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High-order series expansion of non-Hermitian quantum spin models
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We investigate the low-energy physics of non-Hermitian quantum spin models with PT symmetry. To this end,
we consider the one-dimensional Ising chain and the two-dimensional toric code in a non-Hermitian staggered
field. For both systems, dual descriptions in terms of non-Hermitian staggered Ising interactions in a conventional
transverse field exist. We perform high-order series expansions about the high- and low-field limit for both
systems to determine the ground-state energy per site and the one-particle gap. The one-dimensional non-
Hermitian Ising chain is known to be exactly solvable. Its ground-state phase diagram consists of second-order
quantum phase transitions, which can be characterized by logarithmic singularities of the second derivative of the
ground-state energy and, in the symmetry-broken phase, the gap closing of the low-field gap. In contrast, the gap
closing from the high-field phase is not accessible perturbatively due to the complex energy and the occurrence
of exceptional lines in the high-field gap expression. For the two-dimensional toric code in a non-Hermitian
staggered field, we study the quantum robustness of the topologically ordered phase by the gap closing of
the low-field gap. We find that the well-known second-order quantum phase transition of the toric code in a
uniform field extends into a large portion of the non-Hermitian parameter space. However, the series expansions
become unreliable for a dominant anti-Hermitian field. Interestingly, the analysis of the high-field gap reveals
the potential presence of an intermediate region.
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I. INTRODUCTION

Non-Hermitian Hamiltonians with PT symmetry represent
an interesting extension of conventional quantum mechanics
[1,2], since such systems can display spontaneous PT symme-
try breaking from a purely real to a complex energy spectrum.
Non-Hermitian operators typically arise when gain and loss
terms are appropriately adjusted in open physical systems [3].
As a consequence, many experimental platforms are explored
for non-Hermitian quantum dynamics like optical waveg-
uides, electronics, microwaves, acoustics, and single-spin
systems [4,5]. On the theoretical side, many investigations
have focused either on single-particle or noninteracting non-
Hermitian quantum systems, e.g., fermionic or bosonic band
insulators with topologically nontrivial band structures [6]
while non-Hermitian interacting quantum many-body Hamil-
tonians are far less explored and understood.

One class of non-Hermitian interacting quantum many-
body systems are solvable one-dimensional quantum spin
models [7–13] like the Ising chain in a non-Hermitian stag-
gered field [14], which can be mapped in many cases to
free fermions. However, higher-dimensional generalizations
have not been treated to the best of our knowledge. Another
class of quantum many-body systems are systems displaying
intrinsic topological order which have a long-range entangled
ground state and exotic anyonic excitations with nontrivial
fractional statistics [15,16]. One important question is the
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robustness of intrinsic topological order in non-Hermitian
quantum systems. Here an attractive starting point is exactly
solvable stabilizer codes like the toric code [17], which has
been extended to non-Hermitian operators with PT symmetry
recently [18–20]. It has been found that the correspondence
between bulk quasiparticles and topologically protected de-
generate ground states breaks down. Further, a continuous
quantum phase transition without gap closing was explored
that occurs in non-Hermitian topological orders [21].

Technically, one important tool to tackle quantum proper-
ties of interacting quantum spin systems are high-order series
expansions [22], which have been used, among many other
systems, to extract quantum critical properties in transverse-
field Ising models [23–27] as well as for topological phase
transitions in the toric code in the presence of external fields
[28–31]. However, these techniques have not been applied
to non-Hermitian quantum spin models which is exactly the
main purpose of this paper. We extend high-order series
expansions to investigate quantum critical properties of non-
Hermitian quantum spin models. In particular, we calculate
high-order series of energy gaps about different limits using
the method of perturbative continuous unitary transforma-
tions (pCUTs) [26,32,33] or Takahashi’s perturbation theory
[34] and apply extrapolations to extract critical points and
associated critical exponents. In one dimension, we study the
exactly solvable Ising chain in a non-Hermitian staggered field
[14], which allows a direct comparison between the analytic
solution and the findings from high-order series expansions.
In two dimensions, we replace the Ising interaction by the
toric code [17] to understand the breakdown of the topological
phase by the non-Hermitian staggered field.

The paper is structured as follows. In Sec. II, we introduce
the one-dimensional Ising chain and the two-dimensional
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toric code in a PT -symmetric non-Hermitian staggered field
and we describe duality transformations for both systems to
non-Hermitian staggered Ising interactions in a conventional
transverse field. These two microscopic models are used as
paradigmatic non-Hermitian examples to illustrate the appli-
cation of high-order series expansions. One key difference
between the two models is that the non-Hermitian transverse-
field Ising chain is exactly solvable. It will therefore be used
to gauge the quality of the high-order series expansion. The
technical aspects of the high-order low- and high-field series
expansions and their extrapolations are given in Sec. III. All
results for the one-dimensional Ising chain in a non-Hermitian
staggered field are contained in Sec. IV. This includes the
analytic solution as well as the comparison to series expansion
results. In Sec. V, we use the high-order series expansion to
discuss the breakdown of the topological phase in the toric
code due to a non-Hermitian staggered Ising interaction. The
paper is concluded in Sec. VI.

II. NON-HERMITIAN MODELS

We consider models with N spin-1/2 particles on lattices
that are coupled by some interaction Hamiltonian HI and
subject to a non-Hermitian staggered magnetic field. The pref-
actor of the magnetic field is either given by g ≡ η + iξ for
spins on sublattice ◦ or by g∗ ≡ η − iξ for spins on sublattice
•. The full Hamiltonian reads

H = HI − g
∑
j∈◦

σ z
j − g∗ ∑

j∈•
σ z

j , (1)

where σα
j represents the Pauli matrix with flavor α on site

j. The imaginary parts ±ξ of the magnetic field prefactors
correspond to the anti-Hermitian part of the Hamiltonian.
The assignment of spins to ◦ or • is done such that the full
Hamiltonian is PT symmetric.

For HI = 0, the so-called high-field limit, the model
Eq. (1) is exactly solvable. The state with the lowest real
eigenvalue −|η|N is |⇑〉. We will refer to this state as the
ground state in the high-field limit. If additionally η = 0, the
ground-state energy is infinitely degenerate in the thermody-
namic limit; we will not treat this case with series expansions
about the high-field limit. There are two types of elemen-
tary spin-flip excitations, depending on whether the flipped
spin is on sublattice ◦ or •. Their eigenvalues are given by
−|η|(N − 2) ± 2iξ and are nonreal for ξ �= 0.

