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Forming a dielectric exciton phase in strongly correlated systems with spin crossover
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Formation of the magnetic structure and exciton condensate of local magnetic excitons in strongly correlated
systems near the spin crossover under high pressure is considered in terms of the effective Hamiltonian
obtained from a two-band Hubbard model in the regime of strong electron correlations. The coexistence of
the long-range antiferromagnetic order and exciton condensate and the occurrence of the magnetization caused
by the condensation of local magnetic excitons are demonstrated. Transformation of the electronic structure
of the antiferromagnetic high-spin insulator into the paramagnetic two-band correlated metal via a narrow-gap
antiferromagnetic excitonic semiconductor is obtained.
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I. INTRODUCTION

The formation and condensation of electron-hole pairs
(excitons) in semimetals and semiconductors was predicted
more than half a century ago [1,2]. The weak-coupling theory
of the excitonic insulators has been developed analogously
to the Bardeen-Cooper-Schrieffer (BCS) theory of supercon-
ductivity [3,4]. Later the ideas of excitonic condensation
were discussed for strongly correlated materials within the
Hubbard-type models. Recently in the review [5] of the differ-
ent approaches to the excitonic condensation in Hubbard-type
models the corresponding phase diagrams and connections
to some other relevant models such as the Blume-Emery-
Griffiths model [6] and bosonic t-J or bilayer Heisenberg [7]
model have been discussed. Within the multiband Hubbard-
type model the interrelation of the excitonic condensation
and the high spin (HS)–low spin (LS) crossover takes place
[8–14]. The minimal model which contains the multiorbital
physics and excitonic effects is the two-band Hubbard-type
model; different approaches to this model have been dis-
cussed in the review [5], in both the strong-coupling and
weak-coupling regimes. In the strong-coupling limit we have
suggested [15] an approach similar to Hubbard’s original one
[16] that starts with the exact diagonalization of the local
part of the Hamiltonian and construction of the Hubbard X
operators. Within such approach the effective Hamiltonian has
been obtained that was used to study the phase diagram and
the HS-LS crossover under external pressure. The spin exciton
interatomic hopping and excitonic condensation within this
effective Hamiltonian as well as the change of the electronic
structure due to spin crossover and excitonic condensation
will be considered below. A spin gap between the LS and the
HS is an external parameter of our model that may be varied
by pressure. The mean-field phase diagram in the plane spin
gap–temperature (which is equivalent to the diagram pressure-
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temperature) contains the HS antiferromagnetic (HS-AFM)
and paramagnetic (HS-PM), excitonic (Ex), and nonmagnetic
LS ones. The excitonic phase appears in the spin crossover
region and coexists with the HS AFM phase.

The rest of the paper is organized as follows. The two-band
Hubbard-Kanamori model and its effective Hamiltonian in the
strong-coupling regime are described in Sec. II. The phase
diagrams for different parameter sets are discussed in Sec. III.
The electronic structure for different phases is calculated in
Sec. IV. Discussion of results is given in Sec. V.

II. EFFECTIVE HAMILTONIAN

A minimum model of strongly correlated systems with a
spin crossover is the two-band Hubbard model. The Hamilto-
nian of the model can be presented as

Ĥ = Ĥ� + Ĥt + ĤCoulomb. (1)

Here, the first term

Ĥ� = ε1

∑
i,σ

a†
i,1,σ ai,1,σ + ε2

∑
i,σ

a†
i,2,σ ai,2,σ (2)

contains the single-ion energy of electrons in the single-
particle states with energy levels ε1 and ε2 = ε1 + �, where �

is the energy of electrons in the crystal field (for convenience,
we can take ε1 = 0) and σ = ±1/2 is the electron spin pro-
jection. The second term

Ĥt = t11

∑
〈i, j〉,σ

a†
i,1,σ a j,1,σ + t22

∑
〈i, j〉,σ

a†
i,2,σ a j,2,σ

+ t12

∑
〈i, j〉,σ

(a†
i,2,σ a j,1,σ + a†

i,1,σ a j,2,σ ), (3)

where tλλ′ are the hopping integrals (λ, λ′ = 1, 2), describes
the electron hopping between nearest-neighbor sites of the
crystal lattice with energy levels ε1 and ε2. The third
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FIG. 1. Dependence of the term energy on crystal field �. The
red line shows the position of the HS state (S = 1) and the green line,
the position of the LS state (S = 0). The black lines correspond to the
excited singlet states. �c is the crossover point. The calculation was
made for a set of the Coulomb interaction parameters U = 3, V = 1,
JH = 0.7, and J ′

H = 0.3 eV.

term

ĤCoulomb = U
∑
i,λ

a†
iλ↑a†

iλ↓aiλ↑aiλ↓ + V
∑

i,λ �=λ′
a†

iλ↑a†
iλ′↓aiλ↑aiλ′↓

+ V
∑

i,λ>λ′,σ

a†
iλσ a†

iλ′σ aiλσ aiλ′σ

+ JH

∑
i,λ>λ′,σ

a†
iλσ a†

iλ′σ aiλ′σ aiλσ

+ JH

∑
i,λ �=λ′

a†
iλ↑a†

iλ′↓aiλ′↑aiλ↓

+ J ′
H

∑
i,λ �=λ′

a†
iλ↑a†

iλ↓aiλ′↑aiλ′↓ (4)

contains the one-site energy of the Coulomb interaction of
electrons (the electron-electron interaction is considered in the
Kanamori approximation [17]).

