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The effective electron-electron interaction in electron gas depends on both the density and spin local
field factors. Variational diagrammatic quantum Monte Carlo calculations of the spin local field factor are
reported. These are used together with the charge local field factor from previous diffusion quantum Monte
Carlo calculations to quantitatively present the full effective spin-dependent electron-electron interaction in
three-dimensional electron gas. Very simple quadratic formulas are presented for the local field factors that
quantitatively produce all of the response functions of the electron gas at metallic densities. Exchange and
correlation become increasingly important at low densities. At the compressibility divergence at rs = 5.25,
both the direct (screened Coulomb) term and the charge-dependent exchange term in the electron-electron
interaction at q = 0 are separately divergent. However, due to large cancellations, their difference is finite, well
behaved, and much smaller than either term separately. As a result, the spin contribution to the electron-electron
interaction becomes an important factor. The static electron-electron interaction is repulsive as a function of
density but is less repulsive for electrons with parallel spins. The effect of allowing a deformable, rather than
rigid, positive background is shown to be as quantitatively important as exchange and correlation. As a simple
concrete example, the electron-electron interaction is calculated using the measured bulk modulus of the alkali
metals with a linear phonon dispersion. The net electron-electron interaction in lithium is attractive for wave
vectors 0 − 2kF , which suggests superconductivity, and is mostly repulsive for the other alkali metals.
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I. INTRODUCTION

The equation for the spin-dependent effective electron-
electron interaction in three-dimensional electron gas was
derived in the local mean-field approximation by Kukkonen
and Overhauser (KO) [1], derived using diagrammatic tech-
niques by Vignale and Singwi [2], and is rederived in the
textbook of Guiliani and Vignale [3]. The effective electron-
electron interaction is given in terms of the density and spin
local field factors that define all of the response functions of
the electron gas. The local field factors are also known as
exchange and correlation kernels in time-dependent density-
functional theory.

The equation for the electron-electron interaction shows
the general dependence on the local field factors, but it is diffi-
cult to understand the relative importance of the terms until the
actual local field factors are used to show quantitative results.
The q = 0 values of the local field factors are determined
by the compressibility and susceptibility sum rules and are
obtained from the density and magnetization dependence of
the ground-state energy. Calculations of the local-field factors
at finite q are more difficult.

Although the density local-field factor was calculated
many years ago by diffusion quantum Monte Carlo
(QMC) [4], accurate results on the spin counterpart were not
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known until very recently [5]. The calculation of the spin
local-field factor using the variational diagrammatic Monte
Carlo (VDMC) method in Ref. [5] completes the specification
of the effective electron-electron interaction and has motivated
this paper.

In this paper, we present additional results on the spin
local-field factor. We show that they can be approximated by
very simple formulas that quantitatively produce all of the
response functions of the electron gas. We then analyze the
impact of the local-field factor on the electron gas properties.

II. ELECTRON-ELECTRON INTERACTION

KO [1] demonstrated that standard self-consistent per-
turbation theory based on Hartree-Fock theory and linear
response theory could be used to calculate the effective many-
body interaction Vee between two electrons in a simple metal,
modeled by electron gas, in terms of the density local-field
factor G+(q, ω) and spin local field factor G−(q, ω).

Ve�σ1,e�σ2 = 4πe2

q2

( (
ω2 − ω2

0

)/(
ω2 − ω2

q

)
(1 − G+Q)[1 + (1 − G+)Q]

− G2
+Q

1 − G+Q
− G2

−Q

1 − G−Q
�σ1 · �σ2

)
(1)

This is the interaction to be used for calculating matrix ele-
ments between two electrons with momenta k1 and k2 = k1 +
q and spins σ1 and σ2. For parallel spins, the wave functions
must be properly anti-symmetric.
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The electron gas is characterized by the density parameter
rs, (n = 4π (rsa0)3/3, a0 is the Bohr radius). Q = v�0 where
v = 4πe2/q2 is the Coulomb potential and �0(q, ω) is the
Lindhard function. The density and spin local-field factors G+
and G− are defined in Refs. [1,3] and discussed in Sec. III
and Appendix A. For convenience, we will not usually explic-
itly present the wave vector and frequency dependence. We
will also not explicitly use the word effective in discussing
interactions. With the deformable background, the standard
phonon frequencies and background (lattice) screening re-
sults were obtained and are represented by the frequency
dependence of the first term in Eq. (1). The intuitive physics
concepts behind the effective electron-electron interaction in
Eq. (1) are presented in Ref. [1]. The frequencies ωq and
ω0 refer to the frequency response of the deformable back-
ground which is discussed in Ref. [1] and Sec. VII of this
paper.

The first calculations of the screened interaction in the elec-
tron gas were the Thomas-Fermi interaction and its quantum
mechanical extension by Lindhard [3]. The Lindhard result is
recovered by setting both G’s equal to zero, which results in

VLindhard = 4πe2

q2(1 + Q)
. (2)

In this approximation, the electron-electron, electron-test
charge, and test charge-test charge interactions are all the
same. These latter interactions are discussed in Appendix B.

The KO electron-electron interaction has been verified by
many-body calculations [2] and has been extended to multi-
carrier [6], spin-polarized, and two-dimensional systems [3].
The potential for superconductivity without phonons using the
KO interaction was examined by Takada [7] and by Richard-
son and Ashcroft [8]. Takada found superconductivity for a
single carrier system and Richardson and Ashcroft did not.
Richardson and Ashcroft stated that an important difference
was that each group used different values of G+(q) and G−(q).
Richardson and Ashcroft calculated their own G’s including
frequency dependence. Takada used frequency-independent
G’s. The G’s considered here are the static local-field factors.
We mention superconductivity as an application, but we do
not attempt to use this electron-electron interaction in super-
conductivity in this paper.

Connecting with Feynman diagrams, the frequency-
independent factor in the first term can also be written as
�2/ε—two vertex corrections divided by the dielectric func-
tion [9]. The deformable background (lattice) screens the first
term, the Coulomb interaction, but not the exchange and cor-
relation and spin response terms which arise from summing
ladder diagrams.

As shown in Sec. VII, for a rigid lattice, the frequency-
dependent factor in the first term of Eq. (1), (ω2 − ω2

0 )/(ω2 −
ω2

q ) = 1, and the first term is repulsive. The second term is
attractive. The spin-dependent term is repulsive for opposite
spins (singlet) and attractive for parallel spins (triplet). We
initially consider the rigid background and discuss the de-
formable background in Sec. VII.

