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The representation of ground states of fermionic quantum impurity problems as superpositions of Gaussian
states has recently been given a rigorous mathematical foundation [S. Bravyi and D. Gosset, Commun. Math.
Phys. 356, 451 (2017)]. It is natural to ask how many parameters are required for an efficient variational scheme
based on this representation. An upper bound is O(N2), where N is the system size, which corresponds to the
number parameters needed to specify an arbitrary Gaussian state. We provide an alternative representation, with
more favorable scaling, only requiring O(N ) parameters, that we illustrate for the interacting resonant-level
model. We achieve the reduction by associating mean-field-like parent Hamiltonians with the individual terms in
the superposition, using physical insight to retain only the most relevant channels in each parent Hamiltonian. We
benchmark our variational ansatz against the numerical renormalization group, and compare our results to other
variational schemes of a similar nature to ours. Apart from the ground-state energy, we also study the spectrum
of the covariance matrix—a very stringent measure of accuracy. Our approach outperforms some existing
variational schemes and remains quantitatively accurate in the numerically challenging near-critical regime.
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I. INTRODUCTION

A. Motivation

The brute force diagonalization of a generic quantum
many-body problem requires computational resources that
grow exponentially with the system size, and is therefore
impracticable for systems with more than a handful of
particles. A major achievement in the field of strongly cor-
related electrons has been the development of numerical
methods for special classes of problems that circumvent this
exponential barrier. Examples include the numerical renor-
malization group (NRG) [1] for quantum impurity problems,
the density matrix renormalization group (DMRG) [2,3] for
one-dimensional lattice problems, and quantum Monte Carlo
simulations [4] in situations where the sign problem is man-
ageable. However, these numerical methods typically do not
give direct access to useful expressions for correlated ground
states in terms of the bare degrees of freedom appearing in the
microscopic Hamiltonian. Instead, the ground-state structure
must be inferred from the sometimes limited set of observ-
ables the method allows one to calculate.

It is therefore desirable to develop methods that provide
intuition for the nature of correlated ground states, even in
cases where existing methods provide numerically exact an-
swers [5]. A well-established approach in this context revolves
around parent Hamiltonians [6]. The idea is to identify a
Hamiltonian whose ground state can be computed easily and
can serve as an idealization of the correlated state of inter-
est. Since operators do not have to be close to each other

to have similar behavior in a restricted subspace, the parent
Hamiltonian may be very different from the microscopic one,
thus providing a useful perspective on the ground state in
question.

An almost trivial example of the parent Hamiltonian idea
is Hartree-Fock mean field theory, in which an interacting
Hamiltonian is replaced by an optimal noninteracting ap-
proximation. Mean-field theory often serves to identify the
types of behavior that a system may host. However, there
are well-known examples where mean-field theory severely
overestimates the ground-state energy or predicts spontaneous
symmetry breaking when the true ground state is symmetric.
This is typically the case for quantum impurities where even
local perturbations can hybridize distinct symmetry broken
states. Furthermore, mean-field parent Hamiltonians cannot
produce the non-Gaussian correlation functions that often
characterize interacting problems. Going beyond noninteract-
ing parent Hamiltonians requires ingenuity and a case-by-case
approach. This explains why important classes of many-
body problems have to date not benefited from the parent
Hamiltonian method.

In this paper, we focus on one such class, namely,
quantum impurity models. In this context, a favored method
involves constructing variational trial states by forming linear
combinations of Gaussian states. Approximations with linear
combinations of two Gaussians were already used long ago to
obtain a qualitative physical description [7–9]. Adding more
terms in the superposition offers a viable route to arbitrary ac-
curacy, as was demonstrated systematically for the spin-boson
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model [10,11] and the scaling limit of the anisotropic Kondo
Hamiltonian [12]. Recently, Bravyi and Gosset proved analyt-
ically that the ground state of an arbitrary fermionic quantum
impurity problem can be approximated as a superposition of
M Gaussian states, using computational resources that scale
cubically in system size and quasipolynomially in the inverse
of the accuracy [13]. One motivation for further refinement of
such ground-state methods is as follows. It is a challenge to
achieve good real-space resolution of correlations for systems
with O(103) lattice sites. This explains why accurate calcu-
lations of the full Kondo screening cloud were only reported
in recent years [14,15]. Interesting problems, such as study-
ing the interplay between Kondo correlations and moderate
to strong disorder, even in one dimension, are probably be-
yond the capabilities of established methods such as NRG or
DMRG. A fast method that can calculate ground-state corre-
lations for an impurity coupled to real space lattices of at least
O(103) sites is required. Bravyi and Gosset’s results on the
computational complexity of quantum impurity problems sug-
gest that methods based on superpositions of Gaussian states
could fit the bill. Practical algorithms involve minimizing the
expectation value of the energy over the weights of the terms
in the superposition and over the parameters of the Gaussian
states. Recently, an efficient optimization method has been
used [16] to investigate spatial correlations in the notoriously
difficult two-channel Kondo problem. This and other existing
methods consider each Gaussian state to be completely arbi-
trary, which means that the number of variational parameters
per Gaussian state scales quadratically with the system size.
It seems likely that physical insight into the specific system
under consideration could be exploited to reduce the number
of parameters per Gaussian state. Given the complexity of
finding the absolute minimum in a large-scale nonconvex op-
timization problem, such a reduction, if possible, could prove
invaluable.

B. Superposed Gaussians from restricted parent Hamiltonians

In this paper, we demonstrate a strategy to significantly
reduce the number of variational parameters per state in
Gaussian superpositions. We do so by parametrizing the
Gaussian states using noninteracting parent Hamiltonians.
This makes the physical meaning of the parameters trans-
parent and allows us to use significantly fewer variational
parameters than are required to specify an arbitrary Gaussian
state. We demonstrate our ideas by studying the Interacting
Resonant Level Model (IRLM) [17], the simplest quantum
impurity problem in which an electronic impurity orbital in-
teracts with a conduction band to produce Kondo correlations.
In the past, the IRLM has provided an interesting test bed for
studying equilibrium [18–21] and dynamical [22–32] features
of impurity models. Our key insight is the following. When
an electronic impurity interacts with a conduction band, there
are two obvious channels involved. The first is the Hartree
channel, where the charge or spin density on the impurity
induces a site-dependent inhomogenous charge or spin density
in the conduction band. The second is the Fock channel, which
leads to a hybridization of the impurity and the conduction
band orbitals. We take only these two channels into account
when constructing parent Hamiltonians. As a result, the num-

ber of variational parameters in our approach only scales
linearly with the system size, as opposed to quadratically. We
nonetheless obtain results that are significantly more accurate
than some competing variational approaches. We also show
that pairing-type correlations [33,34] do not play a major role
for the model under consideration, so the variational state
can be constructed from Slater determinants rather than more
general Gaussians that host BCS correlations.

In addition, we emphasize here general symmetry consid-
erations. This provides an alternative perspective on the use
of superpositions of a few well-chosen Slater determinants as
variational trial states. An important ingredient of quantum
impurity models is particle-hole symmetry. While it is only
obeyed for a fine-tuned electrostatic potential on the impurity,
particle-hole symmetry-breaking terms become irrelevant at
Kondo correlated fixed points. If we attempt to approximate
the ground state of a fermionic quantum impurity problem
by a single Slater determinant |F 〉, the generic structure of
|F 〉 will be a Fermi sea in which plane-wave orbitals are re-
placed by scattering states in the presence of a static impurity.
Very often, |F 〉 will break a symmetry that the interacting
Hamiltonian H preserves. For simplicity, let us consider a Z2

