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We construct the complete set of boundary states of two-dimensional fermionic CFTs using that of the bosonic
counterpart. We see that there are two groups of boundary conditions, which contributes to the open-string
partition function by characters with integer coefficients, or with

√
2 times integer coefficients. We argue that,

using the argument of P. B. Smith and D. Tong [J. High Energy Phys. 09 (2020) 018], this
√

2 indicates a single
unpaired Majorana zero mode and that these two groups of boundary conditions are mutually incompatible. We
end the paper by mentioning a possible interpretation of the result in terms of the entanglement entropy.
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I. INTRODUCTION

Bosonization is a procedure to get an equivalent bosonic
theory out of a fermionic one [1,2] or, vice versa, fermion-
ization. They find many interesting applications in condensed
matter as well as high-energy physics, serving for better
understanding of systems with strongly interacting systems
including fermions. One primitive such example is the
Luttinger liquid [3], where one finds a description of an inter-
acting theory of one-dimensional (1D) fermions as a theory of
free bosons. They have also been attracting attention recently
in the context of fermionic symmetry protected topological
(SPT) phases [4–10].

Bosonization/fermionization are understood the simplest
in 1 + 1 dimensions [11]. In two-dimensions, the bosoniza-
tion is simply a sum of spin structures, which will yield a
bosonic theory with nonanomalous Z2 symmetry. Conversely,
the fermionization is possible whenever the bosonic theory
has nonanomalous Z2 symmetry, on which one tensors the
Arf invariant (i.e., the Kitaev chain [12]) and then gauges the
common Z2 subgroup [11,13,14]. Of particular importance
among such theories are the Ising (c = 1/2) and the tricritical
Ising (c = 7/10) models, respectively mapping to a theory
of free Majorana fermion and the smallest N = 1 minimal
model.

One can also bosonize or fermionize a theory on a man-
ifold with boundaries. In this case, one also needs to map
boundary conditions under the duality—this has been studied
in two-dimensions in the context of open string worldsheet
ending on D-branes, and as well as in higher dimensions in
the context of particle-vortex duality of Chern-Simons-matter
theories [15–18].

Incidentally, note that the matching of boundary condi-
tions across duality will have direct physical consequence,
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for example on the computation of the Rényi entanglement
entropy. It was pointed out that the computation of such an
object crucially depends on the boundary condition between
subregions (of size L) and its compliment and that the effect
becomes visible when the number of replica index n becomes
of the same order as log( L

εUV
) in Refs. [19–21]. It was also

pointed out that one needs to be careful about the change
in boundary conditions if one wishes to match the reduced
density matrix across duality [22,23].

In spite of being equivalent, boundary conditions of
fermionic theories are more interesting than that of the
bosonic theories, because of the notion of mutual compati-
bility of boundary conditions once we put the theory on the
cylinder. This can already be seen for a simple theory like a
free Majorana fermion—there are two boundary conditions
V : χL = χR and A : χL = −χR, and if one puts V and A
boundary conditions on each end of the cylinder, then this
becomes inconsistent because of the presence of a single
Majorana zero mode (see for example Ref. [24] and refer-
ences therein.). For a more general case of N Dirac fermions,
Refs. [25–27] classified the boundary conditions into two
equivalence classes of mutually inconsistent ones using open-
closed modular bootstrap [28].

Having said that, the main question we are going to ask in
this paper is the following: Can we construct the complete set
of boundary conditions of two-dimensional fermionic confor-
mal field theories (CFTs), when one is given the complete set
of boundary conditions of two-dimensional bosonic CFTs? In
two-dimensional CFTs, one can use the open-closed duality
and quantify the question in terms of boundary states [29].
In this language, we are going to find all the elementary
boundary states of fermionic CFTs, with a slight caveat that
the definition of elementary here be generalized so that the
open-string loop consists not only of characters with integer
coefficients but also

√
2 times integers, indicating that we

allow for a real fermion on the boundary. We are going to call
this “generalized elementary” in this paper.

Fermionization is similar in spirit to orbifolding in that they
are both a sum of Z2 defect configurations with particular
coefficients. Thus, we will also discuss the Z2 orbifolding
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of boundary states along with fermionization, although the
former has been studied many times before in the context of
string worldsheet [15,30–32]. This is not just being pedagog-
ical, and we will see that comparing fermionization against
orbifolding also serves as a small consistency check. When
we present the final result, we are going to see in a clear
way how boundary states from different sectors are shuffled
among themselves when we orbifold, bosonize, or fermionize
the theory.

The rest of the paper is organized as follows. In Sec. II, we
briefly review boundary conformal field theories (BCFTs). We
will also study the bosonization/fermmionization of boundary
states for the Ising model (or equivalently for the theory of free
Majorana fermion). In Sec. III, we determine the complete
set of elementary boundary states for fermionic and orbifold
CFTs in terms of the original boundary states. We conclude in
Sec. IV, mentioning possible interesting future directions.

II. PRELIMINARY

As a preliminary, we review basic notions of BCFT and
how bosonization/fermionization in BCFT works in a simple
example, c = 1/2 CFT, which might be a hint for consid-
eration in later sections. This procedure was discussed in
Ref. [33] in the context of the Gliozzi-Scherk-Olive (GSO)
projection of D-branes.

