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One-dimensional repulsive Hubbard model with mass imbalance: Orders and filling anomaly

Yuchi He ,1,2,3 David Pekker,2,4 and Roger S. K. Mong2,4

1Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
2Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, USA
3Institute for Theory of Statistical Physics, RWTH Aachen University,

and JARA Fundamentals of Future Information Technology, 52062 Aachen, Germany
4Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 23 April 2021; revised 30 August 2021; accepted 20 September 2021; published 15 November 2021)

We investigate the phase diagram of the one-dimensional repulsive Hubbard model with mass imbalance.
Using DMRG, we show that this model has a “triplet” paired phase (dubbed πSG) at generic fillings, consistent
with previous theoretical analysis. We study the topological aspect of πSG phase, determining long-range string
orders and the filling anomaly which refers to the relation among the single-particle gap, inversion symmetry,
and filling imbalance for open chains. We also find, using DMRG, that at 1/3 filling, commensurate effects lead
to two additional phases: A crystal phase and a trion phase; we construct a description of these phases using
Tomonaga-Luttinger liquid theory.
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I. INTRODUCTION

Mixtures of particles with different masses are indeed
ubiquitous in nature. A minimal quantum model of such an in-
teracting system is the mass-imbalanced Hubbard model. By
tuning the mass ratio from one to zero, this model bridges two
limits: The extensively studied mass-balanced Hubbard model
[1,2] and the Falicov-Kimble model [3,4]. The realization of
the mass-imbalanced Hubbard model and its continuous coun-
terpart [5–7], using cold atoms and other quantum simulators
has motivated theoretical studies of its phase diagrams [8–16].
Experimentally, the development of correlation measurements
[17–23] contributes to the exploration of correlated phases.
Correlation measurements are particularly useful for detecting
quasi-long-range orders of one-dimensional quantum phases
of cold atom systems; measuring string orders also becomes
possible [18,21,22]. This enables experimental observations
[21,22,24] of the exactly solvable one-dimensional Hubbard
physics.

There have been several theoretical studies of the one-
dimensional mass-imbalanced Hubbard model. Although the
model is no longer exactly solvable, it is expected to be de-
scribed within the framework of the Tomonaga-Luttinger (TL)
theory. It has been shown that introducing mass imbalance
leads to rich phase diagrams [9,11,13]. In particular, for repul-
sive interactions, theoretical analyses predict that introducing
mass imbalance opens a “spin gap” once the Fermi vectors
of the two components match, even if the mass imbalance is
infinitesimal [9,11]. (The model does not have physical spin.
The term “spin” stems from the analogy to the two com-
ponents of spin half.) However, the predicted “spin”-gapped
liquid has not been observed numerically [25]. On the other
hand, crystallization was found at both 1/2 [26] and 1/3
filling [25].

In this paper, we revisit the phase diagram of the repulsive,
mass-imbalanced Hubbard model. We demonstrate the exis-

tence of a spin gap by studying its two-point correlations and
string orders. We find novel aspects of the filling anomaly for
systems with open boundaries, that is, the ground state has one
more heavy particle than light particle, a feature protected by
the spin gap.

We first show that by DMRG data analyses, the phase
diagram can be confidently constructed, and the result is con-
sistent with the TL theory.

For “incommensurate” fillings, i.e., the filling ratio is irra-
tional, we find and characterize the spin-gapped phase, which
we call πSG phase because the spin boson is locked at the
value π in the bosonized language. This confirms the pre-
diction for the generic phase at equal-filling with a minor
but interesting caveat we will discuss. We use various ways
to characterize the πSG phase. Although a definite numer-
ical resolution of a spin gap is demonstrated at relatively
large mass imbalance and interaction, our data analysis tech-
niques make it possible to indicate the existence of a spin
gap at relatively small imbalance, and the result is not in-
consistent with that a spin gap exists even at infinitesimal
imbalance.

For simple commensurate fillings, i.e., the filling ratio with
a small denominator, we confirm that in addition to the πSG
phase, it’s possible to get crystals and liquids of bound states
composed by particle(s) from one component and hole(s)
from the other. As an example, for one-third filling, we nu-
merically show that the liquid phase of bound states of two
heavy holes with one light particle (named as trion) and πSG
phase are separated by a crystal phase in the phase diagram.
We point out the relation among the three phases can be
interpreted through TL theory: The locking of the spin boson
gives πSG, while the locking of another linear combination
of boson fields gives trion; the locking of both fields leads to
the formation of a crystal phase. Binding different numbers of
particles and/or holes, like trion here, are suggested to feature
fractional conductance in DC transport [27,28].
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Another goal of this paper is to figure out the novel aspects
of πSG phase, due to the spin gap together with the mass
imbalance. There has been work on the πSG phase [29,30] of
systems with additional spinful time-reversal symmetry. Due
to the mass imbalance, the spinful time-reversal symmetry is
absent in our model; we highlight some of the characteristics
which are similar and those that differ.

The z-component “spin” density wave (“SDWz”) is a char-
acterization of the πSG phase because the phase difference
of density-wave quasi-long-range order of each component
is locked to be π . Without spinful time-reversal symmetry,
there can be a difference between the two density-wave quasi-
long-range order amplitudes, leading to the coexistence with
a total charge density wave (CDW). Connecting this observa-
tion with TL theory, we illustrate that the form of bosonization
representation of operators may depend on the symmetry of
the Hamiltonian.

The πSG phase with additional spinful time-reversal
symmetry has been considered to be topological, with charac-
terizations of edge modes [30,31] and string orders [32]. For
the mass-imbalanced Hubbard model, spinful time-reversal
symmetry is absent while inversion symmetry survives. In this
case, we find the string order structures1 remain robust while
more possibilities are opened for edge physics, summarized
as “filling anomaly”. Via bosonization, we figure out that the
long-range string order structures are constrained by the inver-
sion symmetry. For open chains, the “fourfold degeneracy” in
the spin sector protected by spinful time-reversal symmetry is
lifted in our case. The remaining feature is that we have a spin-
gapped ground state with one more heavy particle than the
light particles. This is one possibility of the filling anomaly,
a terminology means that spin gap, inversion symmetry, and
filling balance cannot be realized simultaneously. (The termi-
nology is borrowed from a similar phenomenon illustrated in
free fermion systems in Refs. [33,34].) The phenomenon is
explained in terms of bosonization.

II. HAMILTONIAN AND METHODS

Consider the Hubbard Hamiltonian:

H =
∑

x
σ ∈ {a, b}

[−tσ (c†
σ (x)cσ (x + 1) + H.c.)

+ Una(x)nb(x)

]
, (1)

where cσ (x) annihilates a σ fermion at site x, nσ = c†
σ cσ . Mass

imbalance means ta �= tb. Through Jordan-Wigner transform,
the model Eq. (1) is equivalent to its hardcore bosonic version
[25] as well as fermion-hardcore boson mixture version [10].
We focus our studies on the ground state phases of Eq. (1)
with tatb > 0, U > 0 and equal fillings 〈na〉 = 〈nb〉. The phase
diagram is affected by whether the filling is some simple
fraction (i.e., the denominator of the irreducible fraction is
small), where the commensurate effect can alter the phase

1Long-range string order is known to be absent for bosonic gapped
inversion symmetry protected Haldane phase [47,48]; by contrast,
the fermion parity symmetry makes long-range string order possible
for gapped and even gapless fermionic systems [43,49–52].

FIG. 1. Phase diagrams of the model Eq. (1) at (a) “incommensu-
rate” fillings and (b) one-third filling. “PS” denotes phase separated.
The red dashed lines denote the cuts of data we present in Figs. 2
and 10. The phase boundaries (orange lines) are estimated based on
similar analysis illustrated in Figs. 2 and 10. The phase boundary
between πSG and crystal (dotted line) is approximate because it is
difficult to extract numerically. 2TLL phase is likely to only exist
either in the mass balance (α = 0) or noninteracting (U = 0) limit.

even for moderate interaction. We start from the simpler case
of incommensurate filling or negligible commensurate effect.
Numerically, we must pick a commensurate(rational) filling;
we perform DMRG calculation on 5/11 filling and find the
results can represent “incommensurate” cases. We then work
with simpler fraction filling (1/2, 1/3) to discuss the com-
mensurate effects. Estimated phase diagrams of 5/11 and 1/3
filling are summarized in Fig. 1.