Quantitative evaluation of the electron-electron interaction
is made in Sec. V using the values of G+(q) discussed in
Appendix A and the new accurate values of G−(q) reported
below.
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FIG. 1. Spin local-field factor G−(q) versus q/kF for rs = 1 −
5 for three-dimensional electron gas calculated with the variational
diagrammatic Monte Carlo method. Error bars are shown by shading.

III. SPIN LOCAL-FIELD FACTOR G−(q)

A quantum Monte Carlo method using renormalized Feyn-
man diagrams was developed by Chen and Haule [5]. The
resulting VDMC method is a generic many-body solver that
was tested on the electron gas. The VDMC method was used
to calculate the spin and density responses in the electron gas.
It is well suited for finite wave vectors and finite temperatures.
The description of the VDMC method, including grouping of
Feynman diagrams, numerical approach, and high-precision
results are given in Ref. [5].

The data reported here are VDMC calculations of the static
spin local-field factor from q = 0 − 2.34 kF using a modified
technique that enables calculations to slightly higher rs than
Ref. [5]. For densities rs = 1 − 4, the results are essentially
identical to Ref. [5] and a new result is presented for rs = 5.
The calculation temperature is T = 0.025 TF which is equiv-
alent to T = 0. Typical error bars are shown with the data.

Figure 1 shows the wave-vector dependence of G−(q),
which demonstrates that it initially follows the quadratic be-
havior required by the susceptibility sum rule. The behavior
changes dramatically near q = 2 kF .

The susceptibility enhancement at q = 0 is reported in
Table I. The results for rs = 1 − 4 are from Ref. [5] with
the new result at rs = 5. These values agree within error with
Ref. [10].

To clearly see the small q behavior and the effect of the
susceptibility sum rule, the quantity G−(q)/(q/qTF)2 is plot-
ted in Fig. 2. The Thomas-Fermi screening wave vector is

TABLE I. Susceptibility enhancement at q = 0 for three-
dimensional electron gas calculated by variational diagrammatic
Monte Carlo method. Uncertainty is indicated by the number in
parentheses.

rs 1 2 3 4 5

χ/χ0 1.152(2) 1.296(6) 1.438(9) 1.576(9) 1.683(15)
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FIG. 2. Spin local-field factor divided by the wave vector divided
by Thomas-Fermi wave vector squared, G−(q)/(q/qTF)2 versus q/kF

for rs = 1 − 5. Error bars are shown by shading.

defined by q2
TF =4kF /πa0 and the Thomas-Fermi interactions

is VTF =4πe2/(q2+q2
TF). The spin exchange and correlation

kernel for time-dependent density functional theory is f spin
xc =

−4πG−(q)/(q/qTF)2.
Figure 2 shows that the spin local-field factor G−(q) fol-

lows the quadratic well and does not fall below the quadratic
behavior until near 2 kF . In fact, for high density rs = 1,
G−(q) rises significantly above the quadratic before it falls
below. The close adherence to the quadratic behavior suggests
that in the metallic region rs = 2 − 5, that a simple quadratic
that satisfies the susceptibility sum rule is adequate to calcu-
late the spin response function.

The wave vector dependent susceptibility enhancement is
given by

χ (q)

χ0(q)
= 1

1 − G−Q
, (3)

and shown in Fig. 3.
The q = 0 value of the susceptibility enhancement is en-

tirely set by the susceptibility sum rule. The enhancement is
modest because there is no divergence in the susceptibility
near the metallic region. The simple quadratic, which is the
horizontal line in Fig. 2, fits the data quite well and is adequate
for the discussions in this paper and for comparison with
experiment (see Sec. VII). If higher accuracy is needed, the
actual data shown in Fig. 2 can be used.

The application of the VDMC method to the density local-
field factor G+(q) is briefly discussed in Appendix A.

IV. SIMPLE EXPRESSIONS FOR LOCAL FIELD
FACTORS G+(q) AND G−(q)

The recommended simple quadratic forms for G+(q) and
G−(q) are

G+(q) =
(

1 − κ0

κ

)(
q

qTF

)2

, (4)

G−(q) =
(

1 − χ0

χ

)(
q

qTF

)2

. (5)
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FIG. 3. Susceptibility enhancement χ (q)/χ0 plotted versus q/kF

for rs = 1 − 5. The data points use the actual values of G−(q) cal-
culated here and reported in Fig. 1. The solid lines are the simple
quadratic function Eq. (5) set by the susceptibility sum rule at q = 0.
Error bars are shown by shading. Note that the Y axis starts at 1.0.

These expressions are exact at small q and accurately
represent the QMC data up to almost q = 2 kF for the metal-
lic region rs = 2 − 5. G+(q) is discussed in Appendix A.
Although these simple quadratic approximations are not ac-
curate beyond 2 kF , they are sufficient for most calculations
of the electron gas response functions which are cut off by the
Lindhard function above q = 2 kF . For any application that
requires values of G at larger q, we recommend the interpo-
lation formula discussed in Appendix A for G+ or the actual
data above for G−. A more accurate interpolation formula for
G− could also be developed.

The simple quadratic approximation to G−(q) given in
Eq. (5) and used to calculate the susceptibility enhancement
in Fig. 3 fits the VDMC data quite well. The fit is exact at
q = 0, falls below by 1.7 − 2.7% at q = 1.5 kF , and slightly
above at 2 kF . Averaged over q, values are within 1%. The
susceptibility is the product of the enhancement times the
Lindhard function and the Bohr magneton. The falloff of
the Lindhard function above 2 kF makes this region unimpor-
tant for most applications, however, if the susceptibility near
2 kF is important, the actual data should be used.

The recommended values of the compressibility are taken
from Perdew and Wang [10] and susceptibility ratios are given
in Table I. Both are plotted in Fig. 4 and are accurately fitted
by quadratic interpolation formulas.

The curves in Fig. 4 are fits to the data in the metallic region
and fit the data to less than 0.5%. Note that the compressibility
and susceptibility ratios must equal 1 at rs = 0. Since we are
only interested in the metallic region rs = 1 − 5, the fitting
curves were not required to have an intercept of 1 at q = 0,
which results in simpler and more accurate equations in the
metallic region.

