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Charge density wave breakdown in a heterostructure with electron-phonon coupling
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Understanding the influence of vibrational degrees of freedom on transport through a heterostructure poses
considerable theoretical and numerical challenges. In this work, we use the density-matrix renormalization group
method together with local basis optimization to study the half-filled Holstein model in the presence of a linear
potential, either isolated or coupled to tight-binding leads. In both cases, we observe a decay of charge density
wave states at a sufficiently strong potential strength. Local basis optimization selects the most important linear
combinations of local oscillator states to span the local phonon space. These states are referred to as optimal
modes. We show that many of these local optimal modes are needed to capture the dynamics of the decay,
that the most significant optimal mode on the initially occupied sites remains well described by a coherent
state typical for small polarons, and that those on the initially empty sites deviate from the coherent-state form.
Additionally, we compute the current through the structure in the metallic regime as a function of voltage. For
small voltages, we reproduce results for the Luttinger parameters. As the voltage is increased, the effect of larger
electron-phonon coupling strengths becomes prominent. Further, the most significant optimal mode remains
almost unchanged when going from the ground state to the current-carrying state in the metallic regime.
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I. INTRODUCTION

There is an increased technological and scientific impor-
tance of devices that are so small that quantum effects play an
important role, see, e.g., Refs. [1–4]. Thus, a detailed under-
standing of charge transport and the nonequilibrium properties
of such quantum structures is desirable. In particular, the
formation of electron-phonon bound states, polarons, can give
rise to the emergence of new electronic phases with electric
transport characteristics different from metals or band semi-
conductors [5].

For example, at sufficient doping, charge density waves
(CDWs) or charge-ordered (CO) states can evolve. Under
strong electric fields, such states can break down, as, e.g., in
CDW wires [6] or in CO manganites [7]. In situ transport
experiments with CO manganites in an electron microscope
revealed a complex transient behavior with movement of en-
tire CO domains and subsequent melting into a metallic state
[8]. Polaron transport, binding, and dissociation in electric
fields also have an impact on the performance of polymer
solar cells [9]. Notably, CO can enhance the lifetime of
polaron excitations in junctions and thus enable hot-polaron-
type solar cells [10]. Understanding these experiments makes
a comprehensive study of polaron transport and melting of
CDW/CO states highly desirable. An improved and fully
quantum-mechanical modeling of vibrational degrees of free-
dom [11–15] can help interpret the behavior of molecules, see,
e.g., Refs. [16–18], and charge transport and thermalization in
heterostructures, see, e.g., Refs. [10,19,20].

In general, CDW and CO states can hardly be distinguished
in their ground states, since they have the same order parame-

ter. However, the mechanism of forming the two ordered states
is very different, i.e., a Peierls-type lattice instability (CDW)
[21] versus crystallization of localized charge carriers (CO)
[22,23]. The difference is visible by the different phase tran-
sitions and nonequilibrium behavior: on the one hand, CDWs
display metallic behavior above their transition temperature.
Below this temperature, collective phenomena [24–27], such
as sliding, lead to nonlinear behavior in the current-voltage
relation if a sufficiently strong electric field is applied. In CO
systems, on the other hand, charge transport above the transi-
tion temperature is due to the hopping of localized polarons
[8,28]. The CDW states will be the main focus of this work
and one of our goals is to better understand the CDW behavior
under an applied voltage.

From a theoretical point of view, one possible setup con-
sists of a one-dimensional quantum structure sandwiched
between two metals (see Fig. 1). Then, the transport properties
of this structure can be investigated by applying a voltage
difference to the two conducting leads. Whereas the simplest
case is to model a quantum dot with a certain energy level,
many interesting and complicated extensions exist [12,29,30].

One important example is to allow for local vibrational de-
grees of freedom on the quantum dot (see, e.g., Refs. [11,13–
15,31–34]). If these are modeled by a harmonic oscilla-
tor, one gets the single-level spinless Anderson-Holstein
model (SAHM), which has been studied extensively in, e.g.,
Refs. [35–42]. One of the main goals of this work is to go
beyond the SAHM and study a Holstein model, extending
over several sites and coupled to leads.

Our main motivation is to get a better understanding of the
effect of phonons on charge transport. The one-dimensional
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FIG. 1. Two leads connected to a Holstein-model structure. The
leads have hopping amplitude t1. In the structure, the electrons couple
to the phonons with a coupling strength γ and have a hopping
amplitude t0. The phonons have the frequency ω0 and there is a local
gate voltage εb. The electrons can tunnel between the leads and the
structure with an tunneling amplitude thyb. At time t = 0, a voltage
V is applied, with a linear interpolation through the structure.

Holstein model has a complex ground-state phase diagram
(see, e.g., Refs. [43,44]) and, at half-filling, undergoes a tran-
sition from a Tomanga-Luttinger liquid (TLL) to a CDW
depending on the parameters. We address two main questions:
How does the CDW phase behave when subjected to a linear
potential and how do the different phases behave when the
Holstein model is coupled to leads and a bias voltage is
switched on?

The immense complexity of these types of nonequilibrium
problems has driven the development of analytical and nu-
merical methods such as the density-matrix renormalization
group (DMRG) (see, e.g., Refs. [29,45–56]), the numerical-
renormalization group (NRG) (see, e.g., Refs. [57–60]),
real-time renormalization group (RTRG) [61], functional-
renormalization group (FRG) [38–40,42,62,63], and quantum
Monte Carlo (QMC) (as done in, e.g., Refs. [64–66]). In this
work, we utilize DMRG for both ground-state search and time
evolution [67–73]. A comparison between several of these
methods for the single-impurity Anderson model is contained
in Ref. [30].

