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Ordinary Hall anomaly due to the Fermi surface shape in MnAs
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We analyze the influence of the Fermi surface (FS) shape on magnetotransport properties, particularly on the
Hall effect in the MnAs compound. Evidence of opposite conduction polarities for different crystal directions
(goniopolarity) and a strong dependence of carrier type has been observed in MnAs films with an applied
magnetic field. To understand this behavior, we developed a semiclassical model together with the Boltzmann
transport theory that takes into account both the applied magnetic field and the FS shape. The MnAs FS is
obtained by means of density functional theory, showing a clear dominance of the hyperboloid shape. Our
study corroborates that the specific topology of the Fermi surface gives rise to a goniopolar behavior in the
Hall transport. These theoretical results are supported by magnetotransport measurements on MnAs thin layers
epitaxially grown on GaAs(001) and on GaAs(111), allowing us to explore the transport characteristics for two
different crystal directions of the system.
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I. INTRODUCTION

The shape of the Fermi surface (FS) has been used to
describe transport properties since the early days of materials
science. Pioneering works by Pippard [1] and Lifshitz [2] the-
oretically prove that the magnetotransport behavior depends
on the type of orbits that the wave vector performs in momen-
tum space. These orbits are classified as open or closed within
the characteristic time τ between two scattering events. The
magnetoresistance (MR) and especially the Hall resistivity
present different behaviors with the magnetic field depending
on the type of orbit. Closed orbits lead to a linear dependence
of the Hall resistivity and a saturating MR with increasing
applied magnetic field. If the closed orbits on the FS enclose
a region with lower energy, then positive values are expected
for the Hall resistivity (hole type) and negative values in the
opposite case (electron type). On the other hand, open orbits
lead to a quadratic dependence of the Hall resistivity (hole
type) and to a nonsaturating magnetoresistance with applied
magnetic field.

The above-mentioned behavior of closed/open orbits in
momentum space is well reproduced when modeling the FS
using ellipsoids connected with a neck through the boundaries
of the Brillouin zone (BZ) [1,3,4]. Other attempts to describe
the magnetotransport properties use a tubularlike FS model,
but this kind of analysis emphasizes more on the connectivity
of the surface than on the concavity [1,5]. Recently, He et al.
[6] showed that the concavity of the FS leads to simultaneous
electron- and holelike magnetotransport properties, especially
when presenting open orbits. Hence, for different crystal di-
rections, the transport properties present opposite conduction
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polarities. This effect, denoted goniopolar by the authors, was
theoretically and experimentally studied for NiSn2As2 [6–8].
The origin of this phenomenon is straightforward in the case
of a one band FS when it is singly connected with open
orbits in one crystal direction and closed orbits in another
direction. The different kinds of orbits give rise to a notice-
able different behavior in electron transport measurements for
different crystal directions [9]. In the case of the Hall effect
(HE), the goniopolarity is manifested when the ordinary Hall
coefficient RH presents the opposite sign when measuring it
for different crystal orientations as a function of the applied
magnetic field. Similar behavior is also observed in the case
of the Seebeck effect when the thermopower has the opposite
sign for different crystalline orientations [6].

Manganese arsenide (MnAs) is a good candidate to be
classified as a goniopolar material because it presents simul-
taneously electron- and holelike transport behavior, as earlier
observed by Berry et al. [10]. Their MR and the HE measure-
ments in MnAs/GaAs(001) epilayers reveal the presence of
both electron and holes in the magnetotransport, with a contri-
bution that varies with temperature and magnetic field. Also,
Friedland et al. [11] observed mainly the same characteristics
in the magnetotransport measurements done on MnAs/GaAs,
finding that the carrier type strongly depends on crystal orien-
tation: the MnAs/GaAs(001) samples exhibit mixed holelike
and electronlike conductivity already at zero magnetic field,
while in the case of MnAs/GaAs(111) the low-temperature
transport is dominated by holes at zero magnetic field.

