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Measurement of topological order based on metric-curvature correspondence
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A unified expression for topological invariants was proposed recently to describe the topological order in
Dirac models belonging to any dimension and symmetry class. We uncover a correspondence between the
curvature function that integrates to this unified topological invariant and the quantum metric that measures the
distance between properly defined many-body Bloch states in momentum space. Based on this metric-curvature
correspondence, a time-resolved and angle-resolved photoemission spectroscopy experiment is proposed to
measure the violation of the spectral sum rule caused by a pulse electric field to detect the quantum metric,
from which the topological properties of the system may be extracted.
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I. INTRODUCTION

Topological order in materials differs from the usual Lan-
dau order parameters in that it does not require breaking a
continuous symmetry, but rather it represents a certain geo-
metric property of the Bloch state in momentum space. In
addition, topological order manifests as different physical
phenomena according to the dimension and symmetry of the
system [1–4], such as quantized Hall conductance [5,6] and
Majorana fermions [7–9], many of which rely on the metallic
edge state that only exists at the boundary and in topologically
nontrivial phases. Nevertheless, drawing an analogy with Lan-
dau order parameters, an intriguing question is whether a bulk
spectroscopy method exists to measure the geometric property
of the Bloch state, through which the topological order can be
detected. Should such a bulk spectroscopy exist ubiquitously
for any topological insulator (TI) and topological supercon-
ductor (TSC), the aforementioned features seem to suggest
that the detection principle cannot rely on the existence of
a local order parameter or edge state, which rules out many
existing methods.

Two recent progresses shed light on this issue. The first
is the recognition that for topological materials described by
two-band Dirac models, the modulus of the Berry connection
or Berry curvature that integrates to the topological invariant
is equal to the quantum metric [10,11] that measures the
distance between a single-particle Bloch state in momentum
space [12–26]. As a result, direct measurement to the quantum
metric may yield information about the topological order. The
second is that all the topological invariants for Dirac models in
any dimension and symmetry class [1–4] can be unified into
a single formula called the wrapping number, which counts
how many times the Brillouin zone (BZ) wraps around a target
sphere induced by the Dirac Hamiltonian [27]. In particular,
the wrapping number is calculated from integrating the cyclic
derivative of the components of the Dirac Hamiltonian, which
we refer to as the curvature function. In two-band systems,
the curvature function is simply the Berry connection or Berry
curvature.

The goal of this paper is to demonstrate that this equiva-
lence between the modulus of the Berry connection or Berry
curvature and the quantum metric in fact holds for Dirac
models in any dimension and symmetry class. We elaborate
that the modulus of the curvature function that integrates to
the wrapping number corresponds to the quantum metric of
a properly defined many-body Bloch state, a relation that
we call metric-curvature correspondence. Motivated by this
correspondence, we generalized a previously proposed mea-
surement protocol for the single-particle quantum metric [18]
to degenerate bands, and we propose a time-resolved and
angle-resolved photoemission spectroscopy (trARPES) mea-
surement [28–32] that detects the violation of the spectral sum
rule caused by a pulse electric field as a universal spectroscopy
to probe the topological property of materials, using graphene
as a concrete example.

II. METRIC-CURVATURE CORRESPONDENCE

A. Theoretical formalism

We consider the TIs and TSCs described by the Hamil-
tonian and Bloch eigenstates H (k)|ψn(k)〉 = εn(k)|ψn(k)〉,
and we focus on the filled valence band or fermionic
quasiparticle states with εn(k) < 0. The D-dimensional BZ
T D is parametrized by Cartesian coordinates kμ with μ =
1, 2, . . . , D, where the Einstein notation is used through-
out the article. For a generic single- or many-particle Bloch
state |ψ (k)〉, the overlap of this eigenstate at k with it-
self at a slightly different momentum |〈ψ (k)|ψ (k + δk)〉| =
1 − 1

2 gμνδkμδkν defines the quantum metric tensor of that
state [10],

gψ
μν (k) = 1

2 〈∂μψ |∂νψ〉 + 1
2 〈∂νψ |∂μψ〉

− 〈∂μψ |ψ〉〈ψ |∂νψ〉, (1)

which is invariant under a local U (1) gauge rotation
|ψ (k)〉 → eiφ(k) |ψ (k)〉. We remark that this metric tensor on
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the BZ is the one inherited from the well-known Fubini-Study
metric on state space [33].

