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Local magnetic moment (LMM) and antiferromagnetic (AFM) fluctuation play a critical role in affecting
the properties of FeSe superconductor. By constraining the local magnetic moment on Fe atoms using density
functional theory, we investigate how LMM in FeSe monolayer alters the total energy, heights of Se atoms,
band structure, and the electronic properties, for three different AFM spin arrangements which consist of the
checkerboard (CB), collinear (CL), and pair-checkerboard (PC) spin phases. We find that (i) the total energy
decreases drastically in all three spin structures when LMM develops, showing that the existence of LMM
significantly stabilizes the system. The optimal LMM is found to be 2.23, 2.54, and 2.47 μB, respectively, in
the CB, CL, and PC spin phases. (ii) The heights of Se atoms increase markedly (and in a quadratic manner)
with LMM, demonstrating a strong magnetostriction effect. Also intriguingly, we find that the Se heights are
insensitive to spin ordering, displaying a rather universal dependence on LMM in three different AFM spin
phases. (iii) LMM is shown to alter substantially the electron band structures and Fermi surfaces. Near their
optimal LMM, while both CB and PC phases possess electron pockets and no hole pockets, the CL phase
exhibits neither electron pockets nor hole pockets, and interestingly, it becomes a semiconductor of a small
gap of 60 meV. These results reveal that there is a rich and interesting physics to be tuned by LMM in FeSe
superconductor.

DOI: 10.1103/PhysRevB.104.195110

I. INTRODUCTION

Among various iron-based superconductors, FeSe mono-
layer grown on SrTiO3 substrate attracts much attention due
to its unique importance in terms of unveiling the secrets
of superconductivity, by possessing a high superconducting-
transition temperature (Tc) as well as an essentially two-
dimensional (2D) structure [1–10]. Bulk FeSe has a transition
temperature Tc of 8 K under ambient pressure [11], which
increases up to 37 K under pressure [12–14]. However,
when grown on SrTiO3 substrate, monolayer FeSe drasti-
cally increases Tc to 65 K or even higher [1–3,15], while
multilayer FeSe films show no sign of superconductivity [1].
FeSe/SrTiO3 is thus essentially a 2D high-Tc superconduc-
tor. Although the exact superconductivity mechanism remains
unknown in FeSe/SrTiO3, it is believed to be unconventional
and may be of key importance to understand the superconduc-
tivity in other iron compounds [16–18]. Furthermore, FeSe is
earth abundant and environment friendly, which makes it an
excellent material for studying superconductivity.

The precise role of the SrTiO3 substrate in the supercon-
ductivity of FeSe/SrTiO3 remains under debate and unsettled.
While a phonon replica in the electronic band structure
(which is caused by the optic phonon of the substrate) was
observed in ARPES experiments [19], theoretical studies re-
vealed that the electron-phonon coupling in FeSe/SrTiO3,
although enhanced with respect to in bulk FeSe, cannot ex-
plain the observed Tc temperature [20–25] since the electronic
screening makes the electron-phonon interaction remain not
sufficiently strong [24,25]. It was also previously reported that

the SrTiO3 substrate in FeSe/SrTiO3 does not have a strong
chemical-bonding interaction with FeSe [26]. Nevertheless,
there is a consensus regarding the functionality of SrTiO3,
and the main effects of the substrate are twofolded: one is to
provide charge transfer to FeSe [27,28], and the other is to
constrain the in-plane lattice constant of the FeSe layer [2,3].
While the exact amount of charge transfer is unsettled, several
studies have shown that this transfer is between −0.06e to
−0.12e per Fe atom [2,3,29]. The origin of the charge transfer
may come from the oxygen vacancies [30,31], adatoms [31],
Se vacancies [32], or intrinsically sharing a hole pocket with
substrate [33]. The charge transfer may suppress the magnetic
ordering and potentially enhance the superconductivity [34],
increase the electron density of states at the Fermi surface
[35], and/or induce an electric field at interface [29]. Unlike
bulk FeSe, FeSe/SrTiO3 shows a distinct Fermi surface. In
bulk FeSe, the first Brillouin zone contains both hole pockets
around the � point and electron pockets around the M point
[36], while in monolayer FeSe/SrTiO3, there are only electron
pockets around the M point [1–3,5,9].

Local magnetic moment (LMM) is related to the unbal-
anced number of spin-up and spin-down electrons at a given
atomic site [i.e.,

∫
�r∈i[ρ↑(�r) − ρ↓(�r)] d�r, where ρ↑(�r) and

ρ↓(�r) are, respectively, the spin-up and spin-down electron
density, and i is the atomic-site index]. LMM is of funda-
mental importance in altering the material properties, even
though the whole solid need not exhibit a net magnetic mo-
ment, e.g., in antiferromagnetic (AFM) solids. Specifically,
LMM alters the electron charge distributions of different spins
around individual atoms, and will profoundly change the
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electron-electron interaction (e.g., the exchange interaction)
[37], which explains why LMM is important. Furthermore,
LMM may critically affect the energetics and the relative
stabilities of different structure phases. Moreover, LMM often
causes significant change to the topology of Fermi surfaces
and hence alters the transport properties such as conductivity
and/or superconductivity.