To explain their results the authors of Ref. [10] propose
a two carrier model, while in Ref. [11] a model based on
spherical bands with a small number of impurities [12] is
used. Nowadays, we know that MnAs shows a complex
Fermi surface, topologically different from those of spherical
models and the good quality of the MnAs/GaAs epilayers
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[13–15] diminishes the role of impurities and domains for
low-temperature transport phenomena.

In this work, we analyze the magnetotransport properties of
MnAs from both experimental and theoretical points of view.
In Sec. II we present the necessary theoretical background to
explain our transport results. Then in Sec. III A we describe
MnAs using the ab initio calculations and present the FSs
from which we modeled the magnetotransport behavior, and
in Sec. III B our measurements (MR, HE, and magnetization)
on MnAs/GaAs for different crystal orientations are pre-
sented. Section IV offers a discussion on the theoretical model
presented and on its accuracy to describe the experimental
results.

II. THEORETICAL BACKGROUND

In order to describe the transport behavior in the presence
of a magnetic field we restrict ourselves to a semiclassical
treatment, in which the electrons can be thought of as classical
particles obeying Fermi-Dirac statistics. At low temperature
the features of the FS rule the electronic properties of metals,
where the mean free time τ can be assumed to be large and
only band dependent. This low temperature regime can be
achieved in our theoretical approach by letting the smearing
of the FS occupation function go to zero in the Boltzmann
transport equation. Under these conditions the solution for the
conductivity within the relaxation time approximation (RTA)
is given by [16]

σi, j = e2
∑

n

τ (n)
∫

FS(n)
v

(n)
i (k)v̄(n)

j (k)
dS

|∇ε(n)(k)| , (1)

where i, j are the Cartesian coordinates referred to as the
crystal axis, e is the electron charge, and τ (n) is the band
dependent relaxation time. The index n indicates the band
number, while the sum is over the bands that cross the Fermi
level. The factor 1/|∇ε(n)(k)| is related to the density of states
of the nth band at the Fermi energy EF . The integral over
the FS of the nth band (FS(n)) is obtained demanding that
ε(n)(k) = EF .

The integrand of Eq. (1) involves a product of two different
kinds of velocities: v(n)(k) is the gradient in momentum space
of the energy band, and v̄(n) is defined as the weighted average
over the past history of the charge carrier,

v̄
(n)
j =

∫ 0

−∞

et/τ (n)

τ (n)
v

(n)
j [k(t )]dt . (2)

k(t ) is the group velocity and its time evolution in momen-
tum space due to an applied magnetic field, (H), is derived
from the semiclassical set of equations and assuming no band
crossing,

v(n) = 1

h̄
∇kε

(n)(k), (3a)

h̄k̇(t ) = −e

c
v(n)[k(t )] × H, (3b)

k(t = 0) = k0 ∈ FS(n). (3c)

Note that the set of Eq. (3) must be solved for each band
that crosses the Fermi level and its solutions have to be in-
serted in Eq. (2). While v(n) only depends on the wave vector
k, v̄(n) depends on both k and on the magnetic field H.

FIG. 1. Hyperboloid of revolution as a FS model from Eq. (4).
The applied magnetic field is perpendicular to the gray planes and
the intersection with FS is in red. (a) H ‖ ẑ, only close orbits are
possible. (b) H ‖ ẑ, open orbits are allowed.

Two conservation laws can be derived from Eq. (3):
(i) the wave vector trajectory in momentum space is given by
the intersection of the FS with a plane perpendicular to the
magnetic field direction (Fig. 1), and (ii) the energy remains
constant in the presence of an applied magnetic field. Both
conservation laws allow us to draw a preliminary picture of
the results that can be expected for different FSs.

The resistivity tensor is obtained from ρ = σ−1, which in
principle requires a detailed description of σ . However, if we
take into account the crystal symmetries of the compound to-
gether with Onsager’s relation [ρi, j (H) = ρ j,i(−H)], then the
interrelation among tensor components reduces the number of
calculations required to obtain σ [17].

