
PHYSICAL REVIEW B 104, 195117 (2021)

Interplay of interactions, disorder, and topology in the Haldane-Hubbard model
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We investigate the ground-state phase diagram of the spinless Haldane-Hubbard model in the presence of
quenched disorder, contrasting results obtained from both exact diagonalization and the density matrix renor-
malization group, applied to a honeycomb cylinder. The interplay of disorder, interactions, and topology gives
rise to a rich phase diagram and, in particular, highlights the possibility of a disorder-driven trivial-to-topological
transition in the presence of finite interactions. That is, the topological Anderson insulator, demonstrated in
noninteracting settings, is shown to be stable in the presence of sufficiently small interactions before a charge
density wave Mott insulator sets in. We further promote a finite-size analysis of the transition to the ordered state
in the presence of disorder, finding a mixed character of first- and second-order transitions in finite lattices, tied
to the specific conditions of disorder realizations and boundary conditions used.
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I. INTRODUCTION

Topological phase transitions have been intensively studied
over the last few decades, especially after the discovery [1]
and theoretical understanding [2,3] of the quantum Hall effect.
Among the many interesting properties of topological systems
what stands out is their remarkable resilience to the introduc-
tion of disorder, provided it does not break any fundamental
symmetry of the Hamiltonian [4,5]. On this front, even more
peculiar phenomena have been demonstrated, such as the case
in which an otherwise topologically trivial system could turn
nontrivial in the presence of sufficiently large disorder. These
systems are dubbed topological Anderson insulators (TAIs)
[6,7] and were shown to be a consequence of the renormal-
ization of the trivial mass of the models by the presence of
(small) disorder, rendering a trivial-to-topological phase tran-
sition possible [8]. Subsequent studies demonstrated similar
phenomenology in the Haldane model [9–12], in the Kane-
Mele model [13], and in models for quantum wells [14–17] in
three-dimensional topological systems [18], culminating in its
experimental observation in ultracold atoms [19] and photonic
waveguides [20].

In turn, the study of interacting topological systems is
also diverse [21] and, in some cases, controversial. While
antiferromagnetic topological insulating states [22–25] and
even interaction-driven topological Mott insulators in other-
wise topologically trivial models [26–33] have been argued
to exist, a consensus cannot be reached when using unbiased
numerical calculations [34–38]. The concomitant appearance
of nontrivial topology and the formation of a local charge or
magnetic order parameters has also been shown to be nonex-
istent in a variety of fermionic models [39–52].
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Building on these results, we aim to study the much
less explored combined effects of disorder and interactions
in topological systems, which render a systematically richer
physics. Along these lines, earlier studies investigated such
interplay using approximative methods, such as Hartree-Fock
[53], perturbative renormalization group methods [54,55], and
random phase approximation [56]. More recent studies fol-
lowed our approach of making use of unbiased numerical
methods but mostly focused on quasi-one-dimensional sys-
tems [57,58].

Here, by using a combination of unbiased approaches,
exact diagonalization (ED) in small clusters, and the density
matrix renormalization group (DMRG) in cylinders, we un-
veil the phase diagram of the disordered Haldane-Hubbard
model. Among our results, we show that the TAI phase is
also manifest in the presence of interactions in regimes in
which they are not sufficiently strong to trigger a topologically
trivial Mott insulating phase. In addition, we perform a careful
finite-size analysis of the charge density wave (CDW) Mott
insulating transition, finding that at small disorder amplitudes,
first- and second-order phase transitions may occur in finite
systems with specific boundary conditions, separating the
topologically trivial and nontrivial phases.

II. MODEL AND QUANTITIES

We consider a Hamiltonian Ĥ that is a combination of the
Haldane model on a honeycomb lattice [59],

ĤHaldane

= −t1
∑
〈i, j〉

(ĉ†
i ĉ j + H.c.) − t2

∑
〈〈i, j〉〉

(eiφi j ĉ†
i ĉ j + H.c.)