In FeSe, LMM is known to exist at iron sites. For instance,
bulk FeSe was shown to exhibit a static magnetic ordering
under pressure [38], although the nematic structure transition
from the tetragonal to orthorhombic phases at 90 K is not
accompanied by a magnetic transition at ambient pressure
[39]. Also, antiferromagnetic fluctuation was experimentally
revealed in bulk FeSe down to 0 K by nuclear magnetic
resonance [40] and inelastic neutron scattering [41]. Further-
more, spin density waves have been detected in a single-layer
FeSe/SrTiO3 system [3] and were affected by interface [34].
Magnetic moment and spin density wave were also found
theoretically to be stable in bulk FeSe [36]. All signs point
to the fact that LMM indeed exists in FeSe. Moreover, by
using inelastic neutron scattering, Wang et al. found that the
scattering of different spins is suppressed upon entering the
superconducting state with the opening of a superconducting
gap [41]. This reveals that LMM also plays a pivotal role in
superconductivity, and studying LMM is thus important.

Despite the importance, LMM in FeSe monolayer is nev-
ertheless not fully understood. More specifically, (i) among
various spin structures proposed for FeSe, such as the checker-
board (CB), collinear (CL), and paired checkerboard (PC)
phases [26,42,43], it is not clear how LMM changes the ener-
getics of each phase and how the relative stability of different
phases may be affected. (ii) It was reported in experiments
that the height of Se atoms with respect to the Fe plane is
critically linked to superconductivity [44]. It is therefore in-
teresting to study how LMM in FeSe monolayer may alter the
Se height. And also intriguingly, how does this modification
of Se height by LMM depend on the spin ordering and spin
structure? Will this dependence of Se height on LMM differ
drastically among the CB, CL, and PC phases? (iii) How does
LMM impact the electronic properties such as band structure,
Fermi-surface topology, and the density of states (DOS)? Note
that these quantities are all closely tied to superconductivity.

There are reasons that the understanding of LMM in FeSe
monolayer is limited. First, it is hard to probe in experiments
the LMM in single-layer FeSe using neutron scattering since
it requires large sample volume. Second, from the theoretical
point of view, it is nontrivial to constrain the local magnetic
moment in individual atoms, particularly in AFM materials
where LMM is not uniform. Considering that LMM in FeSe
is important, any study on this subject could be very useful.

In this study we perform first-principles spin-polarized
density functional calculations to constrain LMM on Fe sites
and to investigate their key influences on the energetic, struc-
tural, and electronic properties in FeSe monolayer, aimed at
obtaining a better understanding of the connection between
LMM and superconductivity. We consider FeSe monolayer,
instead of FeSe on SrTiO3 substrate, since SrTiO3 is known
not to form a strong chemical interaction with FeSe [26]. But
we do take into account the charge transfer and the in-plane
lattice constraint, which are the two key effects caused by

SrTiO3 substrate [3,27,33]. To account for different possible
spin arrangements in the AFM structure of FeSe, we con-
sider three spin structure phases, namely the CB, CL, and PC
phases. While we recognize that the spin arrangement in real
FeSe/SrTiO3 may be more complicated than these ordered
phases by possessing a combination of different motifs of
different phases (or by showing a long-range spin fluctuation),
considering the spin-ordered structure phases is nevertheless
a good and valuable starting point since these ordered phases
are the basic motifs in order to form other and more complex
spin structures.

We find that, in all three AFM spin structures, the total en-
ergy decreases substantially when LMM is allowed, and each
phase exhibits an optimal energy at nonzero LMM. Among
the three spin structures, the collinear (CL) phase is found to
be most stable in monolayer FeSe when the in-plane lattice
constant is constrained to the SrTiO3 substrate. This structure
stability in monolayer FeSe differs from in bulk FeSe, where
the PC phase is most stable. Furthermore, our calculations
reveal that the Se height depends drastically on LMM, by
increasing quadratically (not linearly) with the magnitude of
LMM. Interestingly, we also discover that the dependence of
Se height on LMM is nearly identical in all three spin structure
phases, showing a universal behavior. This universal behav-
ior further suggests that probing the Se height may provide
an important route to monitor the change of LMM in FeSe
monolayer. Moreover, we reveal that LMM causes a number
of marked changes in the density of states (DOS) and in the
electronic band structures. For instance, for each spin phase,
the DOS spreads over a wide energy range of 2.5 eV below
the Fermi level when LMM is at its optimal value, but is
drastically shrunk to a rather narrow energy range of only
1 eV when LMM vanishes. At optimal LMM, both CB and PC
phases exhibit only an electron pocket at the Fermi surface,
with no appearance of a hole pocket, which is consistent with
experiments. Interestingly, the CL phase at its optimal LMM
shows neither electron pocket nor hole pocket, and instead
it becomes a narrow-gap semimetal. These results show that
there is rich, interesting, and insightful physics to learn about
the LMM in FeSe monolayer.