The compressibility and susceptibility ratios at q = 0 are
well fitted from rs = 1 − 5 by the following equations:

χ0

χ
= 0.9821 − 0.1232 rs + 0.0091 r2

s , (6)

κ0

κ
= 1.0025 − 0.1721 rs − 0.0036 r2

s . (7)
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FIG. 4. Compressibility ratio κ0/κ and susceptibility ratio χ0/χ

for three-dimensional electron gas with a rigid uniform positive
background.

With these G’s and the compressibility and susceptibility
ratios, all of the response functions for three-dimensional
electron gas with a rigid background can be quantitatively cal-
culated. The same approach can be used for a spin-polarized
or two-component electron gas.

Figure 4 shows the well-known divergence and sign change
of the compressibility at rs = 5.25. This causes the vertex
function and thus the dielectric function to diverge and be-
come negative. The rigid uniform positive background is
assumed to provide a large positive bulk modulus (inverse of
the compressibility) which prevents the overall model electron
gas from becoming unstable.

V. ELECTRON-ELECTRON INTERACTION:
QUANTITATIVE RESULTS

Using G+(q) and G−(q), we plot the electron-electron
interaction. We plot each term in Eq. (1) separately to show
their relative importance. These are denoted Vee1, Vee2, and
Vee3. The first term Vee1 is the coefficient of the frequency-
dependent factor (which is equal to 1 for a rigid background).
Vee1 is intrinsically positive. The second term Vee2 subtracts
from the first term. Vee3, the spin-dependent term, is positive
(repulsive) for opposite spins (singlet) and negative (attrac-
tive) for parallel spins (triplet).

These three terms are plotted together in Fig. 5 for rs = 2
and 5.

The magnitude of the first term Vee1 at q = 0 is (κ/κ0)/q2
TF,

which is divergent at the compressibility divergence. The
results look normal at rs = 2, where the second and third
terms are small corrections to Vee1 (the screened Coulomb
interaction). Vee1 is screened by the deformable background
(lattice) in the usual fashion. This seems consistent with the
idea of perturbation theory where the corrections are small
(except for the effect of the compressibility sum rule which is
large even at rs = 2).

At rs = 5, Vee1 is very large. Vee1 diverges as a func-
tion of rs at the compressibility divergence approximately as
1/(1 − rs/5.25). When calculating with Feynman diagrams,
this term arises as the direct screened interaction with two

FIG. 5. The three terms in the equation for Vee(q) for rs = 2
(a) and rs = 5 (b). The first term Vee1 is the screened Coulomb
interaction. The second two terms are additional effects of exchange
and correlation. The second term Vee2 is subtracted from the first term
and the third (spin-dependent) term Vee3 is subtracted for parallel
spins and added for antiparallel (opposite) spins. The potential is
measured in units of 4πe2.

vertex corrections Vee1 = (�2/ε)Vext = �Vet . This apparent
divergence is one concern.

The second term Vee2 is also large and apparently diverg-
ing, and is not screened by the lattice. Vee2 is subtracted from
Vee1. The fact that this term is large brings into question the
use of perturbation theory and linear response. However, upon
closer examination, Vee2 completely tracks Vee1 and for a
rigid background they formally and exactly partially cancel
each other to yield a finite value. This is due to a massive
cancellation of Feynman diagrams using that approach. For a
rigid background, the difference Vee1 − Vee2 at q = 0 is given
as

Vee1(0) − Vee2(0) = κ

κ0

(
1 − (κ/κ0)2

q2
TF

)
= 2 − κ0/κ

q2
TF

. (8)

For a rigid background, the net spin-independent terms of
the electron-electron interaction are completely well behaved
and have no divergence at the compressibility divergence. The
deformable lattice will be discussed in Sec. VII below.
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FIG. 6. The net electron-electron interactions Vee(q) for opposite
and parallel spins compared to the Lindhard potential at rs = 2
(a) and 5 (b). A rigid background is assumed for the electron gas.

Figure 6 shows the net electron-electron interaction for
electrons with parallel and opposite spins. This is the in-
teraction to be used for calculating matrix elements and
superconductivity:

V ↑↓
ee = Vee1 − Vee2 + Vee3 (9)

is the interaction for opposite spins and

V ↑↑
ee = Vee1 − Vee2 − Vee3 (10)

is the interaction for parallel spins.
As mentioned above, Vee1 − Vee2 is a smooth function and

lies midway between parallel and opposite spins. The overall
electron-electron interaction is smooth and has no remaining
evidence of the large effects in Vee1 and Vee2 individually. At
rs = 2, Vee2 and Vee3 have effects at the 10% level. However,
at rs = 5, the first two terms nearly cancel, and Vee3, the spin-
dependent term, is relatively important. The overall electron-
electron interaction is considerably less repulsive for parallel
spins.

The values of the electron-electron interaction at q =
0 are completely determined by the compressibility and
susceptibility sum rules. At large q (short distances), the
electron-electron interaction follows the Lindhard function

FIG. 7. The ratio of the electron gas interactions at q = 0 to
the Lindhard (Thomas-Fermi) interaction as a function of rs for
a rigid background. The top curve is the electron-electron inter-
action for electrons with opposite spins. The next curve down is
the electron-electron interaction for parallel spins. The electron-test
charge interaction Vet at q = 0 is equal to the Thomas-Fermi in-
teraction at all rs. The bottom curve is the test charge-test charge
interaction Vtt , which always falls below Thomas-Fermi interaction
and becomes negative at the compressibility instability.

to the bare Coulomb interaction. The Lindhard interaction is
shown for comparison.

This quantitative evaluation of the electron-electron in-
teraction shows that with a rigid background, the static
electron-electron interaction is well behaved and repulsive
throughout the metallic region. The electron-electron interac-
tion (and the other interactions in the electron gas discussed in
Appendix B) are completely specified with simple equations
provided in this paper. However, care must be taken with
quantitative comparison with experiment. The effective mass,
renormalization factor z, core polarization, and a deformable
lattice can have significant effects. Some of these were dis-
cussed by Kukkonen and Wilkins [9]. The deformable lattice
will be discussed in Sec. VII.

VI. EFFECT OF THE COMPRESSIBILITY SUM RULE

We have emphasized that the compressibility and suscepti-
bility sum rules, which are derived from changes in the total
electron gas energy, completely determine the various interac-
tions at q = 0. This is illustrated in Fig. 7, where we plot the
ratio of the different interactions to the Lindhard interaction at
q = 0 versus rs.