Here, we are particularly interested in modeling the in-
fluence of phonons, requiring large local Hilbert spaces to
capture the relevant physics in different parameter regimes.
Although this can, in principle, be problematic for DMRG-
based methods, techniques have been developed to treat these
cases more efficiently (see also Refs. [74,75]). One approach,
introduced in Ref. [76], consists of mapping the bosonic de-
grees of freedom onto pseudosites in the lattice, thus replacing
the large local Hilbert space with long-range interactions.
Another method consists of finding a basis where the local
Hilbert space can be truncated significantly with negligible
error [77], called the local basis optimization (LBO). Re-
cently, in Ref. [78], Köhler et al. suggested introducing bath
sites, thus treating a doubled system but with a restored

U(1) symmetry. The methodology was further applied to
time-evolution calculations in Ref. [79]. These methods were
benchmarked against each other for the ground-state search in
Ref. [80]. For the problems at hand, we use LBO, which has
already been successfully applied to a wide range of problems,
e.g., in Refs. [81–87].

We first investigate the regular Holstein model (not coupled
to leads) in the CDW phase, and focus on the breakdown of
the charge order. When we apply a linear potential, the CDW
order parameters defined in the electron and phonon sector
decay rapidly if the intersite potential difference is of similar
magnitude as the polaron binding energy. We further illustrate
that the picture is similar to that in the Holstein dimer for
short times. Related studies have been done of the breakdown
of a Mott insulator coupled to two leads in Ref. [50], of
a Mott insulator due to an electric field in Refs. [88–91],
and of the Falicov-Kimball model, e.g., in Refs. [92–94].
Our work complements previous studies on the Holstein
model where the CDW breakdown has been investigated by
quenching parameters (e.g., in Ref. [86]) and applying a light
pulse (e.g., in Ref. [95]). Additionally, there have been stud-
ies of single and bipolarons in a linear potential (see, e.g.,
Refs. [96,97]), and recently, on the heating of a CDW [98]
and a CDW with pulsed electric fields [99] and classical
phonons.

We then couple the Holstein model to leads. Using time-
dependent DMRG with LBO, we compute the current-voltage
diagram of the structure in the metallic phase and demon-
strate that using LBO leads to a significant computational
speed up. Note that the linear conductance of the model
in the metallic phase has been computed in a similar setup
in Ref. [100]. There, the authors used a Kubo-formalism-
based DMRG approach [101,102]. They also computed the
Luttinger parameters [103–105] for the model and obtained
quantitative agreement with Ref. [106], which computed the
parameters from the structure factor. We reproduce their re-
sults by analyzing the steady-state current at low voltages.
Further, we illustrate that the first optimal-basis state remains
approximately constant in the current-carrying state as a func-
tion of time.

In the CDW phase, large voltages are required for a clear
decay of the order parameter to be seen at the time scales
reached with our method. Further, the properties of the most
significant optimal-basis state change in the initially empty
site but remain well described by a coherent state in the
initially occupied sites.

The main results of this paper can be summarized as
follows: In the charge density wave regime of the Holstein
model, we simulate the CDW breakdown at large voltages. We
explicitly demonstrate the decay of order parameters in both
the phonon and electron sector. This is done for the Holstein
model, as well as the Holstein model coupled to leads.
Further, we show that the local phonon states of the initially
empty sites in the CDW deviate from the coherent state,
usually used to describe the small polaron. In the metallic
regime, we compute the current-voltage diagram and observe
a significant dependence on the electron-phonon coupling
at small voltages. We additionally illustrate that the local
phonon distribution remains largely unaffected by the voltage
in the current-carrying state compared to the ground state and
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we reproduce literature values [102,106] for the Luttinger
parameter.

This paper is organized as follows: In Sec. II, we introduce
the model. In Sec. III, we briefly review DMRG with LBO and
how it can be applied to the systems studied here. In Sec. IV,
we discuss CDW order in the ground state of the Holstein
model with and without a coupling to the leads. Section V
looks at the usual Holstein model and Sec. VI at the Holstein
model coupled to the leads. We summarize and give a brief
outlook in Sec. VII.

II. MODEL

When investigating how vibrating degrees of freedom
affect the transport properties of a structure attached to two
leads we can write down a three-term model:

Ĥ = Ĥleads + Ĥhyb + Ĥs. (1)

We use open-boundary conditions and set h̄ = 1 throughout
this paper. If the structure starts at site L0 and is of length Ls,
the Hamiltonian of the leads becomes

Ĥleads = −tl

L0−2∑
j=1

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j )

− tl

L−1∑
j=L0+Ls

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j ), (2)

where ĉ(†)
j is the electron annihilation (creation) operator on

the jth site, L is the total length of the system, and tl the
hopping amplitude in the leads. The hybridization term is

Ĥhyb = −thyb(ĉ†
L0−1ĉL0

+ H.c.)

− thyb(ĉ†
L0+Ls−1ĉL0+Ls

+ H.c.), (3)

and thyb is the hopping amplitude between the structure and
the leads. To model vibrational degrees of freedom in the
structure, we choose the Holstein model [107], which contains
a coupling between electrons and local optical phonons. The
structure’s Hamiltonian then takes the form:

Ĥs = −t0

L0+Ls−2∑
j=L0

(ĉ†
j ĉ j+1 + H.c.)

+
L0+Ls−1∑

j=L0

(ω0b̂†
j b̂ j + γ n̂ j (b̂

†
j + b̂ j ) + εbn̂ j ), (4)

with b̂(†)
j being the phonon annihilation (creation) operator on

site j and n̂ j = ĉ†
j ĉ j . Further, we have the gate voltage εb, the

harmonic-oscillator frequency ω0 and the coupling strength
between the electrons and the phonons γ . For Ls = 1, the
model turns into the well-studied spinless Anderson-Holstein
model. The complete model is illustrated in Fig. 1. We also
define

ε̃ = εb − γ 2

ω0
, (5)

and in this work, we set ε̃ = 0 so that εb corresponds to the
polaron binding energy in the single-site limit of the model.
In this regime, we can detect a clear distinction between the

metallic and CDW phase in the ground state for the parame-
ters investigated here. When we refer to the regular Holstein
model, we mean the Hamiltonian in Eq. (4) without leads.