An important feature of such a two-orbital model is the
possibility of forming, at half filling (Ne = 2 is the average
number of electrons per crystal lattice site) and in the zero
approximation over the interstitial hoppings tλλ′ = 0, differ-
ent localized multielectron (two-particle) states (terms) with
the spin S = 0, 1 (Fig. 1) and a crossover between them
with increasing �. In particular, at Ne = 2, the Hamiltonian
Ĥ� + ĤCoulomb has six eigenstates. In the range of � < �c,
the ground state is the triplet (S = 1) HS state |σ 〉 with the
energy EHS = 2ε1 + � + V − JH (red line in Fig. 1) triply
degenerate over the spin projection σ = 0,±1:

|σ 〉 =

⎧⎪⎨
⎪⎩

a†
1↑a†

2↑|0〉, σ = +1,

1√
2
(a†

1↑a†
2↓|0〉 + a†

1↓a†
2↑|0〉), σ = 0,

a†
1↓a†

2↓|0〉, σ = −1,

and, at � > �c, the ground state is the singlet (S = 0)
LS state |s〉 = C1(�)a†

1↑a†
1↓|0〉 − C2(�)a†

2↑a†
2↓|0〉 with

the energy ELS = 2ε1 + (� + U ) −
√

�2 + J ′2
H (green

line in Fig. 1). At the crossover point � = �c =√
(U − V + JH )2 − J ′2

H , the energy levels of these states
cross: EHS = ELS . The remaining two states are the
excited singlet states |s1〉 = 1√

2
(a†

1↑a†
2↓|0〉 − a†

1↓a†
2↑|0〉)

and |s2〉 = C2(�)a†
1↑a†

1↓|0〉 + C1(�)a†
2↑a†

2↓|0〉, where

C1(�) =
√

1 − C2
2 (�), C2(�) = x/2(1 + x + √

1 + x)
(x = J ′2

H /�2) are the normalization coefficients (black lines
in Fig. 1).

To derive the effective Hamiltonian, it is convenient to use
the Hubbard X operators X p,q = |p〉〈q| [18] constructed on
the Ĥ� + ĤCoulomb Hamiltonian eigenstates:

(Ĥ� + ĤCoulomb)|p〉 = Ep|p〉 (5)

with different numbers of electrons Ne = 1, 2, 3. Since the
Hubbard operators form a linearly independent basis, any
local operator can be expressed via the linear combination
of the X operators, including the single-electron operator of
annihilation (creation) on site i with orbital index λ and the
spin projection σ = ±1/2:

aiλσ =
∑

pq

|p〉〈p|aiλσ |q〉〈q| =
∑

pq

γλσ (pq)X pq
i . (6)

Since the number of different root vectors (pq) is finite,
they can be numbered and put in correspondence with their
numbers m [19]; then, we have aiλσ = ∑

m γλσ (m)X m
i , a†

iλσ =∑
m γ ∗

λσ (m)X †m
i .

In the representation of the Hubbard X operators, Hamilto-
nian Eq. (1) has the form

Ĥ =
∑
i,p

EpX pp
i +

∑
〈i, j〉

∑
mn

tmnX †m
i X n

j . (7)

Here, Ep is the energy of many-electron terms and tmn =∑
σ,λ,λ′ tλλ′γ ∗

λσ (m)γλ′σ (n) is the renormalized hopping inte-
gral.

Using Hamiltonian Eq. (7) as the initial one, we can obtain
the effective Hamiltonian by excluding the interband hoppings
from it. To do that, we use the projection operator method
developed in [20] for the Hubbard model and in [21] for the
p-d model (see also [5,8]). The effective Hamiltonian has the
form

Ĥeff = ĤS + Ĥnn + Ĥex. (8)

Here, the first term contains the exchange contribution to
the Heisenberg Hamiltonian with allowance for the en-
ergy of the electronic configurations of the LS and HS
states

ĤS = 1

2
J

∑
〈i, j〉

(
Ŝi · Ŝ j − 1

4
n̂in̂ j

)
+ ELS

∑
i

X s,s
i

+ EHS

∑
i,σ

X σ,σ
i , (9)

where Ŝi is the spin operator for S = 1: Ŝ+
i = √

2(X +1,0
i +

X 0,−1
i ), Ŝ−

i = √
2(X 0,+1

i + X −1,0
i ), Ŝz

i = X +1,+1
i − X −1,−1

i
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[22]; J = (t2
11 + 2t2

12 + t2
22)/�g is the exchange inte-

gral; �g is the energy gap between the centers of
the upper and lower Hubbard subbands [20,21]; and
n̂i = 2(X s,s

i + ∑
σ X σ,σ

i ) = 2(n̂LS
i + n̂HS

i ) is the particle
number operator at site i [n̂LS(HS)

i is the particle number
operator in the LS(HS) state]. Here, σ = 0,±1. Using the
completeness condition X s,s + ∑