symmetry such as the above-mentioned particle-hole conjuga-
tion and take its unitary and Hermitian generator to be P. Then
PHP = H , but P|F 〉 �= |F 〉. If the true ground state preserves
the symmetry, one may conjecture a ground-state approxima-
tion of the form |ψ〉 = |F 〉 ± P|F 〉, which we call a Slater
pair, where the two states in the superposition are related to
each other by particle-hole conjugation. Note here that the
single-particle orbitals that are naturally associated with P|F 〉
are different from, but not orthogonal to, those associated with
|F 〉. It therefore typically requires an enormous number of
Slater determinants to express P|F 〉 in the basis associated
with |F 〉 and, as a result, |ψ〉 can potentially describe strong
correlations. There is, however, the following pitfall. Since
|F 〉 and P|F 〉 are associated with different static scatterers,
the orthogonality catastrophe generically causes the overlap
〈F |HP|F 〉 to scale like N−α , where N is the number of parti-
cles in the system and α � 0 is determined by the phase shifts
at the Fermi energy induced by the static scatterers associated
with |F 〉 and P|F 〉 [35]. Generically then, 〈F |HP|F 〉 tends to
zero in the thermodynamic limit. If this happens, |ψ〉 = |F 〉 ±
P|F 〉 is no better an approximation to the true ground state
than |F 〉 alone. However, the orthogonality catastrophe can be
avoided by fine-tuning the scattering phase shifts to produce
α = 0. A natural way to do this is to associate a noninteracting
parent Hamiltonian HF with |F 〉, that has a similar form
to the mean-field Hamiltonian. However, instead of deter-
mining the fields that are responsible for static scattering
by applying the mean-field self-consistency condition, one
views these fields as variational parameters chosen to optimize
〈ψ |H |ψ〉/〈ψ |ψ〉 for |ψ〉 = |F 〉 ± P|F 〉.

The same symmetry considerations were formulated early
on within an approximate variational treatment of the spin-
boson model [36], known as the Silbey-Harris ansatz [9,37].
The spin-boson model describes dissipation in a quantum
mechanical two-level system coupled to a bath of harmonic
oscillators. After nonuniversal ultraviolet modes are elimi-
nated from the spin-boson model and the IRLM, the models
can be mapped onto each other [38–40]. At weak dissipation,
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an ansatz of the form |φ〉 = |+〉|B+〉 − |−〉|B−〉 accurately
approximates the ground state of the spin-boson model. Here
|±〉 refers to the state of the two-level system and |B±〉 de-
scribes a bath state in which each oscillator is in the ground
state corresponding to an equilibrium position that is shifted,
with the shifts depending on oscillator frequency and on
the state of the two level system. It has subsequently been
shown that the Silbey-Harris ansatz can be systematically
improved to arbitrary accuracy by forming a linear combina-
tions of coherent states of the form |φ〉 where the oscillator
displacements and weights are treated as variational parame-
ters [10,11]. A natural generalization in the fermionic context
results in an ansatz:

|�〉 =
M∑

J=1

fJ (|FJ〉 ± P|FJ〉). (1)

The above variational state is a linear superposition of indi-
vidual Slater pairs |FJ〉 ± P|FJ〉. In this way, a single ground
state is associated with two or more noninteracting parent
Hamiltonians (HF,J , PHF,J P). It is important to stress that
the argument that we presented here is heuristic. Despite the
equivalence between the spin-boson model and the IRLM, the
ansatz Eq. (1) is not exactly equivalent to the ansatz employed
previously for the spin-boson model [10,11]. Because a Slater
pair describes all-fermionic microscopic degrees of freedom
(including the impurity), we can use Slater determinants |FJ〉
in which the impurity and conduction band are hybridized.
In the spin-boson model, the microscopic degree of freedom
associated with the impurity is a spin 1/2, while those of the
bath are bosons, and one cannot construct Gaussian states
that hybridize them. Due to the presence of a hybridization
channel in the IRLM, we may expect faster convergence with
respect to the number M of Slater pairs than was found for the
sum of Silbey-Harris terms in the spin-boson model. Indeed,
below we find excellent agreement with numerically exact
IRLM results, in the challenging regime of strong correla-
tions, for M = 2. In contrast, it is not uncommon to employ
M = 8 to reach good convergence in the same regime of the
spin-boson model [10,11].

To assess the accuracy of our trial ground states, we com-
pare to numerically exact results obtained using NRG. Our
model possesses an emergent energy scale, the Kondo tem-
perature, that vanishes at the quantum phase transition. As a
result, a variational trial state can give a seemingly reasonable
approximation to the ground-state energy yet miss important
features of the true ground state at the Kondo scale. We there-
fore need to identify observable quantities that are sensitive
to the nontrivial correlations hosted by the IRLM. For this
purpose, we demonstrate the utility of the covariance matrix
[41,42] Q (also sometimes called the correlation matrix) and,
more particularly, its eigenvalues. The covariance matrix can
be defined as follows. Imagine viewing a fermionic wave
function as a state of a system of N distinguishable particles
that just happens to be antisymmetric under particle exchange.
The covariance matrix is then N times the reduced density
matrix of one of the N particles. All its eigenvalues lie in
the interval [0,1]. Owing to the unavoidable entanglement
between the hypothetical distinguishable particles that is im-
plied by antisymmetrization, Q never describes a pure state.

If (and only if) the fermionic wave function is a pure Slater
determinant, Q has N eigenvalues equal to one and all others
are zero. The eigenvalues of Q(1 − Q) are therefore nonzero
only when nontrivial many-body correlations are present. For
a generic fermionic impurity problem, there is exponential
decay to full occupancy or vacancy, leaving only a handful of
eigenvalues significantly different from zero or one. The re-
maining orbitals, being exponentially close to filled or empty,
do not take part in correlations. Once the handful of correlated
orbitals are known, an accurate approximation to the ground
state can be constructed by solving a few-body problem in
the Fock-space built from only these orbitals. The size of this
few-body problem is independent of N , the actual system size.
It is purely determined by the desired accuracy and the expo-
nential decay rate of the spectrum of Q [13,42]. As a result, the
Q matrix contains nearly complete (up to exponentially small
errors, that may take nonpolynomial time in N to correct)
information about the ground state of a generic fermionic
impurity problem. To accurately reproduce the eigenvalues of
Q(1 − Q) that are significantly different from zero (and the
associated eigenvectors) requires that an approximate state
accurately captures the many-body correlations of the true
ground state. In contrast to this, Hartree-Fock mean field
theory approximates all eigenvalues of Q(1 − Q) as zero.

The rest of this paper is structured as follows. In Sec. II, we
formulate the model that we study and present the discretized
version used for numerics. We then provide the explicit form
of our ansatz and the associated parent Hamiltonians. At this
point, we also discuss the relation between our approach and
existing ones. In Sec. III, we present numerical results. We
benchmark our ansatz against numerically exact results ob-
tained using NRG and compare to some existing variational
approaches for fermionic impurity problems. Having estab-
lished the reliability of our method, we also present results in
a regime inaccessible to NRG. In Sec. IV, we summarize our
approach and main conclusions, and provide an outlook on
future work. Four appendices contain technical details about
our calculations.

II. SYSTEM AND GROUND STATE ANSATZ

A. Model and basic properties

The IRLM describes spinless fermions in a crystal band
with edges at −t and t , interacting with a localized orbital.
We denote the annihilation operator of the localized orbital
by c−1. Band orbitals are labeled by their energy, and the
associated annihilation operators are denoted aε. We assume
a constant density of states in the band. The model incorpo-
rates tunneling between the localized orbital and a single site
(labeled 0) of the crystal, and a density-density interaction
between the localized orbital and crystal site zero. Tunnelling
is controlled by the hybridization strength γ and interactions
by the coupling constant U . The Hamiltonian reads

HIRML =
∫ t

−t
dε εa†

εaε + U

(
n−1 − 1

2

)(
n0 − 1

2

)

+ γ

2
√

t

∫ t

−t
dε (c†

−1aε + a†
εc−1), (2)
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where n−1 = c†
−1c−1 and n0 = c†

0c0 with

c0 = 1√
2t

∫ t

−t
dε aε. (3)

Throughout this paper, we study the most interesting case,
where the Fermi energy is aligned with the on-site energy
(= 0) of the localized level, so the system possesses particle-
hole symmetry. The system then hosts a quantum phase
transition. For γ sufficiently smaller than t , the transition
occurs at Uc � −1.3 t . For U > Uc, the system is in the
symmetric phase, with a unique ground state satisfying the
expectation value 〈n−1〉 = 1/2. For U < Uc, there are two
degenerate ground states. The phase transition is associated
with spontaneous particle-hole symmetry breaking, and can
be diagnosed by applying an infinitesimal on-site energy bn−1

to the localized orbital. In the symmetric phase, this produces
only an infinitesimal change to 〈n−1〉. In the broken symmetry
phase, on the other hand, 〈n−1〉 differs from 1/2 by a finite
amount, even for infinitesimal b. Typical of quantum phase
transitions, there is also an emergent energy scale in the sym-
metric phase that vanishes as the critical point is approached.
It is associated with the polarizability of the localized orbital
and can be defined as

TK = 1

4χ
, χ = ∂b〈n−1〉|b=0. (4)

As mentioned earlier, the IRLM can be mapped onto
the Kondo model and TK is nothing but the Kondo
temperature [43].

