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Many-body topological and skin states without open boundaries
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Robust boundary states have been the focus of much recent research, both as topologically protected states
and as non-Hermitian skin states. In this paper, we show that many-body effects can also induce analogs of these
robust states in place of actual physical boundaries. Particle statistics or suitably engineered interactions, i.e., in
ultracold atomic lattices can restrict the accessible many-body Hilbert space, and introduce effective boundaries
in a spatially periodic higher-dimensional configuration space. We demonstrate the emergence of topological
chiral modes in a two-fermion hopping model without open boundaries, with fermion pairs confined and
asymmetrically propagated by suitably chosen fluxes. Heterogeneous nonreciprocal hoppings across different
particle species can also result in robust particle clumping in a translation invariant setting, reminiscent of skin
mode accumulation at an open boundary. But unlike fixed open boundaries, effective boundaries correspond
to the locations of impenetrable particles and are mobile, giving rise to fundamentally different many-body
versus single-body spectra and corresponding dynamics. Since nonreciprocal accumulation is agnostic to the
dimensionality of restricted Hilbert spaces, our many-body skin states generalize directly in the thermodynamic
limit. The many-body topological states, however, are nontrivially dimension-dependent, and their detailed
exploration will stimulate further studies in higher dimensional topological invariants.
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I. INTRODUCTION

Much of contemporary condensed matter research have
revolved round robust boundary phenomena. Topological
boundary states are anomaly manifestations of nontrivial bulk
topology, and have have been extensively investigated in
quantum spin and anomalous Hall (Chern) insulators [1–9],
nodal semimetals [10–19], and various topological metamate-
rials [20–33], some with potential applications in electronics
and photonics [34–40]. More recently, non-Hermitian skin
effect (NHSE) boundary states, which accumulate from un-
balanced gain/loss have also seen much experimental [41–46]
and theoretical [47–65] advances, fueled by various intriguing
implications like modified bulk-boundary correspondences
[66–70], critical behavior [71–76], discontinuous band geom-
etry [77], and unconventional responses [77–79], alongside
possible sensing applications [45,79–81].

While both topological and skin modes arise from breaking
translation invariance, this translation need not be in phys-
ical real space. In particular, many-body effects like Pauli
exclusion and interactions can restrict the accessible Hilbert
space and break the “translation” invariance of the many-
body configuration space. A simplest illustration involves two
(distinguishable) fermions on a line, where Pauli exclusion
fixes their relative ordering and partitions the configuration
space into two disjoint halves. Indeed, interesting new physics
do emerge when interactions constrain the accessible Hilbert
space, as epitomized by fractional quantum Hall states with
non-Abelian quasiparticles determined by their detailed pseu-
dopotential profiles [82–90].
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In this paper, we propose how conventional boundary
phenomena—topological and skin states—can emerge from
many-body interactions under purely periodic boundary con-
ditions (PBCs). This is achieved through a general scheme
of mapping many-body interactions to single-body non-
Hermitian/topological higher dimensional lattices.

II. INTERACTION-INDUCED SKIN “BOUNDARY” STATES
FROM RESTRICTED HILBERT SPACES

The many-body configuration space of a generic system
contains subspaces where two or more particles occupy the
same state. If particle statistics, i.e., Pauli exclusion or spe-
cially designed interactions render them inaccessible, these
subspaces will serve as effective “boundaries” of the config-
uration space, related ideas on 2-body interactions have been
investigated in [91–93], even in the absence of any physical
boundary, i.e., edge or surface terminations. To engineer such
boundaries, we shall use density-dependent lattice hoppings
that are attenuated at high occupancies, such that transitions
into certain degenerate states vanish.

We first present a simple periodic 1D monoatomic lat-
tice with pronounced interaction-induced “boundary” effects.
Consider an interacting periodic chain with two or more
species of bosons σ :

H1D =
∑
x,σ

t+
σ c†

x+1,σ cx,σ + t−
σ c†

x,σ cx+1,σ

− (V +
σ c†

x+1,σ cx,σ ρx+1 + V −
σ c†

x,σ cx+1,σ ρx ), (1)

with c†
x,σ (cx,σ ) creating(annihilating) a σ boson at site x,

and ρx = ∑
σ c†

x,σ cx,σ the density operator across all species.
H1D may be approximately simulated by a chain of ultracold
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fermions or repulsive bosons [94–96], with a possible route
towards experimental realization discussed in Appendix C.

To understand the significance of effective boundaries in
H1D and how they can be induced by suitable interactions,
we first review its noninteracting limit of V ±

σ = 0, where
it reduces to the (multi-component) Hatano-Nelson model
[97]. Generically, its species-dependent asymmetric hopping
amplitudes |t+

σ | �= |t−
σ | causes all states to evolve by asym-

metrically growing in the direction larger hopping [68–70].
If the system is periodic, any initial state will be amplified
indefinitely as it repeatedly circumnavigates the chain, giving
rise to complex eigenenergies. But under open boundary con-
ditions (OBCs), all states ultimately accumulate at one end
of the chain and cannot be amplified further, resulting in real
eigenenergies. Indeed, the entire spectrum is drastically mod-
ified by the boundary conditions, even in the thermodynamic
limit, a phenomenon known as the NHSE. Its correspond-
ing eigenstates are all exponentially localized near the open
boundary with inverse decay lengths/skin depths given by
log | t+

σ

t−
σ
|, and are thus known as skin states [68].