We study two interaction Hamiltonians HI: the one-
dimensional Ising chain and the 2D toric code [17] on a square
lattice. Both models are illustrated in Fig. 1. The full Hamil-
tonian of the Ising chain in a staggered transverse magnetic
field reads

HTFIM = −J
N∑

j=1

σ x
j σ

x
j+1 − g

∑
j∈◦

σ z
j − g∗ ∑

j∈•
σ z

j , (2)

where we set σ x
N+1 = σ x

1 and thus couple the chain periodi-
cally. The Ising terms σ x

j σ
x
j+1 have eigenvalues ±1, depending

on whether the respective spins are aligned or antialigned.
These eigenvalues are not conserved as they do not com-
mute with the Hamiltonian Eq. (2). The Hermitian version
of this model is exactly solvable [35,36] using a Jordan-
Wigner transformation [37] and a Bogoliubov transformation

g g∗
J(a)

(b)

As

Bp

FIG. 1. Ising chain (a) and toric code (b) in a staggered magnetic
field. The sites represent the spin-1/2 particles that are coupled by
an Ising interaction (a) or by the toric code operators (b). The colors
of the sites encode the imaginary part of the magnetic prefactor
that is given by g = η + iξ for empty red sites, belonging to ◦, and
g∗ = η − iξ for filled green sites, belonging to •. The toric code star
operators As are depicted in yellow, the plaquette operators Bp in
blue.

in Fourier space. Li et al. [14] found a solution of the non-
Hermitian generalization that they obtain via a Jordan-Wigner
transformation and composite operators. In Sec. IV A, we
apply an alternative approach using a generalized Bogoliubov
transformation in momentum space to derive the exact solu-
tion of the Ising chain in a non-Hermitian staggered magnetic
field confirming their findings.

The Hamiltonian of the toric code in a staggered parallel
magnetic field reads

HTCF = −J
∑

s

As − J
∑

p

Bp − g
∑
j∈◦

σ z
j − g∗ ∑

j∈•
σ z

j . (3)

Every star operator As ≡ ∏
i∈s σ x

i commutes with every pla-
quette operator Bp ≡ ∏

i∈p σ z
i because they always share an

even number of spins. Thus, all of them commute with the
interaction Hamiltonian. The plaquette operators commute
with the magnetic field terms as well and therefore also with
the full Hamiltonian Eq. (3). The star and plaquette operators
have eigenvalues ±1 whereof the eigenvalues of the plaquette
operators are conserved due to the aforementioned commuta-
tion relations. That is why the Hamiltonian decomposes into
blocks for the different combinations of plaquette eigenvalues.

The relevant low-energy physics takes place in the sector
without plaquette excitations, i.e., the block where all pla-
quette operators have eigenvalue sgn(J ). In this sector, the
Hamiltonian simplifies to

H̃TCF = −|J|N

2
− J

∑
s

As − g
∑
j∈◦

σ z
j − g∗ ∑

j∈•
σ z

j . (4)

For both systems Eqs. (2) and (4), it suffices to study a
restricted parameter space. We may, without loss of generality,
choose the imaginary part of the magnetic field ξ � 0 because
any sign in front of ξ can be absorbed into a reassignment of
spins to ◦ and •. We may also choose the other two parameters
J, η � 0 because any sign in front of J or in front of both η and
ξ can be absorbed into a rotation in spin space of some spins
around the z axis or all spins around the x axis, respectively.
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Interestingly, both models are dual to the transverse field
Ising model with non-Hermitian staggered Ising interaction.
The dual model of the Ising chain Eq. (2) lives on a chain
with effective sites centered on the links of the original model.
Similarly, for the toric code Eq. (4) in the subspace with all
plaquette operators having eigenvalues +1, the dual lattice
is a square lattice built by the centers of star operators. The
effective sites are labeled by μ and ν. Because the inter-
action Hamiltonian contains, in both cases, only operators
with eigenvalues ±1, this mapping uses Pauli matrices τ z for
pseudospin-1/2’s that are defined to have the same eigenval-
ues so HI is mapped to an effective magnetic field in the z
direction. Further, each local operator of the magnetic field
term changes the eigenvalues of two adjacent pseudospins
on sites μ and ν which therefore gives an effective Ising
interaction τ x

μτ x
ν . The resulting dual Hamiltonian reads then

in both cases

H = Ē0 − J
∑

μ

τ z
μ − g

∑
〈μ,ν〉∈◦

τ x
μτ x

ν − g∗ ∑
〈μ,ν〉∈•

τ x
μτ x

ν , (5)

where 〈μ, ν〉 represents bonds of the dual lattice. The assign-
ment of bonds to the former sublattices ◦ and • represent the
colors of the bonds. Note that the explicit value of the constant
Ē0 differs for the two cases, but plays no role physically.

III. SERIES EXPANSIONS

To explore the ground-state phase diagrams, we perform
high-order series expansions about the low-field limit, where
η = ξ = 0, and about the high-field limit, where J = 0. We
will test the series expansion by comparing to the exactly
solvable Ising chain in a non-Hermitian staggered transverse
magnetic field given in Sec. IV A. The goal of these methods
is to transform the Hamiltonians into effective quasiparticle
(QP) conserving ones. Being QP conserving, the effective
Hamiltonians decompose into decoupled blocks for different
QP numbers, which enables us to obtain access to the relevant
low-energy physics, i.e., the ground-state energy via the zero
QP block and the one-particle gap via the one QP block.

A. Low-field expansions

In the following, we study the low-field (lf) limit
g 
 J perturbatively. We introduce hardcore-bosonic

operators

bμ = (
τ x
μ + iτ y

μ

)
/2, b†

μ = (
τ x
μ − iτ y

μ

)
/2 (6)

to express Eq. (5) exactly as follows:

H = − JN + 2J
∑

μ

b†
μbμ − g

∑
〈μ,ν〉∈◦

(b†
μ + bμ)(b†

ν + bν )

− g∗ ∑
〈μ,ν〉∈•

(b†
μ + bμ)(b†

ν + bν ), (7)

where Q ≡ ∑
μ b†

μbμ is a counting operator reflecting
the equidistant spectrum of the unperturbed Hamiltonian
g = 0. The unperturbed ground state |0〉lf is then defined by
Q |0〉lf = 0. Rescaling the Hamiltonian by 2J yields

H
2J

= −N

2
+ Q − g

2J

∑
n∈{−2,0,2}

T ◦
n − g∗

2J

∑
n∈{−2,0,2}

T •
n , (8)

where [Q, T ◦/•
n ] = nT ◦/•

n , i.e., T ◦/•
n creates n elementary

excitations. Every operator used here is Hermitian, the anti-
Hermitian parts arising only from the imaginary part ±ξ

of the magnetic field prefactors. This aspect is essential for
the straightforward generalization of the method of pCUTs
[32,33] to non-Hermitian Hamiltonians Eq. (1).