We use both bosonization and DMRG to study the quantum
phases. Following the standard bosonization approach, possi-
ble phases are constructed as descendant phases of the 2TLL
(two-component Tomanaga-Luttinger liquid) phase, which is
adiabatically connected to the noninteracting limit. Whether
a phase indeed exists in a given parameter region can be an-
swered by DMRG. We use infinite DMRG (iDMRG) [35,36]
to calculate the phase diagrams Fig. 1, we fix ta + tb = 2 and
ta > tb > 0. We define the “imbalance parameter” α = ta−tb

ta+tb
with 0 � α < 1. Our phase diagrams are parameterized by α

and U . The finite DMRG has also been implemented, only
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for studying edge effects and extracting spin gaps (Figs. 5, 6,
and 14).

The elementary gapless charge excitations of all observed
phases are different from each other. Notice that the particle
number of each component conserves separately, and thus the
charge carried by an excitation (local operator) is denoted as
(qa, qb). The sector of any integer multiple of the elemen-
tary gapless charge is also gapless. The two-component TLL
(2TLL) phase has two types of elementary gapless charge
excitations with charge (1,0) and (0,1), which are the single
particle excitations of the two components. The πSG has an
odd parity (“triplet”) pairing quasi-long-range order; the ele-
mentary gapless charge excitations carry a charge (1,1). The
trion phase is a liquid of bound states of two heavy particles
and one light hole, thus the elementary gapless excitation
carries charge (−1,2). The crystal phase, on the other hand,
does not have gapless excitations. In our context, the central
charge (c) of a phase equals the number of elementary gapless
charge excitation types.

The gaplessness in a charge sector indicates the cor-
responding correlation length is divergent. The correlation
length ξqa,qb is defined as the maximal length scale of corre-
lators taking form 〈A†(0)B(r)〉 where A, B are charge (qa, qb)
operators. It is convenient to read out the estimation of cor-
relation length from iDMRG. The iDMRG generates infinite
matrix product states (iMPS) as the approximation of the
ground states. The correlation lengths of an iMPS can never
be divergent. However, one can increase the number of varia-
tional parameters, which is characterized by bond dimension
(χ ), to infer if ξqa,qb (χ ) is divergent in the infinite χ limit.
Such a limit is believed to capture the exact ground states. The
data of finite-χ correlation lengths are illustrated for the two
cuts of the phase diagrams in Figs. 2 and 10. A theoretical un-
derstanding of how the ξqa,qb (χ ) is supposed to diverge with χ

[37] is very helpful for inferring divergence or convergence. In
short, we pick the bond dimensions in a geometric series, i.e.,
χ = 625, 1000, 1600, and 2560. For a divergent physical
correlation length ξa,b, the series ln(ξa,b(χ )) is expected to be
equally spaced if χ is large enough. The value of the spacing is
related to the central charge of phases [37]; the two reference
spacings for central charge 1 and 2 are relevant to our analysis.

Besides ξqa,qb (χ ), the data of orders and string orders at
finite bond dimensions can also provide information. In the
large χ limit, long-range (string) orders are characterized
by a nonzero value. Under some condition, quasi-long-range
orders can be characterized by power law decaying of long-
range orders with ξqa,qb (χ ), where ξqa,qb (χ ) diverges in the
large χ limit. Scaling dimensions can be extracted from the
powers. The idea is used to extract the Luttinger parameter
and provide evidence for small spin gaps.

Detailed discussion of technical aspects is provided in
Appendix A. Technical aspects can be skipped for un-
derstanding the main story of this paper, i.e., the orders,
quasi-long-range orders, strings orders, and filling anomaly of
those strongly correlated phases.

III. “INCOMMENSURATE” FILLING: πSG PHASE

We start our discussion at incommensurate filling to avoid
the additional complexity of commensurate effects. Previous

FIG. 2. Finite-χ correlation lengths as a function of mass imbal-
ance α = ta−tb

ta+tb
along the cut U = 3 at 5/11 filling. The correlation

lengths in the (1,0)-, (0,1)-, and (1,1)-charge sectors are computed
for various bond dimensions χ . A spin-gapped phase including πSG
is characterized by finite physical ξ1,0, ξ0,1 but divergent ξ1,1 (in the
limit χ → ∞). The data clearly show that for α > 0.75, ξ1,0(χ ) and
ξ0,1(χ ) tend to be convergent with increasing χ and hence a spin gap.
The solid orange and magenta lines represent the expected difference
between ln(ξ (χ = 625)) (black circle) and ln ξ (χ = 2560) (blue
circle) in a gapless sector of c = 2 and c = 1 systems, respectively.
We see that the numerical result near α = 0 is consistent with a 2TLL
state (c = 2). For α � 0.75, the result (for ξ1,1) clearly show a c = 1
phase. In Figs. 3 and 9, we show that another data analysis of the
same set of wave-function data extends the evidence of spin gaps for
smaller α.

theoretical studies [9,11] predict a spin-gapped phase, which
we call πSG phase, as the only stable phase. In this section,
we first revisit the basics of πSG phase from TL theory and
then provide numerical analyses of several physical quantities
to identify and study the πSG phase. In discussing the numer-
ical analyses, we will interlude with some theoretical analyses
to show how πSG with mass imbalance differs from its spinful
time-reversal symmetric counterpart.

We use φa and φb to bosonize ca and cb, respectively:

cσ (x) = κσ,+√
2π

ei[θσ +(φσ +kF,σ x)] + κσ,−√
2π

ei[θσ −(φσ +kF,σ x)]

+ . . . , (2)
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where κσ,± is Klein factors and θσ is the dual field of φσ . It
is helpful to introduce a set of rotated basis for the two boson
fields:

charge boson: φc = 1√
2

(φa + φb), (3)

spin boson: φs = 1√
2

(φb − φa). (4)

If the low-energy physics is described by a quadratic
Lagrangian of φσ and θσ , the ground state is a 2TLL.
The descendant phases of 2TLL are constructed by locking
vertex terms. We consider terms invariant under inversion
x → −x, φσ → −φσ together with homogeneity. In this
case, the most relevant locking (vertex) term, representing an
inter-component backward scattering, is gs cos(2

√
2φs) with

gs > 0 expected for repulsive interactions in our model. The
πSG phase is constructed by locking the spin boson 2

√
2φs

at (odd multiples of) π . The label π before SG (spin-gapped)
distinguishes the phase with the other spin-gapped
phase with locking value 〈2√

2φs〉 = 2π × integer. πSG
(2πSG) locking minimizes gs cos(2

√
2φs) for gs > 0

(< 0). Here, we consider expectation values of some
vertex operators, which are useful for determining
quasi-long-range orders and string orders. For example,
for the πSG phase, φs = π/(2

√
2). Hence for m ∈ Z,

〈cos((2m + 1)
√

2φs)〉 = 〈sin(2m
√

2φs)〉 = 0 while
〈sin((2m + 1)

√
2φs)〉 �= 0, 〈cos(2m

√
2φs)〉 �= 0. Notice

that the two locking values give distinct phases is provided
by the fact that cos(2

√
2φs + δ) term with continuous δ is

disallowed. As discussed, this can be protected by inversion
symmetry along with homogeneity.

A. Bulk spin gaps and string orders

In this section, we confirm the existence of the πSG phase
by looking at its defining property: Charge excitation is gap-
less; spin excitation is gapped due to a π locking. We use
correlation length analysis to infer whether the charge and
spin excitation is gapped, we then propose that string orders
can confirm the π locking and show our numerical results.

We first show that the spin boson is indeed gapped out
while the charge boson is gapless. This is to say that the unit
charge of gapless excitations is (1,1). To show this, we use
iDMRG to demonstrate that correlation lengths ξ1,0 and ξ0,1

are finite while the correlation length ξ1,1 diverges. In Fig. 2,
we plot the three correlation lengths through a cut of data
with U = 3. In this plot, the convergence (divergence) can be
inferred through finite χ scaling, which we have explained
in Sec. II. Recall, for the approximations of a ground state (a
vertical cut), the spacing of ξ between points with neighboring
values of χ indicates whether the charge sector is gapped
and/or the central charge (c) of the theory. In particular, for
a gapless sector Q of c = 1 (or 2), we expected ln(ξQ(χ =
1000)) − ln(ξQ(χ = 625)) ≈ 0.632 (or 0.409), while for a
gapped sector � ln ξ converges to zero as χ increases. For
large mass imbalance, α > 0.75, we observe that ξ1,0(χ ) and
ξ0,1(χ ) tend to be convergent with increasing χ , while ξ1,1(χ )
tends to be divergent. The convergence tendency gradually
becomes less clear for α < 0.75. We plot the reference ξ

increment as vertical lines for the gapless sectors of c = 1

(magenta) and 2 (orange) from χ = 625 (bottom circle) to
χ = 2560 (top circle), ln(ξ (χ = 2560)) − ln(ξ (χ = 625)) ≈
3 × 0.632 (3 × 0.409). Recall that at α = 0, we have 2TLL
phase with c = 2 and the orange line of increment is consis-
tent with the data. On the other hand, the magenta line is close
to the increment of ξ1,1 at large α, indicating a c = 1 phase. As
explained in Appendix A, the data analysis of ξ dependence
on χ at a single value of α cannot distinguish if the spin gap
is strictly zero or small but finite. This is indeed the situation
for small α’s. We will return to this issue in Sec. III D and use
other data analysis techniques to show evidence of spin gaps
for smaller α.