Hyperboloid Fermi surface

Many semiclassical transport calculations have been done
considering spherical-like Fermi surfaces, with or without
open orbits [1–4,9,16]. In this section we analyze the case
of a FS that is concave in one direction and convex in
other one. More precisely, a one sheet circular hyperboloid
or an hyperboloid of revolution, which leads to noticeably
different behavior for the conductance (or resistivity), as we
discuss next.

Assume a FS given by

ε(k) = h̄2

2

(
k2

x

mx
+ k2

y

my
− k2

z

mz

)
= EF , (4)

where mi are the effective masses. The minus sign on the k2
z

term indicates that the rotation symmetry axis is parallel to the
z axis, while mx = my is the condition to have a hyperboloid
of revolution. For our further analysis it is convenient to define
the quantity α = mz

mx
that is always a real positive number. If

α � 1, the hyperboloidal surface approaches a cylinder with a
small concave curvature, while for α ≈ 0, the surface has two
parabolic sheets joined by a narrow neck. In order to require
the energy to reach perpendicularly the Brillouin zone bound-
aries, we can define energy as a continuous and piece-wise
function. However, the change in the energy function from
convex to concave is very small and its effect on the orbits is
negligible [6].
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In order to obtain v̄(n), we need the time-dependent wave-
vector expression k(t ), which describes the orbits on the
FS. Since the z axis is an axis of rotational symmetry, only
two cases are important to analyze: one where the magnetic
field H is parallel to the z axis, H ‖ z axis, and the other
one when H lies in the hexagonal planes, i.e., H ‖ y axis.
The aforementioned conservation law can help us to have
an insight of the solution Eq. (3). For the H ‖ z case, the
obtained orbits are closed circles, as shown in Fig. 1(a), where
the time dependent solution has the characteristic frequency
ωz = e

c
H
mx

. Instead, for the H ‖ y case, the orbits are open
hyperboloids, as shown in Fig. 1(b), with characteristic fre-
quency ωy = e

c
H

mx
√

α
= ωz/

√
α. For simplicity we use ωz,y

instead of magnetic field H. In the case of closed orbits, the
physical meaning of ω is that (ii) goes like the inverse of the
time to do one cycle, hence for higher magnetic field the more
cycles the wave vector can complete. A similar concept can
be drawn in the case of open orbits: a larger length of the orbit
in the extended BZ is associated with an increasing magnetic
field. In our approach, the RTA and low field condition can
be fulfilled when ωτ < 1, which is the main difference with
previous works like Refs. [1,2] and more recently [5], where
the high field limit (ωτ � 1) is analyzed.

The expression of v̄(n) depends on the value of ωτ , the ef-
fective mass mx, the mass parameter α, and the initial position
of the wave vector k0, which could be any point on the FS as
pointed out in Eq. (3c). In order to obtain the final expression
for the conductivity we must integrate over the FS. In this
process the vector k0 becomes an integration variable and the
final expression takes into account the history of all possible
orbits on the FS.

The resistivity tensor for the H ‖ y configuration can be
expressed as a function of α and ωzτ (for simplicity we omit
the index z),

ρopen = ρ0

⎛
⎜⎜⎝

α−(ωτ )2

g1+(ωτ )2 0 ωτ α−(ωτ )2

g2+(ωτ )2

0 1 0

−ωτ α−(ωτ )2

g2+(ωτ )2 0 α α−(ωτ )2

g3+(ωτ )2

⎞
⎟⎟⎠. (5)

In this configuration the current is perpendicular to the applied
magnetic field and it can be along the x̂ or ẑ directions. Instead,
for the H ‖ z case, the resistivity tensor is the one expected for
closed orbits;

ρclosed = ρ ′
0

⎛
⎜⎝

1 ωτ 0

−ωτ 1 0

0 0 g4

⎞
⎟⎠. (6)

Both tensors are antisymmetric and follow Onsager’s rela-
tions. We group most of the constants in ρ0, while gi are
geometric factors that come from the FS integrals. The off di-
agonal elements of ρopen and ρclosed are the so called ordinary
Hall resistivity, which is obtained in the frame of semiclassical
theory.