A. Elementary boundary states

Conformal boundary condition reads

T (z) = T (z) at z = z, (1)

where T (z) [respectively, T (z)] is the stress-energy tensor
in holomorphic (respectively, antiholomorphic) sector. This
condition is mapped to

(Ln − L−n)|B〉〉 = 0, n ∈ Z. (2)

Here Ln (respectively, L−n) is the Laurent mode of the
stress-energy tensor in the holomorphic (respectively, anti-
holomorphic) sector and |B〉〉 is a boundary state. The solutions
of (2) is known, which are the so-called Ishibashi states [34].
Generally, the Ishibashi states are not physical; they do not
satisfy a consistency condition, which is called the Cardy con-
dition [see (6) below]. To have the physical boundary states,
we introduce a boundary states which is a linear combination
of the Ishibashi states denoted by |i〉〉 with i corresponding to
a Virasoro representation of a highest weight φi,

|̂a〉 =
∑

i

Ba
i | i〉〉. (3)

Consider a cylinder partition function (closed string partition
function) between two boundary states, |̂a〉 and |̂b〉,

Zclosed = 〈̂a | q
1
2 (L0+L̄0− c

12 ) | b̂〉 =
∑

i

Ba
i Bb

i χi(q). (4)

Here q is written as q ≡ e− 4πL
β , using the length L and the

inverse temperature β of the cylinder, and χi(q) is the Virasoro
character. We also have used a relation 〈〈i|q 1

2 (L0+L0−1/24)| j〉〉 =
δi, jχi(q). An open string partition function is obtained by
S-transforming the closed string partition function, which

should have the form

Zopen
ab =

∑
i

ni
abχi(q̃) (5)

with ni
ab being non-negative integer and q̃ ≡ e− πβ

L the S trans-
formation of q. Since two partition functions are related via S
transformation, one obtains∑

i

Ba
i Bb

i Si jχ j (q) =
∑

i

ni
abχi(q̃). (6)

The condition (6) is called the Cardy condition and the bound-
ary state (3) satisfying this condition is called the Cardy state
[35,36]. In the case of a charge conjugate CFT, if we set the
coefficients in (3) to be Ba

i = Sai√
S0i

with Sab being modular S
matrix, then one can verify the boundary state satisfies the
Cardy condition by use of the Verlinde formula.

Let us introduce a notion of elementary boundary
states [37], which is crucial in our paper. A complete set of
elementary boundary states is collection of boundary states,
{|ân〉}, among which we have n0

aia j
= δi j . In other words, when

an elementary boundary condition is placed on both ends of a
cylinder, the open-string loop contains one vacuum charac-
ter with unit coefficient, whereas if two different elementary
boundary conditions are placed on two ends of a cylinder, then
the loop does not contain the vacuum character.

B. Ising BCFT

In the case of the Ising CFT, there are three Ishibashi states
denoted by |0〉〉, |1/2〉〉, and |1/16〉〉, corresponding to three
primary fields with conformal weight 0, 1/2, and 1/16. The
Cardy states are given by

|+̂〉A = 1√
2
|0〉〉 + 1√

2
|1/2〉〉 + 1

4
√

2
|1/16〉〉

|−̂〉A = 1√
2
|0〉〉 + 1√

2
|1/2〉〉 − 1

4
√

2
|1/16〉〉

∣∣ f̂
〉
A = |0〉〉 − |1/2〉〉. (7)

Also, these states are elementary. Physically, the first, second,
and third boundary states correspond to a fixed boundary state
with spin up, the one with spin down, and a free boundary
state of the transverse Ising chain, respectively. If we act Z2

symmetry operator, physically corresponding to the spin flip,
then the first two boundary states are transformed into each
other, and the third one is intact.

The bulk Ising CFT has Z2 symmetry which can be
gauged, yielding the same CFT, that we call dual Ising
CFT, historically known as the Kramers-Wannier duality.
Correspondingly, following Ref. [15], we can implement Z2

gauging on the BCFT. Introduce a Z2 invariant boundary
state by summing over a pair of the Cardy states which are
transformed into each other under the Z2 symmetry:

| f̂ 〉D = 1√
2

(|+̂〉A + |−̂〉A). (8)

Also, we consider following boundary states:

|+̂〉D = 1√
2

(| f̂ 〉A + |η〉〉A), (9)

|−̂〉D = 1√
2

(| f̂ 〉A − |η〉〉A), (10)
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where |η〉〉A is the Ishibashi state in the twisted sector, which
is defined by |η〉〉A = 4

√
2|1/16〉〉. Two boundary states, |±̂〉D

in Eqs. (9) and (10), are called the fractional brane in the
literature [15], see also Sec. III C 2 for more detailed dis-
cussion in a general case. It is straightforward to show that
three boundary states, |+̂〉D, |−̂〉D, and | f̂ 〉D, satisfy the Cardy
condition and by the form of the open string partition function,
the boundary states |+̂〉D, |−̂〉D behave as the fixed boundary
states, whereas | f̂ 〉D does as the free boundary state of the
Ising CFT. Furthermore, after Z2 gauging of the boundary
states, the fixed (respectively, free) boundary state is mapped
to free (respectively, fixed) boundary state, i.e., the role of free
and fixed boundary states is switched after gauging. This is in
line with the fact that the original Ising CFT and Z2 gauged
Ising CFT are dual with each other.