In H1D, the role of the V ±
σ interactions is to dynami-

cally destructively interfere with the asymmetric t±
σ hoppings

whenever the destination site already contains Nx > 0 par-
ticles (of any species). Assuming that n±

σ = t±
σ /V ±

σ ∈ R+,
the effective hoppings onto site x will be modified from t±

σ

to t±
σ − V ±

σ Nx = t±
σ (1 − Nx/n±

σ ), which are weaker than the
single-particle hoppings unless Nx > 2n±

σ . By varying the
relative values of n±

σ for different hopping directions ± and
species σ , one can obtain a rich array of competitive or coop-
erative behaviors where a particular particle distribution can
simultaneously promote and inhibit the transfer of the various
species. In particular, if we set n±

σ to a fixed integer n, the
hopping onto a site already containing n bosons vanishes. The
accessible Hilbert space is thus restricted to the subspace with
at most n bosons per site, provided no site contains n + 1 or
more bosons initially.

N = 2 toy example

We next detail the simplest case with N = 2 bosons of
different species on a PBC chain with L sites. Its 2D con-
figuration space is indexed by tuples (xa, xb) ∈ {1, . . . , L}2,
which represent the positions of bosons a and b [Fig. 1(a)].
Horizontal/vertical hoppings in this space correspond to
the interaction-modified effective hoppings of bosons a/b.
Without interactions, the system is a tensor product of two
decoupled rings, and every configuration is allowed. But with
interactions set to the simplest value of n = t±

σ /V ±
σ = 1, par-

ticles can no longer hop onto an already occupied site, and
hence no site will be doubly occupied [98]. This removes
the “diagonal” subspace xa = xb from the accessible Hilbert
space [Fig. 1(a)]. As illustrated, xa = xb behaves like an open
“boundary” of the configuration space, and changes its topol-
ogy from a torus to a (45◦ rotated) cylinder [99].

The interaction-induced xa = xb configuration space
“boundary” will host skin states whenever its perpendicular
hoppings induce the NHSE, even when the physical lattice
satisfies PBCs. To investigate when that can occur, we switch
to a rotated basis aligned with the diagonal “boundary”,
such that we can re-express our 2-particle Hamiltonian as a

FIG. 1. (a) (Left) Our interacting chain H1D has asymmetric hop-
pings, which vanish if they bring n + 1 = 2 particles together. Under
PBCs, interaction-induced particle clusters correspond to “bound-
ary” skin states along the inaccessible subspace xa = xb in the 2-body
configuration space. (b) While ordinary OBC skin states require only
unbalanced hoppings, PBC skin states also require them to be differ-
ent across the species. (c) Energy spectra and localization of PBC
skin eigenstates ψ (x) in the L × L = 502-site configuration space, as
quantified by their inverse participation ratio IPR = (

∑
x |ψ (x)|4)−1.

IPR ∼ L2 for an extended state (brown), while IPR ∼ 1 for full lo-
calization (blue). Interactions only induce extensively localized skin
states when the hoppings are both unbalanced and dissimilar across
species. Hoppings are t±

1,2 = 1 (left), t−
a,b = 2, t+

a,b = 1 (middle), and
t−
a = 3, t−

b = 1, t+
a,b = 2 (right).

single-particle Hatano-Nelson chain in the (1,–1) direction
perpendicular to the xa = xb line, with effective hoppings
depending on the center-of-mass (CM) momentum kCM:

HN=2
1D (k) =

∑
±

t±
a e±ika + t±

b e±ikb =
∑
±

T ±
⊥ e±ik⊥ , (2)

where [100] ka,b = kCM ± k⊥ and T ±
⊥ = t±

a e±ikCM + t∓
b e∓ikCM

are the effective right/left hoppings along k⊥. As long
as |T +

⊥ | �= |T −
⊥ |, PBC skin states will accumulate at the

interaction-induced xa = xb “boundary”. A little algebra, as
detailed in Appendix A 2, expresses this condition as the
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following inequality on the t±
σ hoppings:

t±
a �= e±iθ t±

b , (3)

θ an arbitrary phase. In other words, the appearance of
interaction-induced PBC skin states require both (i) un-
balanced hoppings for at least one species, i.e., usual
(noninteracting) NHSE for it had OBCs been implemented,
and (ii) the satisfaction of Eq. (3), either by having unequal
hopping probabilities for each species, or by having complex
hoppings not connected by the phase θ [Fig. 1(b)].

Physically, PBC skin states around xa = xb represent the
clusterings of the bosons next to each other. From Eq. (3),
they occur precisely when the effective bosonic hoppings do
not match in terms of probabilities (|t±

a | �= |t±
b |) or phase. As

the bosons experience dissimilar directed amplification, they
will approach each other on the PBC ring. However, since the
interactions prevent double occupancy, they must accumulate
near each other, resulting in PBC skin states [Fig. 1(b)]. These
interaction-induced skin states are only universally observed
under PBCs, since under OBCs, particles may also accumu-
late at the boundaries instead of against each other.

The NHSE origin of these clustered states is substantiated
by the drastic changes in the PBC spectrum as the interac-
tions (effective OBCs) are turned on/off. This is demonstrated
numerically in [Fig. 1(c)], and derived analytically below.
From Eq. (2), the spectrum in the noninteracting case is sim-
ply

∑
± T ±

⊥ e±ik⊥ , where k = (kCM, k⊥) ranges over [0, 2π ]2.
However, for interacting cases subject to the PBC skin effect,
the “OBC” spectrum should be taken over the generalized
Brillouin zone (GBZ) [49,50,60,64,68–70,101] of k⊥, which
for the Hatano-Nelson model is well known to be

ĒN=2 = 2λ

√
T +

⊥ T −
⊥

= 2λ

√
t+
a t−

a + t+
b t−

b + t+
a t+

b e2ikCM + t−
a t−

b e−2ikCM , (4)

where λ ranges from −1 to 1 and T ±
⊥ depending on kCM ∈

[0, 2π ] as before. Indeed, for unequal unbalanced hoppings
(PBC skin effect), this gives a completely different spec-
trum from the noninteracting case [Fig. 1(c)]. While ordinary
boundary-induced NHSE is said to break bulk-boundary
correspondences, our interaction-induced NHSE breaks the
spectral continuity between the interacting and noninteracting
limits, which corresponds to whether particles are mutually
impenetrable, i.e., Nx = 0 or Nx = n±

σ .