σ X σ,σ = 1, we can show
〈n̂i〉 = 2(〈n̂LS

i 〉 + 〈n̂HS
i 〉) = 2(nLS + nHS) = 2; hereinafter,

angular brackets 〈. . .〉 mark the thermodynamic average
and nLS(HS) is the occupation number of the LS (HS) state
(nLS + nHS = 1). If we introduce spin gap εS that is the
difference EHS − ELS , then Eq. (9) can be presented in
the form

ĤS = 1

2
J

∑
〈i, j〉

(
Ŝi · Ŝ j − 1

4
n̂in̂ j

)
− εS

∑
i

X s,s
i + NEHS,

(10)

where N is the number of crystal lattice sites; εS = 0 cor-
responds to the spin crossover. The spin gap depends on
pressure; it is negative in the HS state and positive in the LS
state, and at the critical pressure PC0 the spin gap is zero in
the simplest single-site picture. Below we will show that the
effects of cooperativity given by the other terms in Eq. (8) will
shift the crossover point and pressure to the value PC > PC0.

The second term in Eq. (8) describes the density-density
interaction of the LS states

Ĥnn = 1

2
J̃

∑
〈i, j〉

X s,s
i · X s,s

j , (11)

where J̃ = [1 − (2C1C2)2](t2
11 − 2t2

12 + t2
22)/�g.

The third term in Eq. (8) contains the interatomic
exciton hopping with an amplitude J ′

ex and biexciton cre-
ation/annihilation with an amplitude J ′′

ex,

Ĥex =
∑
〈i, j〉

∑
σ

[
1

2
J ′

ex
(
X σ,s

i X s,σ
j + X s,σ

i X σ,s
j

)

−1

2
J ′′

ex(−1)|σ |(X σ,s
i X σ̄ ,s

j + X s,σ
i X s,σ̄

j

)]
, (12)

where J ′
ex = 2C1C2(t11t22 − t2

12)/�g, J ′′
ex = (t11t22 − t2

12)/�g,
and σ̄ = −σ . In Eq. (12), the Hubbard operators X σ,s

i and X s,σ
i

on site i describe the spin excitons, the Bose excitations from
the LS singlet state |s〉 to the HS triplet state |σ 〉 with a spin
projection of σ = 0,±1, and vice versa.

It can be seen from Fig. 1 that the energy of the LS term
is practically independent of the crystal field. The dependence
on � and deviation from the linear dependence takes place
at small � (� � J ′

H ). Therefore, in a fairly wide region near
the spin crossover (at � > J ′

H ), we have C1 ≈ 1, but C2 ≈ 0;
therefore, J ′

ex ≈ 0. Hereinafter we use hopping parameters of
t11 = t22 = 1 eV and t12 = 0.5 eV, for which the relations
J̃/J = 0.6 and J ′′

ex/J = 0.3 are valid.
Introducing the designations dx = 1√

2
(−d+ + d−), dy =

1√
2i

(d+ + d−), and dz = d0, where d+ = X s,+, d− = X s,−,

and d0 = X s,0, we can rewrite Eq. (12) in the form

Ĥex = 1

2
J ′

ex

∑
〈i, j〉

(d†
i · d j + H.c.)

− 1

2
J ′′

ex

∑
〈i, j〉

(d†
i · d†

j + H.c.). (13)

In the mean-field (MF) approximation, for two sublattices
A and B we have

ĤMF
eff = ĤMF

S + ĤMF
ex + ĤMF

nn , (14)

where

ĤMF
S = JzmB

∑
iA

Ŝz
iA

+ JzmA

∑
iB

Ŝz
iB

− Jz
∑

iA

n̂iA − Jz
∑

iB

n̂iB − εS

∑
iA

X s,s
iA

− εS

∑
iB

X s,s
iB

− 1

2
JzNmAmB + 1

2
JzN + NEHS, (15)

ĤMF
nn = J̃znLS

B

∑
iA

n̂LS
iA + J̃znLS

A

∑
iB

n̂LS
iB

− J̃z
N

2
nLS

A nLS
B , (16)

and

ĤMF
ex =

∑
F

∑
σ=±1,0

{
J ′

exz�σ
F̄

∑
iF

(
X s,σ

iF
+ X σ,s

iF

)

− (−1)|σ |J ′′
exz�σ

F̄

∑
iF

(
X s,σ̄

iF
+ X σ̄ ,s

iF

)

− 1

2
zN

(
J ′

ex�
σ
F �σ

F̄ − (−1)|σ |J ′′
ex�

σ
F �σ̄

F̄

)}
. (17)