For numerical work, we have to truncate the above thermo-
dynamic system to a finite set of electronic modes. Because
we want to make a direct comparison to NRG results and
because we want to access long wavelengths at the lowest
possible numerical cost, we will employ a logarithmic energy
discretization,

εn,± = ±1 + 


2


−nt for n = 0, 1, 2, . . . , �, (5)

with a discretization parameter 
 > 1. The thermodynamic
limit is recovered by sending � → ∞ followed by 
 → 1.
While NRG becomes numerically too demanding for 
 sig-
nificantly less than 1.5, it turns out that many quantities reach
values close to the thermodynamic limit for 
 between 1.5
and 2. After the logarithmic discretization of the energy, a
standard tridiagonalization procedure maps the model onto a
Wilson chain [1] with Hamiltonian

H = U

(
n−1 − 1

2

)(
n0 − 1

2

)
+ γ

(
c†
−1c0 + c†

0c−1
)

+
2�−1∑
n=0

tn(c†
ncn+1 + c†

n+1cn). (6)

Here, the operators cn with n � 1 are not associated with
sites of the physical lattice, but rather with energy shells
corresponding to energy scales ∼t
−n/2 above and below the
Fermi energy. Hopping between energy shells is controlled by
an exponentially decaying hopping amplitude:

tn = (1 + 
−1)(1 − 
−n−1)

2
√

1 − 
−2n−1
√

1 − 
−2n−3

−n/2t . (7)

By truncating the chain to 2� shells, one imposes an in-
frared cutoff of 
−�t . All the results we present are for the
Hamiltonian Eq. (6).

Apart from computing the ground-state energy of the
model, we will study the covariance matrix,

[Q]m,n = 〈c†
mcn〉; m, n ∈ {−1, 0, . . . , 2�}, (8)

where the expectation value is with respect to the ground state.
The properties of Q that were cited in the Introduction can be
derived by considering the expectation value of an arbitrary
additive single-particle operator,

Ẑ =
2�∑

m,n=−1

Zmnc†
mcn, (9)

with respect to the N-particle ground state. On the one hand,
〈Ẑ〉 = Tr(ZQ). On the other hand, 〈Ẑ〉 = NTr(Zρ1), where ρ1

is the reduced density matrix obtained by tracing out all but
one particle. Since Z is arbitrary, Q = Nρ1.

The IRLM Wilson chain manifests particle-hole symmetry
H = PHP†, where P is the unitary and Hermitian particle-
hole conjugation operator,

P =
�∏

n=0

(c†
2n + c2n)(c†

2n−1 − c2n−1), (10)

with action

PcnP = (−1)nc†
n,

P|0〉 = c†
2� . . . c†

−1|0〉. (11)

B. Slater pair ansatz

The approach outlined in the Introduction then leads to a
variational ground-state ansatz of the form

|ψ〉 =
M∑

J=1

fJ (|FJ〉 + σP|FJ〉), (12)

where σ = ±1 is the eigenvalue of |ψ〉 with respect to
particle-hole conjugation P. Here |FJ〉 is the Slater deter-
minant ground state in the half-filled sector of the parent
Hamiltonian

HJ =
2�∑

n=−1

ε(J )
n


−n/2
c†

ncn +
2�∑

n=0

g(J )
n


−n/2
(c†

−1cn + c†
nc−1)

+
2�−1∑
n=0

tn(c†
ncn+1 + c†

n+1cn). (13)

For our definition of P, the ground-state sector (of the sym-
metric phase) has σ = −1. The coefficients fJ , and the
parameters ε(J )

n and g(J )
n are determined by minimizing

Evar = 〈ψ |H |ψ〉
〈ψ |ψ〉 . (14)

In our definition of HJ , we multiply ε(J )
n and g(J )

n by scaling
factors 
n/2 appropriate for shell n. This produces a parame-
ter space in which the region that needs to be searched has
roughly the same size in every direction. Technical details
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of the variational calculation can be found in Appendices A
and B.

The parent Hamiltonians HJ are generalizations of the
Hartree-Fock mean-field Hamiltonian associated with the
model. In the standard mean-field approach, only three ef-
fective parameters appear, namely, the two renormalized
potentials ε−1c†

−1c−1 and ε0c†
0c0 on the impurity and on-site

zero of the chain, respectively, and the renormalized hy-
bridization g0(c†

−1c0 + c†
0c−1) between the impurity and site

zero. Indeed, minimizing the energy with respect to a single
determinant, one finds a minimum when εn and gn are zero
for n � 1, and the remaining parameters obey the expected
Hartree-Fock self-consistency conditions:

ε−1√



= U

(
〈n0〉 − 1

2

)
, (15)

ε0 = U

(
〈n−1〉 − 1

2

)
, (16)

g0 = γ − U 〈c†
−1c0〉. (17)

This mean-field ansatz misses crucial Kondo physics. Yet,
building a Slater pair ansatz parametrized only with the three
mean-field parameters ε−1, ε0, and g0 does not lower the
energy. Indeed, in the symmetric case where ε−1 = ε0 = 0,
the two members of the pair are equivalent, and this ansatz
reduces to the standard Hartree-Fock state. On the other hand,
if the parent Hartree-Fock state breaks particle-hole symme-
try, it can be verified that the two members of the pair are
orthogonal to each other due to the Anderson orthogonality
catastrophe. Again, the variational energy of the Slater pair
does not improve with respect to standard mean-field theory.
Thus, the long-range potential and hybridization in the parent
Hamiltonian Eq. (13) are crucial to capture Kondo correla-
tions. While more general Gaussian states [13,16,33,34] have
been used recently, one of our main goals is to show that
restricting parametrization to a site-dependent potential and
hybridization suffices to obtain accurate results for the IRLM.

Above we presented an intuitive picture applicable when
particle-hole conjugation symmetry is present. If an on-site
energy is added to the impurity site, it cuts off Kondo physics
at an energy scale equal to this bias. From a many-body
perspective, the resulting ground state is less correlated than
the unbiased case. It may, however, require twice the number
of variational parameters to capture because the Slater deter-
minants in the ansatz no longer come in pairs that are exactly
conjugate (see Ref. [11] for an illustration in the case of the
spin-boson model).

C. Other approaches

To evaluate the quality of our trial state, it is useful to
compare to existing methods based on comparable strategies.
The most general of these is the one of Ashida et al., which
uses a canonical transformation to decouple the impurity from
the bath [33,34]. The ground state of the transformed system
is then approximated as a single Gaussian state [44,45]. This
approach does not aim to achieve arbitrary accuracy and only
explores a restricted region of Hilbert space. Nonetheless, the
error it makes for the ground-state energy of the Kondo model
is less than 0.5% in a significant portion of the phase diagram.

Another attractive feature is that it has proved extensible to
the description of dynamics. We will refer to this method as
the canonically transformed Gaussian (CTG) approach.