III. EMERGENT MANY-BODY SKIN AMPLIFICATION

While the 2-body discussion above admits a complete and
intuitive solution, it is in the many-body case that PBC skin
states differs qualitatively from ordinary OBC skin states. One
new phenomenon is the emergence of continuous amplifica-
tion in a nearest-neighbor (NN) hopping chain, which never
occurs in the noninteracting OBC case, i.e., the “ordindary”
Hatano-Nelson solution. Intuitively, directed amplification
under OBCs has to stop after a finite time when a state
reaches the fixed boundary, forcing the spectrum to be real.
But interaction-induced “boundaries” under a PBC setting
are dynamic, depending on the positions of all the parti-
cles. While two particles always approach the steady state
of simply being next to each other, three or more dissimilar
particles may approach complicated limit cycles, with say

FIG. 2. (a) PBC skin states accumulate against the x1 = x2, x2 =
x3, and x3 = x1 “boundaries” of the N = 3-body configuration space,
which are all orthogonal to the (1, 1, 1)T CM translation vector. The
“bounded” region takes the shape of a triangle after projecting out
the CM direction and enforcing physical PBCs. NN hoppings t±

j ,
j = 1, 2, 3 on the physical lattice become nonorthogonal and more
nonlocal in the rotated 2D subspace spanned by the “boundaries”.
(b) Effective hoppings in the 2D subspace generate a network of non-
trivial loops that amplifies states through a positive feedback cycle.
(c) The spectrum of the t−

j = 0, t+
j = j case of Eq. (6), with localized

skin states (blue) traced out from a Y-shaped locus (schematically
colored green) via a kCM phase rotation. (d) More complicated spec-
trum of a N = 4 case with balanced hoppings t±

j = j for j = 1, 2, 3,
and unbalanced t−

4 = 4, t+
4 = 0, which can be contrasted with its

noninteracting case.

two particles accumulating towards each other at first, and
then being repelled by the third, etc. But despite the com-
plexity of such many-body dynamics, they can always be
reformulated as a multi-dimensional NHSE problem, whose
complicated (but tractable) GBZ encodes the interplay of the
various interaction channels. A key insight motivating this
reformulation is that interactions that induce PBC skin states
conserve the CM. Accumulation in the kCM channel requires
a physical open boundary, so an N-particle PBC skin effect
problem described by H1D can possess at most N − 1 indepen-
dent accumulation channels. Expressing the system in terms
of these channels and their symmetries is key to disentan-
gling the many-body dynamics. To be explicit, HN>2

1D possess
a N-dimensional toroidal configuration space (x1, . . . , xN )
partitioned into (N − 1)! disconnected regions by

(N
2

)
“bound-

aries” given by Nα = Nβ , α, β ∈ 1, . . . , N . For interactions
that prohibit more than n = 1 particles on any site, the N
adjacent pairs of particles on the 1D PBC ring demarcate N
unique “boundaries” for each accessible region. As shown in
Fig. 2(a) for N = 3, the two disconnected regions are given by
x1 < x2 < x3 and x1 < x3 < x2 modulo cyclic permutations,
and are separated by the “boundaries” x1 = x2, x2 = x3, and
x3 = x1. Importantly, the normals (1,−1, 0)T , (0, 1,−1)T ,
and (−1, 0, 1)T to all these “boundaries” are all orthogonal to
the CM translation direction (1, 1, 1)T . To find the PBC skin
states, we must thus construct the multi-dimensional GBZ
[54] in a rotated basis orthogonal to the CM momentum kCM,
as detailed in Appendix A 3 for generic number of particles
N .
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A. Illustrative positive feedback cycle with N = 3 particles

For N = 3 particles, our Hamiltonian can be rewritten in
terms of rotated momenta k̃ = (k̃1, k̃2, kCM) as

HN=3
1D (k) =

∑
±

t±
1 e±ik1 + t±

2 e±ik2 + t±
3 e±ik3

=
∑
±

t±
1 e±i(kCM+2k̃1+k̃2 ) + t±

2 e±i(kCM−k̃1+k̃2 )

+t±
3 e±i(kCM−k̃1−2k̃2 ), (5)

where t±
j are the right/left hoppings amplitudes of parti-

cle j, equivalent across different particles j of the same
species [Fig. 2(a)]. One easily checks that the combined am-
plitude of hopping particles 1 and 2 towards each other is
t±
1 t∓

2 e±i(k1−k2 ) = t±
1 t∓

2 e±3ik̃1 , which depends solely on k̃1. Thus
the skin states corresponding to their repulsion can be encoded
by the GBZ of k̃1 alone. Likewise, the skin states due to the
repulsion between particles 2 and 3 is encoded by the GBZ of
k̃2 alone.

This basis rotation for obtaining PBC skin states is not
just a notational change, but has profound dynamical conse-
quences in fact. In Fig. 2(b), shown for only right hoppings t+

j
with N = 3, hoppings that are originally across NN physical
lattice sites now possess multiple hopping ranges in each
direction. In particular, they now form a network with non-
trivial directed loops, which are dynamically nontrivial since
asymmetric hoppings lead to amplification or attenuation.
For instance, a state can now cycle through a series of di-
rected hoppings t+

1 → t+
2 → t+

3 → t+
1 (or t+

1 → t+
3 → t+

2 →
t+
1 ) back to its original configuration, and experience net am-

plification. Physically, such cycles correspond to successive
shifts of the individual particles, each incurring skin state ac-
cumulation due to the hopping asymmetry, such that the entire
particle configuration collective translates in accordance to the
CM wave vector kCM.