II. THEORETICAL METHODS

Density functional theory (DFT) [45] within the local spin-
density approximation (LSDA) [46] is used to determine total
energy, atomic forces, and optimal structures, as implemented
in QUANTUM ESPRESSO [47]. Norm-conserving pseudopoten-
tials are used [48]. Semicore states of Fe 3p orbitals are treated
as the valence states to ensure better accuracy [49]. Our pseu-
dopotentials have been used to determine the spin exchange
interaction in FeSe [50] and to study the organic-inorganic hy-
brid materials [51–54]. The energy cutoff for the plane-wave
expansion of the Kohn-Sham single-particle states is 100 Ry,
which is tested to be sufficient. Using our pseudopotentials,
the optimal lattice constant a and the c/a ratio of bulk FeSe
are determined to be a = 3.67 Å and c/a = 1.43. These re-
sults agree with the experimental values of a = 3.76 Å and
c/a = 1.46 [11], as well as with another first-principles result
of a = 3.60 Å and c/a = 1.50 [55].
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Based on the facts that the chemical-bonding interaction
between FeSe and SrTiO3 substrate is rather weak except
that SrTiO3 provides the charge transfer and in-plane lattice-
constant constraint [2,3,26–28], we decide to study a single
FeSe layer, with a vacuum distance of 10 Å to minimize
the interaction between neighboring layers. Meanwhile, we
take into account the lattice matching and charge transfer,
caused by SrTiO3. The in-plane lattice constant of the FeSe
monolayer is constrained to the lattice constant a = 3.90 Å
of SrTiO3. Furthermore, a charge transfer of −0.075e per Fe
atom is included in our calculations. This value of charge
transfer is compatible with the value of −0.085e per Fe ob-
tained theoretically [29] and with the value of −0.089e per Fe
atom estimated in experiment [2]. Furthermore, by using the
electron density n = 1 × 1014 cm−2 of 2DEG on SrTiO3(001)
surface [56–58], the charge transfer from SrTiO3 to FeSe is
estimated to be −0.070e per Fe atom, which is consistent with
our value of charge transfer.

We consider three AFM spin orderings, i.e., the checker-
board (CB), collinear (CL), and pair-checkerboard (PC)
magnetic phases. The CB, CL and PC structures along with
the spin arrangements on iron atoms are shown respectively in
Figs. 1(a)–1(c), where the regions bounded by the solid lines
are the magnetic unit cells. For CB phase in Fig. 1(a), each Fe
spin is surrounded by four opposite spins, and the unit cell has
the same size as the original nonmagnetic unit cell (NMUC),
which contains four atoms (two Fe and two Se). For CL phase
in Fig. 1(b), each Fe spin is surrounded by two neighboring
spins of opposite orientation and two neighboring spins of the
same orientation, and the unit cell is

√
2 × √

2 of NMUC,
which contains eight atoms. For PC phase in Fig. 1(c), each
Fe spin is surrounded by three neighboring spins of opposite
orientation and one neighboring spin of the same orientation,
and the unit cell is

√
2 × 2

√
2 of NMUC, which contains

16 atoms. The first Brillouin zones in the reciprocal space
are depicted in Fig. 1(d) for CB, CL, and PC structures.
The atomic positions are optimized for each constrained lo-
cal magnetic moment in each spin structure. The optimized
geometry is subsequently used to determine the energy band
structures and the density of states.

Constraint of the local magnetic moments on Fe atoms
is performed using the energy penalty functional, and the
penalty term enters into the total energy by weight λ as
E = ELSDA + ∑

i λ(Mi − M0
i )2, where i is the atomic index

for Fe atoms and M0
i is the targeted LMM at atom i. The

magnitudes of local magnetic moments at Fe atoms are con-
strained to a given value M, i.e., |M0

i | = M for all i, while
the spin orientations at Fe sites are constrained according to
the AFM patterns in Figs. 1(a)–1(c). The magnetic moment
need be constrained so that we can determine the possible
(metastable) states within the subspace of a given constrained
magnetic moment. Without the penalty functional, the energy
minimization will be unconstrained, and after relaxation, only
the optimal magnetic moment corresponding to the lowest
total energy will be yielded (in other words, other metastable
states will not be found).

To determine the λ value, we consider the CB AFM phase
and set the targeted magnitude of LMM on Fe atoms to M =
0.5 μB. We then choose different λ values and determine the
real value Mreal of LMM at Fe atoms by optimizing the energy

FIG. 1. (a)–(c) Spin arrangements and magnetic unit cells for the
CB, CL, and PC phases are shown in (a), (b), and (c), respectively.
Fe atoms are shown in brown color with arrows indicating the spin
orientation, while Se atoms are shown in green color. The unit cell of
each spin structure is depicted by solid lines. (d) The Brillouin zones
(BZ) of different spin structures, where the BZs of the CB, CL, and
PC structures are the regions bounded by black, red, and green lines,
respectively. High-symmetry k points such as �, X , M, N , and L
are labelled. (e) Local magnetic moment obtained in the constrained-
moment calculations as a function of λ, for the CB phase. For λ = 30
Ry/μ2

B and above, the calculated value (Mreal) is close to the targeted
value of 0.5 μB.