When studying the Holstein structure coupled to leads,
we always start with the ground state of the Hamiltonian in
Eq. (1), and at time tω0 > 0, we apply a voltage by adding
the term

ĤV = −V θ (t )

2

L0−1∑
j=1

n̂ j + V θ (t )

2

L∑
j=L0+Ls

n̂ j

+
L0+Ls−1∑

j=L0

θ (t )(i − Lx )�V n̂ j (6)

to the Hamiltonian. Here, �V = V/(Ls + 1) and Lx = L0 −
1 + (Ls + 1)/2. For the regular Holstein model, we only apply
the linear potential [i.e., the last term in Eq. (6)].

We further define the hybridization parameter

� = 2(thyb)2. (7)

We are interested in the expectation values of several ob-
servables. We calculate the expectation value of the current
through the structure defined as

ĵ = i

2
thyb(ĉ†

L0−1ĉL0
− H.c. + ĉ†

L0+Ls−1ĉL0+Ls
− H.c.), (8)

where we take the average of the incoming and outgoing
currents. Additionally, we compute an order parameter in the
electron sector

On = 1

Ne

L0+Ls−1∑
i=L0

(−1)i−L0〈n̂i〉, (9)

and in the phonon sector

OX = −1

Ne

L0+Ls−1∑
i=L0

(−1)i−L0〈X̂i〉, (10)

where X̂i = b̂†
i + b̂i and Ne = (Ls + 1)/2 for odd Ls. In

Eq. (10), we include an additional minus sign to ensure that
OX > 0 in the ground state for γ > 0. These parameters char-
acterize the transition from a TLL to a CDW phase.

III. METHODS

In this section, we briefly explain the main numerical
method used in this work, namely the time-dependent density-
matrix renormalization group using LBO. DMRG-based
methods [67,71,72] have proven to be an extremely valu-
able tool to study one-dimensional systems and have already
been applied extensively to a wide range of problems (see
Refs. [71–73] for reviews). This work uses time-dependent
DMRG [68–70] with local basis optimization [77]. LBO has
been combined with both exact-diagonalization methods [81]
and matrix-product state methods [83–87] and has enabled
the study of electron-phonon systems in previously inaccessi-
ble regimes for other wave-function-based methods, e.g., for
finite-temperature spectral functions of the Holstein polaron
[87], quench dynamics of charge-density waves with a com-
pletely quantum mechanical treatment of the phonons [86],
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and the scattering of an electronic wave packet on a structure
with electron-phonon interaction [85]. Other Hilbert-space-
based methods used in the field are exact diagonalization,
see, e.g., in Refs. [81,108,109], diagonalization in a limited
functional space, e.g., in Refs. [96,110,111], and the Lanczos
method, e.g., in Refs. [112–114].

Here, for the Holstein model coupled to leads, we use
matrix-product states consisting of both sites with only
fermionic (indicated by σ ) and sites with both fermionic
and bosonic degrees of freedom (indicated by η). We write
|�σ 〉left = |σ1, . . . , σL0−1〉, |�σ 〉right = |σL0+Ls , . . . , σL〉, and
|�η〉R = |ηL0 , . . . , ηL0+Ls−1〉. We truncate the phonon Hilbert
space by allowing maximum M phonons on each site. The
total matrix-product state can be written as:

|ψ〉 =
∑

|�σ 〉left,|�σ 〉right,|�η〉
Aσ1 . . . AσL0−1 AηL0 . . .

. . . AηL0+Ls−1 AσL0+Ls . . . AσL

|�σ 〉left |�η〉 |�σ 〉right . (11)

For the time evolution, the Hamiltonian is first written as
a sum of terms ĥl acting on the two neighboring sites l and
l + 1. For a time step dt , we carry out a second-order Trotter-
Suzuki decomposition into even and odd terms

e−idtĤ = e−idtĤeven/2e−idtĤodd e−idtĤeven/2 + O(dt3). (12)

The gates can now be applied directly to the matrix-product
state.

To treat the large number of local degrees of freedom effi-
ciently we apply a transformation into a local optimal basis.
This is done by obtaining the local reduced density matrix ρ

at each time step after applying the time-evolution gate to a
site with bosonic degrees of freedom. As described in detail
in Refs. [83,85–87], this is used to obtain the transformation
matrices into the new, called the optimal local basis by diago-
nalizing ρ such that

ρ = U †WU . (13)

In Eq. (13), W is a diagonal matrix containing the eigenvalues
wα and U is the transformation matrix with the eigenvectors
|φα〉 such that

ρ |φα〉 = wα |φα〉 . (14)

The matrices U transform between the phonon bare mode
basis and the optimal basis on a given site. Note that they are
therefore site dependent and are stored as part of the MPS
as objects connecting the local degrees of freedom to the
optimal phonon modes that enter into the A matrices of
the MPS. The number of optimal states one needs to keep
while allowing for a certain error is set by the eigenvalues wα .
In the single-site limit of the Holstein model, it is well known
that the system can be described by only two optimal states,
the coherent and the empty state. In this case, the optimal basis
has an obvious physical meaning. Since the system conserves
the number of electrons we can split up the reduced density
matrices into block matrices in the one-electron sector ρ1

and the zero-electron sector ρ0 with the sum of the traces
Tr[ρ1] + Tr[ρ0] = 1. We further denote the corresponding
eigenvalues and eigenvectors with an additional index so that,

FIG. 2. (a) Order parameter in the electron sector for the ground
states of the Holstein model (open symbols) and the Holstein model
coupled to leads (filled symbols) for different γ /ω0. L refers to
the system size of the Holstein model and Ls to the length of
the structure, which is coupled to the leads. In both cases, we set
t0/ω0 = 1, ε̃ = 0, M = 35 for γ /ω0 � 2, and M = 50 for γ /ω0 > 2.
For the Holstein model coupled to leads, we further use a total L =
236, tl/ω0 = 2, and �/ω0 = 1. The dashed line indicates γ /ω0 =
2
√

2, which is predominately used later in this work. (b) Order
parameter in the phonon sector for the same parameters as in (a).
Note that we do not show the data point for Ls = 5, and γ /ω0 = 2.5,
since it is not converged conclusively with respect to the criteria in
the main text.

e.g., ρ1 |φ1
α〉 = w1

α |φ1
α〉. The weights w1

α in our system are
analysed in the Appendix. One important result of this work
is that the local basis optimization works very well for the cal-
culations done in the metallic phase (only ∼3 local states are
needed in one particle number sector, compared to M + 1 (in
this case M = 30) in the bare phonon-number basis). There,
only relatively small voltages are needed to obtain a steady-
state current and a current-voltage diagram. In contrast, in all
cases where the CDW is found to break down, large voltages
and many local states are required.