B. Approach for arbitrary number of particles and route
towards the thermodynamic limit

Due to these perpetual amplification cycles, complex
eigenenergies emerge in the interacting spectrum for N > 2,
even though the single-particle spectra remains real. The case
with arbitrarily large number of particles N can be analo-
gously treated by separating out the degenerate CM degree
of freedom, and working out the NHSE in the remaining
multi-dimensional subspace. However, due to the intrinsic
obliqueness of this orthogonal complement subspace, its
non-Hermitian effective couplings typically couple particles
nonlocally, i.e., are tilted in the effective higher-dimensional
space, even if the physical couplings themselves are local.
In other words, at a deeper level, the emergent multi-particle
feedback can be construed as a consequence of the geometry
of orthogonal complement of the CM sector. This is elabo-
rated in Appendix A 3, with main results given in Eqs. (A13)
and (A14).

Continuing on iterated GBZ constructions in the rotated
basis, where effective hoppings can extend nonlocally up to
N − 1 sites, one can derive the full complex PBC skin state
spectrum ĒN |t−

j =0 for arbitrarily many particles N experienc-

ing only rightwards NN hoppings t+
σ :

ĒN
∣∣
t−

j =0 ∝ eikCM

s∏
σ=1

t fσ
σ e2π iν/N , (6)

where fσ are the fractional populations of species σ =
1, . . . , s. ĒN |t−

j =0 forms a star-shaped locus with N “spikes”
ν = 1, . . . , N in the complex energy plane, ν labeling the
N possible sectors for cyclical amplification [Fig. 2(c) for
N = 3]. For each cycle of duration �t , the amplification factor
is bounded above by eIm ¯̄E�t ∼ e| sin(kCM+2πν/N )|�t , which is
trivial only if 2πν/N cancels the CM density wave vector
kCM. Shown in Fig. 2(b), for instance, is the ν = 0 sector
with kCM = 0, with the 3-particle state translating into itself.
Although kCM did not explicitly enter the Hamiltonian H1D, it
modulates the propensity of gain/loss by indirectly restricting
the interference of accumulated skin states, as suggested by
Eq. (6). For larger N , more exotic complex spectra [Fig. 2(d)]
and dynamical behavior can be similarly computed and con-
trasted with their noninteracting counterparts (Appendix A 3).
In the thermodynamic limit, the spectrum generically depends
only on the fractional populations of the species and their
hoppings.

IV. CHIRAL TOPOLOGICAL MODES FROM
MANY-BODY EFFECTS

In PBC lattices with nontrivial unit cells, many-body can
also induce topologically protected states that normally exist
only at open boundaries. These states are protected by topo-
logical invariants of the many-body configuration space bulk,
and similarly appear along the “boundaries” where particles
coincide. For illustration of topological modes induced by
two-body interactions, consider a Hermitian PBC lattice with
Chern [102,103] “boundary modes” is given by a two-level 1D
zigzag chain containing 2 fermions μ, ν that have to be simul-
taneously on the same level λ = (−1)x at any time [Fig. 3(a)].
The simplest and most local ways they can hop are: (i) one-
body level and species-dependent hoppings ±t ′ across two
sites, and (ii) simultaneous two-body hoppings t to adjacent
sites on the other level. To break time reversal symmetry, a
flux drives t → t e±2λiφ for fermions who simultaneously hop
in the same x direction. Their Hamiltonian is thus given by

H topo
1D = t

∑
x1,x2

∑
�x1,�x2=±1

μ
†
x1+�x1

ν
†
x2+�x2

μx1νx2 eiλφ|�x1+�x2|

+ t ′ ∑
x

(−1)x(μ†
x+2μx − ν

†
x+2νx ) + H.c. (7)

where λ in the first line refers to (−1)x1 = (−1)x2 . In its
2-body configuration space, H topo

1D maps onto a 2D checker-
board lattice Hamiltonian with Chern number C = ±2 bands,
related to that of Refs. [104–106] and detailed in Appendix B.
With Pauli exclusion demarcating a “boundary” along x1 =
x2, the system is translation invariant only along the CM direc-
tion, and exhibits C = 2 in-gap topological modes [Figs. 3(b)
and 3(c)]. Physically, these “boundary” chiral modes
represent correlated fermion clusters that move with nontrivial
CM group velocity due to the asymmetry from the fluxes and
occupancy-dependent hopping probabilities.

195102-4



MANY-BODY TOPOLOGICAL AND SKIN STATES WITHOUT … PHYSICAL REVIEW B 104, 195102 (2021)

FIG. 3. (a) Schematic of our PBC zigzag chain with 1 and 2-
fermion hoppings ±t ′ and t [Eq. (7)], with a flux ±2φ experienced
by two fermions hopping from level λ = ±1 to ∓1 in the same x
direction. It maps to an OBC Checkerboard lattice with topologically
protected simultaneous two-body chiral propagation. (b) Energy
bandstructure of H topo

1D for t = t ′ = 1 and φ = π/6, marked by 2
localized in-gap modes. (c) Its Berry curvature integrating to a Chern
number of 2, thereby verifying the topological origin of the 2 PBC
chiral modes.

V. DISCUSSION

Particle statistics and appropriate interactions can intro-
duce effective configuration space “boundaries” that support
bona fide skin or topological states. Compared to other more
common repulsive mechanisms based on energetics or par-
ticle statistics, our hopping attenuation mechanism allows
for more targeted engineering of robust PBC states. How-
ever, the dynamical nature of these “boundaries” qualitatively
modifies the effective hoppings, leading to possible instabil-
ities. Such cases with complex spectra, however, may still
possess stable Rabi oscillations dynamics between similarly
divergent states [78]. Away from fine-tuning, interactions
will generically lead to partial “boundaries” that exhibit
weaker albeit still robust skin/topological localization. Addi-
tional spin/pseudospin degrees of freedom can accommodate
the possibility of “off-diagonal” spin/pseudospin-dependent
boundaries through Hubbard-like interactions, extending ex-
isting NHSE results based on a single boundary. While PBC
skin states generalize straightforwardly in the thermodynamic
(large N) limit, protection of their topological counterparts
rely on high-dimensional topological invariants that will be
interesting for future studies.
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APPENDIX A: I. SKIN SPECTRA FOR MANY-PARTICLE
PBC SYSTEMS