To benchmark our approach, we applied the CTG approach
directly to the IRLM. The appropriate canonical transforma-
tion for the Hamiltonian Eq. (6) is

T = 1√
2

[1 + P(2n−1 − 1)], (18)

with the particle-hole conjugation operator P defined in
Eq. (10). This transforms the conserved charge-conjugation
parity into the occupation index of the localized orbital, i.e.,
T PT † = 1 − 2n−1. In the symmetric phase and in the untrans-
formed frame, the unique ground state has charge conjugation
parity −1. Hence, in the transformed frame, the localized
orbital is occupied. In the ground-state sector where n−1 = 1,
the transformed Hamiltonian for sites n = 0, 1, . . . , 2� reads

T HT † = U

2

(
n0 − 1

2

)
+ γ c0P +

2�−1∑
n=0

(tnc†
ncn+1 + H.c.),

(19)

where

P = (c†
2� + c2�)(c†

2�−1 − c2�−1) . . . (c†
0 + c0) (20)

is the charge conjugation operator for the many-body sys-
tem consisting of sites 0 to 2� such that P† = P , P2 = 1
and PcnP = (−1)nc†

n, n = 0, 1, . . . , 2�. Note that the trans-
formed Hamiltonian is completely nonlocal due to the term
γ c0P . In the transformed frame, the exact ground state takes
the form c†

−1|�〉, where |�〉 is the many-body ground state of
Eq. (19). The CTG approach assumes a trial state c†

−1|G〉, in
which the Gaussian state |G〉 is the ground state of a generic
quadratic parent Hamiltonian,

HG =
2�∑

mn=0

(hmnc†
mcn + �mnc†

mc†
n + �∗

mncncm), (21)

with n−1|G〉 = 0. Mapping back to the original frame, the
CTG ansatz for the ground state of H in Eq. (6) then reads

|ψCTG〉 = 1√
2

(c†
−1|G〉 − P|G〉), (22)

The CTG state is obtained by optimization over all possible
parent Hamiltonians HG.

Two well-known earlier variational schemes can be ob-
tained from the trial state Eq. (22) by placing restrictions on
the Gaussian state |G〉. When |G〉 is taken to be of the form

2�∑
m=0

ψmc†
m|F 〉, (23)

where |F 〉 is the (� − 1)-particle Fermi sea ground state of
the Wilson chain Eq. (6) with U = 0, γ = 0, and n−1 = 0,
one obtains the equivalent of Yosida’s Kondo trial state [46],
translated into the language of the IRLM. Alternatively, when
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the parent Hamiltonian HG is taken to be of the form

2�−1∑
n=0

tn(c†
ncn+1 + c†

n+1cn) +
2�∑

n=0

vnc†
ncn, (24)

i.e., the kinetic term of the Wilson chain, plus a particle-hole-
symmetry breaking on-site energy vn, one obtains the IRLM
equivalent of the original Silbey-Harris [9,37] approximation
for the Ohmic spin-boson model.

It is important to note that the CTG state does not con-
tain terms of the form c†

−1cn or c†
nc−1 that hybridize the

localized orbital with the rest of the chain, while our parent
Hamiltonians do include such terms. The omission of such
terms in the CTG approach is a reasonable price to pay to
have a formalism that applies to generic systems in which
the impurity may have very different degrees of freedom from
the bath. However, in situations where the combined impurity
plus bath constitutes a system of indistinguishable particles,
it seems reasonable to include hybridization terms. For the
IRLM, the hybridization terms allow the ansatz to reduce to
the exact ground state when U = 0, and to be at least as
accurate as Hartree-Fock mean field theory when U �= 0. On
the other hand, the CTG parent Hamiltonian contains pairing
terms �mnc†

mc†
n + �∗

mncncm. This may capture many-body cor-
relations beyond the reach of a single Slater determinant. It is
interesting to ask whether or not these terms mimic the effect
of hybridization terms in our approach. We also note that the
number of variational parameters in the CTG approach scales
quadratically with the system size, whereas in our approach it
scales linearly.

III. NUMERICAL RESULTS

A. Ground-state energy

We now present numerical results in which we compare
our Slater pair ansatz, optimized to yield the lowest possible
variational energy Evar, to various results: Hartree Fock mean-
field theory, the CTG approach, and NRG. In the absence of
(numerically) exact methods, one can assess the accuracy of a
variational trial state by calculating the standard deviation of
the energy in the trial state, and comparing this to an estimate
of the energy scale (such as the Kondo temperature) of the
physics one hopes to capture. However, in the present case,
the NRG results are very precise (nine or more significant
digits), and we assess the accuracy of approximate trial states
by comparing to NRG.

Unless otherwise stated, results are for the IRLM Wilson
chain with 
 = 1.5, which allows good convergence to the
thermodynamic limit of most observable quantities. We chose
the size parameter � = 28, which translates into a system of
29 particles distributed among 58 orbitals and an infrared cut-
off scale of 10−5t . We fixed the hybridization to γ = 0.15t . If
hybridization is increased, the ansatz becomes more accurate
but the separation of scales between Kondo and ultraviolet
physics, required for universality, eventually becomes lost.
The considerations that dictated this choice of parameters
are further explained in Appendix C. With the parameters as
chosen here, the Kondo length becomes larger than the system
size for U < −0.9t . We are thus able to probe fully developed
Kondo correlations for interaction strengths U > −0.9t . Our

FIG. 1. Top panel: Relative ground state energy �EGS of the
IRLM measured with respect to the γ = 0 ground-state energy, as
a function of interaction strength U . Results are for the Wilson chain
with � = 28 sites, discretization parameter 
 = 1.5, and hybridiza-
tion γ = 0.15t . We compare the essentially exact NRG results to
Hartree-Fock mean field theory (MF), the CTG approach, and the
M = 1 and M = 2 Slater pair approximations. Bottom panel: Rela-
tive error �Evar/�ENRG − 1 with respect to the NRG computation,
shown in log scale and for a larger region of the U axis than in the
top panel.

goal is not only to show that the trial state yields a reasonable
estimate for the ground-state energy but also that it accurately
reproduces the correlation structure encoded in the covariance
matrix Q. To do so, we will compare NRG and variational
results for the spectrum of Q(1 − Q).

The first variational results we present are for the optimized
energy Evar as a function of U . In Fig. 1, we compare the
different variational approaches with NRG. Here are shown
results for Hartree-Fock mean field theory, the CTG approach,
and the M = 1 and M = 2 Slater pair approximations. For
a given value of U , we compute the relative ground-state
energy �EGS with respect to the ground-state energy of the
corresponding system with γ = 0. This subtracts a large
kinetic energy contribution of the particles in the chain as well
as a trivial contribution ∼ − |U |/4 at large |U |. We denote
energies measured from this offset as �Evar for the variational
states and �ENRG for the NRG benchmark. Both decrease
monotonically as a function of U , from 0 at large negative
U to −|γ | at large positive U .
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Comparing the Slater pair approximation to the numeri-
cally exact NRG calculation and Hartree-Fock, we see the
following. In the phase with broken particle-hole symmetry
(U < −1.3t), the M = 1 ansatz is equivalent to Hartree-Fock
mean field theory, whereas in the symmetric phase it clearly
outperforms the latter. Indeed Hartree-Fock predicts spon-
taneous symmetry breaking (nonzero value of 〈n−1〉 − 1/2)
already for U < −0.3t . In the interval −1.3t < U < 0, the
relative error associated with the M = 1 ansatz drops rapidly
from 0.05 of the ground-state energy to zero. For U = −0.9t ,
where Kondo correlations become fully developed, the M = 1
ansatz produces a relative error of less than 1%. The M = 1
ansatz makes an error that is typically five times smaller than
the CTG approach in the interval −1.3t < U < 0, while in-
volving far fewer variational parameters. For positive U , the
relative error is at most 10−5 of the ground-state energy, drop-
ping to 10−6 at U = 3t . The error is between 20 and 100 times
smaller than that associated with the CTG approach, showing
that the Slater pair ansatz embodies a better representation of
the physics of the IRLM ground state.