E . The obtained real magnetic moment Mreal as a function
of λ is shown in Fig. 1(e). Figure 1(e) reveals that, when λ

increases, the real value Mreal of LMM approaches the targeted
value, and at λ = 30 Ry/μ2

B or higher, the real value and
the targeted value of LMM remain essentially equal. We thus
choose λ = 30 Ry/μ2

B, and all the subsequent constraints of
LMM are performed with this λ value.

III. RESULTS AND DISCUSSIONS

A. Energetics of different spin structures

We first investigate how the energies of the three consid-
ered spin structures (CB, CL, and PC) are altered by LMM.
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FIG. 2. (a) Energy difference �E per Fe atom as a function of
the constrained magnetic moment M, for the CB (empty squares),
CL (solid dots), and PC (empty triangles) phases. (b) Average height
Z of Se atoms as a function of the local magnetic moment M.

For each spin structure, we determine the energy difference
�E ≡ [E (M ) − E (M = 0)]/NFe, where E (M ) is the total en-
ergy per unit cell that corresponds to the constrained M value
of the local magnetic moment, E (M = 0) is the total energy
per unit cell of the nonmagnetic (NM) state (namely we use
the energy of the nonmagnetic state as the zero reference),
and NFe is the number of Fe atoms in one unit cell. Note that,
by dividing NFe, �E is the energy gain per Fe atom due to
the existence of LMM, and can thus be directly compared for
different spin structures. Figure 2(a) plots �E as a function
of local moment M. The graph has been symmetrized to
the opposite direction of LMM in order to show the double
potential wells of local magnetization.

Several outcomes can be made from Fig. 2(a). (i) Our
calculations show that LMM does not vanish in all three spin
structures. If LMM is to vanish, the NM structure will have
the lowest energy, i.e., �E will be positive as LMM becomes

TABLE I. Optimal local magnetic moment Mopt and the mini-
mum energy �Emin for each spin structure. The energy difference
�E when LMM is constrained at M = 1.0 μB is also given in the
fourth column for comparison.

Phase Mopt (μB) �Emin (meV) �E (meV)

CB 2.23 −100 −29
CL 2.54 −164 −44
PC 2.47 −151 −36

nonzero. However, Fig. 2(a) reveals that, for all three phases,
�E turns negative as M becomes nonzero, showing that the
spin structure with nonvanishing LMM is more stable. (ii)
For each spin structure, �E depends sensitively on LMM, or
in other words, LMM has a drastic effect on the energetics.
More specifically, if we temporarily focus on the CB curve
in Fig. 2(a), we see that, as M deviates from zero (i.e., as
LMM starts to develop), �E first decreases substantially, and
then reaches its minimum �Emin = −100 meV at an opti-
mal Mopt = 2.23 μB. Note that �Emin = −100 meV is much
larger in magnitude than the room temperature (∼25 meV),
and thus the CB AFM structure is stable at room temperature.
Similar �E behaviors are also found for the CL and PC
spin structures, showing a general conclusion that LMM is
critically important in all spin structures of single-layer FeSe.
(iii) The optimal Mopt value of LMM, where �E reaches its
minimum, is interestingly similar for three (rather different)
spin phases. The optimal Mopt and the minimum �Emin, de-
termined from Fig. 2(a), are given in Table I. Table I shows
that Mopt is 2.23, 2.54, and 2.47 μB, respectively, in the CB,
CL, and PC structures, which are all greater than 2.0 μB. (iv)
Among three spin structures, CL has the deepest well-depth
�Emin of −164 meV (see Table I), which is more stable than
PC by 13 meV per Fe atom. Therefore the CL spin structure
is most stable in single-layer FeSe. This is different from bulk
FeSe where the PC structure was reported to be most stable
[42]. The difference is not surprising and may be attributed
to different in-plane lattice constants; the in-plane lattice is
constrained to be 3.90 Å (which matches the SrTiO3 substrate)
in our calculations for single-layer FeSe, but is only 3.76 Å in
bulk FeSe. The difference also indicates that the effect of the
in-plane lattice constraint imposed by SrTiO3 substrate is not
negligible.

Our finding of nonzero LMM in FeSe is consistent with,
and thus provides a theoretical explanation for, available
experimental observations. Although there is no direct experi-
mental measurements of LMM on single-layer FeSe per se,
an x-ray emission spectroscopy measurement on FeTe and
Fe(Te0.3Se0.7) reported the existence of local magnetic mo-
ment with a magnitude of ∼2.0 μB [59]. This is in agreement
with our calculated values that range from 2.23 to 2.53 μB

in different spin phases, although the composition and lattice
constant are not exactly the same in theories and experiments.
Furthermore, our theories show that LMM does not depend
sensitively on the spin ordering and spin arrangement, reveal-
ing that the phenomenon of nonzero LMM in monolayer FeSe
is generally applicable, largely independent of spin phases.
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Our calculations also shed light on possible spin fluctuation
in single-layer FeSe. One possible indication of a strong spin
fluctuation is measured by whether spins in a local motif can
easily change from one spin structure to another. Table I tells
us that at optimal Mopt, �Emin of the CL phase and �Emin of
the PC phase are very close and less than 13 meV, implying
that spins may fluctuate strongly between these two phases.
On the other hand, at Mopt, �Emin of the CL phase and �Emin

of the CB phase differ by 64 meV, which is much larger than
the thermal energy of room temperature; therefore the thermal
energy alone cannot give rise to an effective spin fluctuation
between CL and CB.