Figure 7 shows that all of the interactions are the same and
equal to the Lindhard and Thomas-Fermi interactions at high
density near rs = 0. At lower density (larger rs), the effects
of exchange and correlation manifest themselves through the
sum rules. Only the electron-electron interaction depends on
spin and that is shown by the two curves for parallel and
opposite spins.

With a rigid uniform positive background, the electron-
electron and electron-test charge interactions show no unusual
behavior as rs approaches the compressibility divergence near
rs = 5.25. However, the test charge-test charge interaction
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at q = 0 becomes negative (attractive) above the instability.
This is due to the fact that the dielectric function has become
negative. This interaction is discussed in Appendix B.

The sum rules dictate the q = 0 behavior. At large q, all the
interactions fall off as 1/q2, which reflects the bare Coulomb
interaction at short distances, and the wave vector dependence
of the local-field factors and the cutoff of the Lindhard func-
tion at 2 kF set the intermediate q behavior which has been
discussed above.

VII. DEFORMABLE BACKGROUND

KO considered a smooth but elastically deformable back-
ground which led to the frequency dependence in Eq. (1).
The result was verified in Ref. [3]. Introducing the deformable
background naturally results in the phonon frequencies [1],

ω2
q = Nq2

M

(
V bare

ii −
(
V bare

ei

)2

v
+

(
V bare

ei

)2

vε

)

≡ ω2
0 + Nq2

(
V bare

ei

)2

Mvε
, (11)

where N is the density and M is the mass of the background
(ions), V bare

ii is the bare ion-ion interaction, V bare
ei is the bare

electron-ion interaction, and ε is the dielectric function.
It is instructive to rewrite the frequency dependence in

Eq. (1) as

ω2 − ω2
0

ω2 − ω2
q

= 1 + ω2
q − ω2

0

ω2 − ω2
q

. (12)

This now multiplies the first term. The factor of 1 allows the
frequency-independent part of the first term and second term
to be formally combined, which cancels the compressibility
divergence in the static interaction, and Eq. (1) can be rewrit-
ten as

Ve�σ1,e�σ2 = 4πe2

q2

( (
ω2

q − ω2
0

)/(
ω2 − ω2

q

)
(1 − G+Q)[1 + (1 − G+)Q]

+ 1 + (1 − G+)G+Q

1 + (1 − G+)Q
− G2

−Q

1 − G−Q
�σ1 · �σ2

)
. (13)

The new first term Vee−phonon is divergent at q = 0 at the
compressibility divergence but the second two terms have no
divergence.

Vee−phonon represents the additional screening of the
Coulomb interaction by the background (lattice). At ω = 0,
the numerator of the first term is negative, which is the ex-
pected result for static screening by the positive background:

−ω2
q − ω2

0

ω2
q

= −Nq2
(
V bare

ei

)2/
(Mve)

(Nq2)/M

(
V bare

ii −
(
V bare

ei

)
v

+
(
V bare

ei

)2

ε v

)
.

(14)
The screening depends on the stiffness of the background
represented by V bare

ii and the properties of the electron gas.
The rigid background is obtained when V bare

ii (and thus ω2
q)

goes to infinity and this term goes zero.

Another interesting limit occurs if all of the interactions
including V bare

ii are Coulomb interactions. In this case,

−ω2
q − ω2

0

ω2
q

= −1 (15)

and Vee−phonon is large and negative (attractive). At q = 0, the
first term has the value set by the compressibility sum rule as

Vee−phonon(q = 0) = − κ

κ0
Vet(q = 0) = − κ

κ0
VTF(q = 0).

(16)

With all Coulomb interactions, this negative first term is
larger than the other two terms combined and the overall
electron-electron interaction at q = 0 is attractive. Note this
term diverges at the compressibility divergence.

An instructive intermediate case is to consider that V bare
ei

in the numerator of Eq. (14) is equal to the Coulomb inter-
action v = 4πe2/q2, and to take ωq from experiments. The
background (lattice) screening term can be rewritten as

Vee−phonon(q) = − 1

ω2
q

(
v

(ε(1 − G+Q))2

)
Nq2

M

= − 1

ω2
q

V 2
et (q)

Nq2

M
. (17)

All the effects of the deformable background are in ω2
q, the

phonon frequencies which depend on the electron gas param-
eters as well as the bare ion-ion interaction. The electron-test
charge interaction appears because the lattice appears as a test
charge to the electron gas. The electron-test charge interaction
is equal to the Thomas-Fermi and Lindhard interactions at
q = 0, but differs at larger q as shown in Appendix B.

As the simplest example, we model the phonons by the
relationship between ωq and the bulk modulus B which is the
inverse of the compressibility κ ,

ω2
q = Bq2

NM
, (18)

where NM is the mass density of the background and√
B/NM is the speed of sound. Using this relationship and

the bulk modulus of the noninteracting electron gas B0 =
1/(n2VTF(q = 0)), and the fact that the ion density and the
electron density are the same for the monovalent alkali metals,
one obtains the equation for the background screening contri-
bution to the electron-electron interaction:

Vee−phonon(q) = −Vet (q))2

Vet (0)

B0

Bexperiment
. (19)

The measured bulk moduli, free electron values [11], and
their ratios for the alkali metals are given in Table II.

In Fig. 8, the repulsive electron-electron interactions at
q = 0 for opposite and parallel spins in a rigid background are
plotted versus rs as in Fig. 7. Also plotted is the net electron-
electron interaction including screening by the deformable
background using the experimentally measured bulk modulus
for the alkali metals.
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TABLE II. Free electron and experimentally measured bulk
moduli for the alkali metals in GPa.

rs B0 Bexperiment B0/Bexperiment

Li 3.25 23.9 11 2.173
Na 3.93 9.23 6.3 1.465
K 4.86 3.19 3.1 1.029
Rb 5.2 2.28 2.5 0.912
Cs 5.62 1.54 1.6 0.963

The electron-electron interactions for a rigid background
are simply the second two terms of Eq. (13) evaluated at
q = 0. These are completely specified by the compressibil-
ity and susceptibility sum rules, and the compressibility and
susceptibility values are given in Fig. 4:

V ↑↓
ee (0) =

[(
2 − κ0

κ

)
+ χ

χ0

(
1 − χ0

χ

)2]
VLindhard(0), (20)

V ↑↑
ee (0) =

[(
2 − κ0

κ

)
− χ

χ0

(
1 − χ0

χ

)2]
VLindhard(0). (21)

The attractive background screening contribution to the
electron-electron interaction is given by Eq. (19) evaluated
at q = 0. The electron-test charge interaction Vet (q) is given
in Eq. (B3) in Appendix B, and is equal to the Lindhard and
Thomas-Fermi potentials at q = 0:

Vet−phonon(0) =
[

B0

Bexperiment

]
VLindhard(0). (22)

This term is spin independent and is subtracted from both
the opposite and parallel spin electron-electron interactions
for a rigid background and net electron-electron interaction
is plotted at the rs values of the alkali metals.