Improving our ansatz by using M = 2 Slater pairs further
lowers the ground-state energy. In the symmetry-broken phase
for U = −2t , the error is ten times smaller than Hartree Fock,
and the absolute error is 4 × 10−6t . At the phase transition,
the relative error is 5 × 10−3 of the ground-state energy, or
20 times smaller than Hartree Fock. The relative error at
U = −0.9t , where Kondo correlations are fully developed,
is one part in 1000, two orders of magnitude more accurate
than the CTG approach. For larger U , the error rapidly drops
further. For −0.9t < U < 0, the M = 2 ansatz is typically
between two and four orders of magnitude more accurate than
Hartree-Fock, and two orders of magnitude more accurate
than the CTG approach. For U > 0, the maximum relative
error is 10−6 of the ground-state energy and drops to 10−7 at
U = 3t . This is about three orders of magnitude more accurate
than the CTG approach.

The interesting part of the IRLM’s parameter space
roughly corresponds to −1.3 t < U < 0, where the Kondo
temperature is significantly less than the ultraviolet scale t .
To assess the accuracy of our approximation in this regime,
one can compare the Kondo temperature to Evar − ENRG. If
Evar − ENRG is sufficiently smaller than TK , the variational
state accurately captures low-temperature Kondo correlations
in the IRLM. We note that realistic Kondo temperatures are
typically around 102 to 103 times smaller than the ultraviolet
scale set by the band width (or Fermi energy). Now consider
our results at U = −0.8 t . Here the Kondo temperature is
∼10−4 t , i.e., small by realistic standards. The true ground-
state energy is ∼ − 10−2 t and the error associated with the
M = 2 ansatz is 3 × 10−4|E0|, i.e., it equals 3 × 10−6 t . Since
this is 30 times less than the energy scale where Kondo
physics sets in, the M = 2 ansatz describes Kondo physics
very well for realistic couplings. For completeness, we replot
Evar − ENRG in units of TK in the interval U ∈ [−1.0 t,−01 t]
in Appendix D, for the CTG, M = 1, and M = 2 Slater pair
approaches.

When M was increased beyond 2 (not shown), our rudi-
mentary global minimization procedure yielded only very
small improvements in the ground-state energy. In principle, it
could be that for the IRLM, O(N )-parameter parent Hamilto-

nians are not sufficient to obtain arbitrary accuracy. However,
we think it more likely that further significant convergence to
the ground state can be obtained by increasing M beyond 2,
if a more sophisticated minimization procedure is employed.
We base this statement on results obtained for the ohmic spin-
boson model, using trial states consisting of superpositions of
coherent bath states entangled with the spin impurity [11,12].
Using bosonization identities, the trial state for the spin-
boson model can be related to a superposition of Slater pairs
for which parent Hamiltonians are endowed with a Hartree
channel only. This leads to slower initial convergence as a
function of M, but the simpler bosonic description revealed
crucial analytical insights about the structure of the mini-
mization problem that allowed for efficient minimization up
to M ∼ 10. Power-law convergence (without saturation) with
increasing M was seen. We did not pursue the question of M
convergence in the IRLM further because the M = 2 ansatz
is already sufficiently accurate for realistic Kondo tempera-
tures of order 104 times smaller than the Fermi energy. Yet,
optimizing the convergence of the minimization algorithm for
Slater pair states remains an important issue, as considered,
for instance, in the recent Ref. [16].

Examining the CTG approach further, we find that there
is no pairing in the region U > −0.9t where Kondo correla-
tions are fully developed. In other words, in this regime, |G〉
reduces to an �-particle Fermi sea (Slater determinant). Thus
we conclude that pairing correlations allowed in the CTG ap-
proach are not able to mimic the hybridization terms included
in the parent Hamiltonians of the Slater pair approximation.
We stress that this conclusion is for the IRLM. Although the
IRLM is equivalent to the Kondo model, applying the CTG
approach to the Kondo model is in principle not equivalent
to applying it to the IRLM. Since the fermions in the IRLM
are squares of the fermions in the Kondo model, the degrees
of freedom that are assigned a Gaussian correlation structure
are not the same in the two cases. Nonetheless, in their ap-
plication of the CTG approach to the Kondo model, Ashida
et al. found similar relative errors as we did for the IRLM,
ranging from around 0.1 close to the phase transition to ∼10−4

deep in the symmetric phase. We do not show CTG results for
the symmetry-broken phase of the IRLM. In this phase, the
restrictions placed on the CTG trial state conspire with the or-
thogonality catastrophe to produce a result that is guaranteed
to be worse than Hartree-Fock mean-field theory. It should
be noted that, in contrast, when the CTG approach is applied
to the Kondo model, the ferromagnetic phase, equivalent to
the symmetry-broken phase of the IRLM, yields the most
accurate results, indicating that CTG performs better for the
Kondo model than for the IRLM, presumably due to the fact
that the Kondo impurity spin is distinguishable from the bath
electronic states.

B. Covariance matrix spectrum

We have demonstrated that, unlike mean-field theory, or
the CTG approach, the M = 2 Slater pair ansatz is reliable
throughout the whole phase diagram of the IRLM and is
nearly exact for U > 0. We now focus on the strongly corre-
lated physics of the symmetric phase, −0.9t < U < 0, for the
chosen parameters of the model. Our aim is to further quantify
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FIG. 2. Eigenvalue spectrum of Q(1 − Q). Top panel: Compar-
ison between NRG, the CTG approach, and the M = 1 and M =
2 Slater pair approximations for U = −0.6t (filled symbols) and
U = 0.8t (open symbols). Results are for γ = 0.15t , 
 = 1.5, and
� = 28. Bottom panel: Comparison between NRG and the M = 2
Slater pair ansatz, at various U , for the same set of parameters.

the extent to which our variational approach reproduces the
many-body correlations present in the ground state. For this
purpose, we consider the covariance matrix Q Eq. (8). Before
presenting results for our trial states, we review a few relevant
properties of the Q spectrum. In the symmetric phase, particle-
hole symmetry implies that the eigenvalues of Q(1 − Q) are
at least twofold degenerate. When representing the correlation
spectrum, we will show only one member of each pair and
order them in decreasing order λ1 � λ2 � . . . � λ�+1. NRG
results reveal a further approximate twofold degeneracy of
the largest eigenvalue of Q(1 − Q), i.e., λ1 � λ2. Exponential
decay abruptly sets in from λ3, i.e., λn = Ae−xn for n � 3. The
approximate fourfold degeneracy of the largest eigenvalues of
Q(1 − Q) reveals a Bell-state-like nature of the IRLM ground
state. This is related to the fact that at negative U , the localized
orbital and site zero of the chain tend to be either both filled
or both empty (similarly at positive U , if the localized orbital
is filled, the site zero tends to be empty and vice versa).

In Fig. 2, we compare our variational results to NRG for the
spectrum of Q(1 − Q). In the top panel, we present results for
the CTG and M = 1 and M = 2 Slater pair approximations.
We see that all three variational states produce good results for
λ1 and λ2, the two largest eigenvalues that are most directly
linked to the Bell-like nature of the particle-hole symmetric
ground state. At U = −0.8t (filled symbols), it is clear that

eigenvalues λ3 to λ5 are underestimated more severely, the
less accurate the variational state, i.e., the CTG approach
gives the smallest eigenvalues, followed by M = 1, and then
M = 2, which very nearly coincides with NRG. Recalling
that all eigenvalues of Q(1 − Q) are zero for a single Slater
determinant, the interpretation is as follows: The CTG ap-
proach and the M = 1 ansatz underestimate eigenvalues λ3

to λ5 because these trial states are less correlated than the true
ground state. We further see that beyond a certain index n,
all variational states produce spurious plateaus in the spectra,
whereas the true spectrum continues to decay exponentially
with increasing n. These plateaus arise because a given family
of variational states can only produce physical correlations
above a certain resolution. Weaker correlations present in the
variational state are determined not by physical effects but
by the limited form imposed on the ansatz. For U = −0.8t ,
we see that the M = 2 ansatz accurately reproduces λ1 to λ7,
thus accounting for all eigenvalues down to 10−5. At U = 0.8t
(open symbols), all three trial states reproduce the spectrum of
Q(1 − Q) well, down to eigenvalues ∼10−7. This is consistent
with the increased accuracy of the ground-state energy at
positive U with respect to negative U , as seen in Fig. 1. Not
only do the eigenvalues decay faster for positive U , but their
magnitude is also smaller for positive U than for negative U .
Thus, the improved accuracy of all the variational states for
positive U is tied to the fact that many-body correlations are
weaker in this parameter regime. In the lower panel of Fig. 2,
we compare the M = 2 ansatz (open symbols) to NRG at
various values of U . At U = −1.2t , the first eight eigenvalues
are accurately reproduced, representing a threshold between
10−4 and 10−5. This threshold improves to 10−8 at U = 0.5t .
However, at U = 0.5t the ground state contains weaker many-
body correlations than close to the phase transition and, as a
result, there are only five eigenvalues above the threshold to
the spurious plateau behavior.