We now show that the spin boson 2
√

2φs is locked at odd
multiples of π . We define the following string lattice operators
[32,38] which can serve as order parameters to distinguish two
types of locking. Those operators are

�n(x) ≡
[∏

j<x

(−1)n( j)

]
(1 − 2n(x))

= 1

2

[∏
j<x

Q( j)

]
(Qa(x) + Qb(x)); (5a)

�z(x) ≡
[∏

j<x

(−1)n( j)

]
σz(x)

= 1

2

[∏
j<x

Q( j)

]
(Qa(x) − Qb(x)), (5b)

where σz = nb − na, n = na + nb, and Qσ = (1 − 2nσ ). We
let Q = QaQb be the fermion parity operator. For infinite
system, the correlation functions rather than the expecta-
tion values of �n and �z are well defined; the values
〈�n(0)�n(∞)〉, 〈�z(0)�z(∞)〉 are concerned.

Based on the considerations we will soon discuss, we claim
that bosonization representation of �n and �z are

�n(x) ∼ cos(
√

2φs) + . . . , (6a)

�z(x) ∼ sin(
√

2φs) + . . . (6b)

With Eq. (6), 2
√

2φs being locked at π dictates that �z(x)
[Eq. (6b)] is ordered while �n(x) [Eq. (6a)] is disordered.

We provide a physical picture of why �z(x) is ordered in
the πSG phase. This picture is the “squeezed space” inter-
pretation of �z [21,38]. The squeezed space is constructed by
excluding the empty and double occupied sites and relabelling
the remaining single-occupied sites as sites in a (shortened)
chain [38]. In the squeezed space, one can thus define an effec-
tive spin-1/2 model. �z can be considered as the Néel order
parameter in the squeezed space. In our model, Néel order �z

forms in the squeezed space. It is made possible by on-site
repulsion together with the absence of SU(2) symmetry. We
now draw an analogy between Eq. (6b) and the bosonization
of a spin-1/2 chain. Note that if we define φ̃s = φs/

√
2, we

obtain �z(x) ∼ sin(2φ̃s). This is the bosonization representa-
tion of Néel order of a spin chain with the convention that
σz ∼ 1

π
∂xφ̃s. The “φ̃s” in the squeezed space is related to φ̃s

by re-scaling the length [38].
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FIG. 3. Order parameter characterization of πSG states. The
parameters of the data points are the same as Fig. 2 (U = 3 at
filling 5/11). The data are obtained by unit cell averaging which par-
tially eliminates the finite bond dimension effects. Top panel shows
that 〈�n(0)�n(∞)〉 = 0 (at the accuracy of order <10−10). Bottom
panel demonstrates the finite expectation values of 〈�z(0)�z(∞)〉.
The data point α = 0.9 can be compared to our finite DMRG result
in Fig. 5 and the value is consistent.

Appendices B–D show Eq. (6a) and provide an alternate
argument for Eq. (6b) by considering inversion symmetry and
commutation relations.

Evaluating string orders for our data with U = 3,
we find that 〈�n(0)�n(∞)〉 = 0 while 〈�z(0)�z(∞)〉 �=
0, as predicted for πSG phase, see Fig. 3. We also
verify that for 2πSG phase obtained by setting U <

0 in our model, �z(x) is disordered and �n(x) is or-
dered. For both phases, we find 〈�n(0)�z(∞)〉 = 0, con-
sistent with Eq. (6). Consider an alternative basis for the
string order parameters Eq. (5): �a = 1

2 [
∏

j<x Q( j)]Qa(x)

and �b = 1
2 [

∏
j<x Q( j)]Qb(x). We have 〈�a(0)�a(∞)〉 =

〈�b(0)�b(∞)〉 = −〈�a(0)�b(∞)〉 for πSG phase; for
2πSG phase, we find 〈�a(0)�a(∞)〉 = 〈�b(0)�b(∞)〉 =
+〈�a(0)�b(∞)〉 �= 0. Such result, consistent with Eq. (6),
appears surprising, because the components a and b are
not symmetric in our case. Nevertheless, the a, b exchange
symmetry of the string correlations, only emerges at the long-
distance limit.

B. String order and filling anomaly in open chains

Next, we discuss πSG phase with open boundaries. Usu-
ally when there is a spin gap and absence of disorder, one
expects the ground state to have equal fillings—i.e., Na =
Nb—for a finite range of chemical potentials. Here, we show
that for open chains, the πSG phase can lead to one-particle
filling imbalance, which is the key signature of the filling
anomaly. We first use effective theory to explain the filling
anomaly phenomenon from the configuration of spin boson.
We provide our numerical data for string orders (Fig. 5) con-
sistent with the proposed field configuration. We then give
direct evidence for filling anomaly (Fig. 6) by measuring the

FIG. 4. (a) Schematic plot of the spin boson field configuration
of the observed spin-gapped state with open boundary condition. The
height difference between right and left indicates that there is one
more heavy (type b) particle than the light (type a) particle. This
one more particle is localized at the two edges as σz ∼

√
2

π
∂xφs. The

locking of φs in the bulk leads to the locking of the microscopic
string operator �z in the bulk, e.g., Fig. 5. (b)-(d) Some alternative
configurations with a spin gap. It turns out that they do not describe
observed πSG ground states. (c) and (d) describe two assumed
states at precise equal filling with inversion symmetry spontaneously
broken. For (a)–(d), the strings of H (heavy particle) and L (light
particle) denote the Néel order in the squeezed space.

spin gap. We discuss the filling anomaly in the πSG phase
when there is an additional spinful time-reversal symmetry.

First, we discuss the possible spin boson field configura-
tions for a state in πSG phase with open boundary conditions.
The name of πSG phase comes from that the field 2

√
2φs

is locked at π in the bulk. For infinite chains, the locking
value is defined modulo 2π . For open chains, however, those
values are not equivalent as boundary condition needs to be

FIG. 5. The string order 〈�n(x)〉, 〈�z(x)〉 of a finite chain with
length L = 396, 179 light (a type) particles and 180 heavy (b type)
particles. The other parameters for this plot are U = 3 and α = 0.9.
In the bulk, 〈�z(x)〉 is locked around a finite value, which is quantita-
tively consistent with the iDMRG result (Fig. 3) of string correlation.
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(a)

(b)

FIG. 6. Excitation energies for open chains as a function of
particle numbers. (a) The energy of lowest-energy state within each
sector with fixed particle numbers; the size of the open chain is
extrapolated to infinity; the chemical potential is chosen to make the
data left-right symmetric. (b) The spin gap is estimated by fitting
the intercept (�E ( 1

L = 0)) of �E ( 1
L ) curve. The E (Na, Nb; L) used

to define �E ( 1
L ), is the ground state energy of the open chain with

length L, Na light particles and Nb heavy particles. The curve is
obtained from a polynomial fit up to 1/L2. The quantity �E ( 1

L = 0)
is twice the spin gap. We see a finite intercept (≈ 0.03) of the
upper curve comparing to the vanishing intercepts of the other two
(≈ −0.001, −0.0003). The two small negative but finite intercepts
are likely to mostly come from the fitting ansatz/ finite size er-
rors. If using polynomial fit up to 1/L3, the two intercepts shrink
to ≈ −8 × 10−5; the raw DMRG energy data accuracy is in the
order of 10−7. The parameters of these plots: U = 3, α = 0.9, and
macroscopic density n = 5/11.

considered. The boundary condition is that in the left and right
vacuum, 2

√
2φs is locked at integer multiples of 2π . Without

losing generality, we fix 2
√

2φs of the left vacuum at 0 [30].
The locking value difference of right and left as multiples of
2π counts the number difference of the two types of particles,
see Appendix C for details. The fact that the bulk locking
value is not an integer multiple of 2π indicates that there must
be a change of field expectation value near the edges. As the
spin-z density is related to the spin boson σz ∼

√
2

π
∂xφs + . . . ,

there must be nonzero particle number imbalance near each
edge. Four spin field configurations could be relevant to stable
ground states, plotted in Fig. 4. According to the previous
discussion, configurations (a) and (b) have one more heavy
and light particle, respectively. Configurations (c) and (d) are
particle number balanced but there is “spin” polarization near
the edges which spontaneously breaks the inversion symme-
try. [Notice that the states described by Fig. 4(a) and 4(b)
are inversion symmetric, as the spin boson itself is not an

observable, but its derivative is a component of the “spin”
imbalance operator.] Intuitively, the configuration (a) with
one heavy particle localized at edges is more likely to be
energetically stable than those with one or half a light particle
localized near the edge(s). This is because the kinetic energy
contribution of the localized heavy particle can be smaller.