B. Heights of Se atoms

Considering that there is experimental evidence which
links the heights of Se atoms above the Fe plane to supercon-
ductivity [44], it is thus interesting to investigate how LMM
at Fe atoms may (or may not) alter the heights of Se atoms.
Figure 2(b) depicts the average height of Se atoms, obtained
from our constrained-moment DFT structure optimization, as
a function of the constrained LMM magnitude M at Fe atoms,
for the three considered spin structures. Within each individ-
ual spin structure, we find that the heights of different Se
atoms are nearly the same, with a deviation of less than ±3%.
We thus plot in Fig. 2(b) the average height Z of different Se
atoms.

Let us first examine the Se height in the CL structure [see
the symbols of solid dots in Fig. 2(b)], since CL is the spin
structure with the lowest energy. We find that, when the M
value increases, the height of Se atoms increases significantly
from Z = 1.250 Å at M = 0 to Z = 1.430 Å at M = 3.12 μB.
This large Z change of nearly 0.18 Å is comparable to the fer-
roelectric atomic off-center displacement of 0.2 Å in BaTiO3

[60], revealing that the heights of Se atoms depend criti-
cally on the magnitude of LMM. It also demonstrates that
a change in the local magnetic moment of Fe atoms drives
a large mechanical position shift of Se atoms (and thus a
strong magnetostriction effect in FeSe monolayer), similar to
the strong magnetophonon coupling discovered in antiferro-
magnetic LaFeAsO [61]. One possible origin of this large
magnetostriction effect in FeSe monolayer is that, as LMM
varies, the spin density around individual Fe atom is changed,
which consequently alters the Fe-Se chemical bonding and
interaction. Since the heights of Se atoms can be experimen-
tally measured by x-ray diffraction, the correlation between
Se height and LMM, found in our calculations, can thus be
very useful in estimating the LMM.

Interestingly, if we fix a given magnitude of LMM, say
M = 2.73 μB, and compare the Se heights in different spin-
structure phases in Fig. 2(b), we find that the Se heights are
remarkably similar, being 1.383, 1.377, and 1.387 Å in the
CB, CL, and PC phases, respectively. This similarity does not
occur by accident. In fact, the Se heights of the three spin
structures are close to each other for all of the considered
LMM values as revealed by our calculations in Fig. 2(b),
therefore showing a rather universal phenomenon. It indicates
that, while the Se height depends critically on the magnitude
of LMM, it nevertheless does not depend on the spin structure
and spin ordering. This interesting behavior may be explained

by the fact that the Se height is largely determined by the local
and covalent chemical bonding with neighboring Fe atoms,
not by the global spin ordering. For a fixed spin structure, as
LMM varies, the local charge density and the strength of local
chemical bonds between Fe and Se atoms are substantially
altered, thereby giving rise to a large and sensitive dependence
of the Se height on the M value within the given spin structure.
On the other hand, when the M value is fixed, different global
spin structures (e.g., CB versus CL) do not significantly alter
the local chemical bonds, which leads to the insensitivity of
the Se height on the spin ordering.

Furthermore, we numerically find that the M dependence
of the Se height is well described by an analytical formula
Z = Z0 + αM2 (where Z0 = 1.243 Å is the Se height at M =
0), showing that Z depends on M in a quadratic manner. The
analytical curves are shown as lines in Fig. 2(b). The coeffi-
cient α is determined to be 0.0204, 0.0191, and 0.0202 Å/μ2

B,
respectively, for CB, CL, and PC phases, revealing that α is in-
deed similar for different spin phases. The analytical formulas
should be useful to determine LMM if the Se height is known
from experiments or other theories.

C. Density of states near the Fermi energy

We now study how LMM influences the density of states
(DOS), particularly near the Fermi level EF , in each spin
structure. Since the origin of superconductivity and pairing
mechanism in single-layer FeSe/SrTiO3 remain an unknown
mystery yet to be solved, knowledge regarding the electronic
properties caused by LMM could help. For each spin struc-
ture, we consider three different values of LMM, one at M =
0, one near M = 1.1 μB, and one near M = 2.2 μB (which is
also close to the optimal LMM value). The calculated DOS is
depicted in Figs. 3(a)–3(c) for each spin structure.