If the eigenvectors of Q, associated with eigenvalues signif-
icantly different to zero or one are known to good accuracy, an
accurate approximation to the ground state can be constructed
by solving a few-body problem in the Fock space built from
only these orbitals [13,42]. The size of this few-body problem
is independent of N , the actual system size. It is purely de-
termined by the desired accuracy and the exponential decay
rate of the spectrum of Q. It is therefore worth checking how
accurately the Slater pair ansatz reproduces these eigenvec-
tors. In Fig. 3, we compare eigenvectors associated with λ1

and λ6 at U = −0.8t , calculated with the Slater-pair ansatz,
to NRG results. (This corresponds to one of the spectra shown
in Fig. 2.) We see very good agreement.

It is interesting to note that the Slater pair ansatz remains
accurate beyond the range of 
 accessible through NRG.
Using NRG, we have verified that the spectrum of Q(1 − Q)
has no discernible 
 dependence for 2 > 
 > 1.5 [42]. This
provides strong evidence that 
 = 1.5 results have converged
to the continuum limit Eq. (2). However, it is challenging
to push the NRG calculation of Q well beyond 
 = 1.5. In
contrast to this, we could perform M = 2 variational calcu-
lations at U = −0.5 t , γ = 0.15 t , � = 28, and successively
lower 
. Results are presented in Fig. 4. We see that the
part of the Q(1 − Q) spectrum that is accurately reproduced
by the ansatz is insensitive to 
, for 
 � 1.2, but changes
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FIG. 3. Eigenvectors of Q associated with λ1 and λ6 in Fig. 2 at
U = −0.8t . Closed symbols correspond to data calculated using the
M = 2 ansatz, while open symbols represent NRG results.

significantly for 
 = 1.1. To understand this, we note that the
Kondo temperature TK ∼ 3 × 10−3t is of the same order as
the infrared cutoff for 
 = 1.2, and an order of magnitude
smaller than the infrared cutoff when 
 = 1.1. (The number
of sites on the Wilson chain was kept fixed when changing the

 parameter.) We conclude that the spectrum of Q(1 − Q) is
insensitive to 
 as long as the Kondo temperature is larger
than the infrared cutoff. We therefore expect the spectrum of
Q(1 − Q) to remain invariant if we take the continuum limit
by first sending the infrared cutoff to zero (� → ∞) before
sending 
 → 1. This confirms that the exponential decay of
eigenvalues is not an artifact of the logarithmic discretization
of the conduction band and is an intrinsic property of the
quantum impurity problem [13,42].

FIG. 4. Eigenvalue spectrum of Q(1 − Q) in descending order
for various discretization parameters 
, for U = −0.5 t , γ = 0.15 t ,
and � = 28. Only one eigenvalue of each degenerate pair is plotted.
Results were obtained variationally using M = 2 pairs of Slater
determinants. The infrared scale 
−� t varies from 5 × 10−6 t at

 = 1.5 to 7 × 10−2t at 
 = 1.1, while the Kondo temperature is
3 × 10−3 t . The apparent weakening of correlations for 
 = 1.1 is
thus due to finite-size effects that cut off the full development of the
Kondo state.

IV. DISCUSSION AND CONCLUSIONS

Quantum impurity problems in which a localized orbital
hosts electrons that interact with a conduction band play an
important role in the field of strongly correlated electrons.
Here we investigated the many-body wave function of the
simplest, spinless case known as the IRLM, a system that
also provides a window into the Kondo problem. We formu-
lated a variational ansatz that provides an intuitive picture
of this wave function based on the superposition of Slater
determinants and that accurately describes the zero temper-
ature limit. Our rational was to restore a discrete symmetry
that is spuriously broken in mean-field theory by forming
appropriate linear combinations of symmetry-broken mean-
field states. The key insight is that this must be done in a way
that avoids the orthogonality catastrophe between symmetry-
broken terms by introducing some extra freedom with respect
to the mean-field functional. Thus we arrived at a state that
is a linear combination of nonorthogonal Slater determinants,
each associated with a different static scatterer in place of the
dynamic impurity. Much like mean-field theory, the natural
variational parameters are the matrix elements of the asso-
ciated single-particle Hamiltonians. Focusing on the Hartree
and Fock channels, we endowed each parent Hamiltonian with
a set of variational parameters whose size scales linearly with
the size of the system. We were able to obtain quantitatively
accurate results up to very large correlation (Kondo) lengths.
We compared our method to existing variational approaches
that construct correlated states using uncorrelated electronic
states as building blocks. The comparison to the CTG approxi-
mation [33,34] showed that pairing-type correlations, allowed
by generic Gaussian states, are not relevant for the physics of
the IRLM. Clarifying for which families of impurity models
such off-diagonal correlations play a major role would be
physically insightful.

We find that our method is significantly more accurate
than comparable methods that do not harness the full power
of the superposition principle. Indeed, it has recently been
shown that superpositions of Gaussian states can approximate
the ground states of fermionic impurity systems to any de-
sired accuracy using resources that scale quasipolynomially
in 1/accuracy [13]. Our result demonstrates that physical in-
sight into the specific problem under consideration can lead
to practical algorithms employing the superposition principle,
for which the number of variational parameters are O(system
size). This may significantly simplify the optimization prob-
lem compared to existing algorithms that use a general
parametrization of Gaussian states, involving O(system-size2)
variational parameters.

By studying the eigenvalues of the covariance matrix Q,
we were also able to quantify the extent to which our trial
state encodes many-body correlations correctly. Requiring the
ansatz to reproduce the spectrum of Q(1 − Q) is a far more
stringent and unbiased criterium than reproducing expectation
values for a small set of observables, such as energy and
the order parameter. Again, the conclusion is that our ansatz
does an excellent job even at very large correlation lengths.
As the critical interaction strength Uc is approached from
within the symmetric phase, the ground state becomes more
and more correlated. (The spectrum of Q has more and more
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eigenvalues significantly different from zero or one.) It is
interesting to note the significant improvement in accuracy
that is obtained in this regime when a second Slater pair
(M = 2) is added to the single pair (M = 1) ansatz. It implies
that the introduction of new Slater pairs mirrors the buildup of
correlations as the critical point is approached. We envision
future work in which we develop numerical minimization
methods that can efficiently explore the larger parameter space
associated with more Slater pairs and in this way quantify
the above statement more precisely. It would, for instance,
be insightful to know how many Slater pairs are required for
a specified accuracy, as a function of the distance from the
critical point, and to relate it to the bound derived in Ref. [13].