+�
∑

i

(−1)in̂i , (1)
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FIG. 1. (a) Phase diagram of the noninteracting Haldane model, with stars depicting the set of parameters in which the analysis in the
presence of both disorder and interactions was performed. (b) The lattice clusters used in the ED and DMRG calculations, with dashed lines
emphasizing the periodic boundary conditions used; in the Lx × Ly cylinders used in the DMRG (here a 6 × 6 is sketched), open boundary
conditions are employed along its longitudinal direction. (c1) and (c2) Phase diagrams depicting the disorder-averaged charge density wave
structure factor SCDW and Chern number, respectively. (d1) and (d2) The same as in (c1) and (c2), but for the case of a finite trivial mass,
� = 1.2. Stars in (c1) an (d1) delimit the topological region via a working definition, i.e., C � 0.5. The number of disorder realizations is 100,
and the results are for the 24A lattice.

and both contact interactions and on-site disorder,

ĤV + ĤW = V
∑
〈i j〉

n̂in̂ j +
∑

i

Wiĉ
†
i ĉi . (2)

Here ĉ†
i (ĉi ) represents the fermion creation (annihila-

tion) operator at site i, and n̂i = ĉ†
i ĉi is the corresponding

number operator. t1 (t2) is the nearest-neighbor (next-nearest-
neighbor) hopping amplitude, and � is the staggered potential
responsible for breaking the symmetry between the two sub-
lattices of a honeycomb lattice. The next-nearest-neighbor
hopping term has a complex phase φi j = +φ (−φ) for
counterclockwise (clockwise) hoppings; V describes the mag-
nitude of a repulsive nearest-neighbor interaction, and Wi is
disordered on-site energy. In this case, we choose Wi from
a uniform random distribution [−W,W ], emulating a fully
disordered system. In what follows, we set t2 = 0.2t1 and
t1 = 1 as the energy scale.

By employing ED in finite lattices from Ns = 18 to 30
sites and DMRG in cylinders comprising up to 72 orbitals,
we are able to characterize the low-lying spectral proper-
ties that govern the topological behavior of Ĥ = ĤHaldane +
ĤV + ĤW , focusing the investigation on half filling, i.e., Ne ≡∑

i〈n̂i〉/Ns = Ns/2. For both types of simulations, we care-
fully select the finite lattice structures such that they contain
the K high-symmetry point as a valid momentum value. This
is fundamental for assessing the low-energy properties of the
Hamiltonian, in particular the first-order phase transition sep-
arating topological and trivial regions with vanishing disorder
amplitude [39,40,52,60]. A representation of the clusters used
within both approaches is given in Fig. 1(b). In the DMRG
calculations, we use cylinders with a fixed circumference

Ly = 6 and various lengths Lx = 4 to 12 (Ns = LxLy); in ad-
dition, the truncation dimensions are set at 1024, and five
sweeps are performed for an arbitrary set of parameters in
order to guarantee the accuracy. In ED, we employ Krylov-
Schur methods [61,62] to extract the ground state and a few
excited states of Ĥ.

Our starting point is the celebrated phase diagram of
ĤHaldane in the � vs φ plane [Fig. 1(a)]. The lines at � =
±3

√
3t2 sin φ, the gap closing condition [59], separate the

three possible regions with different Chern numbers. In our
study, we focus on the two points marked in Fig. 1(a), φ =
π/2 with � = 0 or 1.2, and subsequently study the effects of
disorder and interactions. That is, we investigate how the orig-
inal topological Chern insulator state (at � = 0) is affected
by these two “knobs.” Furthermore, we also study the case
in which a topological Anderson insulator for � �= 0 [11] is
resilient to the contact interactions.

To quantify the topological nature of the ground state, in
ED, we compute the Chern number C using a discretized form
of the integration of the Berry curvature [39,40,52,63],

C =
∫

dφxdφy

2π i

(〈
∂φx �

∗∣∣∂φy�
〉 − 〈

∂φy�
∗∣∣∂φx �

〉)
, (3)

after twisted boundary conditions {φx, φy} are employed. De-
tails of this discretization are explained in Appendix A. In the
noninteracting limit, we employ a coupling matrix approach
[64], which allows accurate computation of the topological
invariant using a single boundary condition and is particularly
useful within disorder settings [11].