Three observations of key relevance can be made from
Fig. 3(a), for the CB spin structure. (i) Figure 3(a) reveals
that DOS is nonzero at the Fermi level for all three LMM
values, showing that the system is metallic. Meanwhile, we
notice that there is no sharp DOS peak exactly at the Fermi
level EF , suggesting that only a limited number of electron
states are available in participating the superconductivity. This
small DOS at EF is similar to the low carrier density found in
superconductor LaFeAsO1−xFx [62]. (ii) One rather striking
feature in Fig. 3(a) is that, as LMM decreases from 2.22 to
0 μB [from the top curve to the bottom curve in Fig. 3(a)],
several peaks of the valence states in the energy region A
shift toward the Fermi level EF . Meanwhile, one DOS peak
in the energy region B slightly moves away from EF . As a
consequence of these shifts, one giant DOS peak is formed
at energy E ≈ −0.5 eV when the structure becomes NM [see
the bottom curve of M = 0 in Fig. 3(a)]. (iii) Furthermore, at
M = 0, DOS largely disappears in region A (i.e., in the energy
interval between −2.6 to −1.0 eV). Combining these results,
we thus see that DOS in FeSe monolayer is considerably
affected by LMM. We also notice a slight shift for unoccupied
conduction states, although this shift is not as pronounced as
the valence states. More specifically, as LMM decreases from
2.22 to 0 μB in Fig. 3(a), the DOS peaks of the conduction
states in the energy region from 0 to 2 eV visibly shift away
from EF .
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FIG. 3. (a) Density of states (DOS) for the CB spin structure,
where LMM is constrained at 0 μB (bottom curve), 1.14 μB (middle
curve), and 2.22 μB (top curve). The value of LMM is labeled on
an individual curve. (b) DOS for the CL spin structure, where LMM
is constrained at 0, 1.18, and 2.26 μB, respectively. (c) DOS for the
PC spin structure, where LMM is constrained at 0, 1.15, 2.23 μB,
respectively. The Fermi level is set to be 0 eV in each curve.

Similar conclusions are found true also for DOS in the
CL and PC spin structures, which are respectively shown
in Figs. 3(b) and 3(c). Specifically, for both CL and PC

structures, when M is high and near 2 μB, DOS of valence
states spreads from −2.6 to 0 eV—and however, when LMM
vanishes (i.e., M = 0), DOS is narrowed into one strong peak
near −0.5 eV [63]. In other words, if we focus on the energy
region A within the interval [−2.6,−1.0] eV, DOS is high
and appears in multiple peaks when M is near 2 μB [see the
top curve in Figs. 3(b) and 3(c)], but considerably declines as
LMM is reduced to be NM [see the bottom curve in Figs. 3(b)
and 3(c)], showing that DOS depends on LMM significantly.

Meanwhile, there are some subtle differences in DOS
among different spin phases. For example, we find that, when
the LMM value is higher than 2 μB, the peak position of DOS
in the energy region B is rather different for different spin
phases. More specifically, when M � 2 μB, the peak in region
B is very close to the Fermi level (only −0.28 eV below EF )
for the CB phase [Fig. 3(a)], and however, for the CL phase in
Fig. 3(b), the peak in region B is quite far away from EF (at
−0.90 eV below EF ). For the PC phase in Fig. 3(c), the peak
in region B is weak and barely visible.

Our calculations thus point to that DOS in FeSe monolayer
depends sensitively on LMM. Since DOS can be probed by
x-ray photoemission spectroscopy (XPS), our finding may
provide some useful insight for XPS measurements. If XPS
is used to probe the valence states in the energy region [−2.6,
−1.0] eV, it may reveal valuable knowledge about LMM in
FeSe monolayer. Here it is worth pointing out that the single-
particle orbital energies and the bandwidth of the LSDA
calculations may not be accurate due to the strong correlation
effect. Therefore, the energy ranges of regions A and B may
be slightly shifted, and caution need be taken when comparing
the theoretical energy region with the experimental one.

D. Band structures, electron, and hole pockets

Figure 4 shows the electronic band structures for three
considered spin structures, and for each spin structure, we
consider three different constrained values of LMM. Let us
first focus on the band structure of the CB phase in Figs. 4(a)–
4(c), where the local Fe moment is constrained to 0, 1.14,
and 2.22 μB, respectively. (i) For the NM case of M = 0,
Fig. 4(a) reveals that there are valence bands crossing the
Fermi level EF near the zone-center �, and also there are
conduction bands crossing EF near the zone-boundary M
point. Our calculations thus show that, at the Fermi surface,
there are both holelike pockets at � and electronlike pockets
at M. (ii) Interestingly, with LMM increasing to 1.14 μB [see
Fig. 4(b)], the hole pockets near � are shrinking considerably,
which is caused by the fact that the top two valence bands
at � are shifting downward in energy once LMM becomes
nonzero. Meanwhile, the electron pockets at M split into
two distinct and well separated sections at M = 1.14 μB in
Fig. 4(b), showing a substantial difference from the electron
pockets in Fig. 4(a). (iii) As LMM is further increased to
M = 2.22 μB [Fig. 4(c)], the hole pockets at � disappear since
the top valence bands submerge below the Fermi level, and
only the electron pockets at M remain. (iv) Also notably, if
we examine the sizes of the electron pockets at M, we see that,
when LMM varies from 0 in Fig. 4(a) to 2.22 μB in Fig. 4(c),
the size of the upper electron pocket decreases, while the
size of the lower electron pocket increases. Our calculations
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FIG. 4. Electronic band structures for the following spin structures: CB [upper panel (a)–(c)], CL [middle panel (d)–(f)], and PC [lower
panel (g)–(i)]. For each spin phase, band structures at three different LMMs, with their values labeled in each figure [e.g., 0, 1.14, 2.22 μB,
respectively, in (a)–(c) for the CB phase], are studied. The Fermi level EF is set to be 0 eV in each figure. The Brillouin zone and the
high-symmetry k points are given in Fig. 1(d) for the three considered spin structures.