Here, z is the number of nearest neighbors; F = A, B (F̄ = A,
if F = B and vice versa); mA(B) = 〈Ŝz

iA(B)
〉 is the magnetiza-

tion of sublattice A (B); �+
A(B) = 〈X s,+

iA(iB )〉, �−
A(B) = 〈X s,−

iA(iB )〉,
and �0

A(B) = 〈X s,0
iA(iB )〉 are the components of the exciton order

parameters, for which the equalities (�+)† = 〈X +,s〉 = �+,
(�−)† = 〈X −,s〉 = �−, and (�0)† = 〈X 0,s〉 = �0 are valid
under the thermodynamic equilibrium. It should be noted
that the nonzero average �+/− �= 0 indicates the quantum-
mechanical mixing of the LS and HS states, but in the absence
of the spin-orbit coupling.

III. PHASE DIAGRAMS IN THE PLANE
(SPIN GAP, TEMPERATURE)

Solving the problem on the eigenvalues

ĤMF
eff |ψ〉k = Ek|ψ〉k, (18)

where |ψ〉k = CLS,k|s〉 + ∑
σ CHS,k|σ 〉 are the eigenstates of

Hamiltonian Eq. (14), and using the solutions correspond-
ing to the minimum free energy F = −kBT ln Z , where Z =∑

k e−Ek/kBT is the system partition function, we can calculate
different thermodynamic averages.

Figure 2 shows the calculated phase diagrams of the
magnetization and population of the HS state for the two
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FIG. 2. Phase diagrams of (a), (b), (d), (e) the magnetization and (c), (f) populations of the HS state for two sublattices at J ′′
ex = 0 and

J̃ = 0 (the upper row) and J̃ = 0.6J (the lower row).

sublattices at J ′′
ex = 0 and J̃ = 0 (the upper row) and J̃ = 0.6J

(the lower row) in the coordinates temperature T –spin gap
εS . The calculation was made at J = 28 K [23]. Hereinafter,
the temperature and spin gap are given in terms of exchange
parameter J . First, we consider the case J̃ = 0 illustrated in
Fig. 2 (the upper row). It can be seen that, due to the presence
of the cooperative exchange coupling J , the ground magnet-
ically ordered HS-AFM state is preserved in a system up
to εS = εc

S ≈ 2J [Figs. 2(a)–2(c)], although in the single-ion
picture at εS > 0, the LS state is ground. The growth of the
critical εc

S value by the expense of the cooperative effects is
quite clear, since the exchange coupling stabilizes the HS state
via lowering its energy. At εS > εc

S , the ground HS-AFM state
changes for the nonmagnetic LS state [Figs. 2(a) and 2(b)].

In the range of ε < εc
S [Figs. 2(a) and 2(b)], with increas-

ing temperature, the system undergoes a second-order phase
transition from the HS-AFM state to the paramagnetic state
at εS < ε∗

S and a first-order transition at ε∗
S < εS < εc

S . In the
diagram, one can clearly see the existence of a tricritical point
[T ∗ and ε∗

S in Figs. 2(a)–2(c)], at which the line of the second-
order phase transitions continuously passes to the line of the
first-order ones.

At J̃ = 0.6J (the lower row in Fig. 2), the phase diagram is
qualitatively similar to the case illustrated in Figs. 2(a)–2(c),
but the region of existence of the long-range antiferromagnetic
order (εc

S ≈ 3J) increases. This is due to the fact that the LS
density-density interatomic interaction Eq. (11) stabilizes the
HS state.

At J ′′
ex = 0.3J , the phase diagram becomes richer (Figs. 3

and 4). Figure 3 shows the calculated phase diagrams of pop-
ulation nHS of the HS state (the upper row), magnetization m

FIG. 3. Calculated phase diagrams of (a), (b) population n of the
HS state, (c), (d) magnetization m, (e), (f) exciton order parameter
components �, and (g), (h) sum m + � for sublattices A (on the left)
and B (on the right).
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FIG. 4. Figure 3 on an enlarged scale.

(the second row), exciton order parameter components �+/−
(the third row), and the sum m + �+/− (the lower row) for
two sublattices A (on the left) and B (on the right) in the
coordinates temperature T –spin gap εS . It can be seen that
nHS,A = nHS,B [Figs. 3(a) and 3(b)]; mA = −mB, the long-
range antiferromagnetic order is implemented in a system
[Figs. 3(c) and 3(d)]; �−

A = −�+
B [Figs. 3(e) and 3(f)], in this

case, we have �+
A = �−

B = 0. Figure 4 contains Fig. 3 on an
enlarged scale.