At large repulsive interaction strengths, the topological
insulator gives way to a trivial CDW insulator through a
topological phase transition [39,40]. In the limit V → ∞, the
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ground state will be a perfect CDW, in which one of the
two sublattices is occupied while the other is empty, leaving
lattice translational symmetry intact but breaking reflection
symmetry [65]. To characterize it, we compute the k = 0
CDW structure factor [39,40,52]

SCDW ≡ 1

N

∑
i, j

C(ri − r j ) (4)

with density correlations

C(ri − r j ) = 〈(
n̂a

i − n̂b
i

)(
n̂a

j − n̂b
j

)〉
, (5)

where n̂a
i and n̂b

i are the number operators on sublattices a and
b in the ith unit cell, respectively. Here N is the total number
of unit cells (N = Ns/2).

We also compute the fidelity susceptibility [66–69],

χ = 2

N

1 − |〈ψ0(V )|ψ0(V + dV )〉|
dV 2

, (6)

in the regime of the parameters of interest which is a natural
way to pinpoint when a quantum phase transition takes place
[40,70–72] by making no direct assumptions about the order
parameter associated with it. Here the overlap of the ground-
state wave functions with a small interaction difference dV =
10−3 is used to understand the effects of interactions in sup-
pressing the topological character of |ψ0〉 and its competition
with a disordered Anderson phase. In fact, due to the fluctuat-
ing nature of this quantity in the presence of disorder, we will
compute its typical value χtyp. ≡ exp (ln χ ), where (·), here
and elsewhere, denotes the disorder averaging.

Finally, as direct verification of when the Anderson insulat-
ing phase takes place, we compute the single-particle density
of states (DOS), resolved in its electron and hole channels,

N (ω) = N+(ω) + N−(ω)

= 1

Ns

∑
i

{∑
n

∣∣〈ψ0|ĉ†
i

∣∣ψNe−1
n

〉∣∣2
δ
[
ω + (

ENe−1
n − E0

)]

+
∑

n

∣∣〈ψ0|ĉi

∣∣ψNe+1
n

〉∣∣2
δ
[
ω − (

ENe+1
n − E0

)]}
, (7)

where {ENe±1
n , ψNe±1

n } is an eigenpair of the Hamiltonian with
an added or removed electron. When we compute it, we trun-
cate the sum to use up to 100 eigenpairs, further employing
standard disorder averaging.

III. RESULTS

We start by displaying our main results in Figs. 1(c) and
1(d), obtained for the highly symmetric 24A cluster and qual-
itatively verified on the remaining ones. In Figs. 1(c1) and
1(c2), in the absence of the trivial mass term �, we directly
notice that the topological insulating phase is disjoint from
the Mott insulating one; that is, in the presence of disorder,
the Chern insulating phase with C = 1 does not overlap with
the one associated with a finite local order parameter, signified
by a large SCDW. This generalizes a known result for this
system at vanishing disorder [39,40]. At large disorder ampli-
tudes, both the (disorder averaged) Chern number and CDW
structure factor tend to zero, which leads to the identification

FIG. 2. (a) The disorder-averaged structure factor SCDW and
(b) Chern number C for increasing W for different V via ED for 100
realizations for 18A (open markers) and 24A (solid markers). Here
we fix the staggered term at � = 1.2. The nonmonotonic behavior
of C is indicative of the interacting topological Anderson insulator
phase and can be seen to smoothly depart from the noninteracting
results [square markers in (b) for a 48 × 48 lattice], with small size
effects that point to growth with system size at intermediate disorder
amplitudes. Error bars for the 18A results are omitted for clarity.

of an Anderson insulating phase. For V = 0, the transition
perfectly agrees with known results previously obtained for
much larger systems (Ns � 5 × 103) [11].