1. Background

In our paper, a many-body system with unequal hoppings
felt by different particles is mapped to a multi-dimensional

configuration space lattice with unbalanced gain/loss. Given
such a lattice Hamiltonian with left and right hoppings of
unbalanced magnitudes, we expect to observe a robust accu-
mulation of particles whenever there is lattice inhomogeneity.
This is known as the non-Hermitian skin effect (NHSE),
and is characterized by large, nonperturbative changes in the
spectrum and eigenstate distribution by the inhomogeneities.
It can be rigorously treated in the so-called generalized Bril-
louin zone (GBZ), where an imaginary part is added to the
lattice momentum to obtain a surrogate Hamiltonian, which
no longer exhibits the NHSE [49,60,64,69,70,77], at least
when away from criticality [72,73,78]. While most other
papers have focused on open boundaries as the source of
the lattice inhomogeneities, in this paper we instead con-
sider interactions that penalizes configurations with multiple
occupancy as the origin of “boundaries” in the many-body
configuration space lattice.

There are already several excellent treatments on the
NHSE, as referenced in the main text, so here we shall only
summarize the key steps, as well as review a few key re-
sults necessary analyzing our so-called PBC skin effect in the
many-body configuration space.

(1) For sufficiently simple multi-dimensional lattice in a
generic configuration space, the NHSE can be analyzed it-
eratively, one orthogonal direction at a time. Treating the
transverse momentum components as external parameters, the
lattice is described as a quasi-1D Hamiltonian H1D(k⊥), where
k⊥ is normal to the “boundary” of interest.

(2) To restore the “bulk boundary correspondence”, which
in our context allows us to understand the effects of the in-
teractions, the NHSE can be “gauged away” by analytically
continuing k⊥ in the complex plane, i.e., constructing the
GBZ. This is done via k⊥ → p⊥ + iκ (p⊥), where p⊥ ∈ R and
κ (p⊥) is the smallest complex deformation such that there
exists another eigensolution with the same eigenenergy and
κ . This is purely an algebraic property of the characteristic
polynomial of the energy eigenequation. In Hermitian or re-
ciprocal systems, κ (p⊥) = 0 by construction.

(3) In the basis of the GBZ, the surrogate Hamiltonian
[77] H̄1D(p⊥) = H1D(p⊥ + iκ (p⊥)) no longer experiences the
NHSE, and its spectrum exhibits adiabatic continuity as lat-
tice inhomogeneities are introduced. Sometimes, this is also
written as z → z e−κ (p⊥ ), where z = eip⊥ . The corresponding
eigenenergies of the skin states are denoted as Ē or, after two
GBZ constructions, as ¯̄E etc.

Physically, the skin state accumulation is characterized by
the inverse decay length/skin depth κ (p⊥), which can be
different for different wave numbers 2π/p⊥ of its oscillatory
part.

After performing the GBZ construction for all directions,
we should arrive at a surrogate Hamiltonian depending on real
inverse wave numbers p that does not exhibit the NHSE, but
whose spectrum gives the correct skin state eigenenergies.

Analytic results for archetypal scenarios

In our context, the equivalent multi-dimensional NHSE
system corresponding to the physical multi-particle interact-
ing system often takes the effective form

E = Azα + Bz−β, (A1)
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where E is the eigenenergy and z = eik⊥ describes the mo-
mentum component normal to the “boundary” of interest.
This effective quasi-1D system has only two hoppings: one
with amplitude A and α sites to the right, and the other
with amplitude B β sites to the left. While most litera-
ture have only considered left/right imbalances with A �=
B but α = β = 1, solving our many-body system with CM
conservation also requires understanding of what happens
with dissimilar hopping ranges (α �= β), as explained in the
main text.

The α = β = 1 case E = Az + B/z is known as the
Hatano-Nelson model [97]. Under OBCs in the effective
lattice (albeit still with PBCs in the physical lattice of the sys-
tems we consider), its skin modes possess the simple
solution

Ē = 2
√

AB cos p (A2)

where p = p⊥ + arg[
√

A/B] ranges from 0 to 2π . As such,
the skin states energies linearly interpolate between −2

√
AB

to 2
√

AB, and is completely real if
√

AB is real. The skin depth
is independent of p⊥, and is given by

κ (p⊥) = κ = 1

2
log

∣∣∣A
B

∣∣∣. (A3)

Indeed, Ē can be obtained from E = Az + B/z via the GBZ

defined by z → e−κeip⊥ =
√

|B
A |eip⊥ .

More generally [77], the α, β �= 1 case admits skin state
solutions that trace star-shaped loci in the complex energy
plane, i.e.,

Ē ∝ A
β

α+β B
α

α+β ων
α+β, (A4)

where ωα+β is a α + β-th root of unity and ν = 1, . . . , α + β.
As p ranges over 0 to 2π , the eigenenergies sweep through the
“spikes” of the α + β-pronged star successively. [For illustra-
tion, the cos p factor in Eq. (A2) describes the back-and-forth
sweep on a 2-pointed star, i.e., line segment].

2. Analytic results for the 2-body case

We consider the Hamiltonian H1D [Eqs. (1) and (2) of the
main text] with n = 1 interaction V ±

σ = t±
σ that prohibits dou-

ble occupancy, with two bosons of species a, b, respectively:

HN=2
1D = 1

2

∑
±,i

∑
σ∈{a,b}

t±
σ c†

i±1,σ ci,σ (2 − ρi±1)

=
∑
k,±

T ±
⊥ e±ik⊥ , (A5)

where T ±
⊥ = t±

a e±ikCM + t∓
b e∓ikCM . For PBC skin states to

emerge due to particle clustering when interactions are
switched on, we require |T +

⊥ | �= |T −
⊥ |, at least for some kCM .