The assumption that only field configuration (a) is stable
results in two predictions: The long-range string order �z(x)
only exists in the sector with one more heavy particle; the
spin gap only locks the filling to that with one more heavy
particles for a finite range of chemical potentials. We show
that our numerical data are consistent with the predictions.
We use the string operators �z(x) and �n(x) to probe the
expectation value of the spin boson φs in the bulk (Fig. 5);
we also compute the spin gap and show that the state with
one additional heavy particle is separated with other spin
sectors by a finite gap and nearby sectors are in the continuum
(Fig. 6).

First, we measure the string operators on the ground state
with one more heavy particle. Figure 5 plots 〈�z(x)〉 and
〈�n(x)〉 for given parameters. According to Eq. (6), the lead-
ing contribution to these string operators can indicate the
locking of the spin boson. We observe that there is a plateau
for 〈�z(x)〉 in the bulk. It is clear that the result is consistent
with the spin boson locked at π and the sin(

√
2φs(x)) term

in the bosonization representations. Here, sin(
√

2φs(x)) is
expected to lock at a nonzero value in the bulk as 2

√
2φs(x)

is locked at π . We observe that 〈�n(x)〉 does not have a finite
locking value, as cos(

√
2φs(x)) vanishes in the bulk. This is

consistent with the requirement of odd inversion parity of the
curve. The curve �n(x) is “soft” in the bulk, which can be
encoded by those terms with charge mode in the bosonization
expansions, in addition to Eq. (6), see Appendix. D. From the
definition Eq. (5), we observe that �z(x) becomes σz(x) =
1
2 (nb(x) − na(x)) at the left and right edges; �n(x) becomes
1
2 (1 − nb(x) − na(x)) and 1

2 (na(x) + nb(x) − 1) at the left and
right edges, respectively. This explains the feature near the
edges. We also observe Friedel oscillations. Those features
can be encoded by other terms of the bosonization expansions.

Next, we measure the ground state energy for each spin
sector and extract the spin gap. Figure 6(a) plots the ground
state energy within each spin sector, relative to the absolute
ground state energy. The data have been extrapolated to the
thermodynamic limit. We see the data points can be connected
by two straight lines, which intersect at one kink; the kink
is located at Nb = Na + 1 (when there is an additional heavy
particle). Since adjusting the relative chemical potentials tilts
the plot, the existence of the kink ensures that for a finite
range of chemical potentials, the ground state has the filling
Nb − Na = 1. We define �E as the sum of the energy cost of
adding and subtracting a light (a type) particle respectively.
�E is the difference of the right and the left slope. �E is
invariant under a change of chemical potentials. The spin gap
is defined as half of �E . The extrapolation of �E to thermo-
dynamic limit is demonstrated in Fig. 6(b). The data indicate
that �E is nonzero only if the base state is chosen in the spin
sector that there is one more heavy particle (Nb = Na + 1).
This is consistent with that only one sector has a bulk spin
gap. The value of �E is approximately 0.03 for the partic-
ular parameters while the corresponding bulk single-particle
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correlation length is ∼10 (see Sec. III A). Here, the spin gap
is evaluated by subtracting and adding one light particle. A
consistent result is obtained by subtracting and adding one
heavy particle. We remark that there is no low-energy edge
mode. The existence of such mode is not consistent with the
observed energy landscape, i.e., crossing of the two straight
lines [Fig. 6(a)]. Thus �E indeed reflects the bulk spin gap.

The phenomenon that there is one more heavy particle
in the spin-gapped state is one possibility of filling anomaly
which is a more general statement of topological edge effects
than edge zero modes. In this case, the nonlocal inversion
symmetry protection can be involved, comparing to symmetry
with locality like spinful time-reversal symmetry. Similar to
Refs. [33,34], we may state that for an open chain without
impurity, the ground state(s) with a bulk π spin gap, there
is either inversion symmetry breaking or particle number im-
balance. Keselman and Berg [30] have studied open πSG
chains with extra spinful time-reversal symmetry with a dis-
cussion of spin boson field configurations. In their case, the
time-reversal symmetry action on spin boson configuration:
φs(x) → −φs(x) can transform Fig. 4(a) into Fig. 4(b). This
means the slope amplitude of the configuration should be
the same, unlike what we have drawn for the lack of spinful
time-reversal symmetry. By doing the transform at one of
the edges, the other two ground states similar to (c) and (d)
with equal particle numbers can be obtained. This procedure
does not change the energy in the thermodynamic limit, due
to locality and spinful time-reversal symmetry. While being
equal-filling, these two states break both spinful time-reversal
and inversion symmetry. Hence, their four degenerate ground
states all fit in the statement of filling anomaly. In our case,
spinful time-reversal symmetry is absent; so the simultaneous
existence of spin gaps in the three sectors is not guaranteed.
Our calculation indicates that the only spin-gapped state is in
the sector with one more heavy particle; the gapless equal-
filling states do not spontaneously break inversion symmetry.
Our result that the spin-gapped state is inversion symmetric
but has one more heavy particle also fits in the statement of
filling anomaly.

C. Quasi-long-range orders

In the following section, we show how to characterize
the πSG phase using spin, charge, and pair quasi-long-range
orders in infinite systems. Specifically, we focus on the decay
exponents and oscillatory wave vectors of the algebraic decay-
ing components of the various correlators. These exponents,
in turn, all depend on the single Luttinger parameter K in the
effective bulk theory Eq. (7):

Hc = vc

2π

[
K (∂xθc)2 + 1

K
(∂xφc)2

]
. (7)

For the correlation of operators in the neutral (0,0) sector,
we now show that mass imbalance mixes the quasi-long-range
orders of “spin” and charge. The bosonization representation
of the density of species σ is

nσ = 1

π
∂xφσ + λσ sin(2φσ + 2kFx) + . . . , (8)

where λσ is nonuniversal [39,40]. As mass imbalance in-
troduces an asymmetry between a and b components, we
expect λa �= λb generically for interacting systems. Then us-
ing Eqs. (3) and (8), we write the bosonization representations
of n and σz:

n =
√

2

π
∂xφc + (λa + λb) sin(

√
2φc + 2kFx) cos(

√
2φs)

+ (λb − λa) cos(
√

2φc + 2kFx) sin(
√

2φs) + . . . , (9a)

σz =
√

2

π
∂xφs + (λa + λb) cos(

√
2φc + 2kFx) sin(

√
2φs)

+ (λb − λa) sin(
√

2φc + 2kFx) cos(
√

2φs) + . . . (9b)

A consequence of λa �= λb is that the density-wave
quasi-long-range orders of the “spin” and charge should qual-
itatively be the same, i.e., only differ in their coefficients. In
this sense, even with a spin gap, there is no strict spin-charge
separation. The leading quasi-long-range orders for n and σz

are

〈n(0)n(x)〉 ∼ 〈σz(0)σz(x)〉 ∼ cos(2kFx)

|x|K . (10)

This is different from the mass-balanced case, in which
the 2kF quasi-long-range order of either “spin” or charge
vanishes. That case is a consequence of setting λa = λb in
Eqs. (9a) and (9b) and plugging in the φs = π/(2

√
2) (πSG

phase) or φs = 0 (2πSG phase).
To extract the period and the exponent of the quasi-long-

range order of the neutral sector, we study how finite-χ
order decays with the DMRG correlation length as we in-
crease χ (see Sec. II). The decay exponent of the peak at
q = ±2kF gives the scaling dimension of the leading or-
der: |〈n(2kF)〉χ | ∼ |〈σz(2kF)〉χ | ∼ ξ

−K/2
0,0 . In Fig. 7, we plot

|〈n(q)〉χ | and |〈σz(q)〉χ | of a πSG state and show the fitting
of K .