Near εc
S , the exciton condensate region arises, which co-

exists with the long-range antiferromagnetic order. Moreover,
the comparison of Fig. 4 and Fig. 2 (the lower row) shows that
the formation of the exciton condensate facilitates the antifer-
romagnetic ordering and the occurrence of the magnetization
in the range of parameters T and εS where there was no mag-
netic order at J ′′

ex = 0 [Figs. 2(d) and 2(e)]. This can be clearly
seen in Fig. 5, which shows the temperature dependence
of population n of the HS state [Fig. 5(a)], magnetization
m [Fig. 5(b)], and the exciton order parameter components
�+/− [Fig. 5(c)] for the two sublattices and the derivative of
minimum free energy F [Fig. 5(d)] at εS/J = 3.5 > εc

S/J ≈
3 (see above). For comparison, Fig. 5 (the right column)
presents temperature dependencies of the same quantities, but
at J ′′

ex = 0. Due to the formation of an exciton condensate
at low temperatures [Fig. 5(c)], a nonzero HS state popu-
lation appears [Fig. 5(a)] and the magnetization [Fig. 5(b)],
which abruptly vanishes with increasing temperature (the first
derivative of the free energy [Fig. 5(d)] reveals a jump, which
corresponds to a first-order phase transition). Physically, this
is quite clear from the structure of the exciton order parameter.

FIG. 5. Temperature dependencies of (a) population n of the HS
state, (b) magnetization m and (c) exciton order parameter com-
ponents �+/− for two sublattices, and temperature derivative of
minimum free energy F (d) at εS/J = 3.5 > εc

S/J ≈ 3, J ′′
ex = 0.3J

(the left column), and J ′′
ex = 0 (the right column).

In particular, at �−
A �= 0, we have �+

A = 0; then, �+
B = −�−

A
and �−

B = 0. On the contrary, at �+
A �= 0, we have �−

A = 0;
then, �−

B = −�+
A and �+

B = 0. The nonzero corresponding
values �+/− on different sublattices allow the coexistence of
an exciton condensate with antiferromagnetism and facilitates
its formation.

Interaction parameters J , J̃ , and Jex are determined by the
hopping parameters (see above). In this problem, all three
parameters are positive; however, it is technically interesting
to study the structure of the exciton order parameter at dif-
ferent signs of parameters J and Jex (near the crossover J ′′

ex),
including the case of J = 0. The parameter J̃ determines the
range of stability of the HS (LS) state and does not effect the
exciton order parameter. Table I gives the values and signs of
the components of the pseudovector 〈d〉 = {�+,�−,�0} in
the minimum of thermodynamic potential F . The case J > 0
corresponds to the antiferromagnetic ordering; in this case,
in the crossover region the exciton condensate phase coexists
with the antiferromagnetism and facilitates it. At J < 0, the
ferromagnetic ordering is implemented in the system, but the
ferromagnetism and the exciton condensate phase are sepa-
rated and cannot coexist. Finally, at J = 0, vector 〈d〉 has
the same structure as at J < 0 and does not facilitate the
occurrence of magnetism; the presence of component �+ is
compensated by the action of �− and vice versa on each
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TABLE I. Structure of the exciton order parameter at the mini-
mum of free energy for different signs of the exchange J and exciton
J ′′

ex interaction parameters. Here, we used the following designations:
signs + (−) and 0 mean that the component is positive (negative)
or zero, respectively; the sign / means “or”, and A and B are two
sublattices. At any combination of J and J ′′

ex , if the components are
nonzero, they have the same absolute value.

J > 0 J � 0

J ′′
ex > 0 J ′′

ex < 0 J ′′
ex > 0 J ′′

ex < 0

A B A B A B A B

�+ 0 +/− 0 + − + + +
�− −/+ 0 + 0 − + + +
�0 0 0 0 0 + + − +

lattice site. It should be noted that at J < 0 and J = 0, there
is no partitioning into magnetic sublattices, but there is the
partitioning caused by the structure (“direction”) of the order
parameter 〈d〉.

Along with the tricritical point (T ∗ and ε∗
S in Fig. 4 and

Fig. 2), the phase diagram contains a bicritical point in (T ∗∗
and ε∗∗

S in Fig. 4), at which the second-order phase transition
line splits into two second- and first-order phase transition
lines (Fig. 4), according to the Gibbs phase rule.

In closing this section, we would like to compare our re-
sults with the data on the exciton ferromagnetism reported in
[24], where the authors discussed the electron-phonon inter-
action, along with the electron-electron one. The situation can
be briefly described as follows. As is known, the spin density
wave (SDW) magnetic structure is implemented in the metals
in which the topology of the multiply connected Fermi surface
contains electron and hole regions, which coincide upon par-
allel transfer to certain vector q. The SDW arises due to triplet
pairing of single-particle excitations of the coinciding electron
and hole regions of the Fermi surface. If the SDW is superim-
posed onto the charge density wave (CDW) already present in
the system and induced by singlet pairing of the electron and
hole states, the picture becomes more complex. The coexisting
single-phase commensurate SDW and CDW induce additional
magnetic splitting of the single-particle excitation spectrum,
which results in the occurrence of a magnetic moment per
unit crystal volume upon doping (the so-called excitonic ferro-
magnetism). In this work, by analogy with [24], we can speak
about the exciton antiferromagnetism, at which the formation
of an exciton phase facilitates the occurrence of a long-range
antiferromagnetic order in the region of phase diagram where
the AFM phase would be absent above critical value of the
spin gap (pressure) without the excitonic condensate.