FIG. 8. Static (ω = 0) electron-electron interaction at q = 0 for
the electron gas at the density of alkali metals [in units of the
Lindhard (Thomas-Fermi) interaction]. The top two curves are the
electron-electron interaction for a rigid background with opposite
spins and parallel spins. The data at the lower right are the electron-
electron interaction, including the deformable background screening
for the alkali metals using the measured bulk modulus for opposite
and parallel spins.

FIG. 9. Electron-electron interaction at densities of lithium
(a) and sodium (b), comparing the repulsive interaction calculated
for a rigid background to the net interaction when the deformable
background is included using the measured bulk modulus. The top
two curves are for the rigid lattice for opposite and parallel spins. The
bottom two curves subtract the deformable background contribution
from the top two curves. They represent the net electron-electron
interaction.

Figure 8 shows that the effects of screening by the de-
formable background are as large as the effects of exchange
and correlation. The q = 0 value of the net electron-electron
for lithium is attractive for both parallel and opposite spins,
while all of the other alkali metals are repulsive. This inter-
action can be used in a calculation of superconductivity to
see the implications for superconductivity in the alkali metals.
Lithium is the only alkali metal that exhibits superconduc-
tivity at ambient pressure. Although the net electron-electron
for lithium is more attractive for parallel spins than opposite
spins, this does not necessarily imply triplet pairing because
the spatial part of the overall wave function must be antisym-
metric. This is discussed briefly after Fig. 10.

The wave-vector-dependent electron-electron interaction
for this simple model of lattice screening in the alkali metals
can be calculated using Eqs. (13), (19) and (B3). This assumes
the linear phonon dispersion relation of Eq. (18). A linear
phonon dispersion should be the correct behavior at small q
but overestimates ωq as q approaches 2 kF (and a reciprocal
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FIG. 10. Vee(r), the Fourier transform of Vee(q), the electron-
electron interaction shown in Fig. 9, at the densities of lithium (a) and
sodium (b). This figure compares the repulsive interaction calculated
for a rigid background to the net electron-electron interaction when
a deformable background is included. The top two curves are for the
rigid background for opposite and parallel spins. The bottom two
curves include the deformable background contribution.

lattice vector). Since ω2
q is in the denominator, a smaller value

near 2 kF would imply an even more attractive potential. The
results for lithium and sodium are shown in Fig. 9.

The electron-electron interaction in a rigid background is
repulsive. The repulsion is less for parallel spins than for op-
posite spins. The deformable background at low frequencies
contributes a negative term due the additional screening by the
deformable background/lattice. The background screening is
due to the net Coulomb interaction and is independent of spin
for a nonmagnetized electron gas.

The most interesting feature is that the net electron-
electron interaction in lithium is attractive from q = 0 to
above 2 kF for both parallel and opposite spins. A more care-
ful treatment of the background/phonons is needed, but this
result is likely to be qualitatively correct. The strong attractive
region in lithium may explain the source of the observed
superconductivity.

The other alkali metals with lower densities have more
repulsive electron-electron interactions and smaller effects of
the deformable lattice as measured by the bulk modulus. The
lattice screening is still a significant effect. The repulsive inter-
action in the rigid lattice falls off more quickly with the wave
vector than the attractive contribution from the deformable

background. The resulting net electron-electron interaction
has a minimum near 1.5 − 2 kF . This minimum is slightly
repulsive for opposite spins and slightly attractive for parallel
spins for all the alkali metals. The small attraction for parallel
spins near 2 kF may lead to interesting physics. Sodium is
shown in Fig. 9. The curves for the other alkali metals are
similar.

Figure 10 shows Vee(r), the Fourier transform of the
electron-electron interactions in Fig. 9. The energy scale is eV
and the Fermi energy for lithium is 4.74 eV and for sodium it
is 3.23 eV. With a rigid lattice, the electron-electron interac-
tion is repulsive, as shown in the top two curves of Fig. 10.
The classical turning points for scattering, where the repul-
sive potential is equal to the Fermi energy, are approximately
0.75 rs for lithium and 0.9rs for sodium. Electron-electron
scattering does not contribute to the electrical resistivity be-
cause momentum and charge are conserved in the scattering
event (except for a small effect due to umklapp scattering in
a real lattice as opposed to a uniform background). Electron-
electron scattering does, however, contribute to the thermal
resistivity.

When the deformable background is included, the overall
interaction potential for lithium is attractive for both parallel
and opposite spins in the region 0.25 − 1.0 rs with a depth
comparable to the Fermi energy, with a repulsive core at
shorter distances. At larger distances, not shown in Fig. 10,
much smaller oscillations similar to Friedel oscillations are
seen. The interaction or scattering of two electrons in the
electron gas with an attractive potential due to the deformable
background could include resonances, virtual bound states,
or even bound states. We note that although the electron-
electron attraction is stronger for parallel spins, the overall
wave function which must be antisymmetric would imply that
the spatial part is antisymmetric (p wave) and the probability
that the electron is found at small distances is lower. Thus
it is likely that the opposite spin electrons with a symmetric
(s-wave) wave function would sample more of the region of
the attractive potential.

For sodium, only the electron-electron interaction for par-
allel spins becomes significantly attractive.

We present this Fourier transform real-space calculation
to stimulate thinking within the single-particle picture of the
electron gas—which has limitations. The usual thinking is in
momentum and frequency space. Equation (13) gives the ex-
plicit frequency dependence. The local-field factors used here
are independent of frequency, but the frequency dependence
of the Lindhard function is known.