Squaring both sides and separately considering coefficients of
different powers of e±ikCM , we find that interaction-induced
PBC skin states will be absent only when the both conditions

t+
a

t+
b

=
(

t−
a

t−
b

)∗
, (A6a)

|t+
a |2 − |t−

a |2 = |t+
b |2 − |t−

b |2 (A6b)

are satisfied. Equation (A6a) states that both species must
possess skin states of identical inverse decay lengths (skin
depths) log |t+

σ |
|t−

σ | in physical real space under OBCs, at the
noninteracting level. Combined with Eq. (A6b), we further
require that either (i) there is no physical nonreciprocity at
all, i.e., |t+

σ | = |t−
σ | for σ = a, b, or that (ii) t±

a /t±
b = e±iθ ,

θ an arbitrary phase. But (ii) subsumes the implication of
Eq. (A6a) on identical skin depths. Hence, we conclude that
interaction-induced PBC skin states are absent whenever the
two species a, b independently experience hoppings related by

t±
a = e±iθ t±

b , (A7)

even though each may possess identically decaying skin states
under OBCs. Note, however, that the converse is not nec-
essarily true: Even if each species possess OBC skin states

of equal decay lengths, i.e., |t+
a |

|t−
a | = |t+

b |
|t−

b | , they can still exhibit

interaction-induced PBC skin states if the phases of the hop-
pings do not obey Eq. (A7). Representative eigenstate profiles
are shown in Fig. 4.

The conditions are more relaxed when we desire only to
not have PBC skin states satisfying specific criteria. For in-
stance, the absence of translation invariant PBC skin states,
i.e., those in the kCM = 0 sector only requires that |t+

a + t−
b | =

|t+
b + t−

a |. Also, the absence of PBC skin states that depend on
kCM requires only that t+

a t−
a = t+

b t−
b .

3. Treatment for many-body cases

We consider having N > 2 particles, but still with inter-
actions of n = 1, i.e., t±

σ = V ±
σ for simplicity, such that no

double occupancy is allowed. In this case, the configuration
space of HN>2

1D is a N-dimensional torus with
(N

2

)
“boundaries”

defined by disallowed double occupancy configurations, i.e.,
xα1 = xα2 where α1, α2 ∈ 1, . . . , N label the bosons. These
“boundaries” partition the configuration space into (N − 1)!
disconnected regions, each corresponding to a configuration
xα1  xα2  · · ·  xαN and cyclic permutations since the
physical system is periodic (Had it been OBCs, we would
have obtained N! disconnected regions). For instance, with
N = 3 we have

(3
2

) = 3 “boundaries” x1 = x2, x1 = x3 and
x2 = x3. The (3 − 1)! = 2 disconnected regions are namely
the configurations with x1 < x2 < x3 and cyclic permutations,
as well as the configurations with x1 < x3 < x2 and cyclic
permutations.

Each disconnected region is bounded by the N “bound-
aries” xα1 = xα2 , xα2 = xα3 , . . . , xαN = xα1 . Generically, the
NHSE will accumulate skin states against all of these bound-
ary surfaces. However, these “boundaries” collectively form
an N − 1-dimensional subspace, even though there are N
of them. This is because their normals all take the form
êαi − eα j , and are orthogonal to the direction of center-of-
mass translation ê1 + ê2 + · · · + êN . As such, the skin state
accumulation occurs only in N − 1 independent directions,
with the center-of-mass momentum kCM = 1

N

∑N
i=1 ki not to

be complex-deformed in the multi-dimensional generalized
BZ. (otherwise, that presupposes that skin state accumulation
also partakes in that sector, which is untrue).

To avoid deforming the momentum components containing
kCM, we introduce a basis transformation M connecting the
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FIG. 4. Profile of selected eigenstates of H1D for N = 2 bosons. [(a),(b)] Representative eigenstates at E = 0 for the identical unbalanced
hoppings case of Fig. 1 of the main text, with interactions V ±

σ turned off and on, respectively. There are no skin states and hence no qualitative
difference is observed. [(c),(d)] Representative eigenstates at E = 0 for the identical unbalanced hoppings case of Fig. 1 of the main text, also
with interactions V ±

σ turned off and on, respectively. Evidently, interactions are necessary for spatial skin localization (blue) along xa = xb.
[(e),(f)] PBC skin states at other energies for the same system, at E = −3 and E = −6.6 + 0.27i, respectively. In fact, skin localization is
pervasive across all eigenstates, once it appears.

orthonormal configuration space lattice basis ê j with the basis
spanned by the normals of the xα j = xα j+1 “boundaries”:

�x̃ = M�x, (A8)

where the jth component of �x represent the displacement of
the jth particle, while the jth component of �x̃ represent the
relative displacement of the jth and j + 1th particles (such
that it disappears if the jth and j + 1th particles collide). The
N th (final) component of �x̃ represents the center-of-mass
displacement �xCM = 1

N

∑N
i=1 �xi, so that we have �̃x =

(�x̃1, . . . ,�x̃N−1,�xCM). The conjugate momentum compo-
nents are defined analogously:

k̃T = kT M−1, (A9)

with the components of k and k̃ being the momenta dual
to x and x̃. k̃N is defined to be kCM = 1

N

∑N
i=1 ki, so that

k̃ = (k̃1, . . . , k̃N−1, kCM). As required, the scalar product kT ·
�x = k̃T · �x̃ remains invariant.

Explicitly, M−1 is an N × N matrix taking the form

M−1 = 1

N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 1
−1 1 0 · · · 0 1
0 −1 1 · · · 0 1
0 0 −1 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · 1 1
0 0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A10)
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such that M−1(1, 0, 0, . . .)T = (1,−1, 0, . . .)T gives the
normal to the x1 = x2 “boundary”, M−1(0, 1, 0, . . .)T =
(0, 1,−1, . . .)T gives the normal to the x2 = x3 “boundary”
etc. Note that for N � 4, each configuration space region is
bounded by only N out of the

(N
2

)
“boundaries”, and the “1”

and “−1”s in the columns in M−1 should be placed according
to the normals of the specific “boundaries” present in the
particular disconnected region of interest.