For Hermitian Hamiltonians, the method of continuous
unitary transformations [38] works by introducing a unitary
transformation U (�) that depends on a parameter � flowing
continuously from 0 to ∞. The so-called flow Hamilto-
nian H(�) = U −1(�)HU (�) is also � dependent and becomes
the desired effective Hamiltonian as � approaches ∞. The
unitary transformation is not explicitly needed. It suffices
to introduce its anti-Hermitian infinitesimal generator η(�).
The effective Hamiltonian can be calculated using the flow
equation

dH(�)

d�
= [η(�),H(�)] (9)

and taking the limit � to ∞. If the Hermitian Hamiltonian
consists of a counting operator Q representing the unper-
turbed Hamiltonian and a finite number of Tn operators with
[Q, Tn] = nTn connected to one or more perturbation param-
eters, the pCUT method is applicable. For models with one
perturbation parameter λ, the ansätze for the infinitesimal
generator and the flow Hamiltonian in the pCUT method are

η(�) =
∞∑

k=1

λk
∑

(m1,...,mk )

sgn(m1 + · · · + mk )F (�; (m1, . . . , mk ))Tm1 · · · Tmk , (10)

H(�) = Q +
∞∑

k=1

λk
∑

(m1,...,mk )

F (�; (m1, . . . , mk ))Tm1 · · · Tmk , (11)

where F are real-valued coefficient functions. The general-
ization to multiple perturbation parameters is straightforward.
We refer to Ref. [39] for a more detailed treatment. Inserting
Eqs. (10) and (11) into the flow equation (9), the functions
F can be calculated recursively order by order. This can

be done computer aided up to high orders, resulting in an
effective Hamiltonian Heff for � → ∞ with rational coef-
ficients, which is block diagonal in the QP number, i.e.,
[Heff,Q] = 0 holds. One advantage of this method is that it
is not model specific, i.e., the solution for the coefficient func-
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tions and therefore for the effective Hamiltonian does only
depend on the number and type of Tn operators. The specific
underlying model is only needed for explicitly calculating
quantities like the ground-state energy or the gap, which cor-
responds to normal ordering the effective pCUT Hamiltonian
Heff.

If a Hamiltonian is not Hermitian but has a complex
perturbation parameter instead, the flow Eq. (9) still holds.
Therefore the ansätze Eqs. (10) and (11) do not have to be
altered and the calculated coefficient functions remain un-
changed. Note that in this case the infinitesimal generator
η(�) is not anti-Hermitian and the transformation U (�) not
unitary but a similarity transformation. Nonperturbative sim-
ilarity transformations using the QP generator were already
applied successfully for non-Hermitian Hamiltonians [40,41]
to describe magnetic excitations of the long-range ordered
Heisenberg model on the square lattice using the Dyson-
Maleev transformation. They are referred to as continuous
similarity transformations. For our systems, the Hamilto-
nian can be written in both cases as Eq. (8) with the two
perturbation parameters −g/(2J ) and −g∗/(2J ). To obtain
the respective ground-state energy and one-particle gap, we
have calculated the zero and one QP block of Hlf

eff for both
models.

The unperturbed ground-state energy −JN is nondegener-
ate in both cases, thus the zero QP block is a number equal to
the perturbed ground-state energy. It is given by

E lf
0 = lf〈0|Hlf

eff |0〉lf . (12)

Its specific value has to be calculated for both models sep-
arately. The results are given in Appendix A in Eq. (A1)
[Eq. (A2)] up to 12th order in g and g∗ for the 1D
[2D] case. For the 2D case, we have applied a full graph
decomposition.

The one QP block consists of the elements

lf〈0|bμHlf
eff b†

ν |0〉lf = E lf
0 δμν + tμν, (13)

where tμν denotes the hopping amplitude from ν to μ. After
a Fourier transform, this block further decomposes into de-
coupled 2 × 2 blocks for different momenta k. The two bands
of the dispersion relation are obtained by diagonalizing these
blocks separately. The gap closes at k = 0 for both systems,
so we only have to diagonalize the corresponding block and
pick the lower eigenvalue. The respective series are given in
Appendix A in Eq. (A3) [Eq. (A4)] up to tenth order for the
1D [2D] case. The 2D results were again obtained using a full
graph decomposition.

B. High-field expansions

In the following, we study the high-field (hf) limit J 
 g.
The unperturbed case J = 0 corresponds to HI = 0. This limit
was already brought up in Sec. II. Similar to before, we
introduce hardcore-bosonic operators

b j = (
σ x

j + iσ y
j

)
/2, b†

j = (
σ x

j − iσ y
j

)
/2 (14)

and express the full Hamiltonians Eqs. (2) and (4) as

HTFIM = − ηN + 2g
∑
j∈◦

b†
jb j + 2g∗ ∑

j∈•
b†

jb j

− J
∑
〈i, j〉

(b†
i + bi )(b†

j + b j ), (15)

H̃TCF = − ηN + 2g
∑
j∈◦

b†
jb j + 2g∗ ∑

j∈•
b†

jb j

− J
N

2
− J

∑
s

∏
j∈s

(b†
j + b j ). (16)

When η �= 0, the unperturbed ground state is unique in both
cases, defined by

∑
j b†

jb j |0〉hf = 0 and corresponds to the
state |⇑〉 introduced in Sec. II. It is not possible to rescale these
Hamiltonians such that the unperturbed parts are expressed as
counting operators. This implies that we cannot use the same
method as in the low-field limit. Instead, we use Takahashi’s
perturbation theory [34] that is based on Ref. [42].

This method is suited for Hamiltonians of the form
H = H0 + λV with perturbation parameter λ. Assume that
the unperturbed part has an eigenvalue E whose perturbative
corrections we are interested in. Let P0 be a projector onto the
space spanned by the unperturbed eigenvectors. We can then
construct a projector onto the space spanned by the perturbed
eigenvectors corresponding to the perturbed eigenvalue by

P = P0 −
∞∑

k=1

λk
∑

k1+···+kk+1=k,ki�0

Sk1V · · ·V Skk+1 , (17)

with S = (1 − P0)/(E − H0) being a projector onto the com-
plement of the space spanned by the unperturbed eigenvectors
and S0 = −P0. The transformation that generates the effective
Hamiltonian is obtained by expanding � = PP0(P0PP0)−1/2 in
powers of λ.

The ground-state energy and gap for both models are
obtained analogously to Sec. III A. Because of η �= 0, the
unperturbed ground-state energy is nondegenerate and the
perturbed ground-state energy can be calculated by

Ehf
0 = hf〈0|Hhf

eff |0〉hf . (18)

The series are given in Appendix B in Eq. (B1) [Eq. (B2)] up
to tenth [sixth] order in J for the 1D [2D] case.