For the case H ‖ y, we plot in Fig. 2 the ordinary Hall
resistivity ρ

open
xz and the MR (inset) for different values of the

parameter g2/α. The ordinary Hall has a root when ωyτ = 1
or equivalently ωzτ = √

α, and then it changes the sign, which
can be interpreted as a switch of carrier type, from holelike to
electronlike. For all values of g2/α, the ordinary Hall ρ

open
xz

FIG. 2. Curves corresponding to Eq. (5) as a function of �τ ,
where H ‖ y axis (see Fig. 1). Ordinary Hall is given in units of ρ0

and the magnetoresistance (inset) assumes the current in z direction.
The different curves correspond to values of g2/α with α = mz

mx
and

g2 is a geometric factor that comes from the integration of Eq. (1).

presents a mixed behavior with applied magnetic field. For
values of ωτ < 1, the Hall resistivity is positive and reaches
a maximum value that depends on α. If g2/α = 1, then the
maximum of ρHall is reached for ωτ ≈ 0.5, higher values of
g2/α displace the maximum to zero, and for smaller values
the maximum approaches 1. The MR defined as |ρii(H) −
ρii(0)|/|ρii(0)| saturates for values of ωτ where the RTA and
the low field condition are no longer valid (ωτ � 1). In all
the cases of g3/α, the MR presents a quadraticlike behavior
for ωτ < 1, as expected for open orbits.

The goniopolar behavior is manifested by comparing
Eqs. (5) and (6), where a different magnetotransport behavior
should be expected for this kind of FS. When the magnetic
field is parallel to the y axis (H ‖ y), the ordinary Hall resis-
tivity as a function of the applied magnetic field presents a
nonmonotonic behavior, having a positive slope for lower ωzτ

values and a negative slope for higher ones. Instead, when the
magnetic field is parallel to the z axis (H ‖ z), the ordinary
Hall resistivity presents a linear behavior with increasing field.

Nevertheless, the present analysis is for a single band FS
which is simply connected. In the case of multiband transport,
the effects that come from other FS sheets should be taken
into account in order to reproduce the experimental results.
However, the curves obtained for the hyperboloid model,
especially for g2/α ≈ 1, present the same behavior with ap-
plied magnetic fields as our experimental measurements to
be shown in Sec. III B done on MnAs/GaAs epilayers, and
similar to the ones that were reported in [10,11]. This led us
to study the FS of MnAs.

III. MnAs COMPOUND

MnAs is ferromagnetic at room temperature and can be
grown by molecular beam epitaxy (MBE) onto several techno-
logically relevant semiconductors as GaAs and Si [15,18,19].
Its ferromagnetic α phase crystallizes in the hexagonal NiAs
structure with space group P63/mmc for temperatures lower
than 300 K as shown in Table I [20]. The magnetic easy axis
lies in the hexagonal plane ab and the hard direction is parallel
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TABLE I. Relations among components of the resistivity for the
P63/mmc space structure. The figure shows the atomic arrangements
as well as the lattice parameters.

Structure Direction Relation

H ‖ c axis ρxz = ρyz = 0
(H ‖ z) ρxy(H ) = −ρyx (−H )

H ‖ ab plane ρxy = 0; ρxx = ρyy

(H ‖ y) ρxz(H ) = −ρzx (−H )

to the c axis. Table I shows a scheme of the structure as well
as the relations between components of the resistivity tensor
due to the symmetries of the crystal structure.

