

ρ(ε) = |B0|
2π

∑
i

∞∑
n=0

D0(ε − Ei,n). (43)

Here D0(ε) is a Lorentzian function normalized to unity
and width � that captures the broadening of Landau levels
arising, e.g., from disorder effects. Now, in the usual limit
in which ωc � EF = E0, the lower bound of the sum over
n can be replaced as 0 → −∞, so as to approximate the
oscillatory density of states as a strictly periodic function of
energy. The constant part of this function can also be dropped
as it contributes only to the nonoscillatory background.
For fermions with fixed chemical potential μ = 0, the free
energy is

� = −β−1
∫

dερ(ε) log(1 + e−βε ), (44)

from which one obtains the following form for the oscilla-
tory part of this free energy as function of 1/|B0| [68]:

�osc = gωc|B0|
2π3

∞∑
k=1

LkDk
(−1)k+1

k2
cos

(
kS

|B0|
)

, (45)

where S = π pF1 pF2 = 2π
√

m1m2E0 is the Fermi surface area
of a single spinon pocket (all have them have the same area in
our elliptical models), g is the total number of pockets (namely
g = 4 or g = 2 in the scenarios described earlier), and Lk and
Dk are the Lifshitz-Kosevich and Dingle factors describing the
suppression of the oscillation amplitude by temperature and
disorder broadening respectively, which are explicitly given
by

Lk =
2π2k
βωc

sinh
(

2π2k
βωc

) , Dk = e−πk�/ωc . (46)

From the above free energy the oscillations of various
equilibrium thermodynamic properties can be obtained. For
example, the magnetization oscillations follow from:

M = −∂�osc

∂B
. (47)

In the above expression B is the physical magnetic field.
Therefore in order to compute the magnetization one needs to
know what is the dependence of the parameters of the spinon
Fermi surface state, including the emergent magnetic field B0,
as a function of B. We will use some phenomenological guide
from the experiments that measure oscillations of thermal
conductivity [1] to predict the oscillations of magnetization.
Let us assume that within some region of parameters in which
the pseudoscalar spinon Fermi surface is realized, the main
parameter changing with the physical field in-plane is the
emergent magnetic field B0. This means that other characteris-
tics of the parent state, such as the spinon particle density, have
a much weaker dependence on the applied in-plane field, and
can thus be approximated as constants. For example, when
the physical field is along b axis (B||b), let us assume that the
emergent field grows linearly with the component of physical
magnetic field along such axis denoted by Bb:

B0 ≈ αBb. (48)

The above linear dependence is consistent with the exper-
imental observation that the thermal conductivity has nearly
equally spaced oscillations when plotted as a function of 1/Bb

[1]. Then Eq. (47) predicts an oscillation of the induced mag-
netization along the b axis given by

Mosc
b ≈ α

gE0

2π2

∞∑
k=1

LkDk
(−1)k+1

k
sin

(
kS

|B0|
)

, (49)

where we have made the usual approximation of only taking
the derivatives with respect to B0 inside the argument of the
cosine function in Eq. (45), since the other contributions are
subdominant when |B0| � S. To close this section, we wish
to note that the above computation was performed imagining
the minimal set of either g = 4 or g = 2 pockets related by M
and C symmetries described earlier. If there are other pockets,
which are also small and elliptical but not related by symmetry
to these, one can simply add the separate contributions.
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V. DISCUSSION AND OUTLOOK

A. On theories and models

In this paper we have introduced the notion of pseudoscalar
U(1) spin liquids employing the fermionic parton representa-
tion of spins and a class of Gutzwiller-projected trial wave
functions parametrized by spinon Slater determinants. This
approach is a convenient tool, but it should not be viewed as
the definition of the state of matter itself. Pseudoscalar U(1)
spin liquids can more generally be regarded as states in which
a microscopic symmetry acts as a particle-hole conjugation
on the nonlocal emergent fractionalized spinon particles. Are
there other theoretical approaches that might allow us to in-
vestigate these states? We would like to offer examples of
some ideal models that suggest that perhaps pseudoscalar
spinons are more common than previously recognized and
perhaps some of these models could offer clues and more
amenable playgrounds to better understand the microscopic
underpinnings of the emergence of these states.