From Eq. (A10), M takes the nice form

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N−1 −1 −1 −1 · · · −1 −1
N−2 N−2 −2 −2 · · · −2 −2
N−3 N−3 N−3 −3 · · · −3 −3

...
...

...
...

. . .
...

...

2 2 2 2 · · · −N + 2 −N + 2
1 1 1 1 · · · 1 −N + 1
1 1 1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A11)
Importantly, by writing k = MT k̃, we see that if the only
nonzero k̃ component is k̃i, i = 1, . . . , N − 1, the k j − k j′ will
vanish unless j = i, j′ = i + 1, where it will be Nk̃. This
means that the k̃i direction indeed represents the direction
where particles i and i + 1 are brought together. This can be
more explicitly observed by writing

k j =
N∑

i=1

k̃iMi j = kCM +
N−1∑
i=1

[Nθ (i − j) − i]k̃i, (A12)

where the Heaviside function is defined as θ (x) = 1 for x � 0.
An arbitrary many-body hopping amplitude t across �x1

sites for the first particle, �x2 sites for the second particle,
etc. takes the momentum-space form t eikT ·�x, where �x =
(�x1,�x2, . . .) in the N-boson configuration space. Rewriting
the scalar product as kT · �x = kT M−1M�x = k̃T M�x, we
can express the hopping term in terms of the transformed mo-
mentum (but still defined through original physical hopping
displacements) as

teik̃T ·M�x = tei
∑N

i, j=1 k̃iMi j�x j

= teiN�xCM(kCM−∑N−1
j=1 jk̃ j )eiN

∑N−1
j=1 k̃ j

∑ j
i=1 �xi

= teiN�xCMkCM e−iN
∑N−1

j=1 ( j�xCM−∑ j
i=1 �xi )k̃ j , (A13)

where �xCM = 1
N

∑N
j=1 �x j . Indeed, if �x were to involve

only particles j and j + 1 being brought together, i.e., �x ∝
ê j − ê j+1, we will see that only k̃ j appears on the right-hand
side.

If the hopping only involves a single particle l , across �xl

sites, �xi = δil�xi and Eq. (A13) simplifies to

teik̃T ·M�xl êl = tei�xl kCM e−i�xl
∑N−1

j=1 ( j−Nθ ( j−l ))k̃ j . (A14)

In other words, from Eq. (A11), the exponents in the hopping
of particle l can be read from the columns of M, while the co-
efficients of k̃ j across of the hopping exponents of all particles
can be read from the rows of M.

In both Eqs. (A13) and (A14), the factor containing kCM is
not subject to complex deformation for the GBZ construction,
and can safely be treated as constants. The other terms are
degree N − 1 multi-variate monomials in z j = eik̃ j , and will
combine with other hoppings to form the multi-variate charac-

teristic polynomial, which will be used to derive the N − 1-D
GBZ as well as skin spectrum.

a. Hoppings with N = 3 particles

For explicit illustration and later application, we list down
explicit forms the single-particle hoppings with N = 3 parti-
cles, for the 1st, 2nd, and 3rd particle, respectively:

teik̃T ·M�xl ê1
∣∣
N=3 = tei�x1(kCM+2k̃1+k̃2 ), (A15a)

teik̃T ·M�xl ê2
∣∣
N=3 = tei�x2(kCM−k̃1+k̃2 ), (A15b)

teik̃T ·M�xl ê3
∣∣
N=3 = tei�x3(kCM−k̃1−2k̃2 ). (A15c)

Multi-particle hoppings can be simply written down by
multiplying the constituent single-particle hoppings.

b. Hoppings with N = 4 particles

For further explicit illustration, we also list down explicit
forms the single-particle hoppings with N = 4 particles, for
the 1st, 2nd, 3rd, and 4th particle, respectively:

teik̃T ·M�xl ê1
∣∣
N=4 = tei�x1(kCM+3k̃1+2k̃2+k̃3 ), (A16a)

teik̃T ·M�xl ê2
∣∣
N=4 = tei�x2(kCM−k̃1+2k̃2+k̃3 ), (A16b)

teik̃T ·M�xl ê3
∣∣
N=4 = tei�x3(kCM−k̃1−2k̃2+k̃3 ), (A16c)

teik̃T ·M�xl ê4
∣∣
N=4 = tei�x4(kCM−k̃1−2k̃2−3k̃3 ). (A16d)

Note that our basis transformation is not the only valid
one; i.e., for interactions with fuller rotational symmetry,
Barycentric coordinates, which has been used for construct-
ing generalized quantum Hall pseudopotentials [87], may be
more appropriate. In fact, any rotation to an orthogonal basis
containing kCM will be able to decouple the latter from be-
ing coupled with the other degrees of freedom that will be
deformed under GBZ construction.