We also envision future work in which the present method
is extended to study nonequilibrium dynamics. As was done
within the CTG approach, one could proceed by the standard
method of projecting the dynamics onto the region of Hilbert
space that is parametrized by the variational ansatz. The CTG
ansatz is a restricted form of the superposed Gaussian ansatz.
Thus, the same method, applied to Gaussian superpositions
as considered in Ref. [13], is expected to be more accu-
rate than the already successful CTG approach. It is then
an open question whether our restriction to O(N ) variational
parameters remains accurate for dynamical problems. We be-
lieve that the prospects are good, based on existing results
for nonequilibrium dynamics of the ohmic spin-boson model
[47,48]. Indeed, as we explained in Sec. I B, it can be seen
via bosonization that the superposed Slater pair ansatz with
its O(N ) parameters amounts to a generalization of the ansatz
that was employed for the spin-boson model.
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APPENDIX A: MATRIX ELEMENTS INVOLVING
NON-ORTHOGONAL SLATER DETERMINANTS

To evaluate the matrix elements of the covariance matrix
Q, and the expectation value of the Hamiltonian with respect
to our trial state, we have to compute quantities of the form
〈X |Ô|Y 〉 where Ô is a product of up to four creation and anni-
hilation operators from the set {cm; c†

m| m = −1, 0, . . . , 2�},
while |X 〉 and |Y 〉 are single Slater determinants. What makes
the situation slightly unusual is that the single-particle orbitals
that are naturally associated with |X 〉 and |Y 〉 are drawn from
distinct single particle bases, and hence the orbitals of |X 〉 are
not the same or orthogonal to those of |Y 〉. In this Appendix,
we derive simple formulas applicable to this situation. We
start by defining the objects we need.

Let N � 2� + 2 be the number of particles in the system.
Let {xα|α = 1, . . . , N} and {yα|α = 1, . . . , N} be two sets of
fermion annihilation operators. The members of each set can
be expressed as linear combinations of c−1, . . . , c2�. We de-
note the respective expansion coefficients Xjα and Yjα , which
are rectangular (2� + 2) × N matrices. Throughout this
Appendix, we will use Einstein summation convention to

imply sums over repeated indices. We can thus write

x†
α = c†

j Xjα, y†
α = c†

jYjα. (A1)

Throughout, greek indices imply a range {1; . . . ; N} over
particles, while lowercase roman indices imply a range
{−1; . . . ; 2�} over orbitals. Note that in contrast to the orig-
inal fermions cm, neither the xα nor the yα operators are
associated with complete single-particle bases. In what fol-
lows below, we do not even need to assume that the orbitals
associated with {xα|α = 1, . . . , N} are mutually orthogonal,
only that they are linearly independent. (The same goes for
{yα|α = 1, . . . , N}.) We assume that the xα and yα operators
are members of a different single-particle basis, so

{xα, y†
β} = Mαβ, M = X †Y. (A2)

Using our two sets of N creation operators, we construct two
single-Slater determinants

|X 〉 = x†
N . . . x†

1|0〉, |Y 〉 = y†
N . . . y†

1|0〉. (A3)

The overlap between |X 〉 and |Y 〉 is therefore

〈X |Y 〉 = Det M. (A4)

In the formulas we present below, we assume Det M �= 0, so
M−1 exists. However, the limit Det M → 0 is regular.

First, we consider an arbitrary single-particle additive
operator:

Ẑ = Zmnc†
mcn. (A5)

We will prove that its overlap between two distinct Slater
determinants can be evaluated as

〈X |Ẑ|Y 〉 = 〈X |Y 〉Tr[X †ZY M−1]. (A6)

For the purpose of the proof, we define new fermion cre-
ation operators, and an associated Slater determinant:

ȳ†
α (λ) = eλẐ y†

αe−λẐ = c†
j [e

λZY ] jα, |Ȳ (λ)〉 = eλẐ |Y 〉. (A7)

The anticommutator between xα and ȳ†
β (λ) evaluates to

{xα, ȳ†
β (λ)} = M̄(λ)αβ, M̄(λ) = X †eλZY, (A8)

and the overlap between |X 〉 and |Ȳ (λ)〉 gives

〈X |Ȳ (λ)〉 = Det M̄(λ). (A9)

The result we want to prove now follows by noting
that 〈X |Ȳ (λ)〉 can be used as a generating function for
〈X |Ẑ|Y 〉, i.e.,

〈X |Ẑ|Y 〉 = ∂λ 〈X |Ȳ (λ)〉|λ=0

= ∂λ exp Tr ln M̄(λ)|λ=0

= Det M̄(λ)Tr {[∂λM̄(λ)]M̄(λ)−1}∣∣
λ=0

= 〈X |Y 〉Tr[X †ZY M−1], (A10)

which completes the proof.
To compute the expectation value of interaction terms, we

also need to evaluate quantities of the form 〈X |Ẑ1Ẑ2|Y 〉 where
both Ẑ1 and Ẑ2 are single-particle additive operators of the
form Eq. (A5). We do so employing a strategy that is similar
to the above. We use a generation function

〈X |eλ1Ẑ1 eλ2Ẑ2 |Y 〉 = Det(X †eλ1Z1 eλ2Z2Y ), (A11)
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such that

〈X |Ẑ1Ẑ2|Y 〉 = ∂λ2∂λ1〈X |eλ1Ẑ1 eλ2Ẑ2 |Y 〉|λ1=λ2=0. (A12)

On the right-hand side, we first take the λ1 derivative and
subsequently set λ1 to zero to obtain

∂λ1〈X |eλ1Ẑ1 eλ2Ẑ2 |Y 〉|λ1=0

= 〈X |eλ2Ẑ2 |Y 〉Tr[X †Z1eλ2Z2Y (X †eλ2Z2Y )−1]. (A13)

Then taking the λ2 derivative and setting λ2 to zero, we arrive
at the final result:

〈X |Ẑ1Ẑ2|Y 〉 = 〈X |Ẑ1|Y 〉〈X |Ẑ2|Y 〉/〈X |Y 〉
+ 〈X |Y 〉Tr[X †Z1(1 − Y M−1X †)Z2Y M−1].

(A14)

While the above form will be most useful for our numerical
calculations, further insight into the result can be gained by
defining four new fermion annihilation operators q1, . . . , q4,
and two single-particle additive operators q†

1q2 and q†
3q4, i.e.,

qi = c jA ji, Ẑ1 = q†
1q2, Ẑ2 = q†

3q4. (A15)

Substituting this Ẑ1 and Ẑ2 into the result Eq. (A14) and
commuting q2 past q†

3q4, we obtain

〈X |q†
1q†

2q4q3|Y 〉 = 1

〈X |Y 〉 [〈X |q†
1q3|Y 〉〈X |q†

2q4|Y 〉

− 〈X |q†
1q4|Y 〉〈X |q†

2q3|Y 〉], (A16)

which is a very straightforward generalization [49] of the
familiar Wick’s theorem when |X 〉 = |Y 〉.

APPENDIX B: VARIATION OF THE ENERGY

We used a quasi-Newton method to optimize trial states.
We thus had to calculate the expectation value

〈E〉 = 〈ψ |H |ψ〉
〈ψ |ψ〉 (B1)

of the Hamiltonian with respect to the trial state, as well
as its variation δ〈E〉 in response to changes of the varia-
tional parameters { fJ , ε

(J )
n , g(J )

n } appearing in the set of parent
Hamiltonians Eq. (13). The expectation value 〈E〉 as well as
its fF derivatives can be calculated directly from the results of
the previous section. The derivatives with respect to ε(J )

n and
g(J )

n requires some further analysis, which we present here.
Let δ stand for the partial derivative with respect to any

of the ε(J )
n or g(J )

n . Note that the IRLM Hamiltonian as well
as the parent Hamiltonians associated with our trial state can
be simultaneously represented as real symmetric matrices.
We can therefore perform our analysis in a real rather than
complex Hilbert space, and this allows us to write the variation
of 〈E〉 as

δ〈E〉 = 2
〈δψ |H |ψ〉 − 〈E〉〈δψ |ψ〉

〈ψ |ψ〉 . (B2)

Recall that our trial state is

|ψ〉 =
M∑

J=1

fJ (1 − P)|FJ〉, (B3)

where |FJ〉 is the Fermi-sea ground state of the parent
Hamiltonian HJ , and P the conjugation operator over all
fermions. The partial derivative of the trial state is therefore
related to the partial derivative δHJ of the parent Hamilto-
nian by first-order perturbation theory on HJ . We note that
δHJ is a single-particle additive operator that creates one
particle-hole pair in the Fermi sea |FJ〉. We denote by xm