Fermionic Ising CFT is nothing but the free Majorana the-
ory, realized in the critical Majorana chain [12]. The boundary
condition of the free Majorana theory is given by

(ψr − iεψ−r )|B〉〉 = 0, ε = ±1, r ∈ Z + 1
2 , (11)

where ψr (respectively, ψ−r) is fermionic mode in the holo-
morphic (respectively, antiholomorphic) sector. There are four
states that satisfy (11), and each two states is defined in the
Neveu-Schwarz (NS) and the Ramond (R) sectors:

|NS, ε〉〉 =
∏

r∈N−1/2

eiεψ−rψ−r |0〉NS, (12)

|R, ε〉〉 = 4
√

2
∏
r∈N

eiεψ−rψ−r |ε〉R. (13)

Here |0〉NS and |ε〉R is the ground state in the NS and R sector
[38]. These four states satisfy the Cardy condition as well as
the condition of elementary boundary states except when two
different boundary conditions are imposed on both ends in an
open string partition function, namely

S[〈〈NS,+| q̃
1
2 (L0+L0−1/24)|NS,−〉〉] =

√
2χ1/16(q). (14)

Due to the presence of the prefactor
√

2, the four boundary
states do not satisfy the Cardy condition. However, the pref-
actor

√
2 is an indication of “a mod 2 anomaly” [26], which

is remedied by adding the Majorana zero mode by hand.
Therefore, we generalize the notion of elementary boundary
states to a fermionic case by allowing this prefactor

√
2; the

four Ishibashi states in Eqs. (12) and (13) are generalized
elementary boundary states of the free fermion.

To relate the fermionic boundary states to the bosonic ones,
we implement the GSO projection, mapping the fermionic
boundary states to the ones which are invariant under Z2

fermion parity, (−1)F+F (F and F is the fermion number
operator in the holomorphic and antiholomorphic sector). The
fermion parity (−1)F+F acts trivially on the two Ishibashi
states in the NS sector, whereas it does nontrivially on the
ground states in the R sector in (13); there are two ways to
write the fermion parity operator of the zero mode in the
ground state in the R sector,

(−1)F+F =
{−2iψ0ψ0

2iψ0ψ0

. (15)

In the first (respectively, second) case, |R,−〉〉 (respectively,
|R,+〉〉) is invariant under the fermion parity. [Following
Ref. [33], we call the BCFT of the first and second choice
of (15) 0A theory and 0B theory, which are named after type
IIA and IIB string theory.] Choosing the first case in (15) (the
second case can be similarly discussed), the GSO projection is
executed as follows [33]. Define (−1)F+F invariant boundary
states with ε = −1 as

|0A,±〉〉 = 1√
2

(|NS,−1〉〉 ± |R,−1〉〉), (16)

as well as the one with ε = +1

|0A〉〉 = |NS,+1〉〉. (17)

Notice that in the first case of (15), the boundary state |R,+1〉〉
is projected out. By comparing open string partition functions
of the GSO projected boundary states in Eqs. (16) and (17)
with those of the bosonic Ising CFT in (7), one can show that

|0A,+1〉〉 = |+̂〉A |0A,−1〉〉 = |−̂〉A |0A〉〉 = | f̂ 〉A. (18)

Therefore, we get

0A :

⎧⎪⎨
⎪⎩

|NS,−1〉〉 = 1√
2
(|+̂〉A + |−̂〉A)

|NS,+1〉〉 = | f̂ 〉A

|R,−1〉〉 = 1√
2
(|+̂〉A − |−̂〉A)

. (19)

If we instead chose the second case of the fermion parity
in (15), that is, if we adopt the 0B theory, then we obtain
the similar relations to (19) with the sign in the fermionic
boundary states inverted.

Equations (19) are nothing but fermionization of boundary
states of the Ising CFT. The simple example of the Ising
BCFT has an important implication: Z2 orbifold of bosonic
boundary states [the first line of (19)] and Z2 invariant bound-
ary state, as shown in the second line of (19) constitute the
fermionic boundary states in the NS sector, whereas Z2 odd
bosonic boundary state, such as the third line of (19) yields
the fermionic boundary state in the R sector.

In addition to fermionization of boundary states starting
from the original bosonic Ising CFT (A-theory), we can also
consider the fermionization of boundary states in the dual
Ising theory (D-theory). Denoting fermionized theory from A-
theory and D-theory by F -theory and F̃ -theory, respectively,
and choosing the first case for the fermion parity in (15), one
finds

A → F :

⎧⎪⎨
⎪⎩

|NS,−1〉〉F = 1√
2
(|+̂〉A + |−̂〉A)

|NS,+1〉〉F = | f̂ 〉A

|R,−1〉〉F = 1√
2
(|+̂〉A − |−̂〉A)

,

D → F̃ :

⎧⎪⎨
⎪⎩

|NS,−1〉〉F̃ = 1√
2
(|+̂〉D + |−̂〉D)

|NS,+1〉〉F̃ = | f̂ 〉D

|R,−1〉〉F̃ = 1√
2
(|+̂〉D − |−̂〉D)

. (20)

Referring to Eqs. (8)–(10) and (20) is refined to be

A → F :

⎧⎪⎨
⎪⎩

|NS,−1〉〉F = 1√
2
(|+̂〉A + |−̂〉A)

|NS,+1〉〉F = | f̂ 〉A

|R,−1〉〉F = 1√
2
(|+̂〉A − |−̂〉A)

,
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A → D → F̃ :

⎧⎪⎨
⎪⎩

|NS,−1〉〉F̃ = | f̂ 〉A

|NS,+1〉〉F̃ = 1√
2
(|+̂〉A + |−̂〉A)

|R,−1〉〉F̃ = |η〉〉A

. (21)

In the following section, we see this procedure of fermion-
ization of the boundary states is generically applicable to other
CFTs with global Z2 symmetry.