The leading quasi-long-range order in the pair sector (1,1)
is the z-component “triplet” pairing (TSCz) order [9,11].
The system neither has an SU(2) nor spinful time-reversal
symmetry but has an inversion symmetry; the TSCz order
here inherits the odd spatial parity property of TSCz in the
context of SU(2) symmetry. A microscopic representation of
the order is OTSZ(x) = ca(x)cb(x + 1) + cb(x)ca(x + 1); the
leading term of its two-point correlator is ∼ 1

|x|1/K . Consider
an “s-wave” pair operator OSS(x) = ca(x)cb(x), which has
even parity; TL theory predicts that the corresponding lead-
ing term of its two-point correlator is ∼ cos(2kFx)

|x|1/K+K , namely,
a pairing-density-wave quasi-long-range order. Notice that
this pairing-density-wave quasi-long-range order in the “s-
channel” decays faster than the TSCz quasi-long-range order.
In Fig. 8, we show correlators of OTSZ and OSS respectively for
a state in the πSG phase. We also plot the reference slopes of
the two pair correlators, obtained by theoretical prediction and
K extracted from the CDW/SDWz quasi-long-range order.
The good agreement between the reference slopes and the
observed slopes of the two pair correlators indicates that our
description is consistent.
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FIG. 7. Scaling of finite-χ charge-density-wave order (top) and
spin-density-wave order (bottom) of a πSG state with bond dimen-
sion χ and finite-χ correlation length ξ0,0(χ ). The two orders show
peaks at q = 10π

11 and q = 12π

11 which correspond to q = 2kF and
q = 2π − 2kF. The two insets show how the 2kF peaks decay with
ξ0,0(χ ) as we tune the bond dimension χ . We estimate that the Lut-
tinger parameter K ≈ 0.406 by fitting the slope in the inset and using
the proposition that slope = −K/2. The point |〈n(q = 0)〉χ |, which
is fixed by the total charge density, is not plotted. Plot parameters:
U = 3, α = 0.8, and filling 5/11.

D. Discussion of the prevalence of spin gap
over the phase diagram

Detecting smaller spin gaps requires larger system sizes
and/or bond dimensions. A region with finite but small spin
gaps in a phase diagram, may get missed in numerical detec-
tion as in Ref. [25]. Here, we introduce some data analysis
techniques to mitigate the challenge of detecting small spin
gaps. In this section, we discuss the prevalence of the spin
gap based on our data for α > 0 with our data analysis
techniques.

The TL theory based on perturbative RG or large U expan-
sion has predicted [9,11] that the spin gap is prevalent and the
gap scales as

Esg ∼ e−B/(αU sin(kF )), (11)

where B is roughly a positive constant. The factor sin(kF)
in the exponent indicates that the finite spin gap is a pure
many-body effect; its value vanishes at the few-body limit
kF → 0, π . The exponent is ∝ 1/γ , with γ representing the
detuning parameter α or U . This is different from the scaling
ln(Esg) ∝ 1/

√
γ near the BKT transition of the XXZ chain or

the attractive Hubbard model. Therefore, due to the scaling
∝ 1/γ , the rate of increase of the gap Esg (away from γ = 0)
in our model is even slower than that of the transition of
XXZ chain or the attractive Hubbard model. In this regard,
we expect a large region of α or U near zero with a tiny spin
gap.

As we have discussed at the beginning of Sec. III A, the
simple finite-χ correlation lengths scaling (Fig. 2) cannot
determine whether there is an indeed finite spin gap for the
region 0 < α < 0.75. The region 0 < α < 0.65 is also unclear
from the plot on the string order (Fig. 3). In the following para-

FIG. 8. Pairing quasi-long-range orders of a state in πSG phase.
The parameters of the state: U = 3, α = 0.8, and filling 5/11. The
asymptotic behavior of the TSCz order (a) is predicted as ∼1/r1/K ;
while for the “s-wave” order (b) is cos(2kFx)/r1/K+K . K can be
independently extracted by SDWz/CDW order (Fig. 7). Using the
extracted value 0.406, we plot 1/r1/K and 1/rK+1/K (the solid lines) in
the first and second figure respectively, approximately matching the
leading decaying slope of the numerical data. Note that the asymp-
totic behavior should be found at distance beyond the correlation
length of the spin boson [estimated in the (1,0) and (0,1) sectors and
denoted by the red dashed lines].

graphs, we show that further data analysis provides evidence
for the prevalence of spin gap and Eq. (11).

First, we use a scaling dimension analysis to argue that a
spin gap persists for α > 0. We note that, for a 2TLL to be
stable, we require the scaling dimension of �z, ��z � 1/2.
This is because ��z is a quarter of the dimension of the
spin locking term (�cos(2

√
2φs )), which should be � 2 in the

2TLL phase. On the other hand, for in πSG phase, �z takes
expectation value, ��z = 0. We numerically estimate ��z

by the finite χ scaling (see Sec. II) of 〈�z(0)�z(∞)〉χ . The
dimension ��z is estimated as one half of the slope of the
log-log plot of 〈�z(0)�z(∞)〉χ and ξ0,0(χ ).

Figure 9 shows our plot for α = 0, 0.2, 0.4, and 0.6. In the
large χ limit, the slope should be � 1 for 2TLL, and exactly 0

195126-8



ONE-DIMENSIONAL REPULSIVE HUBBARD MODEL WITH … PHYSICAL REVIEW B 104, 195126 (2021)

FIG. 9. Dependence 〈�z(0)�z(∞)〉χ for small α on DMRG cor-
relation lengths ξ0,0(χ ). The dashed line is a reference of the slope
= 1, see the discussion in Sec. III D.

for the πSG phase. At finite χ , the estimated slope is found to
be between 0 and 1, with larger mass imbalance α corresponds
to a smaller slope. At the mass-balanced point (α = 0), the
state has SU(2) symmetry which dictates that ��z = 1/2;
hence the asymptotic slope should be 1. Indeed, our data show
a good agreement; the estimated slope is 0.97 and tends to
be closer to 1 for larger χ . For α = 0.2, 0.4, and 0.6, the
slopes at finite χ are clearly smaller than 1. The slopes for
α = 0.4 and 0.6 show a clear tendency to decrease for larger
χ , while such tendency is unclear for α = 0.2 (at χ ≈ 2560).
We remark that if there was a 2TLL phase at nonzero α, we
should have observed a slope greater than 1. Hence, the scal-
ing dimension estimation provides evidence of the prevalence
of the spin gap.

In Appendix E, we present the second analysis, a BKT gap
scaling collapse based on Eq. (11).

IV. COMMENSURATE FILLING

For commensurate fillings, umklapp processes induce
locking terms in the effective theory, which can be interpreted
as binding between particle(s) and hole(s). As a result, new
phases may appear in the phase diagram, such as crystal
phases or liquids of particle-hole bound states. Hence, the TL
analysis of the phase diagram should consider those terms in
addition to the spin-locking term analyzed in the previous sec-
tion. In this section, we do indeed find new phases; we show
that the phase diagrams can be understood by the competition
and collaboration of umklapp term(s) with the spin-locking
term.

The general form of interacting (vertex) terms is
cos(2mφa + 2nφb + (2m + 2n)kFx), where m, n ∈ Z. Umk-
lapp terms correspond to m + n �= 0. In order for an umklapp

term to lock, 2(m + n)kF = 2πN , where N ∈ Z. Thus, the
choice m and n is restricted by the filling (filling = kF/π ).
We note that except for half filling, no umklapp term can lock
when the interaction is infinitesimal. This is clear from scaling
dimension of the umpklapp term, which in the noninteract-
ing limit is m2 + n2 � 2, where the equality holds only for
half filling (with m = n = 1); the critical scaling dimension
is 2.

For 1/2 filling, the most relevant umklapp locking term is
gc cos(2

√
2φc) with gc < 0. This term is believed to always

lock in any stable phase of the repulsive model, consistent
with the scaling dimension analysis. A large charge gap can
develop even for moderate U ∼ ta, tb, and once a charge gap
develops the spin sector can be analyzed separately. For the
case of a large charge gap, it has been shown theoretically that
the spin gap can also open [8,9]. As a result, true long-range
density-wave order develops to form a crystal. The long-range
SDWz order in the crystal phase has been found numerically
in Refs. [8,10]. Here, we observe that the long-range SDWz
order coexists with the CDW order in this phase, see Ap-
pendix F. While the existence of CDW order is not obvious
from the infinite U coupling analysis presented in Refs. [8,9],
it becomes obvious following our analysis Eqs. (8), (9a), and
(9b). Comparing to 5/11 filling, we see that in the half filling
case, an easily detectable (and larger) spin gap extends over a
broader range in parameter space. Whether the crystal phase
is the only stable phase throughout the phase diagram at half
filling remains an open question. To test this, one can perform
scaling collapse. However, the possible direct BKT transition
from the 2TLL to the crystal phase involves two lengths
scales: One for the charge sector and one for the spin sector,
which is numerically challenging. This type of two-parameter
collapse of numerical data was performed in a completely
different model [53], and hence could be possible in the future
for our model.