For reasons that will become clear in a moment, we will
consider the quantum metric constructed from the following
N−-particle Bloch state

|ψval(k)〉 ≡ 1√
N!

− εa1···aN−
∣∣u−

a1

〉 ∣∣u−
a2

〉 · · · |u−
aN−

〉 , (2)

where the |u−
a (k)〉 form a basis of the N− filled bands (with

negative energy). The metric for this state has also been con-
sidered previously in Ref. [34]. We can interpret this state
as the Fermi sea for fixed k. Notice that when two or more
of these negative-energy states are degenerate (as will be the
case in the Dirac models to be considered below), the basis is
only defined modulo a k-dependent “gauge rotation” U (k) ∈
U (N−). Under this non-Abelian gauge transformation, the
state |ψval〉 transforms with det U (k), which is a pure phase,
thus rendering the metric tensor completely invariant under
such a basis redefinition.

Physically, the quantum metric gval
μν of the state |ψval〉 de-

fined by Eq. (1) measures how much the unit vector |ψval〉 has
rotated in the N−-particle Hilbert space as one moves from
k to k + δk. It is possible to express gval

μν explicitly in terms
of one-particle states using standard techniques from second
quantization. The result is

gval
μν (k) = 1

2

∑
a

(〈∂μu−
a |Q+|∂νu−

a 〉 + 〈∂νu−
a |Q+|∂μu−

a 〉), (3)

where we have defined the projectors onto the positive and
negative eigenstates:

Q± ≡
N±∑

a=1

|u±
a 〉 〈u±

a | , (4)

which satisfy Q+ + Q− = 1 and Q2
± = Q±. We further define

the spectrally flattened Hamiltonian Q(k) ≡ Q+(k) − Q−(k),
which has the same eigenstates as H (k) but with eigenvalues
±1. The Hamiltonians H (k) and Q(k) can be continuously
deformed into each other without closing the band gap, and
thus they have identical topological properties. We remark that
Q(k) takes values in the complex Grassmannian U (N )

U (N+ )×U (N− ) ,
since it can be specified by a diagonalizing unitary matrix
∈ U (N ) with two such matrices yielding the same Q if they
differ by a gauge transformation ∈ U (N+) × U (N−) [2]. This
manifold has a canonical Riemannian metric, and gval(k) is
precisely the pullback of this metric to the BZ along the map
Q(k). By differentiating Q− |u−

a 〉 = |u−
a 〉 with respect to kμ,

one obtains Q+ |∂μu−
a 〉 = ∂μQ− |u−

a 〉 and hence after some
straightforward projector algebra

gval
μν (k) = 1

8 tr ∂μQ ∂νQ. (5)

Indeed, Q is manifestly invariant under the aforementioned
basis redefinitions, and so is gval, hence gval is in principle
measurable. A detailed derivation of the above formalism is
given in Appendix.

We will focus on the Dirac Hamiltonians that realize TIs
and TSCs according to their symmetry classes, which take the

form

H (k) =
D∑

i=0

di(k)�i, (6)

where d = (d0, d1...dD) is the vector that parametrizes
the Dirac Hamiltonian, and �i are (N = 2n)-dimensional
Dirac matrices satisfying the Clifford algebra {�i, � j} =
2δi j . The Hamiltonian in Eq. (6) has N/2 = 2n−1 degenerate
eigenvalues |d| and 2n−1 eigenvalues −|d| (in our context
corresponding to empty and filled bands, respectively). The
spectrally flattened Hamiltonian can be expressed as

Q(k) =
D∑

i=0

ni(k)�i, (7)

where throughout the article we define the unit vector n(k) ≡
d(k)/|d(k)|.