The electron-electron interaction in this paper can be used
in calculations of superconductivity using a more sophisti-
cated approximations for the phonons. The simple inclusion
of the deformable lattice shows that lithium is substantially
different from the other alkali metals, and this may be
the explanation why lithium is the only alkali that shows
superconductivity at ambient pressure. Cesium exhibits su-
perconductivity at high pressure. The net electron-electron
interaction is sensitive to exchange and correlation and to the
deformable lattice. Richardson and Ashcroft [12] considered
superconductivity with the KO electron-electron interaction
and phonons treated on an equal basis and applied the the-
ory to several metals including lithium. The considerable
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difficulties in comparison with experiments are discussed in
that paper.

The region of largest static attraction between two elec-
trons in lithium is at very short distances. The role of this
short-range attraction in the dynamical theory of supercon-
ductivity is not known to us.

A strong word of caution is needed when comparing elec-
tron gas calculations with experiments, particularly at low
density close to the compressibility divergence at rs = 5.25.
Factors such as effective mass, core polarization, and renor-
malization factor z have to be carefully considered when
comparing with experiments. These effects were discussed in
Kukkonen and Wilkins [9] and in Ref. [12]. A simple example
is cesium with rs = 5.62, which is beyond the compressibility
instability. Cesium and other alkali metals have polarizable
cores with a core polarization dielectric function εB that is
frequency independent in the regions of interest. The correct
theory [9] is an electron gas with electrons of effective mass
m∗ in a neutralizing uniform positive background with dielec-
tric constant εB. The result is obtained by scaling the known
solutions for the electron gas with mass m and a nonpolariz-
able background, but at a different density r∗

s = rs(m∗/mεB)
and evaluated at a scaled wave vector. For cesium, εB = 1.27
and this renormalizes rs from 5.62 to 4.44 which is below the
compressibility divergence. The core polarization corrections
for lithium and sodium are quite small.

VIII. SUMMARY

VDMC calculations of the wave-vector-dependent spin
local-field factor (exchange and correlation kernel) have been
presented and utilized for all calculations. Using the density
and spin local-field factors and explicit equations presented in
this paper, all the response functions of the three-dimensional
electron gas are quantitatively calculated. Exchange and cor-
relation are fully included within the self-consistent local-field
approximation and the compressibility and susceptibility sum
rules at q = 0 are satisfied.

The full spin-dependent electron-electron interaction is
calculated using these field factors. For a rigid background,
the electron-electron interaction shows no divergence at the
compressibility divergence and is repulsive for all rs in the
metallic region.

Considering a deformable background, the ω = 0 (static)
screening by the background is shown to be very important
with an effect that is as large as exchange and correlation.
A simple calculation shows that with a deformable back-
ground modeled by using the measured bulk modulus, the net
electron-electron interaction including exchange and correla-
tion is attractive (negative) in a large range of momentum and
real space for lithium which does exhibit superconductivity at
ambient pressure, and is mostly positive (repulsive) for all the
other alkali metals.

The compressibility divergence does not appear in the
electron-electron and electron-test charge interactions but still
shows up in the test charge-test charge interaction as a diver-
gence in the dielectric function and in the screening by the
deformable background.

The quantitative spin-dependent electron-electron interac-
tion can be used in other calculations such as superconduc-

tivity and can also be used as a starting point for improved
numerical calculations. The self-consistent local-field calcu-
lation of the KO interaction using Feynman diagrams may
lead to new techniques for identifying massive cancellations
of divergent diagrams and allow new perturbation techniques
around the self-consistent solution.

More detailed numerical calculations of the density local-
field factor G+(q) from q = 0 to 3 kF would be welcomed, as
well as a physical explanation for the behavior.
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APPENDIX A: DENSITY LOCAL FIELD FACTOR G+(q)

The density local-field factor has been a subject of re-
search for more than 60 years. G+(q) is needed to calculate
the dielectric function and vertex correction. These quantities
are sufficient to calculate all the interactions and response
functions that do not depend on spin. Many proposals have
been made for the dielectric function and G+(q), particularly
by Hubbard [13], Geldart and Vosko [14], and Vashishta and
Singwi [15]. When it was realized that the compressibility
sum rule was of paramount importance at q = 0, the dielectric
functions and G’s were manually adjusted to satisfy the sum
rule even though the calculations themselves did not satisfy
the sum rule. The calculations were used to interpolate the
wave-vector dependence above q = 0. The behavior of G+(q)
at 2 kF and above has been the subject of considerable research
and debate but is not important for the calculations of the
static response properties of electron gas because the Lindhard
function cuts off the response quickly above 2 kF .

The quantum Monte Carlo method was used by Moroni
et al. [4] to calculate G+(q) from q = kF to q = 4 kF for
rs = 2, 5, and 10. Corradini et al. [16] fitted the QMC data
with an analytical function that reflected the appropriate small
and large q limits. This expression is given in terms of deriva-
tives of the electron gas energy. The quantum Monte Carlo
calculations are considered the most accurate, but there are no
data below q = kF . Richardson and Ashcroft [17] calculated
the local-field corrections at finite frequencies, and their static
results are similar but differ somewhat in detail from the QMC
results. They emphasized the importance of the sum rules.
Richardson and Ashcroft also provided an interpolation for-
mula. Retrospective discussions of the local-field factors were
given by Simion and Giuliani [18] and by Hellalet al. [19].

We plot the quantum Monte Carlo results of Ref. [4]
for G+(q) together with the analytic interpolation function
Ref. [16], and the even simpler quadratic formula that quite
accurately reproduces the response functions of the electron
gas in Fig. 11. Although there are no data below q = kF , the
QMC results above kF show that G+(q) follows the quadratic
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(a)

(b)

FIG. 11. Density local-field function G+(q) plotted versus q/kF

for rs = 2 (a) and rs = 5 (b). Data points are the quantum Monte
Carlo calculations from Ref. [13]. The solid curves that fit the data
are the analytic functions from Ref. [14]. The quadratic Eq. (4) is the
proposed simple approximation to G+(q) for calculating the response
functions. Error bars are shown for all data points. If they are not
evident, the error is smaller than the data point.

required by the compressibility sum rule up until nearly 2 kF

and then falls significantly below the initial quadratic. Theory
predicts that the large q behavior will also be a quadratic
but with a different coefficient. Other earlier versions of
G+(q) [13] had a much smaller value at 2 kF .