For other commensurate fillings, the scaling dimension
analysis shows that the locking of any umklapp term requires
finite strength of interaction, indicating possibly richer phase
diagrams. In the following paragraphs, we revisit the phase
diagram at 1/3 filling, studied previously in Ref. [25]. In
contradiction to Ref. [25], we argue for the existence of a
πSG phase using both numerical evidence and theoretical
arguments.

We use DMRG correlation lengths analysis, similar to
Sec. III A, to construct the phase diagram at 1/3 filling, see
Fig. 1(b). A sample of the DMRG correlation length data,
taken for a cut at fixed α = 0.9 and varying U is plotted in
Fig. 10. We observe that for intermediate interactions (cen-
tered on U = 3), all four correlation lengths ξ1,0(χ ), ξ0,1(χ ),
ξ1,1(χ ) and ξ−1,2(χ ) tend to converge, consistent with a crys-
tal phase. For small U , we observe that ξ1,1(χ ) tends to
diverge while the other correlation lengths tend to converge,
which is consistent with the πSG phase. On the other hand,
for large U , ξ−1,2(χ ) is the only correlation length that tends to
diverge, indicating that the elementary bulk gapless excitation
carries charge (−1, 2), which is a trion composed of an a hole
and two b particles. The trion and crystal phases have been
found previously in Ref. [25]. Our correlation length data
further confirm the trion phase by showing the elementary
gapless excitation is trion. The main difference between the
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FIG. 10. The phases of the model at 1/3 filling inferred from the finite-χ correlation lengths in (1, 0), (0, 1), (1, 1), and (−1, 2) sectors.
The data are taken for different interaction U along the cut α = ta−tb

ta+tb
= 0.9. This cut shows the evidence of πSG, crystal and trion phase

from left to right. (“PS” denotes phase separated.) For the four correlation lengths plotted, a πSG state is characterized by that only ξ1,1 is
divergent; a trion state only has divergent ξ−1,2 among the four sectors, and all lengths are finite for crystal. The philosophy of using a set of
finite-χ correlation lengths to infer the exact values is the same as Fig. 2. The solid orange and magenta lines represent the proposed increment
from ln(ξ (χ = 625)) (black circle) to ln ξ (χ = 2560) (blue circle) in a gapless sector of c = 2 and c = 1 systems, respectively, assuming no
intervening from the gapped degree of freedom.

conclusion of Ref. [25] and our data (Fig. 10) is that the “miss-
ing” πSG order is indeed not missing. We will see from the
theoretical analysis below that πSG is expected to neighbor
the crystal phase with the trion phase on the latter’s other side.

To interpret the data we obtained, it is sufficient to limit our
attention to the most relevant umklapp term and the spin lock-
ing term. We first analyze the candidates and pick out the most
relevant umklapp term. We observe that the resulting term is
consistent with our finding of a trion phase. Adjacent to the
noninteracting limit, the most relevant umklapp locking terms
at 1/3 filling are: g2,4 cos(2φa + 4φb) and g4,2 cos(4φa + 2φb)
where g2,4 < 0 and g4,2 < 0 for repulsive interaction. With
asymmetry of a and b due to mass imbalance, it is possible
to have one of the two terms locked. To estimate which term
is more relevant, we use bosonization to evaluate the scaling
dimension of the two terms in the free theory. In Appendix G,
using the “naive” parameters for the effective theory, we find
that �(4,2)pt, the scaling dimension of g4,2 cos(4φa + 2φb), is
smaller. This term can be interpreted as binding two heavy
holes with one light particle or equivalently two heavy parti-
cles with one light hole. Assuming only g4,2 cos(4φa + 2φb)
gets locked, the ground state is a liquid of trions with charge
(−1,2). This is because the dual field −θa + 2θb, corresponds
to (−1,2) charge if appearing at the exponents of vertex
operators, commutes with 4φa + 2φb and thus is an indepen-
dent field and remains gapless after the latter gets locked.
([θσ (x, t ), φσ ′ (y, t )] = iπδσ,σ ′H (x − y), where H is Heaviside
step function.) Recall from the last section, the locking of the

spin boson results in the πSG phase. The locking of both
the spin boson and 4φa + 2φb gives a crystal phase, as the
number of gapless modes is reduced to zero and a long-range
density-wave order forms with three sites per unit cell. With
the above picture in mind, we see that a direct transition from
2TLL to the crystal phase is unlikely, as there is no symmetry
that induces the two locking terms to lock simultaneously.

In Appendix H, we provide additional data extracting “spin
gap” of open chains in presence of charge or trion gap; and we
discuss the remnants of filling anomaly.

V. CONCLUSION AND DISCUSSION

We have studied the phase diagram of the repulsive one-
dimensional Hubbard model with mass imbalance. We find
πSG phase as the ground state of incommensurate fillings
and study its quasi-long-range orders and string orders via
bosonization and DMRG. We point out πSG locking leads
to filling anomaly [33,34] of open chains. For the equal-
filled sector, the observed states do not have a spin gap and
spontaneous breaking of inversion symmetry; the spin-gapped
states are in the sector with one more heavy particle. We
argue that this is made possible by the asymmetry between
the two components in addition to the πSG locking. The
πSG phase is also shown to be a precursor phase of a type
of crystal phases for commensurate fillings, which requires
further particle-hole binding instabilities. The “spin gaps” of
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open chains of the crystals phases are also calculated and
discussed.

Finally, we discuss some possible implications of our
results to the experiments using quantum simulators. Our
calculations show that the amplitude of string order param-
eters could be much larger than the TSCz (“triplet” pairing)
quasi-long-range order in certain parameter regions. There-
fore, to experimentally detect the πSG phase we suggest
measuring the string correlations [21], instead of trying to
detect TSCz order, and comparing the results with our pre-
dictions. Those observations can identify that mass imbalance
drives the spins in the squeezed space into Néel order. For
the trion phase, the two components have different scaling
dimensions for their density-wave orders; this difference may
be detectable by Friedel oscillations.
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APPENDIX A: NUMERICAL METHODS

The first aspect is to determine the exact correlation lengths
of the ground state in charge sectors (qa, qb), which are de-
noted as ξqa,qb .

The “finite-χ correlation lengths” are the correlation
lengths of the best approximate ground state for an iMPS
variational ansatz with bond dimension χ . (The effectiveness
of iDMRG can be checked against other iMPS optimization
algorithms, e.g., Refs. [41,42].) We denote them as ξqa,qb (χ ).
As the approximate state becomes exact with χ → ∞, the
DMRG correlation lengths approach the exact values. We
need to estimate if ξqa,qb (χ ) converges to a finite value or
diverges based on finite χ data. It is helpful to notice that if a
correlation length is divergent, the expected divergent rate is
algebraic in χ . Ideally, if the degrees of freedom of a state are
decoupled CFTs, the rate to diverge is predictable in the limit
χ → ∞ [37]:

ξ (χ ) ∝ χκ, (A1a)

κ = 6

c(1 + √
12/c)

, (A1b)

where ξ denotes any divergent correlation length and c is the
sum of the central charge of each CFT. Extended TLL phases
are effectively described by decoupled free boson CFT(s),
each with central charge 1. The TLL may also contain gapped
degree(s) of freedom, as the consequence of locking some
mode(s) of its parent theory. In this case, it is unclear that
if Eq. (A1b) holds for χ → ∞. However, it is expected that

κ (cp) < κ � κ (c), where cp is the total central charge of the
parent theory.2

The method of using numerical data and Eq. (A1a) to infer
if ξqa,qb is infinite is as follows. For a ξqa,qb , we estimate a
value of κ use a series of finite χ by assuming the form of
Eq. (A1a). In the χ → ∞ limit, if ξqa,qb is finite, the estimated
κ is by definition 0, otherwise it follows Eq. (A1b). As the
limit χ → ∞ cannot be reached numerically, we analyze data
to see if the algebraic divergence relation is violated. It is
helpful to pick a geometric series of χ (e.g., [625, 1000, 1600,
2560]) to implement iDMRG and analyze the logarithm of the
obtained correlation lengths. In this case, the data of ξqa,qb (χ )
are supposed to be equally spaced assuming a constant alge-
braic increase rate. If ξqa,qb is finite and is not much larger
than ξqa,qb (χ = 2560), we expect to see decreasing spacing
for increasing χ , showing convergence. For a TLL phase
with some finite ξqa,qb , there must be other divergent ξqc,qd .
If the exact ξqa,qb is not much larger than and not too close
to ξqa,qb (χ = 2560), the set of ξqc,qd (χ ) can display crossover
behavior, which is increasing spacing for increasing χ . The
reason is that for small χ [ξqa,qb (χ ) << ξqa,qb], the system
behaves like its parent theory with a larger central charge
and thus a smaller κ [Eq. (A1b)] leading to smaller spacing.
The challenge to detect a small gap is that the implemented
χ could be small in the sense that any finite ξqa,qb is much
larger than ξqa,qb (χ = 2560). In this case, the above finite χ

analysis will not show a signal of a gap. In the main text and
Appendix E, we use scaling dimension estimation and scaling
collapse to make the detection less challenging.