In the time-dependent DMRG method with LBO we first
apply the time-evolution gate, then obtain the transformation
matrices and transform into the optimal basis before the sub-
sequent singular value decomposition. A thorough discussion
of the method can be found in Ref. [83].

When diagonalizing the reduced density matrix to obtain
the optimal basis, the smallest eigenvalues wα are dis-
carded such that the truncation error is below a threshold:∑
discarded α

wα/(
∑
all α

wα ) < εLBO. For the truncation done in the

time-evolution scheme, we discard all singular values such
that

∑
discarded α

s2
α/(

∑
all α

s2
α ) < εbond. All calculations were done

using Ref. [115] and with dtω0 = 0.025.

IV. CDW ORDER IN THE GROUND AND INITIAL STATE

We first look at the ground-state properties of the two
setups. In Fig. 2, we show OX and On for the ground state
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FIG. 3. Order parameters for the Holstein model with L =
9, γ /ω0 = 2

√
2, ε̃ = 0, t0/ω0 = 1, M = 50, and different voltages

V/ω0 (�V is the potential difference between consecutive sites in
the structure). For the calculations, we use εLBO = 10−7 and εbond =
10−7. (a) Order parameter in the fermion sector, see Eq. (9). (b) Order
parameter in the bosonic sector, see Eq. (10). The dashed lines are the
exact data for the Holstein dimer.

obtained with DMRG for both the Holstein model and the
Holstein model coupled to leads. The relative variance of the
ground-state energy, σ 2

E = (〈H2〉 − 〈H〉2)/〈H〉2, is converged
up to the order � 10−6(10−12) for the regular Holstein model
(Holstein model coupled to leads). We further verify that the
obtained state is robust with respect to different initial states.
The data are shown for both the structure coupled to leads and
the regular Holstein model for different γ /ω0 with M = 35
local phonon states for γ /ω0 � 2 and M = 50 for γ /ω0 > 2.
One can observe a clear distinction between the charge density
wave phase and the metallic phase. For small γ /ω0, the order
parameters decrease as the system size is increased. Note that
in the metallic case, the values for the Holstein model coupled
to leads are smaller than for the Holstein chain itself at the
same length since for the structure, the total system size is
even while the number of sites in the structure is odd. As
γ /ω0 is increased, both On and OX · γ /ω0 approach a constant
for all systems, indicating the charge density wave phase.
We further confirm that the results remain consistent as the
maximum local phonon occupation number M is increased.

V. HOLSTEIN MODEL WITH A LINEAR POTENTIAL

In this section, we focus on the Holstein model without
coupling to any leads [i.e., just Eq. (4)]. To investigate the
dynamics of the CDW, we initially compute the ground state
of the Holstein model and at time tω0 = 0 we apply the linear
potential. We focus on the strong-coupling regime, γ /ω0 =
2
√

2, t0/ω0 = 1, where the ground state is known to be a
charge density wave [43,44] (see Fig. 2). In Fig. 3, we show
the order parameters for different voltages. Since a single
polaron has a binding energy of εb = γ 2/ω0, one expects that
local voltage differences of �V/ω0 ∼ γ 2/ω2

0 are needed for

FIG. 4. Slopes of the linear fit to the initial decay of the order
parameters (see main text for details) in the Holstein model. We use
L = 9, γ /ω0 = 2

√
2, ε̃ = 0, t0/ω0 = 1, M = 50, and different volt-

ages V/ω0. For the calculations, we use εLBO = 10−7, εbond = 10−7.
The error bars indicate the standard deviation of the errors with maxi-
mum values of the order of 10−2 and thereby can not be seen for most
points on the scale of the figure. Note that the L = 9 data are rescaled
with the factor 5/4 to make the number of electrons participating in
the CDW breakdown commensurate with the Holstein dimer.

the order parameter to decay on the time scales reachable
here. This is confirmed for both the order parameter in the
electron [Fig. 3(a)] and phonon sector [Fig. 3(b)]. There, we
observe almost no decay for V/ω0 = 20, which corresponds
to �V/ω0 = 2 � γ 2/ω2

0 = 8. However, for both V/ω0 = 80
(�V/ω0 = 8) and V/ω0 = 100 (�V/ω0 = 10), the order pa-
rameters decay substantially. Since one could expect that only
the voltage difference between two neighboring sites should
dominate the order-parameter decay, we also show the data
for the same voltage differences in the Holstein dimer. The
dynamics are indeed similar, indicating that the dimer picture
gives a reasonable qualitative description for the short-time
dynamics.

To quantify how the change of the order parameter is
affected by the electron-phonon coupling strength, we fit On

and OX in the interval tω0 ∈ [0, 6] with the function f (t ) =
at + b. In Fig. 4, we show the resulting values of a as a
function of εb = γ 2/ω0 for different voltages for the Holstein
model and the dimer. The figure indicates that the decrease of
the order parameters strongly depends on the polaron binding
energies and the intersite voltage �V . In all cases, the decay
gets suppressed when the binding energy gets large. Further,
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the figure illustrates that the functional dependence of the a’s
are similar for both the Holstein model and the dimer. To
conclude, our results suggest that a breakdown of the CDW
can already be seen for �V ≈ εb, but gets more prominent for
�V 
 εb. For �V � εb, the CDW is stable.

VI. HOLSTEIN STRUCTURE COUPLED TO LEADS

In this section, we move on to study the Holstein structure
coupled to leads with Ls = 9. In the first part, we focus on
coupling strengths, which lie in the TLL regime before we go
to the charge density wave regime.