IV. ELECTRON BAND STRUCTURE
IN DIFFERENT PHASES

To obtain the dispersion relations for the quasiparticle
excitations, we use the method of equations of motion for
the matrix Green’s function Dmn(k, ω) = 〈〈X m

k |X †n
k 〉〉ω re-

lated to the single-electron Green’s function Gλσ (k, ω) =
〈〈akλσ |a†

kλσ 〉〉ω, where σ = ±1/2 is the electron spin projec-

tion, as

Gλσ (k, ω) =
∑
m,n

γλσ (m)γ ∗
λσ (n)Dmn(k, ω). (19)

Here, as in Eq. (6), X are the Hubbard operators constructed
using the eigenstates Eq. (5) for Ne = 1, 3, while at Ne = 2
eigenstates Eq. (18) are used.

The spectral density of the single-particle excitations is
expressed through the Fermi single-particle Green’s function

Aλσ (k, ω) = − 1

π
ImGλσ (k, ω + iδ)

= − 1

π
Im

∑
mn

γλσ (m)γ ∗
λσ (n)Dmn(k, ω + iδ),

δ → +0, (20)

and the density of the single-particle states for a specified
spin projection (Nk is the normalization factor, the number of
points in the Brillouin zone) is Nλσ (ω) = 1

Nk

∑
k Aλσ (k, ω).

In the diagram technique for X operators, we can write the
Dyson equation for the Green’s function D̂(k, ω) [25]

D̂(k, ω) = [
Ĝ−1

0 (ω) − P̂(k, ω)t̂ (k) + �̂(k, ω)
]−1

P̂(k, ω).

(21)

Here, �̂(k, ω) and P̂(k, ω) are the self-energy and force op-
erators, respectively, and G0mn(ω) = δmn(ω − �m)−1. In the
Hubbard-I approximation, the structure of the exact Green’s
function Eq. (21) is preserved, but the self-energy operator
is set to be zero and the force operator, to be Pmn(k, ω) →
δmnFm.

In the Hubbard-I approximation for the Green’s function
D̂(k, ω), we can write the equation

D̂(k, ω) = D̂0(ω) + D̂0(ω)t̂ (k)D̂(k, ω). (22)

Here, Dmn
0 (ω) = δmnFm/(ω − �m), where �m ≡ �(pq) =

Ep − Eq; Fm ≡ F (pq) = 〈X pp〉 + 〈X qq〉 is the filling factor
called the end factor in the diagram technique for X operators
[19]; tmn(k) = ∑

σ,λ,λ′ γ ∗
λσ (m)γλ′σ (n)tλλ′ (k), where tλλ′ (k) is

the Fourier transform of the hopping integrals. The solution
of Eq. (22) has the form D̂−1(k, ω) = D̂−1

0 (ω) − t̂ (k), which
is typical for the MF theory.

The dispersion dependence of the Fermi quasiparticles is
determined by the equation for a pole of the matrix Green’s
function Dmn(k, ω) = {[D̂−1

0 (ω) − t̂ (k)]
−1}mn:

det ‖δmn(ω − �m)/Fm − tmn(k)‖ = 0. (23)

The form of this equation is similar to the dispersion
equation of the tight-binding method in the one-electron band
theory, but differs from it by the two circumstances: first,
indices m and n number the single-particle excitations in a
many-electron system rather than one-electron orbitals, and
second, the effective hopping parameter is determined by the
product tmn(k) and filling factor Fm, which depends on the
occupation numbers of the initial and final states (for more
details, see [26]).

It is noteworthy that a consequence of exact representation
Eq. (6) and commutation relations for the Fermi operators
is the sum rule 〈[ai,λ,σ , a†

i,λ,σ ]+〉 = 1 = ∑
m |γλσ (m)|2F (m).
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FIG. 6. Electron band structure at half filling (Ne = 2 is the average number of electrons per crystal lattice site) along the symmetric
directions of the paramagnetic Brillouin zone in different phases (at the center): (a) HS-AFM (T/J = 0.1, εS/J = −5.0) is an antiferro-
magnetic insulator, (b) HS-PM (T/J = 2.8 and εS/J = −5.0) is a paramagnetic semimetal, (c) HS-AFM-Ex (T/J = 0.1, εS/J = 2.5) is an
antiferromagnetic excitonic insulator, and (d) LS (T/J = 0.1, εS/J = 5.0) is a nonmagnetic semimetal. The red dashed horizontal line shows
the position of the chemical potential. Colors show the distribution of the total spectral weight of quasiparticle excitations inside the first
Brillouin zone. The central figure shows the phase diagram in Fig. 3(g). 
(0, 0), M(1, 1), and X (1, 0) are the high-symmetry points of the
paramagnetic Brillouin zone.

This sum rule results in the conservation of the total
spectral weight in each zone λ for any wave vector k:∑

σ

∫
Aλσ (k, ω)dω = 2.