thus reveal that the electron band structure and the Fermi
pockets are very sensitive to LMM. For this reason, LMM
may therefore serve as an effective physical quantity to tune
the electronic bands as well as the Fermi topology in FeSe
superconductors.

Other important observations can also be made from
Figs. 4(a)–4(c). Looking at the valence bands at the zone
center � in Fig. 4(a) (i.e., M = 0), we find that the energies
of different valence bands are very close to each other, and in
fact, at the zone center �, the energies are mostly located in
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a rather narrow energy range from −0.5 to 0.25 eV. As LMM
increases to M = 1.14 μB [Fig. 4(b)], the energy separation
among valence bands at � is significantly enlarged, and finally
at M = 2.2 μB [Fig. 4(c)], the valence bands at � become well
separated. This reveals that LMM drastically affects multiple
bands, not just the band at the Fermi level. Our calculations
also imply that probing the multibands structure in exper-
iments may reveal more and important insight into LMM,
which could provide a key connection with superconductivity.
Furthermore, as multiple valence bands are well separated at
M = 2.22 μB, we find that the band dispersion of the top
valence band becomes rather flat between −0.5 and 0 eV in
Fig. 4(c), which explains why a sharp DOS peak forms in
the energy region B at this LMM value [see the top curve
in Fig. 3(a)]. The formation of the flat band at M = 2.22 μB

can be attributed to the multiband interaction, namely when
other valence bands shift down in energy due to the increase
of LMM, they push upwards the top valence band and make
it to be well separated from the rest of valence bands, which
gives rise to a flat band dispersion.

Compared to the CB spin phase, the band structures of the
CL spin phase are interestingly different [see Figs. 4(d)–4(f)
in the middle panel]. At M = 0 there are both electron and
hole pockets at the zone center � [Fig. 4(d)]. Note that the M
point (and thus the electron pocket) in the Brillouin zone of the
CB phase is folded to the � point in the CL phase as shown in
Fig. 1(d), since CL is a magnetic supercell. As LMM increases
to 1.18 μB [Fig. 4(e)], the electron pocket at � disappears in
CL, while the hole pocket remains. The disappearance of the
electron pocket in CL is rather unusual, since it does not occur
in other spin structures. More intriguingly, when M is further
increased to 2.26 μB, no bands are found to cross the Fermi
level, and the system becomes a semiconductor (or semimetal)
with a direct band gap of 60 meV [Fig. 4(f)]. In other words,
both electron and hole pockets disappear near the optimal
LMM value in the CL phase, which differs drastically from
what occurs in the CB phase.

For the band structures of the PC spin phase in Figs. 4(g)–
4(i), we see that the NM structure at M = 0 exhibits both
electron and hole pockets at � [Fig. 4(g)], similar to the
CL phase. When the LMM value is increased to 1.15 μB in
Fig. 4(h), the hole pocket at � shrinks due to the fact that the
top valence band shifts downward in energy. As M is further
increased to 2.23 μB in Fig. 4(i), the hole pocket completely
disappears, leaving only an electron pocket at �. We thus see
that, when the PC spin phase is near its optimal LMM value,
there is only electron pocket remaining, with no hole pocket
occurring at the Fermi surface.

Contrasting the band structures of three spin phases, we
recognize some similarities which are common to all phases:
(i) There are both electron and hole pockets at the Fermi
surface for the nonmagnetic case, and (ii) the hole pockets are
pushed downward as LMM increases, and finally disappear
when M is close to the optimal value of each individual
spin phase. Nevertheless, the band structures of the three spin
phases also show interesting differences, particularly at high
LMM. As LMM is higher than 2 μB, while the CB and PC
phases exhibit electron pockets at the Fermi level, CL does
not. Also, there is a subtle difference in the electron pocket
between the CB and PC phases when LMM is larger than

2 μB. In the CB phase, there are two electron pockets in
Fig. 4(c), one with a large size and one with a small size.
But in the PC phase, there is only one electron pocket in
Fig. 4(i).