A. Metallic phase

1. Currents

We first compute the current-voltage curve for the model
with coupling strengths γ /ω0 in the TLL regime. To do
this, we apply the commonly used technique, see, e.g.,
Refs. [29,47,50], of averaging the expectation values of
〈 ĵ(t )〉 in a time interval where a quasi-steady-state current is
reached. We call this quantity 〈 ĵ(t )〉av. We choose the interval
tω0 ∈ [20, 30]. Typical data for the time dependence of the
current 〈 ĵ(t )〉 is shown in the Appendix. For our data, the
standard deviation is defined as

σSTD(〈 ĵ〉) =
√ ∑

tiω0∈[20,30]

1

N
|〈 ĵ(ti )〉 − 〈 ĵ(t )〉av|2, (15)

where ti is a point in time depending on the time step, N is
the number of terms in the sum

∑
tiω0∈[20,30], and we have

σSTD(〈 ĵ〉)/〈 ĵ(t )〉av of order � 10−3.
The current-voltage diagram is plotted in Fig. 5(a). The

data show that in the low-voltage regime, the currents decrease
as γ /ω0 is increased. Similar behavior is observed in the
SAHM in Ref. [40]. This is even more clearly illustrated in
Fig. 5(b), where 〈 ĵ(t )〉av/V is plotted. As γ /ω0 is increased, a
steady-state current can not be estimated for large V/ω0 from
our data. For this reason, we show fewer points in those cases.

In the SAHM, the equilibrium spectral function of the dot
at the particle-hole symmetric point displays a main peak at
zero frequency accompanied by additional peaks separated by
ω0 [36]. When the electron-phonon coupling is increased, the
width of the main peak starts decreasing as spectral weight is
shifted to larger frequencies. Since the current contains the in-
tegral over the spectral function (for the voltages studied here,
one would expect the spectral function to remain approxi-
mately unaffected), the current will decrease at small voltages.
Although the spectral function of the Holstein structure ex-
tending over several sites is likely more complicated (see,
e.g., Refs. [81,116,117] for spectral functions of half-filled
Holstein chains), it is plausible that this picture still holds.
This is further supported by the fact that for the noninteracting
model and at small voltages, increasing t0/thyb leads to a
decrease in the current. Decreasing t0/thyb, however, increases
the current. This is because at a fixed small voltage, a larger
portion of states of the structure participates in transport as
the band width decreases. Note that if both t0 and thyb are
decreased but their ratio is kept constant, the current also
decreases. For the Holstein structure, one expects that both the

FIG. 5. (a) Average current 〈 ĵ〉av, see text for details, for
the structure with Ls = 9, L = 236, �/ω0 = 1, tl/ω0 = 2, εbond =
10−8, εLBO = 10−7, ε̃ = 0, and different γ /ω0 in the metallic phase.
We further show exact results for γ /ω0 = 0 (black solid line). The
inset in (a) shows 〈 ĵ〉av at fixed V/ω0 = 0.6 as a function of γ /ω0.
(b) Same data as in (a) but divided by V . The inset in (b) shows the
Luttinger-liquid parameter, see main text for details, together with
values obtained with different methods. The plus signs are calculated
from our data, the green triangles are from Ref. [106], and the blue
squares from Ref. [100].

tunneling in and out of the structure as well as the band width
is reduced when electron-phonon interactions are turned on.
Since we clearly see a decrease in the current, we assume that
the dominating effect of the electron-phonon coupling is on
the tunneling from the structure into the leads in the parameter
regimes studied here.

In the inset of Fig. 5(b), we show the Luttinger-liquid
parameter computed from our data together with those ob-
tained by studying the structure factor in Ref. [106] and from
the Kubo formalism in Ref. [100]. The Luttinger parame-
ter K renormalizes the conductance G in a Luttinger liquid
[103–105],

G = KG0, (16)

where G0 is the conductance of free fermions in a tight-
binding chain. We calculate K as the ratio of 〈 ĵ〉av at finite
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FIG. 6. (a) Order parameter in the electron sector, see Eq. (9),
of the Holstein structure with Ls = 9, L = 236, tl/ω0 = 2, γ /ω0 =
1, �/ω0 = 1, ε̃ = 0, and V/ω0 = 0.6. For the calculations, we use
εLBO = 10−7, εbond = 10−8. (b) Selected local densities in the struc-
ture, see main text for details. (c) Current from Eq. (8) together with
selected local currents in the structure, see main text for details. The
black dashed lines are the average over local densities (b) and local
currents (c).

γ and at γ = 0 with V/ω0 = 0.2

K = 〈 ĵ〉av

〈 ĵ〉av,γ /ω0=0

∣∣∣∣
V/ω0=0.2

. (17)

Note that we changed the averaging interval to tω0 ∈
[25, 32.5]([30, 32.5]) for γ /ω0 = 1.4(1.5) due to the longer
relaxation time. We see that this method qualitatively repro-
duces K from our time-dependent calculations.

We now take a closer look at the current-carrying state
at V/ω0 = 0.6 and γ /ω0 = 1. Figure 6(a) shows the order
parameter, which oscillates around 0.1. Further, the local elec-
tron densities nL0+i = 〈n̂L0+i〉 on selected sites are plotted in
Fig. 6(b). As expected, their average increases for i going
from small to large due to the inhomogeneous bias voltage.
Still, their mean value is 1/Ls

∑Ls−1
i=0 〈n̂L0+i〉 ≈ 0.5, as illus-

trated by the black dashed line. Selected local currents jL0+i =
i〈ĉ†

L0+iĉL0+i+1 − H.c.〉 and the total current, see Eq. (8), can
be seen in Fig. 6(c). There, the steady-state current and the
mean of the local currents (black dashed line) overlap after
some initial dynamics, consistent with having a constant flow
of current through the structure. The local currents all oscillate
around the mean value. Both the local currents and densities
are also representative for those not shown in this paper.