III. GENERAL CASE

We consider general CFTs with a global, nonanomalous Z2

symmetry. A global nonanomalous Z2 symmetry allows one
to either orbifold the theory or to fermionize it. The precise
object we are looking for here is the elementary boundary
conditions/states. Since it will be important later, we reiterate
what was reviewed in Sec. II to explain what they are. Elemen-
tary boundary states [37] are defined so that the open-channel
loop contains Virasoro characters with non-negative integer
coefficients and in particular that the coefficient of the vacuum
character is unit for the same boundary state, and vanishing
for the different, placed on two ends of the cylinder. For
fermionic theories, the presence of unpaired Majorana zero
mode [25–27] forces us to extend the definition of elementary
a bit, so that the open-string character to be either 1 or

√
2.

We will call it “generalized elementary,” on par with what we
defined in Sec. II.

A. Orbifolding and fermionizing using Z2 defect lines

We generalize the construction of Z2 orbifolding and
fermionization on the torus to the construction of those on
the cylinder. In order to do this, we insert Z2 defect lines
on the cylinder in all possible ways and combine them in a
particular way [11,13]. We will hereafter employ the notation
of Ref. [13] and refer to the original theory as A-theory and the
orbifolded theory as D-theory, while calling the two fermionic
theories as F and F̃ .

1. Orbifolding on the cylinder

The untwisted (closed-string) sector of the D-type theory
can be constructed from the A-type theory by summing up the
Z2 defect configurations as follows:

(22)

while the twisted (closed-string) sector can be constructed by
the sum,

(23)

Here the blue lines, as in , are the Z2 defect lines of

the A-type theory, and the orange line, as in , is the

Z2 defect line of the D-type theory. We will hereafter omit
the subscript/superscript whenever it is apparent from context

what specific theory or what specific sector of it we are talking
about.

Note that the overall coefficient is different from the case
of torus partition functions, which was 1/2. This is because
the normalization of states are already fixed [39]. To see this
concretely, consider the torus partition function of the orbifold
theory and represent it in terms of that of the original theory,

TrS1 [e−βHorbifold ] = 1
2 {TrS1 [e−βH ] + TrS1 [ge−βHorbifold ]

+ (twisted)}, (24)

where g is our Z2 defect line and (twisted) refers to the
contribution from the twisted sector of the original theory.
Concentrating on the first two and expanding the trace in terms
of states, we have∑
norbifold

〈norbifold | e−βHorbifold | norbifold〉

=
∑
n�gn

[( 〈n| + 〈gn|√
2

)
e−βH

( |n〉 + |gn〉√
2

)
+ (twisted)

]
,

(25)

where n � gn means that we avoid summing over the same
index twice. It is therefore apparent that |norbifold〉 corresponds
to |n〉+|gn〉√

2
, or other similar looking states coming from the

twisted sector of the original theory. Let us now concentrate
on the state coming from the untwisted sector of the original
theory. In terms of the closed-string amplitude and in terms of
the above picture using the cylinder, this means we have

(26)

where we used g2 = 1 and the fact that g commutes with the
Hamiltonian and can be moved topologically on the cylinder.
If one wishes to generalize to states coming from the twisted
sector of the original theory, then one finally gets the picture
we have given in the beginning.

2. Fermionizing on the cylinder

The NS sector of the F -type theory can be constructed from
the A-type theory from the following sum:

(27)
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while the R sector can be constructed from the sum

(28)

where the green line, as in represents the defect line

flipping the fermion parity, (−1)F . The overall normalization
is determined using the same argument as in the orbifold case.

B. Boundary states in the original theory

In the untwisted sector of the original theory, one can clas-
sify boundary states into two groups, depending on whether
they are Z2 symmetric or not. We write the complete set of
Z2 symmetric elementary boundary conditions as

Afree ≡ {∣∣ f̂A,i
〉∣∣i = 1, 2, . . . , N free

A

}
, (29)

while that of Z2 breaking elementary boundary conditions as

Afixed ≡ A+ ⋃
A− ≡

⋃
±

{∣∣b̂±
A,i

〉∣∣i = 1, 2, . . . , Nfixed
A

}
,

(30)

where |b̂+
i 〉 maps to |b̂−

i 〉 under the Z2 symmetry and vice
versa. Here the subscript A means we are considering the
A-type theory. Incidentally, although N free,fixed

A are finite for
rantional conformal field theories (RCFTs), those numbers
lose their precise meaning for non RCFTs. We speculate that
the construction below works for non-RCFTs as well at least
when the number of conformal blocks is countably infinite.