For a finite staggered potential, on the other hand, a trivial
CDW phase emerges (that is, not necessarily associated with
the contact interactions). At � = 1.2 the system is topolog-
ically trivial [see Fig. 1(a)] and remains so with increasing
V . In contrast, when we include disorder, we observe the
formation of a W -driven topologically nontrivial state, the
topological Anderson insulator in the Haldane model [9–12].
What our results further advance is that this phase is robust
to the presence of interactions, provided they are not suffi-
ciently large to give rise to the trivial CDW Mott insulator
[see Fig. 1(d1) and 1(d2) and the Appendix C for a smooth
variation of the staggered potential].

In what follows, we address four specific points: (i) the
details of the TAI phase, (ii) the finite-size analysis of the
CDW insulating transition and the drop in the Chern number,
(iii) characterization via the fidelity metric, and (iv) inference
of the trivial Anderson insulating phase via the single-particle
density of states.

A. Details of the interacting topological Anderson insulator

The interacting TAI we just described can be seen in more
detail in Fig. 2, where the disorder-averaged Chern number
and the corresponding CDW structure factor are displayed at
a few finite values of V while sweeping the disorder ampli-
tude. Here we compare two clusters, 18A and 24A, showing
that with increasing W , C exhibits a nonmonotonic behavior,
increasing with intermediate values of disorder but decreasing
after reaching the trivial Anderson insulating phase. We notice
that such behavior occurs for values of interactions which are
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FIG. 3. (a)–(c) The structure factor SCDW with respect to V for
various cluster sizes and different disorder strengths W using ED
with 100 realizations. (d) The same as in (a)–(c) for cylinders with
growing dimensions extracted from DMRG calculations and fixed
W = 1. All data for both methods refer to � = 0.0.

sufficiently small; otherwise, they give rise to the trivial CDW
Mott insulator, which in our model, precludes the manifes-
tation of a topological phase. Nonetheless, the average Chern
number can be seen to smoothly depart from its noninteracting
limit as the interacting strength is increased. The finite-size
effects, which are small and whose fate is difficult to defini-
tively determine on approaching the thermodynamic limit, are
suggestive of its quantization in that limit. The formation of
the interacting TAI phase with growing � can be seen in
Appendix C.

B. Finite-size effects and Chern to Mott insulator transition

Hereafter we focus on the � = 0 case. We start by noticing
in Fig. 3 that the known first-order phase transition giving
rise to the Mott insulating phase in the clean case [39,40]
is replaced by the typical second-order one when sufficient
disorder is included: the averaged structure factor smoothly
interpolates between its O(1) behavior at small interaction
strengths and its extensive nature within the ordered phase.
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FIG. 4. (a) CDW structure factor, (b) Chern number, and (c) the
many-body gap at periodic boundary conditions, φx = φy = 0, for
two different realizations for � = 0, W = 2, and growing interac-
tions. Here the cluster used is 24A.

These results [Figs. 3(a)–3(c)], which were obtained via ED,
are also confirmed by DMRG calculations using larger lattice
sizes [Fig. 3(d)]. Here we fix the cylinder’s transverse dimen-
sion at Ly = 6 while systematically changing its length.

The observed trend of the system-size dependence of SCDW

raises the possibility of a proper scaling analysis to determine
the universality class of the transition, which turned out to be
inconclusive. One reason is that at small disorder amplitudes,
the curves for SCDW at a given disorder instance {Wi} while
the interaction magnitudes are swept can yield either a typi-
cal first-order (jump) or second-order (continuous) transition,
with the former more likely to occur at small disorder values.
This contrast is explicitly displayed in Fig. 4(a), where we fix
W = 2 while comparing the SCDW results for individual dis-
order realizations. Although both curves display a continuous
transition from small to large structure factors, in some real-
izations this evolution is rapid. If we look at the corresponding
many-body gap E1 − E0 [Fig. 4(c)] with periodic boundary
conditions, we notice that although it displays a minimum at
these locations, it never closes. On the other hand, the Chern
number in Fig. 4(b) changes at these values of interaction.