2. Reduced density matrices in the metallic phase

Lastly, we look at the diagonal elements of the reduced
density matrix in the one-electron sector ρ1 and the most
significant eigenvector ρ1 |φ1

1〉 = w1
1 |φ1

1〉 at site L0 + i, where
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FIG. 7. (a) Diagonal elements of the reduced density matrix
in the Holstein structure with Ls = 9, L = 236, tl/ω0 = 2, γ /ω0 =
1, �/ω0 = 1, ε̃ = 0, M = 30 at different sites and different times
with V/ω0 = 0.6. Further, εLBO = 10−7 and εbond = 10−8 are used
for the calculations. (b) Absolute value squared of the components of
the most significant optimal-basis state. All data are from the block
matrix with an electron and the times are tω0 = 0 in (a) and (b), and
tω0 = 20 in (c) and (d).

w1
1 is the largest eigenvalue. The diagonal elements of ρ were

already studied for the SAHM in different parameter regimes
in Ref. [37] and the optimal-basis states in the Holstein model
in, e.g., Ref. [111]. Both are shown for selected sites for
V/ω0 = 0.6 and γ /ω0 = 1 at different times in Fig. 7. We
see that both the diagonal elements of the reduced density
matrix and the component of the optimal basis are strongly
peaked at the zero phonon mode and decay rapidly for larger
modes. We also observe that the distributions remain ap-
proximately the same during the time evolution (here, we
only show the data for tω0 = 0, 20) with some oscillations
for the different sites, stemming from the oscillating local
densities. Physically, this means that the electrons are being
transported through the structure without significantly im-
pacting the phonon distributions. Indeed, our results indicate
that the current-carrying state can be well described by a
few local modes that do not display much change compared
to the ground state. The most significant eigenvalues of the
reduced density matrix can be seen in the Appendix and decay
exponentially. This illustrates the computational benefit of
using LBO.

B. Charge density wave phase

1. Charge density wave breakdown

We now go into the strong electron-phonon coupling
(CDW) regime where the order parameters, see Eqs. (9)
and (10), remain nonzero as Ls is increased. Since the po-
laron binding energy is γ 2/ω0, we expect that voltages with
�V ∼ γ 2/ω0 are needed to break up the CDW as we saw
in Sec. V. Here, we also choose γ /ω0 = 2

√
2 and study the

breakdown of the CDW at large V/ω0. In Fig. 8, we show the
order parameters for �V/ω0 = 2, 8, 10. We observe a similar
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FIG. 8. Order parameters for the Holstein structure with Ls =
9, L = 236, tl/ω0 = 2, γ /ω0 = 2

√
2, �/ω0 = 1, ε̃ = 0, and voltage

gradients with different �V/ω0. For the calculations we use εLBO =
10−7 and εbond = 10−7. (a) Order parameter in the fermion sector, see
Eq. (9). (b) Order parameter in the phonon sector, see Eq. (10). The
dashed lines show the exact data for the Holstein dimer.

behavior as for the regular Holstein model, namely that they
decrease as the applied voltage is increased. Further, we see
that the initial dynamics are quantitatively similar to those of
the dimer. However, as was the case in Sec. V, their decay is
qualitatively different, in particular for larger times. Whereas
the dimer data go far below zero, our data indicate that for the
structure, both order parameters decay to zero with a stronger
damping. While not shown here, when fitting the decay of
the order parameters with a linear function for the initial
dynamics, as done in Sec. V, we see a similar behavior as
for the Holstein model. The difference is that no rescaling is
needed since all electrons can contribute to the decay. Further,
the data points for the structure tend to lie above the dimer
points due to boundary effects, which we elaborate on in the
next paragraph.

The local electron and phonon occupations are shown as
functions of the sites in the structure and of time in Fig. 9.
The figure confirms the results from the order parameters
by illustrating how the electron densities remain constant for
�V/ω0 = 2 [Fig. 9(d)] and start to spread out for �V/ω0 =
8, 10 [Figs. 9(e) and 9(f)]. Further, the change in electron
densities is accompanied by a change and a shift of the
maximum phonon occupation to the previously empty sites.
Indeed, once the electrons can tunnel to an empty site, the
excess energy first goes into generating a large number of
new phonons. Additionally, the coupling to the leads allow
the electron farthest to the left to tunnel out of the structure.
This boundary effect also leads to a small decay of the order
parameter for �V/ω0 = 2 as well. We also observe that there
are no local currents present for �V/ω0 = 2, but that they
become finite for large �V/ω0.

FIG. 9. Local densities for the Holstein structure with Ls =
9, L = 236, tl/ω0 = 2, γ /ω0 = 2

√
2, �/ω0 = 1, ε̃ = 0, M = 50,

and different local voltage differences �V/ω0. We use εLBO = 10−7

and εbond = 10−7 for the calculations. (a)–(c) Local phonon number
for �V/ω0 = 2, 8, 10. (d)–(f) Local electron occupation for the
same values of �V .

2. Reduced density matrices in the charge density wave phase

We continue by looking at the diagonal elements of the
reduced density matrix and the first optimal-basis state and
contrast them to what we observed for the current-carrying
state in Sec. VI A. In Fig. 10, we show the data for different
voltages at different times. The first thing that stands out are
the initial distributions at tω0 = 0 in Figs. 10(a) and 10(b).
On the sites occupied by electrons, namely sites i = 4, 7,
both the diagonal elements of the density matrix and the
most significant optimal-basis state are well described by
the Poisson distribution, indicating a coherent local phonon
state, as expected in the large-coupling limit. To illustrate this,
we also plot

PPoisson(m) = |λ|2m

m!
e−|λ|2 , (18)

where λ = γ /ω0. The empty sites have almost no weight
except for at the m = 0 mode. As the system evolves in time
with a small bias voltage we make several interesting observa-
tions. As illustrated in Figs. 10(c) and 10(d), at tω0 = 20, the
system remains well described by coherent states. Both the
most significant optimal-basis state and the diagonal elements
of the density matrix keep their Poisson form. Whereas |φ1

1,m|2
remains perfectly described by the Poisson distribution on the
occupied sites, the amplitude of the ρ1

m,m at i = 0 decreases
due to the boundary effect previously described. We further
note some change in |φ1

1,m|2 for i = 4.
More dramatic changes can be seen for the large bias

voltage �V/ω0 = 10 in Figs. 10(e) and 10(f). At tω0 = 6,
the amplitude of the diagonal elements of ρ1 have decreased
significantly compared to the original distribution at sites
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FIG. 10. (a) Diagonal elements of the reduced density matrix
in the Holstein structure with Ls = 9, L = 236, tl/ω0 = 2, γ /ω0 =
2
√