Figure 6 shows the modification of the electronic spectrum
at half filling (Ne = 2 is the average number of electrons per
crystal lattice site) in different phases depending on T and
εS . For example, in the HS-AFM and HS-AFM-Ex phases,
the calculated band structure has direct dielectric gap Eg and
the Fermi energy lies inside the forbidden band [Figs. 6(a)
and 6(c)]. Hereinafter, the distributions of the total spectral
weight A(k, ω) = ∑

λ,σ Aλσ (k, ω) of the Fermi quasiparticle
excitations inside the first Brillouin zone are shown by differ-
ent colors. Since, in the HS phase, the system is considered
in the antiferromagnetic or paramagnetic state and, in the
LS phase, in the nonmagnetic state, we everywhere have
Aλ↑(k, ω) = Aλ↓(k, ω). The red dashed horizontal line shows
the Fermi level position. The occurrence of the spontaneous
antiferromagnetic ordering and condensation of magnetic ex-
citons doubles the crystal lattice period, but for convenience
of comparing different cases (with and without order), we
build the electronic spectrum using the unreduced Brillouin
zone. With increasing temperature or spin gap (crystal field),
dielectric gap Eg vanishes from the spectrum continuously
or stepwise, depending on the order of the phase transition
(Fig. 4), and a system passes to the semimetal state [Figs. 6(b)
and 6(d)]. In [27], we discussed the topological features of the
transition HS semimetal–LS semimetal in the absence of any
thermodynamic order parameters.

The number of different quasiparticle bands in Fig. 6 is
determined by the number of possible single-electron exci-
tations between multielectron terms. In our two-band model
with Ne = 2 the relevant configurations are d2 with S = 1
and S = 0, d1 with two orbitals and S = 1/2, and d3 with
two orbitals and S = 1/2 (Fig. 7). In the excitonic phase the

FIG. 7. A scheme of the relevant eigenstates in the HS-AFM
phase (a) and in the Ex phase (b).
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ground state is given by

|0〉A = u|s〉A + v|−1〉A. (24)

From Fig. 7 it is clear that in the HS state there are 4 Fermi-
type single-electron quasiparticles (excitations from d2 to d3

configurations which correspond to the electron creation, and
from d2 to d1 excitations corresponding hole creation). It
is valid both for the paramagnetic HS metal and antiferro-
magnetic insulator. We want to stress that metallicity of the
paramagnetic HS phase is related with its two-band charac-
ter. Due to strong correlations each single-particle band is
split on the upper and low Hubbard subbands, which may
cross the Fermi level as in Fig. 6(b) or may form an insu-
lator for smaller hopping parameters. In the excitonic phase
the number of possible single-electron excitations is doubled
due to its degeneracy; the matrix elements of the electron
creation/annihilation in Eq. (6) are nonzero for both singlet
and triplet two-electron terms. Nevertheless for εS � εC

S the
parameter C2 = 0 and the ground singlet is formed by only
one orbital, |s〉 = a†

1↑a†
1↓|0〉, so the electron addition is pos-

sible only for orbital 2, and the electron removal involves
only orbital 1. That is why the number of the quasiparticle
bands in the LS case [Fig. 6(d)] is only 2. This nonmagnetic
phase indeed has paramagnetic properties due to the Pauli
susceptibility in the metallic state.

To conclude this section, we would like to discuss the
relation between the spin crossover and the effective electron
correlation parameter. It is well known that in multiorbital
systems (for example, oxides of 3d metals), a measure
of the electron interaction energy and electron correlations
is the effective Hubbard parameter Ueff (dn) = E0(dn+1) +
E0(dn−1) − 2E0(dn) [28], where E0(dn) is the energy of the
main term of the dn configuration. The average number of
electrons is assumed to be 〈nd〉 = n. The competition of
the intra-atomic Hund’s exchange coupling JH and the cu-
bic component of the crystal field 10Dq for the dn electron
configuration (n = 4–7) results in the change in the ground
HS/LS state [29]. The HS-LS spin crossover can occur due
to the growth of the crystal field, for example, with pressure.
As a result, the spin crossover changes Ueff (dn) and causes the
relation to the Mott-Hubbard transition. The effect of the spin
crossover on the electron correlation parameter turned out to
be nonuniversal: for d5 ions, Ueff is suppressed, while for d6

it, on the contrary, increases due to the spin crossover and,
in the case of d7, does not change [30–34]. For the two-band
Hubbard model investigated in this work, we neglect the intra-
atomic exchange coupling component J ′

H [this approximation
is justified within a fairly wide crystal field range, for which
ELS can be considered independent of � (Fig. 1)] and, at
half filling, Ueff = V + |εS|. It can be clearly seen that, in the
HS state (� < �c in Fig. 1), Ueff decreases with increasing
crystal field � (|εS| decreases), while at � > �c (the ground
LS state) Ueff , on the contrary, increases with the crystal field
� (|εS| increases). Thus, at the spin crossover, the kink of the
parameter Ueff is observed.