The interpretation that explains these results is that al-
though the gap does not close for (φx, φy) = (0, 0), resulting
in a smooth evolution of SCDW, it does change at a particular
twisted boundary condition (φx, φy), which are sensed by the
Berry curvature, ultimately changing the Chern number. Thus,
the closer the actual gap closing occurs to (φx, φy) = (0, 0),
the faster the change in SCDW will be. Nonetheless, as further
elaborated in Appendix B, all boundary conditions are equiva-
lent in the thermodynamic limit. As a result, if the topological
character of the many-body wave function changes, either via
disorder or via interactions, the gap must close, thus resulting
in a first-order phase transition in this regime.

In the phase diagrams in Figs. 1(c1) and 1(c2), we notice
that at small W , the Chern insulating phase directly neighbors
the Mott one, and there are a large number of disorder real-
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FIG. 5. The Chern number dependence on the interactions V for
different W via ED. (a) The disorder-averaged value C, comparing
results for lattices 18A and 24A; the clean result (W = 0) in 24A
is represented by a solid line. Error bars are displayed only at the
largest cluster for clarity. (b) Histograms of the Chern number at two
different disorder amplitudes as V is increased on the 24A cluster.
All data are obtained with � = 0, using 100 disorder realizations.

izations in which they follow the first-order phase transition
separating them, as originally obtained in the clean case [40].
At large disorders, on the other hand, the topologically non-
trivial phase is more unlikely to occur; therefore, a continuous
phase transition separates the Anderson and Mott insulating
phases. Given the symmetries of the Hamiltonian, this tran-
sition is likely to pertain to the chiral Ising universality class
[73,74].

In addition to the charge ordering, we further analyze the
finite-size results of the Chern number in Fig. 5(a). While C
is a step function in the clean regime when the interaction
strength is being swept, its disorder-averaged counterpart, C,
becomes a smooth interpolation between values of 0 and 1
at finite W . In the case of individual realizations, however,
the Chern number is always quantized [see Fig. 4(b)], and
the continuous change is a result of the averaging procedure.
The histograms in Fig. 5(b) emphasize the nature of this
continuous change, and a possible definition of a topologi-
cal transition could be given at the threshold where half of
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FIG. 6. Typical fidelity susceptibility exp(ln χF ) with respect to
V for different W via ED for � = 0 in lattice 24A. The peak posi-
tion closely locates the onset of the Mott-CDW phase in the phase
diagram shown in Fig. 1(c1).

the disorder realizations result in a finite Chern number, as
used in Figs. 1(c1) and 1(d1) to draw the stars delimiting
the topological region. Last, another important aspect is the
overall small size effects in C, which become evident when
comparing lattices with Ns = 18 and 24 in Fig. 5(a) and were
similarly seen for the case of finite � [Fig. 2(b)]. It is possible,
however, that in approaching the thermodynamic limit, this
continuous evolution becomes increasingly sharper, recover-
ing quantization even after the disorder average.

C. Fidelity susceptibility

The ability of the fidelity susceptibility to infer phase tran-
sitions by directly checking how different ground states with
marginally different parameters of the Hamiltonian are allows
one to use it as a secondary tool to corroborate the phase dia-
grams in Fig. 1. In the case of first-order phase transitions, this
quantity diverges, F ∝ (dV )−2, while it displays an extensive
(with the system size) peak when crossing a continuous one.

In the presence of a finite W , the fidelity metric can be a
less accurate proxy due to noisy behavior after the disorder
average, which, as we have seen, can mix first- and second-
order phase transitions in a finite lattice. For example, by
fixing disorder instances Wi while sweeping V , the fidelity
metric exhibits a collection of slightly displaced δ functions
for the different realizations that display a first-order transition
but a broad peak for a second-order one. For that reason, we
use its typical value, shown in Fig. 6 for W = 2. A one-peak
structure that systematically drifts to larger interactions as
disorder is increased denotes that the typical fidelity suscepti-
bility closely captures the onset of the Mott-CDW insulating
phase when compared with the phase diagram in Fig. 1(c1).