On the other hand, in the twisted sector of the original
theory, we denote the complete basis for boundary states
(Ishibashi states in RCFTs) as

Ãtwisted ≡ {|τi〉〉
∣∣i = 1, 2, . . . , N twisted

A

}
, (31)

or, if we are interested in the complete set of elementary
boundary states, then we can write it as

Atwisted ≡ {|τ̂i〉
∣∣i = 1, 2, . . . , N twisted

A

}
, (32)

where N f
A ≡ N free

A,D = N twisted
A,D as we will explain in Ap-

pendix A. Some comments are in order.
(i) Unlike the untwisted case, the open string spectrum of

any linear combination of those states will always contain
Virasoro characters with negative integer from the twisted
sector. The notion of “elementary” here is therefore slightly
generalized to accommodate for such negative integers.

(ii) More precisely, we will define Atwisted using the infor-
mation that the D-type symmetry breaking boundary states are
elementary.

See later subsections for more explanation.
(iii) The boundary states in Atwisted are all invariant under

the Z2 transformation. The reason is the following: If we
have such a twisted boundary state |Ô〉 that it is not invariant
under Z2, then we have an operator (O,O) in the Z2 odd
twisted sector. Meanwhile, under fermionization, the Z2 odd
twisted sector maps to the fermionic NS sector. This means
that the operator (O,O) must have a half-integer spin, which
is obviously a contradiction [40].

C. Boundary states for the orbifold theory

Let us now consider the elementary boundary states in the
D-theory. Although the result has already been reproduced
many times before [15,30–32], it is instructive to compare
with the fermionic case.

The general idea here is the following. First consider cylin-
der amplitudes between elementary boundary states of the
A-theory. By virtue of, e.g., (22), we get the cylinder ampli-
tude of the D-theory, shown on the left-hand side. We can then
use this cylinder amplitude to infer the boundary states which
reproduce it.

1. Z2 breaking boundary conditions

Let us first study the untwisted closed string amplitude
in the D-theory. Sandwiching the right-hand side of (22) by
|b̂+

A,i〉, we get [41]

(33)

=〈
b̂+

A,i | q
1
2 (L0+L̄0− c

12 ) | b̂+
A,i

〉 + 〈
b̂+

A,i | q
1
2 (L0+L̄0− c

12 ) | b̂−
A,i

〉
, (34)

where we used that the last two terms are vanishing, since
|b̂±

A,i〉 is in the untwisted sector of the original theory. We
then look for boundary states which correctly reproduces this
cylinder partition function, which turn out to be

1√
2

(∣∣b̂+
A,i

〉 + ∣∣b̂−
A,i

〉)
, (35)

so that they are the boundary states (which might or might not
be elementary unless we check) of the D-theory.

Likewise, for the twisted sector of the D-theory, the cylin-
der partition function〈

b̂+
A,i | q

1
2 (L0+L̄0− c

12 ) | b̂+
A,i

〉 − 〈
b̂+

A,i | q
1
2 (L0+L̄0− c

12 ) | b̂−
A,i

〉
, (36)

is reproduced by a boundary state

1√
2

(∣∣b̂+
A,i

〉 − ∣∣b̂−
A,i

〉)
, (37)

and they are also the boundary states (which might or might
not be elementary unless we check) of the D-theory, this time
in the twisted sector.

At this stage, these might not be elementary boundary
conditions, and can be a sum of other elementary boundary
conditions with integer coefficients. Here, to reiterate, the
elementary boundary states must reproduce the Virasoro char-
acter inside the open-string spectrum with integer coefficients,
non-negative for the untwisted, and possibly negative for the
twisted sector of the theory. One can indeed check that this
is so for states above among themselves, so that we con-
clude that these are elementary boundary conditions for the
D-theory.

2. Z2 symmetric boundary conditions

By using the same argument as above, we can see that
the closed string amplitude in the untwisted sector can be
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reproduced by the state

1√
2

(∣∣ f̂A,i
〉 + ∣∣ f̂A,i

〉) =
√

2
∣∣ f̂A,i

〉
, (38)

or

1√
2

(|τ̂A,i〉 + |τ̂A,i〉) =
√

2|τ̂A,i〉, (39)

and that there are no corresponding boundary states in the
twisted sector. Note that

√
2| f̂A,i〉 is invariant under the dual

Z2, while
√

2|τ̂A,i〉 flips the sign under it, since they came from
the twisted sector of the A-theory.

The question is if they are really elementary boundary
states. This time, one can easily see that the states are not
elementary since they produces two times the vacuum char-
acter in the open-string channel. In other words, these states
like

√
2| f̂A,i〉 or

√
2|τ̂A,i〉 should be a sum/subtraction of two

elementary boundary states. By demanding that they are ele-
mentary, as well as that they reproduce the boundary state of
the original A-theory when dualised again, we can see that the
only consistent choice is

1√
2

(∣∣ f̂A,i
〉 ± |τ̂A,i〉

)
. (40)

The other choices like 1√
2
(| f̂A,i〉 ± | f̂A,i〉) or 1√

2
(|τ̂A,i〉 ± |τ̂A,i〉)

are eliminated, because free boundary conditions must corre-

spond to fixed boundary conditions under duality [42]. Note
that when the system has an enhanced symmetry, it might
also be possible to rotate boundary states with the same Vira-
soro dimension to the above forms. The result merely means
that there must exist a canonical form (40), for the D-theory
elementary boundary states. Incidentally, they are called the
fractional branes in the context of string theory [15]. It is also
consistent with Nfixed

A = N twisted
A .