Figure 11 emphasizes the large q behavior of G+(q). How-
ever the static response functions of the electron gas depend
mostly on the low q behavior.

At small q, the compressibility sum rule specifies that

G+(q → 0) =
(

1 − κ0

κ

)(
q

qTF

)2

(A1)

To emphasize the low q behavior, G+(q)/(q/qTF)2 is plot-
ted in Fig. 12 below, where the intercept at q = 0 is (1 −
κ0/κ ). Note that the density exchange and correlation kernel
needed for time-dependent density functional theory is given
by fxc = −4πG+(q)/(q/qTF)2.

Note again that there are no quantum Monte Carlo data be-
low q = kF . The q = 0 values of the quadratic and the analytic
function are set by the compressibility sum rule. The com-
pressibility is also calculated by Monte Carlo methods, and
the q = 0 value is much more accurate than the q-dependent

(a)

(b)

FIG. 12. G+(q)/(q/qTF)2, the density local-field function di-
vided by (q/qTF)2 is plotted versus q/kF for rs = 2 (a) and rs = 5
(b). Data points are the quantum Monte Carlo calculations from
Ref. [4]. The solid curves that fit the data are the analytic function
from Ref. [16]. The straight line represents the quadratic Eq. (4) that
is the proposed simple approximation to G+(q) for calculating the
response functions. Error bars are shown for all data points.

data. The compressibility sum rule dictates G+(0) and that
the initial behavior will be quadratic, Eq. (A1), as represented
by the constant horizontal line. The analytic interpolation
formula Eq. (16) apparently fits the data above 1.5kF quite
well, but misses substantially the data at kF for rs = 2. This
illustrates the problem of global curve fitting with analytical
functions with a limited number of parameters. The simple
quadratic does at least as good a job below 2kF and is sub-
stantially different at larger q, but the effect at large q is not
very important for the response functions as will be shown
below. Looking carefully at the QMC data between kF and
2 kF , there is an intriguing hint of structure in G+(q), with data
both below and above the quadratic. Further quantum Monte
Carlo calculations from q = 0 − 3 kF would be informative.
The vertex function which embodies the effect of exchange
and correlation in the response functions is plotted in Fig. 13,
where the simple quadratic is compared to the QMC data and
the fitting function for this data.

The vertex function � = 1/(1 − G+Q) is required to cal-
culate the dielectric function and the other interactions in the
electron gas. Figure 13 shows the vertex function using
the actual QMC data and the analytic function as well as
the simple quadratic. The first point to note is that the
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(a)

(b)

FIG. 13. Vertex function � = 1/(1 − G+Q) plotted versus q/kF

for rs = 2 (a) and rs = 5 (b). Data points are the quantum Monte
Carlo calculations from Ref. [4]. The dotted curve that fits the data is
the analytic function from Ref. [16]. The solid curve uses Eq. (4),
the proposed simple quadratic approximation for calculating the
response functions. Error bars are shown for all data points. If they
are not evident, the error is smaller than the data point. Note that the
y − axis starts at 1.0 for rs = 2 to emphasize small differences.

q = 0 value of the vertex function is exactly given by the
compressibility sum rule and is equal to �(0) = κ/κ0, which
diverges at the compressibility divergence as approximately
1/(1 − rs/5.25). At rs = 2, the vertex enhancement is sub-
stantial but it is not near the compressibility divergence. At
rs = 5, the electron gas is very near the divergence and the
vertex enhancement is very large. The error bar in the value
of G+(q) at q = kF nearly reaches a point of instability and
its effect is magnified because it appears in the denominator.
The vertex function is extremely sensitive to small changes at
rs = 5.

The simple quadratic function for G+(q) yields a vertex
function that satisfies the compressibility sum rule and fits the
vertex function derived from the QMC data as well as the fit-
ting formula of Ref. [16]. This is despite the large differences
at large q, because the contributions at large q are cut off by
the Lindhard function. The fitting function should be used for
any calculations that depend on q substantially above 2kF .

The fact that the vertex function resulting from the analytic
function is larger than the quadratic for q greater than zero and
less than kF is entirely due to the curve fitting and there are no
QMC data in this region.

FIG. 14. Density local-field factor G+(q) from VDMC calcula-
tions for rs = 1 plotted versus q/kF (a), and G+(q)/(q/qTF)2 (b).
Error bars are shown.

The simple quadratic approximation for G+(q) was sug-
gested by Taylor [20] 40 years ago and we concur.

The current VDMC method works well when the ver-
tex correction or susceptibility enhancement is modest. This
corresponds to χ0/χ or κ0/κ < 0.6 in Fig. 4. For the spin
susceptibility, this is near rs = 5. For the compressibility,
this corresponds to rs = 2. As a test, we have calculated
the density local-field factor G+(q) for rs = 1 and 2, and
the data are shown in Figs. 14 and 15. At rs = 2, we
compare the new VDMC calculations to QMC results of
Ref. [4] and the corresponding interpolation formula of
Ref. [16].

At rs = 1, Fig. 14 shows that the density local-field factor
G+(q) has the same qualitative behavior as the spin local-field
factor G−(q) which are shown in Figs. 1 and 2. The error bars
are acceptable. Both show that G rises above the quadratic at
approximately 1.2 kF and then falls below at 2 kF .

The new data for G+(q) at rs = 2 in Fig. 15 demonstrates
the limitations of the current version of the VDMC approach.
Ordinarily, we would not show data with such large error bars.
However, we want to compare with the QMC data Ref. [4]
and to provide new data below kF . The VDMC data with
error bars overlap the QMC data with its error bars except for
two points near 2 kF , and even there, the agreement is quite
close. The simple quadratic approximation for G+(q) given
in Eq. (4) represents the VDMC data quite well up to 2 kF .
The interpolation curve of Ref. [16] fits the data well above
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FIG. 15. Density local-field factor G+(q) from VDMC calcula-
tions for rs = 1 plotted versus q/kF (a), and G+(q)/(q/qTF)2 (b).
Error bars are shown.

2 kF . The q dependence of the data for G+(q) at rs = 2 is
qualitatively similar to the data for G−(q).

The VDMC data for G− and the limited data for G+ show
that both of these local-field factors are smooth functions
of wave vector. Although the data rise slightly above the
quadratic between 1.5 and 2 kF , there is no evidence of a
large peak. We have not developed a physical intuition for this
behavior.