The second aspect is using “DMRG finite-χ density-wave
order” to infer the exact density-wave quasi-long-range orders
or long-range orders.

The TLL phases we study have density-wave quasi-
long-range orders while the crystal phases have long-range
density-wave orders. Here we discuss the finite-χ scaling used
to distinguish quasi-long-range orders from long-range orders
as well as extract wave vectors and exponents of quasi-long-
range orders. In our case, the observed phases of this model
all have density quasi-long-range orders/ orders with a single
base period p, compatible with our MPS ansatz with p site
per unit cell, where p is the denominator of the irreducible
filling fraction q/p. With such compatibility, there is a finite-
χ scaling for quasi-long-range orders represented by charge
(0,0) operator ρ:

〈ρ(k)〉χ ∝ ξ
−�ρ(k)

0,0 (χ ), (A2)

where ρ(k) is the Fourier transform of ρ(x) over one unit
cell: ρ(k) = ∑p

x=1 eikxρ(x), �ρ(k) is the scaling dimension
the density-wave quasi-long-range order of ρ at wave vector
k. This is to say, any finite χ approximation of a (uniform)
TLL ground state is not uniform in terms of ρ, but get close
to the uniform limit in a given manner with increasing χ

[43].3 Equation (A2) provides a finite-χ scaling method to

2It follows from that the entanglement spectrum of a gapped
bosonic mode decays faster than a gapless bosonic mode.

3An intuitive explanation is as follows: DMRG density correlation
of ρ is faithful only within the length ∼ξ0,0(χ ); beyond this length
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extract density quasi-long-range order, which is practically
more convenient and accurate than directly analyzing the
DMRG correlation function. Besides quasi-long-range order,
for an operator ρ with true long-range density-wave order
at k, 〈ρ(k)〉χ does not decay to zero. Without any order at
k, 〈ρ(k)〉χ exponentially decays to zero. We remark that the
scaling Eq. (A2) also applies if ρ is a string operator, where
the square of Eq. (A2) can be numerically evaluated.

APPENDIX B: INVERSION SYMMETRY OF �z(x) and �n(x)

Recall from the main text, �n and �z are defined as

�n(x) ≡
[∏

j<x

(−1)n( j)

]
(1 − n(x))

= 1

2

[∏
j<x

Q( j)

]
(Qa(x) + Qb(x)),

�z(x) ≡
[∏

j<x

(−1)n( j)

]
σz(x)

= 1

2

[∏
j<x

Q( j)

]
(Qa(x) − Qb(x)). (B1)

We first discuss the inversion symmetry of �n and �z.
Consider a quantum state |I〉 with inversion symmetry and its
total fermion parity is P. Consider an inversion symmetric pair
of of positions x and x′, we claim that

〈I|�n(x)|I〉 = (−1)P〈I|�n(x′)|I〉,
〈I|�z(x)|I〉 = −(−1)P〈I|�z(x′)|I〉.

(B2)

The proof is as follows.
Multiply the total fermion parity operator P = � jQ( j) to

�n(x) and �z(x):

P�n(x) = 1

2
(Qa(x) + Qb(x))

∏
j>x

Q( j),

P�z(x) = −1

2
(Qa(x) − Qb(x))

∏
j>x

Q( j).

(B3)

We have used Q(x)Qa(x) = Qb(x) and Q(x)Qb(x) = Qa(x).
Consider a state |I〉 that is symmetric (even or odd) under
inversion which takes x to x′〈

I|1

2
(Qa(x) + Qb(x))

∏
j>x

Q( j)|I
〉

= 〈I|�n(x′)|I〉,
〈

I|1

2
(Qa(x) − Qb(x))

∏
j>x

Q( j)|I
〉

= 〈I|�z(x′)|I〉.
(B4)

We also have

〈I|P�n(x)|I〉 = (−1)P〈I|�n(x))|I〉,
〈I|P�z(x)|I〉 = (−1)P〈I|�z(x))|I〉.

(B5)

scale, the DMRG result behaves like a mean-field theory, which has
artificial long-range order compatible with the ansatz.

Equation (B2) follows from Eqs. (B3)–(B5).

APPENDIX C: BOSONIZATION CONVENTION AND
BOSON FIELDS AS PSEUDOSCALARS

We first review some aspects of the bosonization of two-
component fermions. In our convention, the bosonization
representation of fermionic operators are

cσ (y) ∼
∑

j

κσ,sgn( j+0.5)e
i[θσ +(2 j+1)(φσ +kF,σ x)], (C1)

where σ = a, b is the component index, κσ,± is the Klein
factor and we have neglected coefficient before each term.

In this paper, we focus on kF,a = kF,b up to a caveat that
(kF,a − kF,b)L is finite even in the thermodynamic limit, where
L is the system size. Considering this caveat, we adopt the
following basis transform:

charge boson : φc = 1√
2

(φa + φb), (C2)

spin boson : φs = 1√
2

[φb − φa + (kF,b − kF,a)x]. (C3)

This convention reduces to Eq. (3) in the limit kF,a = kF,b.
The reason to choose this convention is that as we will show,
(kF,a − kF,b)x is not the correct background field configuration
to be subtracted in case of that there is a spin gap. [The
background field configuration subtraction is implicit by the
construction Eq. (C1).]

In this convention, the bosonization representation form of
σz is

σz(x) =
√

2

π
∂xφs + . . . (C4)

Equation (C4) is just a reproduction of Eq. (9b) with the os-
cillatory and higher order terms neglected. We assume that in
the system,

∑
j σz( j) = M. In the bosonic representation, we

have: 2
√

2φs(xright ) − 2
√

2φs(xleft ) = ∫
dx2

√
2∂xφs = 2πM.

In discussing open chains, we can fix the convention
2
√

2φs(xleft ) = 0 for convenience [30].
In this convention, the bosonization representation of in-

version transform is x → x′ = 2x0 − x, 2
√

2φs(x) → 2πM −
2
√

2φs(x′), 2
√

2φc(x) → −2
√

2φc(x′), κσ,+ ↔ κσ,−, where
x0 is the inversion center. This transform preserves the conven-
tion that 2

√
2φs(xleft ) = 0. The boson fields are pseudoscalars

in the sense of above transform. Bosons being pseudoscalars
is indicated by Eq. (C4) as σz(x) in this system is a scalar. The
above analysis also indicates that for an inversion symmetric
state |I〉:

〈I|2
√

2φs(x)|I〉 = 〈I|(2πM − 2
√

2φs(x
′))|I〉, (C5)

APPENDIX D: BOSONIZATION OF �z(x) AND �n(x)

With the above discussion in mind, we discuss the
bosonization representation of �z(x) and �n(x) from the con-
sideration of symmetry and commutation relation.

We first consider the symmetries of the operators and the
symmetries of the Hamiltonian. The U(1) symmetry of the
two operators dictates that the bosonization representation
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should not contain θ fields, as the U (1) transform is θσ + δθσ ,
with δθσ an arbitrary c number.

Then we analyze the parity of the operators under the
transform a ↔ b, which leaves σz → −σz, n → n. If the
Hamiltonian has the corresponding symmetry, the transform
in bosonization representation is φs → −φs [otherwise no
simple representation exists, see the discussion for Eq. (9a)
and (9b) in the main text]. In this case, we conclude �z

(�n) should be odd (even) under φs → −φs. For the case of
absence of inter-component symmetry, we show that the form
of the leading terms of �z and �n should keep invariant by
considering the inversion symmetry.

We have figured out in the Appendix B that the spatial
parity of 〈�n(x)〉 and 〈�z(x)〉 on an inversion symmetric
state depends on the total fermion parity P. We also have
introduced M as the total polarization in Appendix C, when
M is even (odd), P is even (odd) and 〈�n(x)〉, 〈�z(x)〉 are
respectively even (odd) and odd (even). Further consider
Eq. (C5), we conclude that the bosonization representation
�z(φs, φc) should obtain a factor −(−1)M under the transform
2
√

2φs → 2πM − 2φs and φc → −φc. Similarly, �n(φs, φc)
should obtain a factor (−1)M under the transform 2

√
2φs →

2πM − 2φs and φc → −φc.
Finally, we consider the commutation relations of the

string operators with the fermion operators ca(y) and
cb(y). We see that �z(x, t ) anticommutes (commutes) with
ca(y, t ), cb(y, t ) on its left (right). Recall from Eq. (C1),
cσ (y) ∼ ∑

j κσ,sgn( j+0.5)ei[θσ +(2 j+1)(φσ +kF,σ x)]. We recall that
[θσ (x, t ), φσ ′ (y, t )] = iπδσ,σ ′H (x − y), where H is Heaviside
step function. As a result, to guarantee the commutation re-
lation, each term in the bosonization representation should
contain a vertex with odd coefficients before φa and φb, i.e.,
∼ei[(2 j+1)(φa+kF,ax)+(2l+1)(φb+kF,bx)], where j, l ∈ Z.