In the 1D case, the one QP block consists of the elements

hf〈0|bi Hhf
eff b†

j |0〉hf = Ehf
0 δi j + ti j, (19)

where ti j denotes the hopping amplitude from j to i. For the
2D case, the relevant excitation is composed of four spin flips
on a star as all excitations with less spin flips violate the
constraint that all eigenvalues of plaquette operators are +1.
The respective QP block consists of the elements

hf〈0|
(∏

i∈s

bi

)
Hhf

eff

(∏
j∈s′

b†
j

)
|0〉hf = Ehf

0 δss′ + tss′ , (20)

where tss′ denotes the hopping amplitude of the composite
entity from star s′ to s. After a Fourier transform, this block
further decomposes into decoupled 2 × 2 blocks for different
momenta k. The two bands of the dispersion relation are
obtained by diagonalizing these blocks separately.
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The energy of the elementary excitations with k = 0 in
the 1D case is given in Appendix B in Eq. (B3) up to tenth
order. The gap for the 2D case is given up to fourth order
in Eq. (B4). For the special case ξ = 0, the gap is known
up to even higher orders [29] and the series up to order 10
is presented in Eq. (B5) for completeness. In the parameter
region defined by η = ξ , we have further calculated the gap
explicitly up to eighth order in Eq. (B6).

C. DLog Padé approximants

In the vicinity of a second-order quantum critical point
xc, the gap typically vanishes as � ∝ |xc − x|zν with the
dynamical critical exponent z and the correlation length
critical exponent ν. Similarly, the second derivative of the
ground-state energy diverges according to a power law
d2e0/dx2 ∝ |xc − x|−α for α �= 0 with the specific heat crit-
ical exponent α.

Whenever we have a function F with such a power-law
behavior, we can use the logarithmic derivative to extract the
value of the critical exponent ϑ (see Ref. [43] for a general
introduction of extrapolation techniques like Padé and DLog
Padé approximation). Assume that close to the critical point
xc,

F (x) ≈ |xc − x|−ϑA(x), (21)

with A being analytic at xc. This enables us to approximate
A(x) ≈ A(xc)(1 + O(xc − x)) and to calculate the logarithmic
derivative

D(x) = d

dx
ln(F (x)) ≈ ϑ

xc − x
[1 + O(xc − x)] (22)

close to the critical point. The critical exponent is then given
by the residue of this derivative at the critical point.

If the function F is not known but only its Taylor expan-
sion about x = 0 up to some order k, we use DLog Padé
approximants to estimate the critical point and corresponding
exponent. The DLog Padé approximant of F of order (L, M )
with L + M = k − 1 is defined by

PDLog[L, M]F (x) = P[L, M]D(x), (23)

where

P[L, M]D(x) = PL(x)

QM (x)
= p0 + p1x + · · · + pLxL

1 + q1x + · · · + qMxM
(24)

is the Padé approximant of order (L, M ) of the logarithmic
derivative. The coefficients are fixed by imposing that the
Taylor series of the Padé approximant coincides with the one
of the logarithmic derivative up to order k − 1. A DLog Padé
approximant indicates the critical point to be the root of its
denominator QM (x) and the critical exponent to be its residue
at the critical point.

It is possible to obtain an approximation of the function
F by

F (x) ≈ F (0) exp

(∫ x

0
dy PDLog[L, M]F (y)

)
. (25)

If the critical exponent ϑ is known, we can perform a
biased DLog Padé approximation, i.e., we add the next highest
order (the next even order in case the series contains only

even orders) to the Taylor series of F and take the respective
prefactor a such that the critical exponent is the desired one.
This prefactor can differ depending on the order (L, M ) of the
approximant we are interested in.

For our analysis, we calculate all possible DLog Padé
approximants with L, M � 2 and group them into families
defined by constant L − M. Approximants with removable
root-pole pairs have to be excluded as they carry the same
information as their lower-ordered relatives and thus convey
a false sense of convergence. If the denominator of an ap-
proximant has additional roots close to the expected one, the
approximant has to be discarded as defective as well, because
the additional root may deform it. Here, we also have to take
complex roots into account and specify that additional roots
are considered to be close to the expected root xc if their
distance in the complex plane is smaller than xc/2. Finally,
we might only include families with at least two remaining
members in our analysis, depending on the total number of
available approximants.

The critical exponents of the Hermitian limits of Eq. (5) are
either known exactly for the 1D TFIM or estimated with high
precision for the 2D TFIM, which then naturally translates to
the dual toric code in a field. For the 1D chain, the critical
exponents are ν = z = 1 and the specific heat critical expo-
nent is α = 0, i.e., the second derivative of the ground-state
energy diverges logarithmically and not according to a power
law. The best estimates for the exponents of the 2D model are
obtained via conformal bootstrap or Monte Carlo simulations;
the results given are z = 1 [44,45], ν = 0.629971(4) [45], and
α = 0.110087(12) [45]. Our results for the non-Hermitian
generalizations are discussed in the next two sections.

IV. ISING CHAIN RESULTS

For the Ising chain in a non-Hermitian staggered transverse
magnetic field, we can calculate the exact solution as well as
the series expansions. Thus we can use it to test our general-
ized series expansions method.

A. Exact solution

The Ising chain in a Hermitian uniform transverse mag-
netic field is exactly solvable [35,36] by using a Jordan-
Wigner transformation [37] and a Bogoliubov transformation
in Fourier space. The non-Hermitian generalization Eq. (2) of
this model is solvable by using the same steps, adapted to a
larger unit cell.

Using σ±
j = (σ x

j ± σ
y
j )/2, we define the fermionic opera-

tors of the Jordan-Wigner transformation by

c j :=
(

j−1∏
l=1

σ z
l

)
σ+

j , c†
j :=

(
j−1∏
l=1

σ z
l

)
σ−

j (26)

for j ∈ {1, . . . , N}. Inverted, the Pauli operators are given by

σ z
j = 1 − 2 c†

j c j , (27)

σ x
j =

j−1∏
l=1

(1 − 2 c†
l cl )(c†

j + c j ) (28)

195137-5



LENKE, MÜHLHAUSER, AND SCHMIDT PHYSICAL REVIEW B 104, 195137 (2021)

for j ∈ {1, . . . , N}. The Hamiltonian expressed in terms of the
fermionic operators Eq. (26) reads

HTFIM = − J
N∑

j=1

(c†
j c j+1 + c†

j c
†
j+1 + H.c.)

− Nη + 2
N∑

j=1

g jc
†
j c j , (29)

where we have neglected a boundary term that vanishes in the
thermodynamic limit [35]. This term stems from transforming
σ x

Nσ x
1 and it arises from the fact that we impose cN+1 = c1

which might differ by a sign from inserting j = N + 1 into
Eq. (26).

We take the Fourier transform

ck,◦ =
√

2

N

∑
j∈◦

e−ik( j−1)/2c j , (30)

ck,• =
√

2

N

∑
j∈•

e−ik j/2c j , (31)

where ◦ contains all empty spins marked in red and • all
filled spins marked in green in Fig. 1(a). The Hamiltonian
decomposes into a sum HTFIM = ∑

k Hk with

Hk = − J (c†
k,◦ck,•+eikc†

k,•ck,◦+c†
k,◦c†

−k,•+eikc†
k,•c†

−k,◦+H.c.)