Although we have already prepared the twisted sector
boundary states |τ̂A,i〉 in the A-theory, one should understand
this as a way of determining |τ̂A,i〉 in terms of |τA,i〉〉, by requir-
ing that (40) be elementary in the D-theory. More concretely,
one can write

|τ̂A,i〉 =
∑

i

Ci j√
Si

0

|τA, j〉〉 where
∑

j

|Ci j |2 = 1, (41)

and we determine Ci j , demanding that (40) are elementary
boundary states. For the simplest case where there is only
one such |τ 〉〉, the coefficient is simply C = 1. The coefficients
for more general case has been determined using classifying
algebra in Refs. [31,43–45]. In this context, the matrix Ci j is
related to the so-called fixed-point resolution matrix.

3. Final result and its consistency

We conclude that for the D-type theory, the complete set of
elementary boundary conditions becomes the following:

Dfree =
{

1√
2

(∣∣b̂+
A,i

〉 + ∣∣b̂−
A,i

〉)∣∣i = 1, 2, . . . , Nfixed
A

}

Dfixed ≡ D+ ⋃
D− =

⋃
±

{
1√
2

(∣∣ f̂A,i
〉 ± |τ̂A,i〉

)∣∣i = 1, 2, . . . , N f
A

}

Dtwisted =
{

1√
2

(∣∣b̂+
A,i

〉 − ∣∣b̂−
A,i

〉)∣∣i = 1, 2, . . . , Nfixed
A

}
. (42)

Whether the boundary states are fixed or free can be easily
determined by noting that the sign of |τ̂A,i〉 is flipped under
the dual Z2. This is also consistent with the general analysis
that fixed boundary conditions map to free ones and vice versa
under orbifolding [46].

As a first consistency check, one can see that the total
number of elementary boundary states are unchanged by orb-
ifolding, as they should be. Also, as we explained previously,
we trivially get integer coefficient sums of open-channel Vi-
rasoro characters for boundary conditions among boundary
states in Dfree or Dtwisted. Incidentally, the states in Dfixed are
already elementary since we prepared them to be so, by tuning
Ci j . The fact that we have coefficients to tune was crucial in
finding the elementary boundary states of the D-theory.

D. Boundary states for the fermionic theory

In the most part of this section, we will choose a specific
convention for the parity symmetry and look at the F -type
theory as defined in Ref. [47]. We will also briefly discuss the
F̃ -type theory for consistency.

1. NS sector boundary conditions

For fermionic theories, we can just mimic the steps we
discussed in the orbifold theory. In the NS sector, the cylinder
partition function (27) can be reproduced by boundary states
from |b̂±

A,i〉 and from | f̂A,i〉, which are both even under (−1)F ,

1√
2

(∣∣b̂+
A,i

〉 + ∣∣b̂−
A,i

〉)
even under (−1)F

√
2
∣∣ f̂A,i

〉
even under (−1)F . (43)

To this point, the argument is almost similar to that of the
D-theory, except that there are no states from |τ̂A,i〉 in the NS
sector, while there was for the D-theory. Also, the convention
of the parity symmetry is so that the first states are odd under
(−1)F , while the second being even.

As we discussed in the previous subsection, the state√
2| f̂A,i〉 is not an elementary boundary condition in its strict

sense of the word. For example, if we place the former and the
latter boundary states on two ends of a cylinder, then the open
string spectrum we read out comes with

√
2 times integer co-

efficients. As discussed in Refs. [25–27], this is an indication
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that we need to add a boundary Majorana fermion by hand,
to cancel the anomaly created by the Majorana zero mode or,
equivalently, that these two boundary states are incompatible.

2. R sector boundary states

In the R sector, the cylinder partition function (28) can be
reproduced by boundary states coming from |b̂±

A,i〉 and from
|τ̂A,i〉,

1√
2

(∣∣b̂+
A,i

〉 − ∣∣b̂−
A,i

〉)
odd under (−1)F

√
2|τ̂A,i〉 even under (−1)F . (44)

The
√

2 here requires even more attention than the NS case.
At first we would imagine that this comes from the Majorana
zero mode again, but this cannot be the case here. The zero
mode will multiply the R-sector partition function by zero.
The other possibility is that they appear as a combination
of two elementary boundary states, but this does not happen
generically. We can therefore only conclude that states like√

2|τ̂A,i〉 does not appear in the fermionic theory. This does
not sound very symmetric, but it is not a contradiction. As we
will explain below, the boundary states |τ̂A,i〉 instead become
elementary for the F̃ -type theory.

3. Final result and its consistency

We conclude that for the F -type theory, the complete set of
elementary boundary conditions becomes

FNS
1 =

{
1√
2

(∣∣b̂+
A,i

〉 + ∣∣b̂−
A,i

〉)∣∣i = 1, 2, . . . , Nfixed
A

}
, (45)

FNS√
2

= {√
2
∣∣ f̂A,i

〉∣∣i = 1, 2, . . . , N f
A

}
, (46)

FR =
{

1√
2

(∣∣b̂+
A,i

〉 − ∣∣b̂−
A,i

〉)∣∣i = 1, 2, . . . , Nfixed
A

}
, (47)

where two different groups of NS sector elementary boundary
conditions were shown to be incompatible with each other.
The subscripts, 1 and

√
2, indicate that the ground state degen-

eracy is 1 or 2, respectively, when we put the same boundary
condition on the two ends. The result is consistent with the
one in Ref. [48], where several examples are considered.