The image of the map n(k) lies in the D-dimensional
sphere SD ⊂ RD+1, which we will refer to as the Dirac sphere
(DS) in what follows. In Ref. [27] it was shown that all
nontrivial topological invariants can be expressed in terms of
the degree deg[n], which was also referred to as the wrapping
number. The latter counts how many times the BZ torus wraps
around the DS under the map n(k). In particular, all known
integer topological invariants are given by deg[n] or 2 deg[n],
while all the binary ones are given by (−1)deg[n]. One explicit
representation of the wrapping number is given by [27]

deg[n] = 1

VD

∫
BZ

Jn(k) dDk, (8)

where VD = 2π
D+1

2 /�( D+1
2 ) is the volume of SD, and the “cur-

vature function” [35–38] Jn is defined as

Jn(k) ≡ det

(
n,

∂n
∂k1

, . . . ,
∂n
∂kD

)
≡ det En, (9)

which is sometimes referred to as the cyclic derivative of the
n-vector.

We proceed to relate the curvature function Jn to the quan-
tum metric gval

μν . First, we apply our general equation for the
quantum metric of the valence band, Eq. (5), to Dirac models
to find

gval
μν = N

8
∂μn · ∂νn, (10)

where we used Eq. (7) and applied the Clifford algebra. This
equation is remarkably simple. In fact, it is merely the pull-
back of the canonical metric of the D-sphere of radius

√
N/8

to the BZ along the map n(k). Next we write

J2
n = det ET

n En = det

(
n · n n · ∂νn

∂μn · n ∂μn · ∂νn

)
= det ∂μn · ∂νn,

(11)
where it was used that n2 = 1 and n · ∂μn = 0. Combining
Eqs. (11) and (10), we arrive at one of our main results,

|Jn| =
(

8

N

) D
2 √

det gval, (12)

a relation that we refer to as the metric-curvature corre-
spondence. A similar result that relates the integrand of the
Chern number and the winding number, individually, to the
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canonical metric on the Dirac sphere given by Eq. (10) has
also been proposed recently [39]. Nevertheless, besides giv-
ing a more unified formalism, we emphasize that it is the
link to the many-body quantum metric gval

μν we uncovered
that makes this correspondence experimentally relevant, as
demonstrated below.

B. Experimental implications

The metric-curvature correspondence, Eq. (12), prompts
us to seek a measurement for the momentum-profile of the
quantum metric gval

μν (k), since it may give direct information
about the topological invariant in any dimension and sym-
metry class. Out of several existing proposals [13,40–42], we
focus on the one based on time-dependent perturbation theory
[18], which has been verified experimentally in a single-atom
Rabi oscillation in NV centers in diamonds [22,43]. Our aim is
to generalize this theory to our Dirac Hamiltonian, which has
N/2-fold degeneracy in both the filled and empty bands, and to
consider the application of a pulse electric field of magnitude
E0 and pulse profile g(t ),

E(t ) = E0g(t ), (13)

to the Bloch Hamiltonian H (k), and the pulse profile is
assumed to satisfy g(±∞) = 0 but is otherwise arbitrary.
Electromagnetic gauge invariance

φ → φ − ∂t
, A → A + ∇
 (14)

allows for various equivalent implementations of the electric
field, Eq. (13). We find it convenient to work in the gauge

A = 0, φ = −g(t )E0 · x. (15)

We can then straightforwardly apply first-order time-
dependent perturbation theory for large times, yielding the
transition amplitude from the initial to the final state,

ai→ f = ie

h̄

∫ ∞

−∞
eiωt g(t ) 〈φ f |E0 · x|φi〉 , (16)

where h̄ω ≡ ε f − εi. Suppose that an electron, initially in
a filled-band Bloch state |u−

a (k)〉, under the influence of
the electric field makes a transition to the empty-band state
|u+

b (k′)〉 [44]. The dipole operator matrix elements between
two general Bloch states is given by [45]〈

uσ ′
b (k′)

∣∣x∣∣uσ
a (k)

〉
= −iδabδσσ ′∇kδk,k′ + i

〈
uσ ′

b (k)
∣∣∇k

∣∣uσ
a (k)

〉
δk,k′ , (17)

and hence for σ ′ = + and σ = − we have simply [46]