− 2η + 2(η + iξ )c†
k,◦ck,◦ + 2(η − iξ )c†

k,•ck,•. (32)

The transformed Hamiltonian is now block-diagonal with
blocks hk = Hk + H−k . These blocks are individually diago-
nalizable using a generalized Bogoliubov transformation. We
define vectors of fermionic operators

ck = (ck,◦ ck,• c−k,◦ c−k,•) (33)

to write the blocks as

hk = 1

2
(c†

k ck )

(−Ak Bk

B†
k AT

k

)(
ck
c†

k

)
, (34)

where the matrices Ak and Bk are the components of the
coefficient matrix. Ak is given by⎛⎜⎜⎝

−2(η + iξ ) J (eik + 1) 0 0
J (e−ik + 1) −2(η + iξ ) 0 0

0 0 2(η + iξ ) J (e−ik + 1)
0 0 J (eik + 1) 2(η − iξ )

⎞⎟⎟⎠
(35)

and Bk by⎛⎜⎜⎝
0 0 0 −J (eik − 1)
0 0 J (e−ik − 1) 0
0 −J (e−ik − 1) 0

J (eik − 1) 0 0 0

⎞⎟⎟⎠.

(36)

For a Hermitian problem, the matrices Ak would be Hermitian
and the matrices Bk antisymmetric. This would make the
coefficient matrix Hermitian and therefore unitary diagonal-
izable. Our matrix is not Hermitian but normal and therefore
still unitary diagonalizable. The corresponding transformation
maps the fermionic operators c onto other fermionic operators
γ . The so-diagonalized Hamiltonian takes the form

HTFIM = −
∑

k

(ω+
k + ω−

k )

+ 2
∑

k

(ω+
k γ

†
k,+γk,+ + ω−

k γ
†
k,−γk,−), (37)

with the two bands

ω±
k =

√
J2 + η2 − ξ 2 ±

√
2J2(η2 − ξ 2) − 4η2ξ 2 + 2J2(η2 + ξ 2) cos(k), (38)

= J

√
1 + r2 cos(2ϕ) ± r

√
2 cos(2ϕ) − r2 sin2(2ϕ) + 2 cos(k), (39)

where Eq. (39) is obtained by inserting η = Jr cos(ϕ) and
ξ = Jr sin(ϕ) into Eq. (38). These bands can also be obtained
through linear combination of results by Li et al. [14].

B. Phase diagram

The analytic solution to our model enables us to investigate
the phase transitions, as well as the points where energies
become complex. There are energies that are real in the whole
parameter space and energies that are real only in certain
regions. The only region with real spectrum is the Hermitian
axis given by ξ = 0.

The ground-state energy per spin is given by

e0 = − 1

4π

∫ 2π

0
(ω+

k + ω−
k )dk (40)

in the thermodynamic limit. This energy is real because the
imaginary parts of the bands ω+

k and ω−
k cancel each other. Li

et al. [14] argue that the Laplacian of the ground-state energy
diverges logarithmically at r = 1 and at η = 0 for ξ � J . This
indicates second-order phase transitions at these boundaries,
as depicted in Fig. 2.

The gap � = 2ω−
0 is one of the energies that are real in

certain extended regions of the parameter space, namely, the
region defined by ξ � J . Outside of this region, it is complex
conjugated to 2ω+

0 , the other elementary excitation with the
same momentum k = 0. More specifically, it is given by

ω±
0 =

{∣∣η ±
√

J2 − ξ 2
∣∣, ξ � J

η ± i
√

ξ 2 − J2, ξ � J.
(41)

The closing behavior of this gap indicates the same phase
transitions as indicated by the ground-state energy. At r = 1,
we have � = 0 as in the Hermitian limit. This is depicted in
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η
=

ξ
η

=
0

ξ = 2J

r = 0

r = 1
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FIG. 2. Phase diagram of the non-Hermitian Ising chain in a stag-
gered transverse magnetic field (2) as a function of arctan(r) and ϕ in
polar coordinates. The ground-state energy diverges logarithmically
at the boundaries indicated by thick black lines. The yellow radial
lines correspond to paths with ξ = 0, η = ξ , and η = 0 displayed in
Fig. 3 while the blue line refers to the path with ξ = 2J displayed in
Fig. 4.

Fig. 3 for different ϕ. At η = 0, we have

�|η=0 = 2
√

J2 − ξ 2, (42)

which has a vanishing real part for ξ > J , but a nonvanishing
imaginary part. This is depicted in Fig. 4. Since complex
eigenvalues of PT -symmetric Hamiltonians come in conju-
gate pairs, these imaginary parts cancel in the ground-state
energy and the vanishing real part plays the part of a vanishing
gap.

As a consequence, the gap vanishes with an exponent
zν = 1/2 for η = 0. In all other situations with η �= 0, the
gap closes linearly with zν = 1 including the well-known Her-
mitian case where the gap is exactly given by the first-order
expression |J − η|.

Now we have that the ground-state energy is real in the
whole parameter space and the gap in the region defined by
|ξ | � J . The question arises whether we can find a region
with a purely real spectrum therein. This question is quickly
answered by observing that e.g., ω−

π is only real on the Her-
mitian axis defined by ξ = 0. Therefore, we can conclude that
there exist states with broken PT symmetry as soon as we turn
on the non-Hermitian perturbation.

C. Gauging high-order series expansions

We can now use the exact solution of the non-Hermitian
transverse-field Ising chain to gauge the potential of our se-
ries expansion results. We note that an analytic solution is
only available in rare cases. Generically, one has to resort

0

2J

ξ
=

0

0

2J

η
=

ξ

r = 0 r = 1 r = ∞

0

2J

η
=

0

0

2η

−2ξ

2ξ

−2ξ

0

2ξ

FIG. 3. Energies above the ground-state energy of elementary
excitations with momentum k = 0 of the non-Hermitian Ising chain
in a staggered transverse magnetic field as a function of arctan(r)
between 0 and π/2. The three plots correspond to the three yellow
radial paths in Fig. 2 with ξ = 0 (upper panel), η = ξ (middle panel),
and η = 0 (lower panel). Real parts are depicted using solid lines,
imaginary parts using dotted lines. The gap � = 2ω−

0 is depicted
in black, the other elementary excitation with the same momentum
2ω+

0 in gray. The gap closes at r = 1, indicating a second-order phase
transition. The energies are real if and only if ξ � J .

to approximative or numerical approaches like the high-order
series expansion in our case. Here we derived the gap up to
tenth order about the low-field limit Eq. (A3) and about the
high-field limit Eq. (B3). This order is similar to the maximal
order for the 2D case discussed below where the exact solution
is not available. Note that in principle we can reach much
higher orders for the non-Hermitian Ising chain by simply
determining the Taylor series of the analytic expression.