With the consideration above, we count the leading (lowest
harmonic) term with no short wavelength oscillation. We find
sin(

√
2φs), cos(

√
2φs) respectively for �z and �n. Notice that

�z(x) becomes σz at the left edge and −(−1)Pσz at the right
edge. In fact, the above consideration by itself rules out the
possibility that cos(

√
2φs) as a term for �z. Similarly �n(x)

becomes 1 − 2n at the left edge and (−1)P(1 − 2n) at the
right. These could be encoded by some of the subleading
terms. We speculate that

�z(x) ∼ sin(
√

2φs) + ∂xφs(cos(
√

2φc + 2kFx) + cos(
√

2φs))

+ sin(
√

2φs) cos(2
√

2φc + 4kFx) + . . . , (D1)

�n(x) ∼ cos(
√

2φs) + cos(
√

2φc + 2kFx) + ∂xφc cos(
√

2φs)

+ cos(
√

2φs) cos(2
√

2φc + 4kFx) + . . . (D2)

APPENDIX E: BKT SCALING COLLAPSE

We employ a finite χ scaling ansatz of an infinite sys-
tem by substituting the system size of the finite-size scaling
[44,45] with the effective length scale χκ . As a proxy for the
bulk gap Esg, we can choose either the inverse single-particle
correlation length(s) or the string order (〈�z(0)�z(∞)〉χ ).
Here we present the result of string order collapse based on
the assumption Eq. (11). The critical point is assumed to be
α = 0. We minimize the mean square residual to “collapse”

FIG. 11. A finite-χ BKT scaling collapse of order parameters.
The BKT transition between 2TLL and πSG is assumed to happen at
α = 0 and the order parameters scaling of infinite system is assumed
to be Eq. (11). B and C are the fitting parameters to minimize the
square residual. The data are taken with parameters: U = 3, 0 < α =
ta−tb
ta+tb

� 0.5.

the scaled curves. The collapse result is shown in Fig. 11.
Despite the result shows no inconsistency with the assumption
Eq. (11), more work is needed to draw a conclusion with a
determination of B in equation Eq. (11). In particular, it may
be helpful to consider analyses similar to that of Ref. [46].

APPENDIX F: DMRG DATA FOR THE CRYSTAL
PHASE AT HALF FILLING

In Fig. 12, we present DMRG data of density-wave order
for the model at half filling. The deviation of density from the
average density is the order parameter of crystal. For long-
range order, unlike quasi-long-range order (e.g., Fig. 7), the
order remains finite in the χ → ∞ limit. From Fig. 12 alone,
it is not clear if the order is non-vanishing for small α.

APPENDIX G: ESTIMATING SCALING DIMENSIONS
OF VERTEX OPERATORS OF THE FREE THEORY

We first write the effective theory with “naive” parameters:

Hfree =
∑

σ

vσ

2

[
π (�σ )2 + (∂xφσ )2/π

] + U

π2
∂xφa∂xφb,

(G1)

where vσ = 2tσ sin(kF). In our convention, va > vb. As in-
troduced in the main text, the most relevant locking terms
are gs cos(2φa − 2φb); umklapp terms g2,4 cos(2φa + 4φb),
g4,2 cos(4φa + 2φb) for 1/3 filling only. Our goal is to esti-
mate and compare the scaling dimensions of umklapp terms
in the free theory: �(2,4)pt and �(4,2)pt. To do this, we find
the basis of two boson modes (φ1, φ2) such that they are
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FIG. 12. Density-wave order of the ground states of the model at
half filling. The crystal phase has two sublattices (“even” and “odd”)
with different densities nσ , σ = a, b. We plot nσ (extracted by 0.5)
of one of the sublattices. The na − 0.5 is positive while nb − 0.5 is
negative; we see that the density waves of component a and b differ
by a phase π . We also see that the amplitudes of density waves are
different. The finite χ approximation works less accurate for small α,
i.e., those points are less overlapped with each other. The interaction
parameter is U = 3.

decoupled in Eq. (G1) with each other and their Luttinger
parameters are 1.

(
φa

φb

)
=

(
α1 α2

β1 β2

)(
φ1

φ2

)
, (G2)

α4
1 = va + vbd2

(va + vbc2 + 2Uc/π )(1 − cd )2
, (G3)

β4
2 = vac2 + vb

(vad2 + vb + 2Ud/π )(1 − cd )2
, (G4)

c ≡ β1

α1
=

v2
a − v2

b −
√(

v2
a − v2

b

)2 + 4U 2vavb/π2

−2Uva/π
, (G5)

d ≡ α2

β2
=

v2
a − v2

b −
√(

v2
a − v2

b

)2 + 4U 2vavb/π2

2Uvb/π
. (G6)

With the new basis, we can evaluate

�(2m,2n)pt = [(mα1 + nβ1)2 + (mα2 + nβ2)2]/4, (G7)

where the subscript (2m, 2n) labels cos(2mφa + 2nφb). We
plot �(2,4)pt − �(4,2)pt for cuts of different U in Fig. 13. As
the difference is always positive, we infer that �(4,2)pt is more
likely to get locked. We note that Eq. (G1) is only accu-
rate in the weak-coupling limit under a certain regularization
scheme, and a generic effective theory involves more terms.
As it is difficult to know the parameters of the generic free
theory as well as the coefficients of the vertex operators, we
limit our analysis to the 0-loop estimation on the “naive” free
theory.

FIG. 13. The comparison of “engineer” scaling dimensions of
two vertex terms. For all the cuts plotted, �(4,2)pt is smaller, and the
corresponding vertex term is likely to be more relevant.

(a)

(b)

FIG. 14. Extrapolating “spin gap” of the (a) half filling and
(b) one-third filling crystal phases. For the labels, the definition
follows the Fig. 6 with caution that each �E is calculated using
ground state energies of systems differ by lattice site numbers. For
one-third filling, only the sector with one more heavy particle is
“spin-gapped”, similar to observed incommensurate πSG states. The
half filling shows different behavior.
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APPENDIX H: THE “SPIN GAP” OF CRYSTAL PHASES

First, we give a definition of the “spin gap”. The spin
gap of πSG phase can be naturally defined from the sum-
mation of the energy cost of inserting and extracting one
particle of a fixed type. This definition cannot directly apply to
the crystal phases because inserting and extracting one parti-
cle both make the commensurate criteria no longer hold. The
criteria are: (a) Na + Nb = L (1/2 filling) and (b) 2Na + Nb =
L (1/3 filling). Therefore, not only the gap of spin boson but
also the Mott gap or trion gap contribute to the gap value for
the original definition. To separate the spin gap with the Mott
or trion gap, we keep the commensurate criteria by adjust-
ing the system size L while adjusting particle numbers. We
increase (decrease) L by the minimal possible number while
adding (extracting) a particle.

As the spin boson locks at the same value in these crystal
phases as the πSG phase, there should be some remnants of
“filling anomaly”. With this definition of the spin gap, our
numerical results show that the one-half and one-third filling
crystals show two distinct behaviors (Fig. 14). The one-third
filling crystal states only have a spin gap for systems with one
more heavy particle. For half filling, however, systems with
one more light particle are also spin-gapped. This behavior is

instead similar to that observed for πSG phase with additional
spinful time-reversal symmetry [47], while the definition of
the spin gap now involves varying the number of lattice
sites.

As a remnant of “filling anomaly”, the above energy land-
scape is related to inversion symmetry breaking. We also
observe from the density profiles that for the sector with each
component being precisely half-filled, the ground states spon-
taneously break inversion symmetry4; while no spontaneous
inversion symmetry breaking is observed for one-third filling
and equally filled ground states. This observation indicates
that the spin configurations [Figs. 4(c) and 4(d)] are stable for
half filling and is consistent that there is a bulk “spin gap” for
the precisely half-filled states.

4Despite that the true ground state always preserves symmetry for
any finite system, in this case, there are symmetry broken states with
energy exponentially close to ground state energy with increasing
system size; as long as the difference is smaller than numeri-
cal accuracy, DMRG calculation can stably find symmetry broken
states.
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