A. Electronic properties

Following the early suggestion in Ref. [11], that the fea-
tures of the FS are responsible for the behavior of the
Hall resistivity in the presence of an applied magnetic field,
we obtain the FS by ab initio band-structure calculations
by means of the QUANTUM ESPRESSO code (QE) [21]. We
use the well known generalized gradient approximation with
Perdew-Burke-Ernzerhof (GGA-PBE) for the exchange cor-
relation potential with 8000 points in the first Brillouin zone

in the reciprocal space. Since we want to describe the system
for magnetic fields for which the magnetization is saturated in
a specific crystal direction, our calculations take into account
the spin-orbit coupling (SOC) as implemented in the QE code
and use fully relativistic pseudopotentials for both the Mn and
the As atoms [21].

Our ab initio calculations are restricted to the two
alignments consistent with the experimental geometries deter-
mined by the substrate orientation (Sec. III B). Table I shows
the two different orientations of the magnetic field that can be
aligned with the c axis of the crystal structure (H ‖ z case) or
with the b axis (H ‖ y case).

We found four bands crossing the Fermi level which lead
to a FS built by many sheets. The calculated energy isosurface
in the reciprocal space, for each band that crosses the Fermi
level in the H ‖ y case, are presented in Figs. 3(a)–3(d). Our
results indicate that the direction of the magnetic moments do
not affect the shape of the FSs. Nevertheless, one situation
has to be mentioned: the FS in Fig. 3(a) has a small ellip-
soid around 	 and a “flat flower” close to the 
 symmetric
point. This band is affected by the SOC in the H ‖ z case,
producing a small splitting around the 	 point, leaving the
Fermi level inside the gap. As a consequence the ellipsoidal
sheet around 	 disappears for the H ‖ z configuration. The
area of this ellipsoid is small compared with other FS sheets
and, consequently, its contribution at low temperatures to the
MR and to the Hall conductivity is negligible.

The surface shown in Fig. 3(b) has two not-connected
sheets, where the red part indicates the side of the surface

FIG. 3. (a)–(d) Fermi surfaces obtained for H ‖ z case. (a) There is a flat flower around the 
 point, while the ellipsoid around 	 is not
appreciated on this scale. (b) For this band, the FS is not simply connected and has two independent sheets, one showing a “nut” shape in the
extended zone, and the other one presenting an “X” shape centered at the K point that is folded on itself and does not reach the top and bottom
boundaries. Panels (c) and (d) are FS having hyperboloidlike shapes. (e) Cross section of the band plotted in (b) along an extended plane that
contains the 	-K-M points; only closed orbits are present. (f) Cross section of the band plotted in (c) yellow and (c) green in an extended plane
that contains points along A-L-H . The connections among yellow lines indicate that this surface holds open orbits in directions perpendicular
to the c axis. (g) Cross section of the bands plotted in (b) and (c) in a plane that contains the 	-H -K points; it presents open orbits along
the c axis and a curvature that can be extrapolated to a hyperboloidlike surface cut. (h) First Brillouin zone and its symmetric points used as
reference.
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FIG. 4. Magnetotransport measurements in MnAs/GaAs(001) (H ‖ y), upper row, and MnAs/GaAs(111) (H ‖ z), lower row, showing
magnetoresistance (c),(f), Hall resistivity (d),(g), and magnetization (e),(h) for both epitaxies as a function of the applied magnetic field and
temperature. The MR is positive and does not saturate along (c), while it is negative and saturates for low temperatures in (f). The Hall
resistivity (d) shows a change in the carrier type manifested in the change of slope at ∼5–7 T, depending on T, that is not observed in (g); it
displays a linear behavior. The shoulder observed at ∼1.5 T in (d) and at ∼4 T in (g) is related to the saturation of the magnetization in (e) and
(h) at the corresponding fields, respectively.

facing the occupied states. One of them has the shape of a
nut when plotted in an extended BZ, but does not connect
opposite borders, thus only closed orbits are allowed. The
other one has an X shape built by a sheet folded on itself, but
it does not reach the top and bottom Brillouin zone borders.
Also, it makes a negligible contribution to the conductivity
tensor, since the normal vector dS has opposite directions for
nearby points in reciprocal space. To visualize one possible
orbit on this surface, we plot in Fig. 3(e) the cross section in
the repeated zone of a plane perpendicular to the kz axis that
contains the 	 point; it is clear that there is no possibility of
holding open orbits.