D. Single-particle density of states

A contrast between the different insulating phases can be
drawn by comparing the single-particle DOSs. Unlike the
two other insulating phases, the Anderson insulator is unique
because it generally displays a gapless DOS, owing its in-
sulating character to the localization of the wave functions.
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FIG. 7. The disorder-averaged single-particle density of states at
three representative points of the phase diagram: (a) the Chern insu-
lating, (b) Mott insulating, and (c) trivial Anderson insulating phases.
All results are obtained as an average of 200 disorder realizations,
using the staggered potential � = 0 on the 18A lattice. A small
Lorentzian broadening ε = 0.03 is used to smooth the curves. The
Anderson insulating phase is differentiated for being the only phase
with a gapless structure in the DOS. In this case, insulating behavior
ensues from an exponential localization of wave functions.

Figure 7 depicts the DOS at three points of the phase diagram
for � = 0 that correspond to each of the phases. Although
it would be very instructive, a systematic study of the onset
of the Anderson insulating phase via the gap closing in N (ω),
which is consequently accompanied by a topological-to-trivial
transition, is elusive since this single-particle gap is known to
display finite-size effects which are much more dramatic than
for the Chern number [40].

IV. SUMMARY

The Haldane-Hubbard model is well characterized when
disorder [11] and interactions [39,40] are separately included.
By combining these two ingredients, we unveiled regimes of
interacting topological Anderson insulators using numerically
unbiased methods, showing their resilience to the presence of
moderately large interactions before they render a trivial CDW
insulating state. In principle, the survival of such a phase
can be tuned to even larger interactions via the systematic
enhancement of the next-nearest-neighbor hopping amplitude
t2, which is known for delaying the onset of the CDW Mott
insulator [40]. Moreover, the characterization of the transition
to the Mott-CDW phase, in which a first-order phase transition
is replaced by a continuous one for sufficiently large disor-
der amplitude, was performed. Nonetheless, typical first-order
phase transitions for certain realizations can still occur in
finite systems with periodic boundary conditions, especially at
small disorder amplitudes. While these results were obtained
for relatively small system sizes, they point to a qualitative
convergence when the lattice studied is increased.

From an experimental point of view, the recent emulation
of the Haldane model using ultracold atoms trapped in optical
lattices [75] and the known flexibility to tune interactions that

such settings provide [76] allow us to predict that similar
physics can be experimentally verified with quantum emula-
tors. In particular, effective nonlocal interactions similar to the
type investigated here were also recently demonstrated [77].
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APPENDIX A: CHERN NUMBER COMPUTATION

The calculation of the Chern number is based on the
method described in Refs. [39,63], i.e., using a discretized
form of Eq. (3), by making use of twisted boundary conditions
(TBCs) [3,78]. When computing the many-body ground state
in the torus {φx, φy} of TBCs, the Berry curvature is written in
terms of the normalized overlaps

U i, j
x =

〈
ψ

i, j
0

∣∣ψ i+1, j
0

〉
∣∣〈ψ i, j

0

∣∣ψ i+1, j
0

〉∣∣ , U i, j
y =

〈
ψ

i, j
0

∣∣ψ i, j+1
0

〉
∣∣〈ψ i, j

0

∣∣ψ i, j+1
0

〉∣∣ (A1)

at consecutive points of the {i, j} grid defined by the {φx, φy}
phases when it is subdivided in Nα intervals, such as φα =
2π i/Nα . Thus, the discretized Berry curvature assumes the
form

F̃i, j = −i ln

(
U i, j

x U i+1, j
y

U i, j+1
x U i, j

y

)
, (A2)

where the Chern number is written as C = (1/2π )
∑

i, j F̃i, j .
We typically use Nα = 6, which is sufficient to capture the
correct Chern number for the different phases when W = 0.

APPENDIX B: INDIVIDUAL DISORDER REALIZATIONS:
GAP CLOSING AND PHASE DIAGRAMS

An important remark is that for finite disorder, the state-
ment that the gap closing condition occurs at one of the
high-symmetry points (φx, φy) = (0, 0) (π, 0), (0, π ) (π, π )
[40] is no longer valid given that point-group symmetries (in
particular inversion) are now absent. As a result, the many-
body gap closing, which underlies the change in topological
properties of |ψ0〉, can occur at any value of (φx, φy) on
the patched torus. As an example, we show in Fig. 8 the
eigenenergy surfaces for a single disorder realization {Wi}
when stretching the disorder amplitude. As for the clean case,
a gap closing results in a change in the topological invariant,
and its location in the TBC torus is now tied to the specific
choice of the disorder configuration {Wi}.