V. DISCUSSION AND CONCLUSIONS

Based on Eq. (1), we can distinguish two cases. In the
first (weakly correlated) case, at ĤCoulomb � Ĥ� + Ĥt , we

FIG. 8. The energy level scheme for the antiferromagnetic A
sublattice for three areas of the spin gap parameter: (a) in the HS state
when εS � εC

S , (b) in the spin crossover region εS ∼ εC
S , (c) in the LS

state εS � εC
S . The HS triplet level is split in the antiferromagnetic

phase, and a cross denotes occupied at zero-temperature level. In
both (a) and (c) a spin excitation requires some finite energy and
the static excitonic order parameter is zero. Close to spin crossover
in (b) triplet level magnetic splitting tends to zero. Two terms, the LS
and the HS with projection −1 in the A sublattice, become degenerate
and spin excitation energy tends to zero.

have a two-band semiconductor or a semimetal (depending
on the ratio between � and t), in which an exciton conden-
sate can form according to the Bose-Einstein condensation
(BEC) or Bardeen-Cooper-Schrieffer (BCS) scenario. In the
second case (strongly correlated), when the energy of the
Coulomb interaction of electrons is larger then their kinetic
energy and becomes comparable with the energy of the crystal
field ĤCoulomb ∼ Ĥ�, the spin crossover and the formation of
localized magnetic excitons become possible. In this study,
we showed using the two-band Hubbard-Kanamori model
that there is a condensation of such excitons near the spin
crossover, which, in turn, leads to the opening of the insu-
lator gap in the electronic spectrum and the occurrence of the
antiferromagnetic ordering. The occurrence of the long-range
magnetic order caused by the condensation of local magnetic
excitons is found.

The mechanism of the excitonic phase formation in the
spin crossover area can be explained in Fig. 8. For the HS
and LS ground states,

〈−1|X s,−
A | − 1〉 = 〈−1 | s〉 = 0, 〈s|X s,−

A |s〉 = 0.

In the excitonic phase the ground state is given by a linear
superposition of the singlet and triplet with σ = −1 wave
functions; see Eq. (24). That is why

�−
A = (

v〈−1|A + u〈s|A
∣∣X s,−

A

∣∣u|s〉A + v|−1〉A

) = uv. (25)

The exciton condensation in strongly correlated systems
has been debated a lot in the literature (see, for example,
[5,8–14]). The present theoretical studies for the excitonic-
insulating phases have direct implications for the candidate
materials of the excitonic-insulating state. The most rele-
vant material is a series of the perovskite cobalt oxides
R1−xAxCoO3 and their family, in which the localized orbital
picture works well. The low-temperature insulating phase in
Pr0.5Ca0.5CoO3, where any experimental indications for the
magnetic and charge orders are not observed until now, is
one of the possible candidates of excitonic-insulating phases
[13,35–37].
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For systems with a spin crossover, in which the ground
state is LS and the HS state is separated from the ground
state by spin gap εS , of particular interest are studies in strong
magnetic fields [38–42], since the presence of the spin gap
leads to the term crossing at B = Bc (the magnetic-field-
induced spin crossover). As an example, we presented the
recently discovered magnetic transition in LaCoO3 in a strong
magnetic field [39], which can be related to the condensation
of magnetic excitons [43,44]. The investigated model can be
used to describe the extraordinary behavior of LaCoO3 [39]
and (Pr1−yYy)0.7Ca0.3CoO3 [45] in strong magnetic fields.
The ground state in LaCoO3 is confirmed experimentally as
a nonmagnetic LS band insulator. We expect that LaCoO3

is located near the phase boundary between the LS and HS-
AFM-Ex phases in Fig. 3. This fact implies that the LS state
in LaCoO3 is possibly changed into the HS-AFM-Ex phase
by changing an energy balance between the Hund coupling
and the crystalline field splitting. Applying the magnetic field
and/or expanding the lattice constant by chemical substitution
or by utilizing the thin-film technique on a substrate are the
plausible routes.

The other class of experiments with spin crossover is a
high-pressure study of the Mott-Hubbard insulators; see the
review paper [46]. Nevertheless for particular transition metal
oxides a more complicated multiband analysis is required;

see for example the discussion of the spin crossover and its
effect on the Mott-Hubbard transition in [30]. Here we restrict
ourselves by a simplified two-band model that allows study
of the excitonic condensation in the vicinity of spin crossover.
But the method for calculating the electronic band structure in
the different phases that we proposed can be used to calculate
the electronic structure of real, strongly correlated systems at
different external conditions (temperature, pressure, magnetic
field, etc.).

One of the differences between our work and previous
ones is the calculation of the temperature dependence of
the main thermodynamic characteristics and phase diagrams
of magnetization and excitonic order parameter in the co-
ordinates of the crystal field–temperature. We consider that
these calculations are more justified from the experimen-
tal point of view, since the intra-ionic parameters of the
Coulomb interaction are practically independent of exter-
nal conditions, and complement the existing understanding
of physics of the excitonic phase in strongly correlated
systems.
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