The FSs of interest are those shown in Figs. 3(c) and 3(d).
Both surfaces are hyperboloidlike along the kz axis, which is
parallel to the c-crystal axis. Now the association of these
surfaces with the model presented in Sec. II becomes clear:
when the magnetization is parallel to the c axis, it is related
to the case where the magnetic field is parallel to the z axis
of the hyperboloid model (H ‖ z configuration). On the other
hand, when magnetization is parallel to the hexagonal planes,
it relates to the H ‖ y configuration. In Fig. 3(f) we present the
cross section of the bands plotted in Figs. 3(c) and 3(d) at the
repeated zone in a plane perpendicular to kz axis that contains
the A point. Interestingly, a path that contains open orbits in a
direction perpendicular to the kz axis is observed.

The last two mentioned FSs have hyperboloidlike surface,
which, as we describe in the previous section, could lead to a
goniopolar magnetotransport behavior.

B. Magnetotransport measurements

The MnAs samples were epitaxially grown on GaAs(001)
and GaAs(111) substrates [22,23], as depicted in Fig. 4, first
column. These samples allow us to study the magnetotrans-

port phenomena in two different MnAs-crystal orientations,
where the applied magnetic field is parallel to the plane of
the hexagon (H ‖ y) and the other one where the applied
field is perpendicular to it (H ‖ z), as indicated in Fig. 4.
Magnetotransport data and magnetization measurements as a
function of external magnetic field and temperature were done
in a physical property measurement system (PPMS) using the
Van der Pauw electric contact configuration [24].

Results on the MnAs/GaAs(001) sample (H ‖ y) are dis-
played in the upper row of Fig. 4. The MR presented in
Fig. 4(c) is positive with positive slope for all temperatures,
having a quasiparabolic behavior, and does not saturate for
the maximum applied field of 9 T.

The Hall resistivity dependence with applied magnetic
field (d) has a nonmonotonic behavior, showing a change in
the slope around ∼5–7 T, that depends on the temperature.
This behavior has already been reported in Refs. [10,11] and
was ascribed to a change in the type of carriers. Our model
anticipates this change in carrier types with applied magnetic
field when FSs present hyperboloid shapes as the one obtained
by density functional theory calculations in the previous
section. The magnetization vs field shown in Fig. 4(e) rises un-
til ∼1 T and gradually saturates upon increasing the magnetic
field. The noticeable shoulder at ∼1 T in the Hall resistivity is
related to the magnetization saturation at this field value, and
indicates the saturation of the anomalous Hall effect [25].

For the MnAs/GaAs(111) sample (H ‖ z case), the MR
presented in Fig. 4(f) has negative values and negative slope,
and saturates for increasing applied magnetic field for the
5- and 10-K curves. Instead, for 30 K the saturation is not
reached for the maximum applied field of 9 T. This satura-
tion observed in the low field regime indicates dominance of
closed orbits in momentum space at low temperatures. The
Hall resistivity for the MnAs/GaAs(111) sample displayed
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in Fig. 4(g) has a linear behavior with increasing magnetic
field, as expected for the hyperboloidlike FS with magnetic
field parallel to symmetry axis. There is a subtle change of
slope at 4 T, which is the same field where the magnetization
saturates as shown in Fig. 4(h), suggesting the saturation of
the anomalous Hall contribution to the Hall resistivity.

MBE growth ensures an excellent crystal quality as well
as sharp interfaces between the MnAs layer and the GaAs
substrate [13], allowing us to rule out any significant role of
the impurities at low temperatures. Also, possible magnetic
domains disappear when magnetic saturation is reached.

To summarize the experimental results for different
crystalline orientations, MnAs/GaAs(001) shows a change
of carrier type with increasing magnetic field, but for
MnAs/GaAs(111) the carrier type is conserved. This means
that the ordinary Hall behavior with magnetic field is in agree-
ment with the model discussed in Sec. II for FSs like the ones
presented in Sec. III A. This is the main issue we addressed in
this work.