APPENDIX B: TEST CHARGE-TEST CHARGE Vtt AND
ELECTRON-TEST CHARGE Vet INTERACTIONS AND

DENSITY RESPONSE FUNCTION

We use the same quadratic function for G+(q) to plot the
test charge-test charge and electron-test charge interactions at
rs = 2 and 5, and compare them to the Lindhard interaction.
For the general reader, a simple physically motivated deriva-
tion of these interactions and the electron-electron interaction
are in Ref. [1].

The test charge-test charge interaction Vtt is the Coulomb
potential generated by a test charge plus the induced screening
cloud and felt by another test charge.

The dielectric function ε(q, ω) is defined by

Vtt = Vext

ε
(B1)

and is written as

ε = 1 + v�0

1 − G+v�0
= 1 + �Q, (B2)

FIG. 16. Vtt (q), the test charge-test charge or Coulomb interac-
tion at rs = 2 and 5. The potential is measured in units of 4πe2.
The dashed line is the Lindhard potential which is equal to the
Thomas-Fermi potential at q = 0 with the value VLindhard(0) = 1/q2

TF.

where �0 is the Lindhard free-electron response function and
v = 4πe2/q2. Note that others may define the response func-
tion with a minus sign. For convenience, we define Q = v�0

and the vertex correction � = 1/(1 − G+Q). The potentials
are measured in units of 4πe2 so the Thomas-Fermi and
Lindhard potentials at q = 0 are simply 1/q2

TF. Without ex-
change and correlation, G+ = 0 and therefore � = 1 and the
Lindhard result is obtained.

The electron-test charge interaction Vet is simply the test
charge-test charge interaction multiplied by the vertex func-
tion:

Vet = �Vtt = Vext

1 + (1 − G+)Q
. (B3)

The q = 0 value of the interaction is set by the compress-
ibility sum rule. Vtt (0) = (κ0/κ )/q2

TF is always less than the
Lindhard or Thomas-Fermi value. Both are virtually identical
above 2.5 kF . The q dependence of G+(q) is only important
between 0 and 2 kF .

Vtt (q) in Fig. 16 looks qualitatively like the Lindhard po-
tential at rs = 2, but is dramatically different at rs =5. This
is due to the compressibility sum rule which fixes the value
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FIG. 17. The test charge-test charge interactions for rs = 2
(a) and 5 (b) have been numerically Fourier transformed and are
plotted versus distance. The Fourier transform of the Lindhard func-
tion is shown for comparison. The data are shown from r/(rs a0) =
0.5 − 2.2.

at q = 0, and G+(q) interpolates between q = 0 and 2 kF .
According to the compressibility sum rule, Vtt (q = 0) = 0 at
the compressibility divergence at rs = 5.25, and becomes neg-
ative at larger rs. It must turn positive again and match 1/q2

at q beyond 2 kF . We don’t have a physical intuition for this
overscreening behavior resulting from a negative dielectric
function.

Near the compressibility divergence, the vertex correction
and thus the dielectric function and Vtt are extremely sensitive
to small changes and pressure may be an interesting variable.
When applying this formula to real metals, the effective mass
and core polarization will re-normalize the equations to make
the effective r∗

s lower than the actual physical rs. Another
Ward identity specifying the renormalization factor z must
also be considered.

The Fourier transforms of the test charge-test charge poten-
tials are shown in Figs. 17 and 18 compared to the Lindhard
potential.

Although it is not shown in Fig. 17, Vtt and VLindhard con-
verge at small distances r/(rsa0) < 0.5 (derived from q >

2 kF ) and become equal to the bare interaction at even smaller
distances. At intermediate distances (derived from intermedi-

FIG. 18. The test charge-test charge interactions for rs = 2
(a) and 5 (b) have been numerically Fourier transformed and are plot-
ted versus distance. The Fourier transform of the Lindhard function is
shown for comparison. The data are shown from r/(rs a0) = 2.2 − 8
with a factor of 100 magnification compared to Fig. 17.

ate q), Vtt is less repulsive than VLindhard. At large distances
the oscillations in Vtt are larger than the Friedel oscillations
in VLindhard. This is dramatically different for rs = 5 where
there is a broad attractive region around the test charge from
r/(rsa0) = 0.6 to 1.4. The oscillations at larger distances also
have a larger amplitude.

The lattice spacing of alkali metals is approximately 1.1
times rs and the diameter of the core electrons is about
0.5 times rs. The attractive minimum for rs = 5 located at
r/(rsa0) = 0.8 has a depth of 0.7 eV compared to a cohesive
energy of rubidium of 0.85 eV. This attraction may be part of
the explanation for the contraction of the interatomic spacing
in liquid rubidium that is observed in x-ray scattering experi-
ments as a function of pressure and temperature [21].

The electron-test charge interaction Vet is shown in Fig. 19.
The electron-test charge interaction at q = 0 is equal to 1/q2

TF
which is the same as the Lindhard and Thomas- Fermi in-
teractions (obtained by setting G+ = 0). The effect of the
vertex correction in the numerator is canceled by the vertex
correction in the dielectric function at q = 0. The effect of
exchange and correlation only occurs between zero and about
2.5 kF . For rs = 2, the effects of exchange and correlation are
small. The effects are larger for rs = 5.
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FIG. 19. The electron-test charge interaction Vet (q) at rs = 2 and
5. The dashed curve is the Lindhard potential.

A recent paper [22] calculated the static density response
function of lithium from a Kramers-Kronig transformation of

FIG. 20. Measured static density response function for lithium
from Ref. [22] compared to theoretical value with no adjustable
parameters. The top curve includes exchange and correlation using
G+(q) and the bottom curve uses the random phase approximation
which is obtained by setting G+(q) = 1.

the dynamic structure factor measured by inelastic electron
scattering. Figure 20 was prepared by T. Hagiya, the lead
experimental author, using the formula for X (q) including
exchange and correlation provided by us compared to the
random phase approximation (RPA).

The density response function is given by

χ (q) = �0

(1 − G+Q)(1 + Q/(1 − G+Q))
= λ�0

ε
. (B4)

The RPA response function is obtained by setting G+ =1.
The theory has no adjustable parameters. Experimentalists

point out that their data is not accurate enough to definitively
distinguish between the response functions using exchange
and correlation and the RPA. Nevertheless, the experimental
results are very impressive, as is the data analysis.
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