〈u+
b (k′)|x|u−

a (k)〉 = i 〈u+
b (k)|∇k|u−

a (k)〉 δk,k′ , (18)

which is momentum-conserving.
Assuming that the pulse is only on for a finite amount of

time, the first-order perturbation theory yields the probability
for such a transition:

p(a)
b (k) =

( e

h̄

)2 |g̃(ω(k))|2 | 〈u+
b (k)|E0 · ∇k|u−

a (k)〉 |2, (19)

where h̄ω ≡ εb − εa, and g̃(ω) ≡ ∫ ∞
−∞ eiωt g(t )dt denotes the

Fourier transform of the pulse. We would like to briefly re-
mark on the shape of the pulse g(t ): If it has a dominant

frequency such that g̃(ω) is strongly peaked at some 
, only
part of the filled band will be excited (those with ω ∼ 
)
and one might have to scan over different values of 
 to
eventually cover the whole BZ. On the other hand, one could
also envisage an extremely short pulse that has a rather flat
profile g̃(ω) and thus the whole filled band will be equally
excited.

The transition probability into any of the conduction-band
states is then simply p(a)(k) = ∑

b∈c p(a)
b (k). If we direct the

electric field to be along the μ direction, E0 = E0μ̂, we find

p(a)(k) =
(

eE0

h̄

)2

|g̃(ω(k))|2
∑

b

|〈u+
b (k)|∂μu−

a (k)〉|2. (20)

For the nondegenerate case of a single valence band, this is
directly proportional to the diagonal element of the quan-
tum metric gval

μμ(k) = gψ
μμ(k) of the single-particle Bloch state

|ψ〉 = |u−
1 〉 [18]. However, for the degenerate case, the right-

hand side is no longer proportional to the quantum metric of
any particular state, and moreover the above formalism is not
gauge-invariant. Instead, the truly gauge-invariant and mea-
surable object is the probability summed over the degenerate
occupied valence bands,

ν(k) =
(

eE0

h̄

)2

|g̃(ω(k))|2
∑

b∈c,a∈v

|〈u+
b (k)|∂μu−

a (k)〉|2

=
(

eE0

h̄

)2

|g̃(ω(k))|2 gval
μμ(k), (21)

where we have used Eq. (3). Similarly, we can con-
sider two different driving protocols Eμ = E0g(t ) and Eν =
±E0g(t ) in different spatial directions. By subtracting
the results of the two driving protocols ν+(k) − ν−(k) =
( eE0

h̄ )2 |g̃(ω(k))|2 4gval
μν (k), one can obtain the off-diagonal el-

ements of the metric [18].
Encouraged by the result in Eq. (21), we further propose

the following protocol of the trARPES experiment to measure
the quantity ν(k). Our proposal is similar to measuring the de-
pletion rate of the ultracold atom version of a Chern insulator
under periodic perturbation [47,48]. Because in the summa-
tion of Eq. (20) only the final states not equal to the initial
state b 
= a contribute, this implies one should measure how
many electrons are leaving the degenerate filled band states at
momentum k. In practice, how many electrons are leaving the
filled bands can be measured by the ARPES spectral function
times the Fermi distribution, which now has been modified
due to the pump pulse. To illustrate this, consider a static Dirac
model at zero temperature, which gives the imaginary-time
Green’s function G(k, iω)−1 = iω − H (k). After an analyti-
cal continuation iω → ω + iη and taking the scattering rate
η → 0, one obtains the retarded Green’s function Gret (k, ω)
and subsequently the ARPES spectral function

A(k, ω) = − 1

π
Im{tr[Gret(k, ω)]}

= N

2
δ(ω − d (k)) + N

2
δ(ω + d (k)), (22)

signifying the N/2-fold degeneracy. Ideally, the spectral func-
tion satisfies the spectral sum rule

∫ ∞
−∞ dω A(k, ω) f (ω) =
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FIG. 1. Schematics of the proposed trARPES experiment. All the
particles are in the degenerate filled bands εv before the pulse electric
field E(t ) is applied. Immediately after the pulse, some particles are
in the degenerate empty bands εc, causing a violation of the spectral
sum rule in the filled bands at momentum k, which can be measured
by detecting the spectral function times the distribution function
z(k)A(k, ω) f ∗(ω) using trARPES, where the matrix element effect
is taken care of by z(k). The quantum metric gμν (k) can be extracted
from the measurement according to Eqs. (21) and (24).