In particular, when constructing the phase diagrams, we
noticed that a similar procedure results in easier convergence;
that is, we focus on a single disorder realization to build one
instance of the W − V phase diagram, subsequently averaging
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FIG. 8. Evolution of the eigenenergy surfaces (E0 and E1) in the
torus of TBCs {φx, φy} for a fixed disorder realization and growing
disorder amplitude (a) W = 2.2, (b) 2.5, and (c) 2.8. The interaction
strength is V = 0.5, the staggered potential � = 0, and the lattice is
18A. In (a), the computed Chern number is C = 1, whereas in (c),
C = 0.

the results for different realizations. In Figs. 9(a) and 9(c),
we show two such instances where the corresponding regions
of topological nontrivial behavior are remarkably different,
especially at large disorder amplitudes W . Nonetheless, we
can directly interpret these results by observing the behavior
of the many-body gap E1 − E0 in Figs. 9(b) and 9(d). Apart
from the W = 0 line, where the system possesses quasidegen-
erate doublet states (related to odd and even CDW states with
respect to parity), the change in the Chern number in the other
regions of the phase diagram is traced again to a gap-closing
condition.

Last, we reemphasize that this gap closing may not occur
for periodic boundary conditions φx = φy = 0 in a finite lat-
tice [such as the ones displayed in Figs. 9(b) and 9(d)]. This
can be observed for one of the disorder realizations [Figs. 9(c)
and 9(d)] seen for interactions 2 � V � 3 and W � 4, where
the Chern number changes but the many-body gap E1 − E0 is
markedly finite.

FIG. 9. (a) and (c) One disorder realization instance of the Chern
number phase diagram; 100 averages of such diagrams compose the
ones in Fig. 1. (b) and (d) The corresponding gap in the spectrum
between the ground state and the first excited state for a fixed disorder
landscape, calculated with periodic boundary conditions (φx, φy ) =
(0, 0). Here � = 0.0, and the lattice is 24A.

FIG. 10. Evolution of the phase diagrams of the average CDW
structure factor (left panels) and Chern number (right panels)
with growing staggered potential � (from top to bottom, � =
0, 0.4, 0.8., 1.2, and 1.6). Here the lattice used is 18A.

Yet in disordered and/or interacting systems, the dis-
cretized version of Eq. (3) can be used with just one single
twist term corresponding to periodic boundary conditions,
as long as large enough supercells are used [64]. This is
equivalent to the single k-point formula for the Berry phase
in calculations of the electrical polarization [79]. Therefore,
the lack of gap closing for φx = φy = 0 in the present case
may also be interpreted as a finite-size effect due to the small
system sizes used.

APPENDIX C: TOPOLOGICAL ANDERSON INSULATOR
WITH GROWING �

In the main text, we presented results for cases with both
� = 0 and � = 1.2, arguing that in the latter, the topological
Anderson insulating phase survives the inclusion of interac-
tions. We now present a smooth interpolation between these
two regimes in Fig. 10 for the 18A cluster. The CDW in-
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sulating phase displays a comparatively larger region in the
phase diagram with a growing staggered potential, as one
would expect, since both interacting and staggered potentials
contribute to the formation of a charge ordered insulator.

Even more interesting, one can see that the topological
region, characterized by finite values of the average Chern
number, can be seen to smoothly evolve until �c = 3

√
3t2 �

1.04, beyond which the TAI, characterized as the regime in
which nontrivial topology is recovered only in the presence of
disorder, appears. The renormalization of the staggered trivial
mass by W , as discussed in the Introduction, is seen to be
possible even far from �c [see Fig. 10(e2)] and shows that an
interacting topological Anderson insulator is still attainable in
these regimes.
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