Except for η = 0 and ξ = 0, the vanishing of the gap is
only accessible from the low-field limit due to the presence
of an exceptional point at r > rc as can be seen exemplary in

η = −∞ η = 0 η = ∞

0

2ξ

ξ
=

2J

FIG. 4. Energies above the ground-state energy of elementary
excitations with momentum k = 0 of the non-Hermitian Ising chain
in a staggered transverse magnetic field as a function of arctan(η)
between −π/2 and π/2. The plot corresponds to the blue horizontal
line indicated by ξ = 2J in Fig. 2. Real parts are depicted using
solid lines, imaginary parts using dotted lines. The gap � = 2ω−

0

is depicted in black, the other elementary excitation with the same
momentum 2ω+

0 in gray. The energies are complex conjugated. Their
real parts vanish at η = 0, indicating a second-order phase transition.
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=

ξ
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1/order
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1.005r c

(4, 4)

r = 0 r = 1 r = ∞
0

2J

η
=

0
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1/order
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1.2

r c
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FIG. 5. Real part of the gap for the non-Hermitian Ising chain
in a staggered transverse magnetic field as a function of arctan(r)
between 0 and π/2. The three plots correspond to the three yellow
radial paths with ξ = 0 (upper panel), η = ξ (middle panel), and
η = 0 (lower panel) in Fig. 2. The analytic solution is depicted in
black; the series expansions (except for the zeroth order) up to tenth
order in red. Selected DLog Padé approximants Eq. (25) are plotted
in thick lines that are colored according to the colors in Fig. 6. The
roots of the series expansion (up to orders 4, 6, 8, 10 from right to
left) are plotted as a function of 1/order in inset plots in red. The
black markers indicate the critical point rc = 1 in both cases.

the middle panel of Fig. 3. This is different for η = 0, where
the two points coincide. The analytic low-field gap, as well
as its series expansion order by order, is plotted in Fig. 5
for exemplary regions of the parameter space. The Hermitian
case ξ = 0 is exact already in first order; all other cases are
only approximated by our expansions. The critical point is
predicted more accurately the closer we are to the Hermitian
limit. Using the bare series in tenth order, it is indicated at
rc = 1.0004 for η = ξ and at rc = 1.08 for η = 0.

The values are expected to become more accurate upon
using DLog Padé approximants. With Eq. (25), selected
approximants are depicted in Fig. 5 as well. Remarkably,
not only the limiting case ξ = 0 is described exactly by
these approximants, but also the purely imaginary case
η = 0 where the gap closes as a square root. This is similar
to the extrapolation of the mean-field series in the limit of
large spatial dimensions for the transverse-field Ising model
on the hypercubic lattice [26]. In fact, one can construct
� = 2

√
J2 − ξ 2 − 2η exactly by adding the exact extrapola-

tions on the real and imaginary axis. The same holds for the
imaginary part of the gap about the high-field limit.

For any given order, there are multiple different DLog Padé
approximants to consider. For η = ξ , their respective critical
points are plotted in the upper panel of Fig. 6. Per order, the
predicted values are obtained by averaging over all results
by nondefective approximants. If single family members are
considered defective, the predicted value for the critical point
is given by rc = 0.99967(19); if they are included, it is given
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r c
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-5

4 5 6 7 8 9

order
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0.90

0.92

0.94

0.96

0.98

1.00

z
ν

0.96

0.98

1.00

z
ν

FIG. 6. Critical point rc (upper panel) and critical exponent zν
(lower panel) of the non-Hermitian Ising chain in a staggered trans-
verse magnetic field as indicated by DLog Padé approximants. The
parameter region is defined by η = ξ . Every family has a color
assigned and is labeled by their difference between numerator and
denominator degree. The averaged values and the respective sam-
ple standard deviations are displayed in the inset plots. The gray
lines are obtained by including single family members, the black
ones by considering them defective. In the latter case, there is only
one approximant left in eighth order, which is indicated by a cir-
cle. In ninth order, the critical point [critical exponent] is found at
rc = 0.9993(8) [zν = 0.991(9)] when including single family mem-
bers and at rc = 0.99967(19) [zν = 0.9955(23)] when considering
them defective. The dashed black lines indicate the analytical find-
ings rc = 1 and zν = 1.

by rc = 0.9993(8). Both values are accurate to the same order
of magnitude as the value indicated by the bare tenth order
series expansion rc = 1.0004. DLog Padé approximants are
especially well-suited to obtain critical exponents. For η = ξ ,
the critical exponent zν is plotted in the lower panel of Fig. 6.
If single family members are considered defective, the pre-
dicted value is given by zν = 0.9955(23); if they are included,
it is given by zν = 0.991(9). The accuracy is lower than the
accuracy of the predicted critical point, which is expected.
Nevertheless, it is still convincing.

V. TORIC CODE RESULTS

In the last section, we have seen that high-order series
expansions are able to quantitatively extract quantum crit-
ical properties in the non-Hermitian transverse-field Ising
chain. In contrast to this one-dimensional system, there is
no analytic solution for the toric code in a non-Hermitian
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FIG. 7. Gap of the non-Hermitian toric code in a staggered par-
allel magnetic field as a function of arctan(r) between 0 and π/2.
The three plots correspond to the three different parameter regions
with ξ = 0 (upper panel), η = ξ (middle panel), and η = 0 (lower
panel). The series expansions (except for the zeroth order) up to
tenth order are depicted in red around the low-field limit and in blue
around the high-field limit, with larger orders having darker colors.
The high-field expansion for η = ξ is only available up to eighth
order. Selected DLog Padé approximants Eq. (25) are plotted using
thick lines with colors matching the respective families. The roots of
the high-field series expansion for η = ξ (up to orders 4, 6, 8 from
right to left) are plotted as a function of 1/order in the inset plot in
blue, those of the respective low-field expansion (up to orders 4, 5, 6,
7, 8, 9, 10 from right to left) in red.

staggered field whose low-energy physics corresponds to the
dual non-Hermitian transverse-field Ising model on the square
lattice with non-Hermitian Ising interactions. However, the
Hermitian case is well studied by different techniques in-
cluding high-order series expansions [28,30,46,47] (for the
dual transverse-field Ising model on the square lattice see
Refs. [23,24,45,48]). One finds a second-order phase transi-
tion in the 3D* [49] universality class with rc = 0.32847(4)
[48] and zν = 0.629971(4) [45]. Here we are mainly inter-
ested in how the non-Hermitian staggered field influence this
quantum critical breakdown of the topological phase. To this
end, we use the series expansion of the gap. The expansion
about the low-field limit is given up to tenth order in Eq. (A4).
The expansion about the high-field limit Eq. (B4) is given up
to tenth order in Eq. (B5) for ξ = 0 and up to eighth order in
Eq. (B6) for η = ξ . We note that the series in the Hermitian
limits agree with the ones known from literature [23,24]. All
of these series expansions are plotted in Fig. 7 order by order
together with some selected DLog Padé approximants about
both limits.