N/2, where f (ω) = θ (−ω) is the Fermi distribution at zero
temperature. However, the ARPES experiment in reality con-
tains the matrix element effect that affects the absolute scale of
A(k, ω) and renders this normalization k-dependent. For our
purpose of extracting the quantum metric without ambiguity,
one may add a k-dependent factor z(k) to fit the spectral
sum rule until it is rigorously satisfied at equilibrium at any
momentum z(k)

∫ ∞
−∞ dω A(k, ω) f (ω) = N/2, such that the

matrix element effect does not obscure our formalism below.
When the time-dependent electric field E0g(t ) is applied,

the spectral sum rule becomes time-dependent. The average
number of electrons in the valence band, shortly after the pulse
has ceased (such that relaxation has not yet set in) is

z(k)
∫ 0

−∞
dω A(k, ω) f ∗(ω) = N

2
−

∑
a∈v

∑
b∈c

p(a)
b (k), (23)

where we assume that the spectral function z(k)A(k, ω) re-
mains a δ-function, but the distribution function is no longer
the equilibrium Fermi function f ∗(ω) 
= θ (−ω) because the
electron has a finite probability to enter other final states b.
Then

ν(k) = N

2
− z(k)

∫ 0

−∞
dω A(k, ω) f ∗(ω). (24)

Through comparing Eqs. (21) and (24), we see that the quan-
tum metric can be extracted from trARPES by measuring
the particle density loss in the degenerate filled bands at k
immediately after the pulse, as shown schematically in Fig. 1.
In Sec. II C, we use the measurement of the topological charge
of graphene to elaborate on the feasibility of our proposal. We
also emphasize that our proposal based on Eqs. (21) and (24)
is a universal protocol to measure the many-body quantum
metric in any gapped degenerate fermionic systems, not only

limited to topological materials. Moreover, k is not limited
to momentum but can be any system parameters, which may
also help to measure the fidelity susceptibility associated with
quantum phase transitions in general [49–55], provided the
driving field E(t ) couples to the system parameter k in the
same way as that described in Eqs. (13)–(19). It is only
through the metric-curvature correspondence in Eq. (12) that
the measurement performed on TIs and TSCs would directly
reveal the topological order.

We now comment on several issues one may encounter
in realistic ARPES measurements. First, our proposal only
allows us to measure the modulus of the integrand Jn of the
wrapping number deg[n] via Eq. (12), but not the sign of Jn. In
reality, the BZ consists of domains of different signs of Jn, and
to fix these signs to unambiguously determine the wrapping
number requires some other input, such as band-structure
calculations. Nevertheless, the modulus of Jn itself already
yields various valuable facts about the topological order, such
as the correlation length, scaling laws [37,56], and fidelity
susceptibility [57,58]. Secondly, for systems beyond the Dirac
model, it remains to be clarified how the metric-curvature
correspondence will be modified, which may need to be dealt
with case by case. Thirdly, many-body effects can broaden
the spectral function and invalidate the sharp δ-function in
Eq. (22). Effects of this kind require a fully nonequilibrium
many-body version of our formalism, which awaits further
investigations. Finally, since ARPES is a surface probe, our
proposal is presumably more suitable to detect the topology of
2D systems, provided the ARPES laser spot is smaller than the
systems size such that the edge states do not interrupt. For 3D
systems, most likely the method will be detecting the topology
of the surface states if the system is in the topologically
nontrivial phase.

C. ARPES protocol applied to graphene

As a concrete example, we discuss the aforementioned
ARPES technique applied to measuring the topological charge
of graphene, which is a topological semimetal that contains
two Dirac points K and K′ that have opposite topological
charges. For a D-dimensional topological semimetal in gen-
eral, our wrapping number formalism still applies, but the
integration in Eq. (23) is over a compact (D − 1)-dimensional
surface enclosing each nodal point, and the metric-curvature
correspondence is defined on this (D − 1)-dimensional sur-
face, as we shall see below for graphene with D = 2. We
choose graphene because its spectral function is extremely
sharp due to the long mean free time [59,60], and moreover
the spin degeneracy is well preserved since spin-orbit cou-
pling is negligible [61–63]. Considering only one spin species
and expanding the Hamiltonian around the two Dirac points

K =
(

2π

3
,

2π

3
√

3

)
, K′ =

(
2π

3
,− 2π

3
√

3

)
(25)

yields the linear Dirac Hamiltonian [64]