(m = 1, . . . , 2� + 2) the fermion annihilation operators as-
sociated with the complete single-particle basis in which the
given HJ that we are varying is diagonal. When referring to
operators associated with the � + 1 lowest energy orbitals of
HJ that are occupied, we use an unprimed greek index, i.e.,
xα , α = 1, . . . , � + 1. When referring to one of the � + 1
highest energy orbitals of HJ , that are unoccupied, we use a
primed greek index, i.e., xα′ , α′ = � + 2, . . . , 2�. With these
conventions, we then have

|δψ〉 = fJ

�+1∑
α=1

2�∑
β ′=�+2

x†
β ′xα|FJ〉�αβ ′ ,

�αβ ′ = 〈FJ |x†
αxβ ′δHJ |FJ〉

ε
(J )
α − ε

(J )
β ′

, (B4)

and hence

δ〈E〉 = 4 fJ

M∑
J ′=1

�+1∑
α=1

2�∑
β ′=�+2

�αβ ′aJ ′OJ ′αβ ′ ,

OJ ′αβ ′ = 〈FJ |x†
αxβ ′H |FJ ′ 〉 − 〈FJ |x†

αxβ ′ (H − 〈E〉)|F̃J ′ 〉
〈ψ |ψ〉 ,

(B5)

where we use the shorthand

|F̃J〉 = P|FJ〉 (B6)

for the particle-hole conjugate Slater determinant to |FJ〉.
By setting |X 〉 = |FJ〉 and either |Y 〉 = |FJ〉 or |Y 〉 = |F̃J〉,

we are left with the task of calculating 〈X |x†
αxβ ′H |Y 〉. We

focus on the term in H containing the density-density inter-
action between sites −1 and 0. The remaining terms in the
Hamiltonian can be done using the same principles, but are
simpler because they are single-particle additive terms.

We note that x†
β ′xα|X 〉 is a single Slater determinant. We

can therefore apply Eq. (A16) and obtain

〈X |x†
αxβ ′n−1n0|Y 〉 = 〈X |x†

αxβ ′n−1|Y 〉〈X |x†
αxβ ′n0|Y 〉

〈X |x†
αxβ ′ |Y 〉

− 〈X |x†
αxβ ′c†

−1c0|Y 〉〈X |x†
αxβ ′c†

0c−1|Y 〉
〈X |x†

αxβ ′ |Y 〉 .

(B7)

The expansion coefficients of xm in terms of the cm basis
form a (2� + 2) × (2� + 2) real orthogonal matrix that we
denote X ′, such that

x†
m =

2�∑
j=−1

c†
j X

′
jm. (B8)

The rectangular (2� + 2) × (� + 1) subblock of X ′ corre-
sponding to its first � + 1 columns corresponds to the matrix
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X defined in the previous Appendix, i.e.,

Xjα = X ′
jα. (B9)

Setting Ẑ = x†
αxβ ′ = ∑2�

jk=−1 XjαX ′
kβ ′c†

j ck and using

Eq. (A6) along with the fact that
∑2�

j=−1 XjνXjα = δαν , we
find that

〈X |x†
αxβ ′ |Y 〉 = 〈X |Y 〉[(X ′)†Y M−1]β ′α. (B10)

By further setting Ẑ2 = c†
j ck in Eq. (A14), we find

〈X |x†
αxβ ′c†

j ck|Y 〉

= 〈X |x†
αxβ ′ |Y 〉〈X |c†

j ck|Y 〉
〈X |Y 〉

+ 〈X |Y 〉[(X ′)†(1 − Y M−1X †)]β ′ j[Y M−1]kα. (B11)

When this is substituted back into Eq. (B7), one obtains a
formula for 〈X |x†

αxβ ′n−1n0|Y 〉 that can be evaluated if X ′ is
known. (Both Y and M−1 can be calculated if the X ′ of
each term J is known.) We obtain X ′ by diagonalizing HJ

numerically in the single-particle sector.

APPENDIX C: CHOICE OF PARAMETERS FOR THE
NUMERICS

The following considerations informed our choice of
parameters γ and �. There should be a reasonable separa-
tion of scales between the hybridization γ and bandwidth
2t , otherwise universal many-body effects are obscured by
nonuniversal ultraviolet effects. At the same time, if γ is too
small, features in the energy landscape that are associated
with important many-body physics become very shallow. Our
relatively unsophisticated minimization procedure can easily
miss such features. We find that γ = 0.15t strikes a good com-
promise. Because we want to be reasonably sure of coming
close to the absolute minimum of the energy landscape, we
also avoid extremely long Wilson chains associated to expo-
nentially small energy scales. We nonetheless want to have a
system that is large enough to host fully developed Kondo cor-
relations in a significant portion of the symmetric phase. We
use � = 28, which translates into a system with 29 particles
distributed among 58 orbitals, and an infrared cutoff of 10−5t .
Exploring the Evar ({ fJ}, {ε(J )

n }, {g(J )
n }) landscape, we find (not

unexpectedly) that there are spurious local minima. However,
we also observe that it is not necessary to find the absolute
minimum: there are many nearly degenerate minima that all
give a very reasonable approximation to the true ground state.
The proliferation of minima is most apparent in the U > 0
part of parameter space where the ansatz comes closest to the
true ground state. Typical energy differences between minima
are about an order of magnitude larger than the infrared cutoff
∼10−8. The various minima are likely associated with a few
low-energy quasiparticles on top of the true ground state. To
get a reasonable sampling of the energy landscape, we do 125
runs of a quasi-Newton (i.e., local) algorithm with randomized
starting points and take the overall lowest found minimum.
An evaluation of the energy or its gradient with respect
to the variational parameters has a computational cost
∼M2N3. The overall computational cost then depends on the

FIG. 5. Kondo temperature of the IRLM Wilson chain, versus U ,
calculated using NRG. γ = 0.15 t , 
 = 1.5.

details of the minimization algorithm. For our calculation,
which is based on a fixed number of local minimization runs,
the overall cost still scales like ∼M2N3, but this does not guar-
antee reaching a predetermined accuracy. Our strategy works
well for chains of length up to ∼60 sites, and M = 2 Slater
pairs. If one wanted to access longer chains (lower energies)
or higher accuracy (more pairs), it seems one would need to
adopt a more sophisticated global minimization strategy.

For 
 = 1.5 and γ = 0.15t , we need to know at which
value of U the quantum phase transition occurs. We also
need to know at what value of U in the symmetric phase
that the emergent energy scale TK becomes smaller than the
infrared cutoff 10−5t . For this purpose, we performed NRG
on a very long chain, and calculated TK according to Eq. (4).
Results are shown in Fig. 5. A horizontal line indicates the
infrared cutoff associated with � = 28. We see that the phase
transition (where TK vanishes) occurs close to U = −1.3t , and
that TK equals the infrared scale at around U = −0.9t . All
further results presented in the main text are for � = 28. We
can expect to see fully developed strong correlations in the
symmetric phase for U � −0.9t . For −1.3t < U < −0.9t ,
the correlations associated with Kondo physics are only par-
tially developed.

FIG. 6. Evar − ENRG in units of TK versus U for the CTG, M = 1,
and M = 2 Slater pair approaches, in the regime of universal Kondo
correlations.
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APPENDIX D: ACCURACY OF GROUND-STATE ENERGY
COMPARED TO KONDO TEMPERATURE

As explained in Sec. III, it is instructive to compare the
ground-state error Evar − ENRG to the Kondo temperature TK ,
in the regime −1.3 t < U < 0, where the Kondo temperature
is significantly less than the ultraviolet scale, and the ground
state hosts universal Kondo correlations. These correlations
are captured by the variational state if the ground state error
is less than the Kondo temperature. To judge the success of

the various ansatze considered in this paper in the universal
Kondo regime, we therefore plot the ground-state error in
units of Kondo temperature in Fig. 6. As discussed in the main
text, we see that at U = −0.8 t , where the Kondo temperature
is 1.4 × 10−4 t , the M = 2 ansatz achieves an error equal to
a few percent of TK . At this point, the CTG approach yields
an error that is a hundred times bigger than TK . The CTG
approach eventually reaches an error in the few percent of TK

range, at U = −0.4 t , where TK = 6 × 10−3 t .
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