We further perform calculations to unfold the band struc-
tures of the CL and PC phases [64], since the real-space unit
cells of both phases are a superstructure with respect to the
CB phase. The unfolded band structures are given in Fig. 5
for the CL and PC phases (no band unfolding is needed for
the CB phase). We see from Fig. 5 that, near the optimal
local magnetic moment, the CL phase is a small-gap insulator
[Fig. 5(c)], and the PC phase possesses an electron pocket
at M point and no hole pocket at � point [Fig. 5(f)]. The
unfolded band structures thus further confirm that both the
PC phase and the CB phase yield a theoretical band struc-
ture which is consistent with the experimental measurement,
while the CL phase does not.

Our theoretical band structures provide valuable im-
plication and useful insight into the superconductivity in
FeSe/SrTiO3. By using ARPES technique, it was reported
in experiments that there are only electronlike pockets at
EF , with no observation of holelike pockets, in single-layer
FeSe/SrTiO3 [2,3,9]. Assume that LMM is fluctuating near
its optimal value, which is reasonable since the local magnetic
moment about 2.0 μB was indeed observed experimentally in
Fe(SeTe) [59]. Then, according to our calculation results in
Figs. 4(c) and 4(i), it is likely that the superconducting phase
in FeSe/SrTiO3 originates from the motifs with CB or PC spin
structure [65], since these structures yield a band structure
with only electron pocket, consistent with the experiments.
In contrast, the CL spin structure with stripe ordering is less
likely to contribute to the superconductivity, for this structure
is an insulator without electron pockets.

IV. CONCLUSIONS

By performing density-functional calculations with con-
strained local magnetic moments for monolayer FeSe in
different spin phases, we have conducted a rather compre-
hensive study on how the LMM value may influence the
energetics, the Se height, the density of states, and the elec-
tronic band structures. Our main findings are summarized in
the following.

(i) When LMM becomes nonzero, the energies of the
three spin phases are found to decrease drastically, and as a
consequence, LMM does not vanish in all three phases. The
optimal LMM value (at which the energy is at minimum) is
determined to be 2.23, 2.54, and 2.47 μB for the CB, CL,
and PC phases, respectively. These theoretical LMM values
agree well with the experimental value of ∼2.0 μB [59]. The
optimal energy gain between the magnetic and nonmagnetic
structures is determined to be −100, −164, and −151 meV
per Fe atom, respectively, for the CB, CL, and PC phases.
These energy gains are much larger than the thermal energy at
room temperature, revealing that each AFM structure is more
stable than the nonmagnetic phase. Also, in monolayer FeSe
with lattice constant constrained to SrTiO3, we find that the
CL phase is the most stable spin structure, which differs from
the FeSe bulk where the PC phase is most stable [42].
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FIG. 5. Unfolded band structures for the following spin phases: CL [upper panel (a)–(c)], and PC [lower panel (d)–(f)]. No band unfolding
is needed for the CB phase. The vertical axis is the Kohn-Sham single-particle energies (in eV), and the horizontal axis is the high-symmetry k
points of the unfolded Brillouin zone of the CB phase. For each spin phase, band structures at three different LMMs, with their values labeled
in each figure [e.g., 0, 1.18, 2.26 μB, respectively, in (a)–(c) for the CL phase], are studied. The Fermi level EF is set to be 0 eV in each figure.

(ii) The Se height is revealed to depend sensitively on
LMM. As LMM increases, the Se height is found to in-
crease drastically and in a quadratic manner, showing a strong
magnetostriction effect. More intriguingly, we discover that
the correlation between the Se height and the LMM value
is remarkably similar for three different spin phases, reveal-
ing a rather universal phenomenon. This universal behavior
demonstrates that the Se height depends largely on the local
Fe-Se chemical bonding rather than the global spin ordering.
Since the Se height can be measured by x-ray diffraction,
the quantitative relationship which we found between the Se
height and LMM may thus be an effective route to determine
the (important) LMM in monolayer FeSe.

(iii) Furthermore, LMM is critical in affecting the densities
of states. We find that the energy region where DOS can be
dramatically altered by LMM is between −2.6 and −1.0 eV
below the Fermi level. When LMM is large and near 2 μB,
there are several sharp DOS peaks that spread in the above
energy region. However, when LMM vanishes, DOS in this
energy region largely disappears since the electron states are
found to shift toward the Fermi level. This finding reveals
that probing DOS in experiments, particularly in the specific
energy region as given above, may uncover the important
information between superconductivity and LMM.

(iv) Our calculations further show that LMM plays a piv-
otal role in altering the electronic band structure and Fermi
surface. For a nonmagnetic structure with a vanishing (or
nearly vanishing) LMM, each spin phase is found to possess
both electron pockets and hole pockets. However, as LMM de-
velops, different spin phases exhibit rather different evolutions
in terms of band structure and Fermi topology. At large LMM
values when M � 2 μB, the CB phase is found to possess two
electron pockets and no hole pocket; the CL phase possesses
neither electron pocket nor hole pockets, and interestingly the
system becomes a small-gap semiconductor with a band gap
of 60 meV; the PC phase possesses one electron pocket and
no hole pocket.

These results reveal that there is rich and interesting
physics regarding the LMM in FeSe monolayer. We wish our
study will stimulate more theoretical and experimental interest
in this important subject.
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