H0(K + k) = 3
2 t (kyσx − kxσy),

H0(K′ + k) = 3
2 t (−kyσx − kxσy), (26)
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FIG. 2. (a) The topological charge C = ±1/2 obtained by in-
tegrating the Berry connection along a circle of arbitrary radius
circulating the Dirac points K and K′. The orange line denotes
the BZ. The corresponding quantum metric in the angular direction
should be a constant gval

φφ = 1/2. (b) Schematics of using a pulse
electric field to excite the electrons from valence to conduction band.

where t is the nearest-neighbor hopping on the honeycomb
lattice. This linear dispersion is well satisfied up to energy
∼1 eV away from the Dirac point, which covers a large
enough momentum space to perform the proposed pump-
probe experiment [65]. The eigenenergies and eigenstates for
one spin species, say spin up, are

εK
± (k) = ±3

2
t1k,

∣∣uK
k±

〉 = 1√
2

(
1

∓ieiφ

)
,

εK′
± (k) = ±3

2
t1k,

∣∣uK′
k±

〉 = 1√
2

(
1

∓ie−iφ

)
, (27)

where φ is the polar angle of the momentum k = (k, φ).
Integrating the valence-band Berry connection 〈uK

k−|i∂ϕ|uK
k−〉

along a loop of radius k circulating the Dirac points yields the
topological charges

1

2π

∮
dφ〈uK

k−|i∂φ|uK
k−〉 = − 1

2π

∮
dφ

〈
uK′

k−
∣∣i∂φ

∣∣uK′
k−

〉 = −1/2,

(28)

as shown schematically in Fig. 2(a). The two spin degrees
of freedom are completely decoupled, and the Hamiltonian
is block-diagonal. In our choice of basis, this means that
the valence-band metric reduces to the sum of the metrics
of the spin-up and spin-down states gval

φφ = g↑
φφ (k) + g↓

φφ (k).
Focusing on the K point |u〉 ≡ |uK

k−〉, the Dirac Hamiltonian
H (K + k) = d1σ1 + d2σ2 gives a quantum metric

gu
φφ = 〈∂φu|∂φu〉 − 〈∂φu|u〉〈u|∂φu〉 = |〈u|i∂φ|u〉|2

= ∣∣ 1
2εabna∂φnb

∣∣2 = 1
4 . (29)

We see that indeed the metric-curvature correspondence is

satisfied with
√

gval =
√

gval
φφ=1/

√
2. Therefore, if the proposed

ARPES experiment yields a constant quantum metric in the
angular direction gval

φφ = 1/2 at any momentum k, then the
topological charge is verified.

Although it may be difficult to directly measure gφφ , one
may apply an oscillating electric field in planar directions to
extract {gxx, gxy, gyy}, and then use the conversion between
the derivatives ∂k = cos φ∂x + sin φ∂y and ∂φ = −k sin φ∂x +
k cos φ∂y to extract gφφ from {gxx, gxy, gyy} by

gφφ = k2 sin2 φ gxx − k2 sin 2φ gxy + k2 cos2 φ gyy. (30)

To give an order of magnitude estimation, we use the numbers
in the pump-probe experiment performed on graphene [65].
To measure the quantum metric, we suppose that the pump
pulse excites the valence electron at k that has a band gap
of the order of an electron volt h̄ω ∼ ε+ − ε− ∼ eV, which
corresponds to a frequency ∼1015 Hz, as shown schematically
in Fig. 2(b). For the matrix element, we can estimate

〈u+|∂μu−〉 =
〈
u+

∣∣∣∣ ∂μH

ε+ − ε−

∣∣∣∣ u−

〉
∼ vF

ω
, (31)

where vF ∼ 106 m/s is the Fermi velocity of graphene. If the
pulse is on for a short time T ∼ 0.1 ps, then g̃(ω) ∼ T and

ν(k) ∼
(

eE0vF T

h̄ω

)2

. (32)

Suppose we aim to excite ν(k) ∼ 10% electrons after the
pulse. This requires an electric field square of the order of
(E0)2 ∼ 1013 V2/m2. The fluence after applying the pulse is