IV. DISCUSSION

In order to reproduce the experimental results with the
modeled FS, it is necessary to take into account that the Hall
resistivity measurements include two contributions: the ordi-
nary and the anomalous Hall, respectively. They are related to
the total Hall resistivity by [25,26]

ρHall(H ) = ρord(H ) + RAμ0M(H, T ), (7)

where H and M are the applied magnetic field and magnetiza-
tion of the sample in the out of plane direction, respectively.
ρHall is the measured Hall resistivity, RA is the anomalous
Hall coefficient, and ρord is the ordinary Hall contribution,
which is obtained from the nondiagonal elements of the
Eqs. (5) and (6).

The Hall resistivity in MnAs/GaAs(111) presents a linear
behavior with applied magnetic field [Fig. 4(g)]. This result is
expected as we proved that in this configuration the possible
orbits in reciprocal space are closed. From Eq. (6) we obtain
a linear behavior for this case, where ρord = ρ0H . Instead, we
predicted open orbits for the sample MnAs/GaAs(001), and
our experimental results on Hall resistivity show a nonlinear
behavior with the applied magnetic field. For this last case,
we use ρ

open
x,z from Eq. (5) as ρord in Eq. (7) to reproduce the

experimental results.
The agreement between the model and experimental Hall

measurements for MnAs/GaAs (001) is shown in Fig. 5. The
fit yields a g2/α ≈ 2.10, which is comparable with the 4.09
and 1.41 values obtained for the FS of Figs. 3(d) and 3(c)
respectively, by using Eq. (4). Finally, the coefficient RA =
0.1 n� cm

T is of the same order of magnitude of similar metallic
systems [27,28].

The results from the electronic structure calculation pre-
sented in Sec. III A show a multiband contribution to the
electron transport with four bands crossing the Fermi level.
The band presented in Fig. 3(a) has a negligible number of
states compared with the other bands, which diminishes its
contribution to conductivity. In addition, the band presented
in Fig. 3(b) is not a simply connected surface and it is made
of two sheets that contribute with close orbits. In that case,

FIG. 5. Experimental measurement at 5 K of the Hall resistivity
for sample MnAs/GaAs(001) fitted using Eq. (7), where ρord =
ρopen

xz . At the inset the magnetization is fitted by a Langevin function.

one of the sheets is folded on itself and its contribution to
the conductivity is also negligible. The remaining two bands
have a hyperboloidlike shape along the z axis in reciprocal
space and they are the main contribution to the magnetoresis-
tance dependence with magnetic field at low temperatures.

Another scenario that could produce a change in the sign
of the Hall resistivity is the Sondheimer oscillations [29].
This effect produces oscillations that simultaneously affect the
magnetoresistance and the Hall resistivity. It is observed in
aluminum thin films [30], which has similar FS with a nutlike
shape in the extended BZ as the one presented in Fig. 3(b).
However, our measurements of the MR [Figs. 4(c)–4(f)] do
not show any oscillation even for applied magnetic fields up to
14 T [10,11]. Finally, the trend of the Hall resistance remains
unaltered after it changes its sign.

V. CONCLUSION

The experimental data evidence the different behavior of
the charge carriers depending on the crystal direction. For
MnAs/GaAs(001) (H ‖ y configuration), the carrier polar-
ity changes when the system goes from a low field state
(ωτ < 1) to a high field state (ωτ > 1), while this change of
carrier polarity cannot be observed in MnAs/GaAs(111) (H ‖
z configuration). We modeled this behavior using the spe-
cific topology of the dominant FSs sheets with a hyperboloid
shape, obtaining a good agreement with measurements. How-
ever, further studies should be done to classify this material
as goniopolar. Measurements of the Seebeck effect univocally
determine this classification because this effect is dominated
by the FS shape. We believe our study provides guidelines
to study the magnetotransport properties in a broad range of
materials with similar FSs.
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