In fact, it is possible to show that the spinons that emerge in
1D from the standard Jordan-Wigner transformation that maps
the 1D XXZ Heisenberg model at Jz = 0 onto free fermions
are in a sense pseudoscalar spinons. One can in particular
show that for example the mirror symmetry that reverses the
axis direction of the 1D chain, acts on the Jordan-Wigner
fermion operators as a particle-hole conjugation. Although in
this case there is not properly speaking a U(1) gauge struc-
ture, one can define an analog of magnetic flux through the
loop of the 1D chain when it is placed in periodic boundary
conditions, and one can show that in fact this magnetic field is
invariant under the aforementioned mirror, in contrast to the
odd transformation for the magnetic field in the case of a mir-
ror acting on an ordinary 1D wire of electrons [70]. Therefore
the traditional XXZ Heisenberg model with Jordan-Wigner
fermions can be regarded as a 1D toy version of a pseudoscalar
spin liquid state with gapless spinons.

It is also possible to regard the charges in certain quan-
tum spin ice as models as pseudoscalar spinons. In three
dimensional quantum spin ice [71] this can be rationalized by
taking the charges defined by the ice rule to be the magnetic
monopoles [72], so that their pseudoscalar nature follows
from what is naturally expected from the transformation laws
of ordinary magnetic fields. However in two dimensions the
distinction becomes more non-trivial, because the electric
and magnetic fields can be clearly distinguished, since the
electric field is a two-component in-plane vector while the
magnetic field is a single-component scalar. Therefore in
two-dimensional quantum spin ice [73] or the closely related
two-dimensional quantum dimer model [74,75], one can show
that the spinon number defined as the charge associated with
the ice rule, is indeed odd under mirror operations and thus
certain U(1) spin liquid states emerging in these models could
also be regarded as pseudoscalar spin liquids [70].

We would also like to contrast the pseudoscalar spinon
Fermi surface states described in this work with the “compos-
ite exciton Fermi liquid” states introduced in Ref. [23]. Both
of these states feature spinon particle-like and hole-like Fermi
surfaces with equal sizes. The compensation of particle and
hole pockets in both states is a consequence of having an even
number of spinons per unit cell, regardless of point-group

crystalline symmetries. However the composite exciton Fermi
liquid is “ordinary” or “scalar” in the sense that the emergent
magnetic field has the same transformation laws expected for
the usual physical magnetic field experienced by electrons.
Therefore the pseudoscalar spinon Fermi surface states and
the composite exciton Fermi liquid are sharply distinct phases
of matter with regard to symmetry that can be regarded as
distinct symmetry enriched U(1) gapless spin liquids. In par-
ticular, the composite exciton Fermi liquids, as introduced in
Ref. [23], would generically feature coexisting finite thermal
Hall effect and quantum oscillations when the applied field
is along the b axis of α-RuCl3, and therefore these are not
natural candidates to explain the phenomenology reported in
Ref. [1].

B. On experiments and materials

We begin by commenting on another set of prominent
experiments that has argued for the presence of a chiral spin
liquid with gapless Majorana-edge modes and half-quantized
thermal Hall conductivity for fields along the a axis [7,9,10].
At the moment the precise connection to the study of Ref. [1]
is not completely clear to us, since the latter did not find clear
evidence of the quantization of the thermal Hall conductiv-
ity. However, the more recent study of Ref. [10], provided
evidence that such quantization would survive to lower tem-
peratures at fields along the a axis that are above ∼11 T, which
is somewhat above the regime in which Ref. [1] focused on.
It is important also to note that the quantized thermal Hall
conductivity argued in Refs. [7,9,10] is observed above the
temperatures at which the quantum oscillations clearly set in
Ref. [1] for the region of fields below ∼11 T. Therefore, while
as a matter of principle chiral spin liquids could descend from
the parent pseudoscalar spin liquid as a result of the Landau
quantization, the above observation is indicative that if the
Majorana chiral spin liquid is present, it might be competing
with the pseudoscalar spinon Fermi surface state and not nec-
essarily descend from it. We caution however that the previous
statement implicitly relies on weak coupling intuition, since
it imagines the cyclotron spacing energy scale that describes
the spinon Landau level spectrum as a distinct energy scale
from the spinon interactions, and implicitly assumes that the
latter can be viewed as a perturbation in comparison to the
former. But as we have emphasized before, the spinons are
generically strongly coupled by the gauge fields, and there is
no simple generic way to deform the problem into such regime
of separation of spinon single-particle and interaction scales.
We would therefore like to encourage future experiments to
further investigate the relations and competitions between
these fascinating states of matter.