F ∼ c ε0

2
|E0|2T ∼ 10−4 mJ

cm2
, (33)

where c is the speed of light and ε0 is the vacuum permit-
tivity. This fluence is much smaller than that delivered in
the graphene pump-probe experiment ∼mJ/cm2 [65], hence
it should be easily achievable and heating can be ignored.
In fact, the pump-probe trARPES experiment has already
revealed a significant amount of excitation from the valence to
the conduction band, although the pump pulse E(t ) is usually
not polarized. Finally, we remark that the light-matter inter-
actions [66] and light-induced anomalous Hall effect [67] in
graphene, as well as the nonequilibrium response of graphene
in the pump-probe setup in the presence of many-body inter-
actions, were addressed previously [68]. Precisely how these
realistic factors, in particular the many-body interactions, can
affect the measurement of a quantum metric is a fundamental
issue that requires further investigations.

III. CONCLUSIONS

In summary, we elaborate on the metric-curvature cor-
respondence between the modulus of the integrand of the
wrapping number and the quantum metric of an appropriate
many-body Bloch state described by Eq. (12). Based on the
validity of this correspondence in any dimension and sym-
metry class, we propose an ARPES measurement protocol
to ubiquitously detect the momentum profile of the quantum
metric, from which information about the topological proper-
ties of the system can be extracted. By generalizing a recently
proposed time-dependent perturbation theory to degenerate
bands, our proposal suggests to measure the violation of the
spectral sum rule caused by a pulse electric field to extract
the quantum metric. Various complications in reality, such as
systems beyond Dirac models or those containing electronic
correlations, will necessitate further generalization of our for-
malism.
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APPENDIX: DETAILED DERIVATION OF THE QUANTUM
METRIC FORMALISM

We now provide some detailed calculation for the quantum
metric. We would like to compute the metric for the N−-
particle state |ψval(k)〉 defined in Eq. (2), i.e.,

gval
μν (k) = 1

2 〈∂μψval|∂νψ
val〉 + 1

2 〈∂νψ
val|∂μψval〉

−〈∂μψval|ψval〉〈ψval|∂νψ
val〉. (A1)

The simplest approach is to use a second-quantization for-
malism with fermionic annihilation operators ca,σ , where
σ = ± denotes positive- and negative-energy eigenstates, re-
spectively. Then by the standard formula for multiparticle
operators, we have

∂

∂kμ
=

∑
σ = ±
σ ′ = ±

Nσ∑
a=1

Nσ ′∑
a′=1

〈
uσ ′

a′
∣∣∂μ

∣∣uσ
a

〉
c†

a′σ ′caσ . (A2)

Acting with this on |ψval〉 = ∏N−
a=1 c†

a−|0〉, one gets

|∂μψval〉 =
N−∑

a=1

(
〈u−

a |∂μu−
a 〉 +

N+∑
a′=1

〈u+
a′ |∂μu−

a 〉c†
a′+ca−

)
|ψval〉.

(A3)

Then it is straightforward to compute

〈ψval|∂μψval〉 =
N−∑

a=1

〈u−
a |∂μu−

a 〉,

〈∂μψval|∂νψ
val〉 =

(
N−∑

a=1

〈∂μu−
a |u−

a 〉
)(

N−∑
a=1

〈u−
a |∂νu−

a 〉
)

+
N−∑

a=1

〈∂μu−
a |Q+|∂νu−

a 〉, (A4)

where Q+ was defined in Eq. (4). Applying Eqs. (A3) and
(A4) to Eq. (A1), we obtain Eq. (3).

To further express gval
μν in terms of the spectrally flattened

Hamiltonian Q(k), we use Q2
+ = Q+, Q± = (1 ± Q)/2, and

(∂μQ−)|u−
a 〉 = Q+|∂μu−

a 〉 to write

gval
μν = 1

2

N−∑
a=1

(〈u−
a |∂μQ−∂νQ−|u−

a 〉 + 〈u−
a |∂νQ−∂μQ−|u−

a 〉)

= 1

2
tr(Q−∂μQ−∂νQ− + Q−∂νQ−∂μQ−)

= 1

2
tr ∂μQ−∂νQ2

−

= 1

2
tr ∂μ

[
1

2
(1 − Q)

]
∂ν

[
1

2
(1 − Q)

]

= 1

8
tr ∂μQ ∂νQ, (A5)

which gives Eq. (5) [34].
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