The Hermitian case ξ = 0 is well studied by series expan-
sions. We nevertheless summarize the main findings with the
current perturbative order which allows a good comparison
to the non-Hermitian case. DLog Padé approximation of the
low-field gap results in eighth order in rc = 0.328905(19) if

TABLE I. Critical point and exponent of the non-Hermitian toric
code in a staggered parallel magnetic field for η = ξ as indicated by
DLog Padé approximants about the high-field limit.

DLog Padé Critical point Critical exponent

(3, 2) rc = 0.38 zν = 5.2
(3, 4) rc = 0.51 zν = 1.1
(5, 2) rc = 0.58 zν = 0.4

single family members are included [if they are considered
defective, one finds rc = 0.3288978(10)]. Here, we use the
eighth order results as there is only one nondefective approxi-
mant in ninth order. The accuracy is expected to even increase
for higher orders, as the families converge toward the litera-
ture value rc = 0.32847(4) [48]. Extracting the corresponding
critical exponent of the gap closing yields zν = 0.6471(4)
[zν = 0.64698(18)] when including [excluding] single fam-
ily members. Turning to the gap in the high-field limit, one
observes that the gap series is alternating and that it con-
sists only of even powers in r−1, which is equivalent to a
series in r−2. As a consequence, only three of the DLog
Padé approximants are not defective (only two in ninth order).
Taking the average and sample standard deviation yields a
critical point of rc = 0.33394(18) and a critical exponent of
zν = 0.6354(23) in ninth order. The result for the critical
point fits the literature value, even though it is less accurate
than the low-field results (the better agreement for the crit-
ical exponent is taken as a coincidence). In conclusion, the
high-order series expansion does, therefore, well capture the
second-order quantum phase transition between the low-field
topological and the high-field polarized phase in a quantitative
fashion. This is in particular true for the low-field expan-
sion while the accuracy of the high-field expansion is less
good.

Next we turn on the non-Hermitian staggered field and
focus on η = ξ . Estimates of the critical point rc and critical
exponent zν obtained by DLog Padé approximation of the
low-field gap are shown in Fig. 8. One finds rc = 0.405(3)
with the highest order if single family members are included
(at rc = 0.40559(5) if they are considered defective). The
critical value is therefore shifted to larger values of r in
comparison to the Hermitian case. The series expansion about
the high-field limit consists again only of even powers in r−1.
Except for the one corresponding to r−2, all coefficients of
this series are negative. The bare order-8 series indicates a
critical point at rc ≈ 0.51. As for the Hermitian case, there
are only three nondefective DLog Padé approximants; their,
respectively, indicated critical points and exponents are listed
in Table I. Taking average and sample standard deviations
yields a critical point of rc = 0.55(4) using the highest order.
This result suggests that there could be at least two critical
points in contrast to the Hermitian case. However, this result
is to be handled with care, because the extrapolation of the
high-field gap series does not work as well as the one for the
low-field gap. This is also apparent because the critical ex-
ponents differ largely. We can, however, gain further insights
by performing DLog Padé approximation biased with the 3D
Ising critical exponent zν = 0.629971(4), i.e., assuming no
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FIG. 8. Critical point rc (upper panel) and critical exponent zν
(lower panel) of the non-Hermitian toric code in a non-Hermitian
staggered parallel magnetic field for η = ξ obtained by DLog Padé
approximants of the low-field gap as a function of the order. Every
family of approximants has a distinct color and is labeled by their dif-
ference between numerator and denominator degrees. The averaged
values and the respective sample standard deviation are displayed in
the inset plots. The gray line is obtained by including single family
members, the black one by considering them defective. In the latter
case, there is only one approximant left in seventh order, which is
indicated by a circle. In ninth order, the critical point [exponent] is
found at rc = 0.405(3) [zν = 0.64(4)] when including single family
members and rc = 0.40559(5) [zν = 0.6466(6)] when considering
them defective. The dashed black lines indicate the literature value
zν = 0.629971(4) [45] for the exponent of the Hermitian model.

change in the universality class for finite non-Hermitian stag-
gered fields. Although this must not be the correct exponent,
the quality of the extrapolation is convincing. Because the
series consists only of even powers in r−1, the next higher
order we add has to be even as well. More specifically, we
add a term of the form ar−10. The respective prefactors a as
well as corresponding critical points are stated in Table II.
The listed averaged critical point is given by rc = 0.5480(23).
The critical points of the biased approximants match far better
than those of the unbiased approximants, which supports our
assumed critical exponent and the potential presence of an in-
termediate regime between the low-field and high-field phase.
If we instead perform a DLog Padé approximation biased with
the critical point of the low-field expansion rc = 0.405, i.e.,
assuming no intermediate phase, we obtain unphysical critical
exponents. This further supports the potential presence of such
an intermediate phase.

TABLE II. Critical point and exponent of the non-Hermitian toric
code in a staggered parallel magnetic field for η = ξ as indicated by
biased DLog Padé approximants about the high-field limit. The bias
is taken such that the critical exponent is zν = 0.629971. The critical
point is found at rc = 0.5480(23).

Biased DLog Padé Critical point Prefactor

(3, 6) rc = 0.5511 a = 0.011453466
(5, 4) rc = 0.5460 a = 0.00536516
(7, 2) rc = 0.5469 a = 0.00609564

For the purely anti-Hermitian staggered field (η = 0), the
series expansion of the low-field gap consists only of even
powers in r and is alternating. As a consequence, the extrap-
olation does not work in a convincing manner. Most of the
DLog Padé approximants are defective and half of those that
are not defective do not close. The associated critical points
and exponents are listed in Table III. If one only considers
the approximants that close, the critical point is indicated
at rc = 0.80(9) using the highest order. If one considers all
approximants, it is not certain that the gap closes at all. Fur-
thermore, no large-field expansion is available for this case.

We finally discuss the extension of the topological phase in
the full parameter space which is illustrated in Fig. 9 using
DLog Padé approximation of the low-field gap series. The
latter works reliably except for the regime of small η as al-
ready discussed for the purely anti-Hermitian staggered field.
We observe that the critical point shifts to higher values of
r for increasing ξ . The robustness of the topological phase
therefore increases continuously with the non-Hermiticity of
the staggered field. The corresponding averaged critical ex-
ponents are illustrated in Fig. 9 as well. As long as the
approximants are reliable, the deduced critical exponents are
almost independent of ϕ and close to the 3D* Ising critical
exponent zν = 0.629971(4) [45]. We therefore conjecture that
the critical breakdown of the topological phase remains in the
3D* Ising universality class in this parameter regime and can
be described by the condensation of anyonic QPs.