For consistency and completeness, let us also study the
boundary conditions for the F̃ -type theory. In order to do this,
one can simply apply the same procedure to the D-theory,
where we get

F̃NS√
2

= {∣∣b̂+
A,i

〉 + ∣∣b̂−
A,i

〉∣∣i = 1, 2, . . . , Nfixed
A

}
, (48)

F̃NS
1 = {∣∣ f̂A,i

〉∣∣i = 1, 2, . . . , N f
A

}
, (49)

F̃R = {|τ̂A,i〉
∣∣i = 1, 2, . . . , N f

A

}
. (50)

One can see that the boundary states which we threw away
in the F -type theory is recovered in the F̃ -type. This is not
surprising, since F - and F̃ -type theories are in general differ-
ent, even though the difference is just a result of the discrete
choice in (−1)F .

TABLE I. The final result on the complete set of the elemen-
tary boundary states in two-dimensional CFTs. Free/fixed indicates
whether the boundary conditions are free/fixed. Z or

√
2Z indicates

in which of the two groups of mutually incompatible boundary con-
ditions they are.

IV. DISCUSSIONS AND FUTURE DIRECTIONS

We have studied the complete set of elementary boundary
states for two-dimensional fermionic CFTs. In deriving them,
we first used the construction of orbifold or fermionic theories
using Z2 defect lines, and computed the closed string ampli-
tude for the target theories, and then inferred the consistent
boundary states for them. We took maximal precaution that
the resulting boundary states actually reproduce the open-
string spectrum after S transformation. The consistency for
the orbifold theory is that the coefficients in front of the
open-channel Virasoro characters are integers, while for the
fermionic theory we also allowed for

√
2 times the integer.

We also argue that there are two classes of boundary states
in the fermionic theory, because of the

√
2 above, mutually

inconsistent with each other when placed on two ends of
a cylinder. We have in the end found a consistent reshuf-
fling of boundary states, as one moves from the A-type to
D-, F -, or F̃ -type theories. The final result is summarized
in Table I.

There are several interesting future directions to consider.
First, the detailed analysis of the R-sector boundary condi-
tions are necessary. It would be interesting to find examples
where latter states in (44) is actually constructed as a sum of
two elementary boundary states like 1√

2
(|τ̂A,i〉 ± |τ̂A, j〉).

Second, it is worthwhile to study other symmetries pre-
served by boundary states of fermionic theories. It had
been a folklore [49] and has been proven recently [50] that
the existence of a symmetry preserving boundary condi-
tion implies the vanishing of the anomaly, for very general
classes of symmetries and systems. One can therefore now
reverse the logic and use boundary states as a probe
of anomaly in two-dimensional CFTs, or to study three-
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dimensional bosonic/fermionic SPT phases. For example, it
would be interesting to extend the analysis of Ref. [51] to
find fermionic theories with seperate holomorphic and anti-
holomorphic parity symmetries, and study their anomalies.
It would also be interesting to see if the reverse state-
ment is always true, as proposed in Refs. [52,53] (see also
Ref. [54]).

Realization of the fermionic boundary states in a UV lattice
model is also an important issue. If we introduce a finite
(bosonic) spin chain with with an appropriate boundary condi-
tion by imposing a local magnetic field on a boundary, then we
would obtain an eigenstate corresponding to a (bosonic) con-
formal boundary state. Using these eigenstates, together with
our results would give rise to the desired Fermioninc boundary
states. This strategy could work in, e.g., a spin-k/2 chain
whose criticality is governed by SU(2)k WZW CFT and the
Potts models (see Ref. [13] where the fermionization of bulk
of the three states Potts model was numerically confirmed.).
One could also construct the fermionic boundary state in a
2D classical statistical lattice model where defect lines is
explicitly described. As an example, in the classical 2D Ising
lattice model, the work [55] introduced the Z2 defect lines
which is crucial in our argument as seen from the diagram in,
e.g., (26).

It will also be interesting to do the same for supersymmet-
ric theories in two dimensions, so that one knows the complete
set of supersymmetric boundary conditions and/or defects.
These pieces of information are to be used in supersymmetric
localization computation on the hemisphere or with defects.
This direction has already been started in Ref. [56] and con-
tinued in Refs. [48,57].

Higher-dimensional generalization is also interesting. Al-
though one cannot easily classify boundary conditions in
higher dimensions, it is already known that the particle-vortex
duality maps Dirichlet type boundary conditions to Neumann
type boundary conditions in some examples [17,18,58,59]. It
is interesting to find other examples of equivalent boundary
conditions across duality. It is also intriguing to understand
if there is an example of mutually incompatible boundary
conditions in higher dimensions.