We also note that Ref. [10] found indications of oscillations
in the longitudinal conductivity and the magnetization but
reported that these features tend to disappear at lower temper-
atures. Such disappearance was suggested as evidence against
the picture of oscillations from an underlying Fermi surface
[10]. The precise relation of these oscillations in Ref. [10] to
those reported in Ref. [1] is also not completely clear to us,
but we would like to emphasize that the detailed temperature
dependence of quantum oscillations in a pseudoscalar spin
liquid can be very complex. On the one hand, in the clean and
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low-temperature limits both the traditional and pseudo-scalar
spin liquids are expected to develop a series of metastable
states with slightly different values of the emergent magnetic
field, as discussed in Refs. [22,24]. Moreover as discussed
in Sec. II B, unlike the traditional spinon Fermi surface, the
psedoscalar spinon Fermi surfaces have a tendency to confine
at low temperatures in the presence of the Landau quantizing
magnetic field. The implications of these two phenomena is
that in the clean and low-temperature limits, one generically
expects the quantum oscillations of the spinon Fermi surface
state to evolve into a delicate series of phase transitions, and
moreover in the case of pseudoscalar spinons, these phases
might feature spinon confinement, so that the spinons cease
to behave as unbound quasiparticles at low temperatures and
long distances. With this in mind, we would like to encourage
future experiments to study in more detail the temperature
dependence of the thermal conductivity and the impact of
sample disorder at various regions of the field-driven phase
diagram.

We would also like to offer some other suggestions also on
possible future experiments, because we believe there is still
much to be learned experimentally on the spin liquid states
realized in α-RuCl3. One relatively immediate additional in-
formation that could be provided by thermal conductivity
measurements are the full two components of the longitu-
dinal conductivity. The current measurements reported only
the longitudinal conductivity along the direction of the in-
plane field, but there should be an independent value of the
longitudinal conductivity perpendicular to the magnetic field
(assuming that the field is along either the a or b axis). This
extra component could offer clues on how anisotropic the
spin liquid state is. Another important investigation would be
to develop a more detailed global map of the evolution of
the properties of the spin liquid states as the in-plane field
is rotated. Torque magnetometry that detects magnetization
oscillations could be a versatile probe allowing to get more
details on the full in-plane field orientation dependence of

the period and temperature dependence of the amplitude of
oscillations. This could help clarify the precise relation among
the spin liquids realized when the in-plane field is along the a
and b axis and in-between. In this regard, the recent study
of Ref. [10] has already reported encouraging indications of
non-monotonicities of the derivatives of the magnetization
with in-plane field along the a axis. This study also indicates
that it is important to clarify the behavior of the large in-plane
field state realized above �11 T and its potential connection
to the Majorana chiral spin liquid state.

It would also be interesting to contemplate the possibility
that other spinon Fermi surface candidate materials, that have
displayed some phenomenology at odds with the traditional
spinon Fermi surface scenario, might harbour pseudoscalar
spinon Fermi surface states. One notable example are the or-
ganic materials that have been reported to not display quantum
oscillations with applied perpendicular field [76], in spite of
displaying other properties consistent with a spinon Fermi
surface scenario [18]. It will be also interesting to examine
the potential relevance of the pseudoscalar spinon Fermi sur-
face scenarios to the Kondo and Anderson periodic lattice
problems [77], specially since several heavy-fermion com-
pounds with even number of electrons per unit cell have been
shown to display quantum oscillations or features consistent
with spinon Fermi surface state [78–80]. Furthermore, it will
be interesting to investigate the potential relevance of the
pseudoscalar U(1) spin liquids in the context of transition
metal dichalcogenides that have displayed quantum oscilla-
tions coexisting with insulating behavior [81] and also some
phenomenology consistent with spinon Fermi surface states
[82–84].
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