VI. CONCLUSIONS

In this paper, we have extended high-order linked-cluster
expansions like pCUTs and Takahashi perturbation theory
to non-Hermitian quantum spin models with PT symmetry.

TABLE III. Critical point and exponent of the non-Hermitian
toric code in a staggered parallel magnetic field for η = 0 as in-
dicated by DLog Padé approximants about the low-field limit. The
approximants that do not close are indicated by dashes.

DLog Padé Critical point Critical exponent

(3, 2) – –
(3, 4) rc = 1.17 zν = 1.14
(5, 2) – –
(3, 6) rc = 0.89 zν = 0.42
(5, 4) rc = 0.72 zν = 0.12
(7, 2) – –
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FIG. 9. Phase diagram of the non-Hermitian toric code in a
staggered parallel magnetic field Eq. (3) obtained from DLog Padé
approximants of the low-field gap. The radial plot displays the
indicated critical point as a function of arctan(r) and ϕ in polar
coordinates. The inset plot displays the corresponding critical ex-
ponent as a function of ϕ. The points and error bars are obtained
by averaging over results by selected approximants and taking the
corresponding sample standard deviation. For every point, selected
are either all nondefective ninth-order approximants or, if there is
only one in ninth order, all nondefective eighth-order approximants.
The critical point shifts to higher values of r if the anti-Hermitian
part increases. For large anti-Hermitian parts, it is not certain that the
gap closes at all. The displayed crosses are the values from Table III.
The critical exponents are close to the 3D* Ising critical exponent
zν = 0.629971(4) [45] that is indicated by the dashed line.

In practice, we have reached similar maximal perturbative
orders for the ground-state energy per site and the energy
gap of elementary excitations as for the more conventional
Hermitian counterparts. Here we have considered the one-
dimensional Ising chain and the two-dimensional toric code
in a non-Hermitian staggered field. For both systems, we
have exploited dual descriptions in terms of non-Hermitian
staggered Ising interactions in an uniform transverse field.

For the one-dimensional non-Hermitian Ising chain, we
have demonstrated an alternative analytic solution in full
agreement with the one given in Ref. [14]. Its ground-state
phase diagram can be characterized by logarithmic singular-
ities of the Laplacian of the ground-state energy and the gap
closing of the low-field gap in the symmetry-broken phase.
In particular, the gap closing of the low-field gap can be
quantitatively described by extrapolating the high-order gap
series.

For the two-dimensional toric code in a non-Hermitian
staggered field, we study the quantum robustness of the topo-
logically ordered phase by the gap closing of the low-field
gap. We find that the well-known second-order quantum phase
transition of the toric code in a uniform field extends into
a large portion of the non-Hermitian parameter space. How-
ever, the series expansions become unreliable for a dominant
anti-Hermitian field. Interestingly, the analysis of the high-
field gap reveals the potential presence of an intermediate
region, which, however, deserves further studies in the fu-
ture. Further, it would be interesting to also use high-order
series expansions for other perturbed non-Hermitian toric
codes [18–20] where the correspondence between bulk QPs
and topologically protected degenerate ground states breaks
down. At this point, we stress that we have concentrated
here on applying high-order series expansions to extract spec-
tral properties like the ground-state energy and elementary
gaps in non-Hermitian quantum spin systems. Extensions
toward other physical quantities are certainly possible and
interesting. In particular, entanglement measures like the en-
tanglement entropy would directly probe topological quantum
order.
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APPENDIX A: LOW-FIELD EXPANSIONS

The ground-state energy per spin of the Ising chain in a non-Hermitian staggered transverse field (2) is given by

e(12,η,ξ )
0 = − J − 1

4

η2 − ξ 2

J
− 1

64

η4 + ξ 4

J3
− 5

32

η2ξ 2

J3
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256

η6 − ξ 6

J5
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256
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− 7241

262144

η6ξ 6

J11
. (A1)
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The ground-state energy per spin of the toric code in a non-Hermitian staggered field Eq. (4) is given by

e(12,η,ξ )
0 = − J − 1
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η2 − ξ 2

J
− 15
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η4 + ξ 4

J3
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32
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(A2)

The gap of the Ising chain in a non-Hermitian staggered transverse field Eq. (2) is given by

�(10,η,ξ ) = 2J − 2η − ξ 2

J
− 1

4

ξ 4

J3
− 1

8

ξ 6

J5
− 5

64

ξ 8

J7
− 7

128

ξ 10

J9
. (A3)

The gap of the toric code in a non-Hermitian staggered field Eq. (4) is given by

�(10,η,ξ ) = 2J − 4η − 2
η2
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. (A4)

APPENDIX B: HIGH-FIELD EXPANSIONS

The ground-state energy per spin of the Ising chain in a non-Hermitian staggered transverse field Eq. (2) is given by

e(10,J )
0 = − η − J2

4η
− J4

64η3

η2 − 3ξ 2

η2 + ξ 2
− J6

256η5

η2 + 5ξ 2

η2 + ξ 2
− J8

16384η7

25η6 − 269η4ξ 2 − 405η2ξ 4 − 175ξ 6

(η2 + ξ 2)3

− J10

65536η9

49η6 + 715η4ξ 2 + 1043η2ξ 4 + 441ξ 6

(η2 + ξ 2)3
.

(B1)

The ground-state energy per spin of the toric code in a non-Hermitian staggered field Eq. (4) is given by

e(6,J )
0 = − η − J

2
− J2

16η
− J4

1024η3

3η2 − 5ξ 2

9η2 + ξ 2
− J6

32768η5

54η6 + 9η4ξ 2 + 368η2ξ 4 + 29ξ 6

(9η2 + ξ 2)2(4η2 + ξ 2)
. (B2)

The energy of the elementary excitations with k = 0 of the Ising chain in a non-Hermitian staggered transverse field Eq. (2) is
given by

�
(10,J )
± = 2(η ± iξ ) ± 1

iξ
J2 ± 1

4iξ 3
J4 ± 1

8iξ 5
J6 ± 5

64iξ 7
J8 ± 7

128iξ 9
J10 (B3)

for ξ �= 0. The gap of the toric code in a non-Hermitian staggered field Eq. (4) is given by

�(4,J ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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4η

−3η2 + 5ξ 2

η2 + ξ 2
+ J4

768η3

387η8 − 5232η6ξ 2 − 258η4ξ 4 − 936η2ξ 6 − 153ξ 8

(η2 + ξ 2)3(9η2 + ξ 2)
, η � ξ

8η + J2

4η
+ J4

768η3
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(B4)

For ξ = 0, this gap is given up to higher orders by

�(10,J )
∣∣
ξ=0 = 8η − 3
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and for η = ξ by

�(8,J )
∣∣
η=ξ

= 8η + 1

4
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