2, �/ω0 = 1, ε̃ = 0, M = 50. (b) Components of the most sig-
nificant local optimal-basis state. (c) Same as in (a) but at tω0 = 20
and �V/ω0 = 2. (d) Same as in (a) but at tω0 = 6 and �V/ω0 = 10.
(d) Same as in (b) but at tω0 = 20 and �V/ω0 = 2. (f) Same as
in (b) but at tω0 = 6 and �V/ω0 = 10. We use εLBO = 10−7 and
εbond = 10−7 for the calculations. The black dashed line corresponds
to the Poisson distribution from Eq. (18).

i = 0, 4. This is a consequence of the electron density getting
distributed to other sites, leading to an increase of the weights
in the zero-electron density matrix ρ0, which is not shown
here. Also, |φ1

1,m|2 remains well described by the coherent
state on all initially occupied sites, but with some oscilla-
tions between modes. However, the previously empty sites
gain a large amplitude spreading out across several modes
as can be seen for i = 7. This is due to the electron den-
sity increasing and phonons being generated with the excess
energy. Further, the |φ1

1,m|2 seems to resemble a shifted co-
herent state with additional oscillations at the times reachable
here. Figures 10(e) and 10(f) also illustrate that the system
is notoriously more complex to simulate due to the large
number of bare modes needed to capture the dynamics on
the initially unoccupied sites. We further looked at the second
most significant optimal-basis state in the one-electron sector,
but there, no physical interpretation could be extracted. In the
Appendix, we additionally illustrate that a large number of
optimal modes are needed to keep the error small and thus
LBO loses some of its advantage.

VII. CONCLUSION

In this paper, we used time-dependent DMRG with local
basis optimization to investigate both the Holstein model in
the CDW phase and the Holstein model sandwiched between
conducting leads in the CDW and TLL phase under an applied
bias voltage. For the regular Holstein model, we first saw that
when a strong enough bias voltage is applied, the order param-
eters in both the electron and phonon sector clearly decay. We
further demonstrated a clear dependence between the applied
voltage and the initial decay rate of the order parameters and

that the dynamics resemble those in the Holstein dimer for
short times but later deviate.

We then proceeded to look at the Holstein model coupled
to conducting leads. After establishing that a clear separation
between the TLL and CDW phase can be seen at different
coupling strengths we first focused on the system in the TLL
phase. Studying the steady-state currents for small voltages,
we were able to compute current-voltage curves, showing that
charge transport at small voltages is reduced when the phonon
coupling is increased. Similar behavior has been reported
for the SAHM model by Ref. [40]. Our data also reproduce
the Luttinger-liquid parameters from Refs. [100,106]. We
additionally looked at the diagonal elements and the most
significant optimal-basis state in the one-electron sector for
the current-carrying state. Our data indicate that the local
phonon distribution is not significantly impacted by the ap-
plied voltage in the steady-state current. Further, the same is
seen for the most significant optimal mode.

We then continued our study of the Holstein model coupled
to leads by working with an electron-phonon coupling in
the CDW regime. We could report similar behavior as for
the regular Holstein model, namely that large voltages are
needed for the CDW to break down. At small voltages, the
CDW remains unchanged except for boundary effects. This
is also seen in the properties of the reduced density matrices.
Initially, the occupied sites were well described by the Poisson
distribution. This remained true during the time evolution for
small bias voltages, except for the aforementioned boundary
effects. However, for strong voltages, the amplitudes of the
reduced density matrix in the one-electron sector, ρ1, started
to decrease as expected since the electron densities spread
out. Further, a wide range of bare modes displayed large
weights in the previously unoccupied sites as a consequence
of the phonons being generated with the excess energy. In
this case, the most significant optimal-basis states remain well
described by the coherent distribution for all times reached
here in the initially occupied sites. In contrast, the previously
empty sites obtained a distribution centered around the larger
bare phonon modes.

There are many possible continuations building on the
results of this work. After having established that local basis
optimization can simplify the calculations significantly in the
metallic phase, one could make the structure more complex by
either adding phonon dispersion (see, e.g., Refs. [118,119])
or trying to capture more aspects of manganites (see, e.g.,
Refs. [19,120] and Ref. [121] for a theory review) by adding
electron interaction or interaction with local spins. Also, an-
alyzing how energy is transferred into the different degrees
of freedom, complementary to Ref. [98], would be of great
interest. Further, applying a thermal gradient to the system
would allow for the study of thermal transport through such
quantum structures, see, e.g., Refs. [39–41,122–124]. Lastly,
being able to compute a current-voltage diagram for the CDW
phase, its dynamics, and its properties at finite temperature
would be of great interest, e.g., in the context of recent exper-
iments [8,25,27]. In particular, it would be desirable to see if
one can reach a state where the electron densities are equally
distributed through the system and to better understand the
time scales of any collective behavior. Since the reachable
times of our CDW calculations are greatly limited by the
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large number of optimal-basis states required, this might be a
task for other phonon-specialized matrix-product-state-based
time-evolution techniques [79]. Here, also insights into differ-
ent behaviors of CDW and CO states are of interest.
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APPENDIX: NUMERICAL DETAILS

Here, we illustrate several numerical details of our calcula-
tions. As explained in Sec. III, we control the truncation of the
bond dimension with the parameter εbond and the truncation
of the local basis optimization with εLBO. Figure 11 shows
the expectation value of the current for fixed εbond and dif-
ferent εLBO in Fig. 11(a) and fixed εbond and different εLBO in
Fig. 11(b). Clearly, the current is converged for the parameters
used in this work, which also was verified for the other data
shown. Additionally, we observe that using a very large εbond

unequivocally leads to the false expectation values for 〈 ĵ(t )〉.
In contrast, very large εLBO can be used. Further, even a too
large εLBO seems to approximately reproduce the steady-state
current for the parameters shown here, and therefore, more
care must be taken when determining if εLBO is sufficiently
converged. To compute the current-voltage diagram we aver-
age 〈 ĵ(t )〉 in the interval tω0 ∈ [20, 30], which is illustrated
by the black dashed lines in Fig. 11(b).