Last, it might also be interesting to consider cases where
the duality itself is anomalous, for example the S duality
of electromagnetic theories [47,60]. Anomaly of duality can
also affect physical quantities as the anomaly of ordinary
symmetries do. For example, the partition function of free
Maxwell theory in four dimensions are known to transform
as a modular form under S duality, rather than being invariant
because of the duality anomaly [60]. Another example, which
pertains further to the presence of boundaries is the entan-
glement entropy—the Rényi entropy of Abelian p-form free
electromagnetic theory is known not to be duality invariant,
and this phenomenon was called the entanglement anomaly
and afflicted to the duality anomaly in Ref. [61]. The authors
used electric boundary conditions [62] on both sides of the
duality to compute entanglement entropy to argue this. In light
of the present paper, what one should be doing first is to look
for the boundary condition for the dual theory, which is dual to
the electric boundary condition of the original theory, which
was done for N = 4 SYM in Ref. [63] and for QED in four
dimensions in Ref. [58].

Note added. Before completion of this paper, Ref. [51]
appeared, which contains results we present in this paper, de-
riving boundary conditions of all fermionic minimal models.
The paper also lists all the fermionic minimal models with
holomorphic parity symmetry, but this is beyond the scope
of the present paper. We also mention another paper [64] by
Yoshiki Fukusumi, Yuji Tachikawa, and Yunqin Zheng, with
whom we discussed these topics in the early stages of both
works. We also coordinated the publication of both papers.
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APPENDIX A: THE PROOF THAT Nfree = Ntwisted

We prove that the number of free boundary states in the
untwisted sector and that of twisted sector boundary states are
the same [65]. The action of the Verlinde line Lk to the CFT
state can be written as

Lk|φ�〉 = Sk�

S0�

|φ�〉. (A1)

In particular, when a system has a Z2 symmetry, there exist
LZ such that

LZ|φ�〉 =
{|φ�〉 when φ� is even
−|φ�〉 when φ� is odd . (A2)

In other words,

SZ2,�

S0,�

=
{

1 when φ� is even
−1 when φ� is odd . (A3)

Meanwhile, the twisted sector partition function can be
written as

Ztwisted =
∑
i, j

N j
Z2,i

χiχ̄ j, (A4)

where

N j
Z2,i

≡
∑

�

SZ2,�Si,�S̄i,�

S0,�

. (A5)
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Now the free boundary condition | f̂ 〉 is defined such that
the open-string spectrum (the S transformation of χ f ) only
contains the Z2 even primaries. This means that

S f ,� =
{

1 when φ� is even
0 when φ� is odd . (A6)

Let us first prove that the there is a corresponding boundary
state in the twisted sector for every free boundary state in the
untwisted sector, i.e., N fk

Z, f j
= δi, j . This can be proven as

N fk

Z, f j
=

∑
�

SZ2,�S f j ,�S̄ fk ,�

S0,�

=
∑

�∈even

SZ2,�S f j ,�S̄ fk ,�

S0,�

=
∑

�∈even

S f j ,�S̄ fk ,� = δi, j . (A7)

The inverse is also true. What we want to prove is that when
Ni
Z2,i

= 1, we have Si,� = 0 for odd φ�. We have the relation

1 = Ni
Z,i =

∑
�∈even

Si,�S̄i,� −
∑
�∈odd

Si,�S̄i,�, (A8)

but since we also have from unitarity that

1 =
∑

�∈even

Si,�S̄i,� +
∑
�∈odd

Si,�S̄i,�, (A9)

we have proven that Si,� = 0 for odd φ�.

APPENDIX B: FIXING THE FIXED BOUNDARY STATES IN
THE D-THEORY

In this Appendix, we show why (40) is the correct form of
the boundary state in D-theory by eliminating other possible
construction of elementary boundary states. Let us split (38),
pretending that we do not know the final answer for a moment

as
√

2| f̂A,i〉 = | f̂ +
A,i〉 + | f̂ −

A,i〉 or, in other words,

∣∣ f̂ ±
A,i

〉 ≡ 1√
2

(∣∣ f̂A,i
〉 ± 〈iפ̂|

)
. (B1)

Let us now assume that they are invariant under the dual Z2

symmetry and see that it leads to contradiction. If these are
invariant under the dual Z2, by again orbifolding the theory,
then we will have untwisted sector boundary states, which are
again sum/subtraction of elementary boundary states. They
look like ∣∣ f̂A,i

〉 ± ,〈iפ̂| (B2)

and so 〈iפ̂| must also be an elementary boundary state in the
untwisted sector. The only possibility where it can happen is
that 〈iפ̂| is actually one of {| f̂A,i〉}.

Now we have seen that the candidate for the elementary
boundary states is

1√
2

(∣∣ f̂A,i
〉 ± ∣∣ f̂A, j

〉)
, (B3)

and by similar arguments, and because the numbers of | f̂A,i〉
and of |τ̂A,i〉 are the same, we also have boundary states like

1√
2

(|τ̂A,i〉 ± |τ̂A, j〉). (B4)

However, this means that by orbifolding we get untwisted
sector boundary states,

|τ̂A,i〉 ± |τ̂A, j〉. (B5)

Since |τ̂A,i〉 are in the twisted sector, this is a contradiction.
We have therefore proven that (40) is the correct choice

for the D-type boundary states, modulo a slight caveat that
when the theory has a larger symmetry than Z2, free rotations
of boundary states with the same Virasoro dimension can
connect (40) to the above “pathological” boundary states.
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