To demonstrate that sufficiently large local phonon Hilbert
spaces are included in the calculations we show the order

FIG. 11. Current 〈 ĵ(t )〉 from Eq. (8) for the Holstein struc-
ture with Ls = 9, L = 236,V/ω0 = 0.6, tl/ω0 = 2, �/ω0 = 1, ε̃ =
0, M = 30, and γ /ω0 = 1. (a) Fixed εLBO = 10−7 and different εbond.
(b) Fixed εbond = 10−8 and different values of εLBO.

FIG. 12. Order parameters for the Holstein structure with Ls =
9, L = 236, tl/ω0 = 2, γ /ω0 = √

2, �/ω0 = 1, ε̃= 0,�V/ω0 = 10,
and different M. For the calculations, we use εLBO = εbond = 10−7.
(a) Order parameter in the fermion sector, see Eq. (9).
(b) Order parameter in the bosonic sector, see Eq. (10).
The inset shows the eigenvalues of the reduced density matrix
in the one-electron sector at time tω0 = 6 on a log scale.

parameter computed with different local phonon-number trun-
cations M in Fig. 12. For the parameters shown here, M = 50
is more than sufficient to capture the relevant physics of the
order-parameter decay. Further, we see that the M = 30 data
start to deviate on the scale of the figure. Also, inspecting the

FIG. 13. Eigenvalues of the reduced density matrices at differ-
ent sites i for the Holstein structure with Ls = 9, L = 236, tl/ω0 =
2, �/ω0 = 1, ε̃ = 0, and different γ /ω0 and M and at different
times. (a) tω0 = 0, M = 30 and γ /ω0 = 1. (b) tω0 = 0, M = 50 and
γ /ω0 = 2

√
2. (c) Same as (a) but at tω0 = 20 and V/ω0 = 0.6.

(d) Same as (b) but at tω0 = 6 and V/ω0 = 100 (�V/ω0 = 10).
We use εLBO = 10−7 in all plots and εbond = 10−8[10−7] in (a) and
(c) [(b) and (d)]. We only show w1

α > εLBO.
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optimal weights in the inset of Fig. 12 reveals that M = 30 and
M = 50 differ with respect to the larger optimal-basis state
weights w1

α in the one-electron sector.
In Fig. 13, we show the eigenvalues w1

α of the reduced
density matrix ρ1 for different sites i on a logarithmic scale. In
the TLL regime, displayed in Figs. 13(a) and 13(c), it becomes
clear that LBO can be a powerful tool to further study the
current-carrying state. For all times calculated here, only a few
optimal modes are needed to accurately represent it. The situ-
ation for the CDW breakdown is quite different. Figures 13(b)
and 13(d) show the weights in this regime. Despite being

able to represent the state accurately with only a few modes
at tω0 = 0, almost the complete set of modes is needed for
tω0 = 6. This could in theory make the optimal-basis calcu-
lations even more costly than just the regular time-evolution
method. However, that is not observed for our calculations
with M = 50. This regime is still clearly a candidate for
other schemes to efficiently treat phonons, such as the one of
Ref. [78]. In total, the limiting factor for our calculations in the
metallic regime is the local bond dimension and obtaining a
steady state. For the CDW regime, the amount of local modes
needed becomes an issue before the bond dimension matters.
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[96] D. Golež, J. Bonča, and L. Vidmar, Dissociation of a Hubbard-
Holstein bipolaron driven away from equilibrium by a constant
electric field, Phys. Rev. B 85, 144304 (2012).

195116-13

https://doi.org/10.1002/andp.200910403
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/PhysRevLett.99.236808
https://doi.org/10.1103/PhysRevB.79.035320
https://doi.org/10.1103/PhysRevB.81.035108
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1088/1742-5468/2004/04/p04005
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevLett.123.126601
https://doi.org/10.1103/PhysRevA.94.053637
https://doi.org/10.1103/PhysRevB.57.6376
https://doi.org/10.1103/PhysRevLett.80.2661
https://doi.org/10.21468/SciPostPhys.10.3.058
http://arxiv.org/abs/arXiv:2107.13948
https://doi.org/10.1016/j.cpc.2021.108106
https://doi.org/10.1103/PhysRevB.60.14092
https://doi.org/10.1103/PhysRevLett.108.160401
https://doi.org/10.1103/PhysRevB.92.241106
https://doi.org/10.1103/PhysRevB.93.075105
https://doi.org/10.1103/PhysRevB.95.064309
https://doi.org/10.1103/PhysRevB.101.035134
https://doi.org/10.1103/PhysRevB.102.165155
https://doi.org/10.1103/PhysRevLett.91.066406
https://doi.org/10.1103/PhysRevLett.95.137601
https://doi.org/10.1103/PhysRevB.81.033103
https://doi.org/10.1103/PhysRevLett.105.146404
https://doi.org/10.1103/PhysRevLett.97.266408
https://doi.org/10.1103/PhysRevB.75.125110
https://doi.org/10.1103/PhysRevB.77.075109
https://doi.org/10.1103/PhysRevB.96.035154
https://doi.org/10.1103/PhysRevB.85.144304


JANSEN, JOOSS, AND HEIDRICH-MEISNER PHYSICAL REVIEW B 104, 195116 (2021)
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Phys. Rev. B 60, 1633 (1999).

[111] F. Dorfner, L. Vidmar, C. Brockt, E. Jeckelmann, and F.
Heidrich-Meisner, Real-time decay of a highly excited charge

carrier in the one-dimensional Holstein model, Phys. Rev. B
91, 104302 (2015).

[112] G. Wellein, H. Röder, and H. Fehske, Polarons and bipolarons
in strongly interacting electron-phonon systems, Phys. Rev. B
53, 9666 (1996).

[113] G. Wellein and H. Fehske, Self-trapping problem of electrons
or excitons in one dimension, Phys. Rev. B 58, 6208 (1998).
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