4. Explicit constructions of PBC skin states and spectra for
N = 3 bosons

Here, we show the derivation details of the simple case of
N = 3 particles for a physical Hamiltonian with only nearest-
neighbor 1-body hoppings, for instance our H1D Hamiltonian
introduced in the main text. We shall impose interactions with
n = 1, i.e., t±

σ = V ±
σ , such that the excluded configuration

space consists of the planes x1 = x2, x2 = x3, and x3 = x1.
The most general form for such a Hamiltonian (with lattice

constant all set to unity) contains six real physical hoppings
with amplitudes t±

1 , t±
2 , and t±

3 :

HN=3
1D (k) =

∑
±

t±
1 e±ik1 + t±

2 e±ik2 + t±
3 e±ik3

=
∑
±

t±
1 e±i(kCM+2k̃1+k̃2 ) + t±

2 e±i(kCM−k̃1+k̃2 )

+ t±
3 e±i(kCM−k̃1−2k̃2 ). (A17)

With generic values of the six hopping amplitudes, the GBZ
and hence skin states will have to be found numerically, by
diagonalizing Eq. (A18) as a 2D lattice Hamiltonian with
up to next-nearest-neighbor hoppings, where kCM enters as
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FIG. 5. [(a),(b)] Complex spectra of H1D for N = 3 bosons and parameter t±
1 = t±

2 = 1, t−
3 = 0, t+

3 = 2, with interactions V ±
σ turned off

and on, respectively. The PBC skin effect occurs even though only one of the particles experience asymmetric hoppings. [(c),(d)] Complex
spectra of H1D for N = 3 bosons, for the case in Fig. 2(c) of the main text, also elaborated by Eq. (A18). [(e),(f)] The profiles of arbitrarily
selected eigenstates of the case in (d), at E = −2.7 − 0.5i and E = 4.6 − i, respectively. Skin accumulation along the “boundary” planes
x1 = x2, x2 = x3, and x3 = x1 is always observed. L = 14 was used throughout.

an external parameter. Combining all kCM sectors, we shall
obtain the spectrum and full set of (PBC) skin eigenstates for
HN=3

1D .
What we have achieved is the solving of an interacting 3-

body problem by mapping it to a single-body problem on a 2D
non-Hermitian lattice. In general, this can always be done for
an N-body CM-conserving interacting problem on a lattice,
with the hopping asymmetries mapped onto the asymmet-
ric hoppings of a N − 1-dimensional lattice. Importantly, the
physical requirement that the PBC skin state accumulations
conserve CM mandates that the accumulations be computed

in a basis orthogonal to the CM translation direction, which
in general do not coincide with the physical many-basis. As
such, even single-particle nearest-neighbor hoppings can ef-
fectively assume the form of many-body hoppings ranging
up to N − 1 lattice sites, fundamentally altering the GBZ, as
well as its analytic tractability. One salient emergent feature
is a graph-like spectral structure in the complex plane [77],
whose departure from the real line is physically rooted in
the lack of convergence of certain non-Hermitian many-body
processes. The spectra for illustrative N = 3 cases are shown
in Fig. 5.
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a. Analytic solution for some restricted cases of HN=3
1D .

We replace the left-hand side by the eigenenergy E , and
consider the expression as a polynomial in z1 = eik̃1 and z2 =
eik̃2 iteratively. WLOG, we start with z1:

E = z2
1[t+

1 ei(kCM+k̃2 )] + 1

z2
1

[t−
1 e−i(kCM+k̃2 )]

+ z1[t−
2 e−i(kCM+k̃2 ) + t−

3 e−i(kCM−2k̃2 )]

+ 1

z1
[t+

2 ei(kCM+k̃2 ) + t+
3 ei(kCM−2k̃2 )]. (A18)

The GBZ is generically determined by the smallest complex
deformation κ ( p̃1) such that z1 → eip̃1 e−κ ( p̃1 ), p̃1 ∈ R gives
rise to a double degeneracy in the solution for E → Ē for each
p̃1. This shall be repeated for z2 = eik̃2 too, after which the
skin spectrum Ē → ¯̄E and eigenstates are obtained.

However, Eq. (A18) is a degree four polynomial whose
explicit solution is very complicated, even though it exists
by the theorem of Abel-Ruffini. To make analytic headway,
we shall consider a few cases where some of the hopping
amplitudes vanish.

(1) t±
1 = 0: Having completely no hoppings for one of

the particle species, chosen WLOG as species 1, removes the
quadratic powers of z1 and 1/z1, leaving behind an effective
1D Hatano-Nelson model in the direction of x̃1:

EN=3
∣∣
t±
1 =0 = z1[t−

2 e−i(kCM+k̃2 ) + t−
3 e−i(kCM−2k̃2 )]

+ 1

z1
[t+

2 ei(kCM+k̃2 ) + t+
3 ei(kCM−2k̃2 )]

= z1T +
23 + 1

z1
T −

23 , (A19)

where T ±
23 = t∓

2 e∓i(kCM+k̃2 ) + t∓
3 e∓i(kCM−2k̃2 ). In the original

physical system, x̃1 = 0 corresponds to the “boundary” x1 =
x2 via. Eqs. (8) and (10). Hence k̃1 (which takes the role
of p⊥) physically represents the momentum perpendicular to
this boundary, and needs to be complex analytically contin-
ued such that its effective 1D Hamiltonian

∑
x̃1

[T +
23 c†

x̃1+1cx̃1 +
T −

23 c†
x̃1

cx̃1+1] no longer experiences the skin effect. Doing so

gives the GBZ defined by z1 → eip̃1

√
| T −

23

T +
23

| = ei(̃p1+θ23 )

√
T −

23

T +
23

where θ23 = Arg[T +
23 ]−Arg[T −

23 ]
2 , leading to

EN=3
∣∣
t±
1 =0 → ĒN=3

∣∣
t±
1 =0

= ei( p̃1+θ23 )

√
T −

23

T +
23

T +
23 + e−i( p̃1+θ23 )

√
T +

23

T −
23

T −
23

=
√

T +
23 T −

23 (ei( p̃1+θ23 ) + e−i( p̃1+θ23 ) )

= 2
√

T +
23 T −

23 cos( p̃1 + θ23), (A20)

which ranges between −2
√

T +
23 T −

23 to 2
√

T +
23 T −

23 , and is obvi-
ously immune to the NHSE in the x̃1 direction.

Constructing the GBZ in the second direction k̃2 is how-
ever more subtle, since k̃2 appears not just in

√
T +

23 T −
23 ,

but also in the θ23 angle in a way that is nonanalytic at
first sight. We would like to perform an analytic continua-
tion on k̃2 = −i log z2 that brings the surrogate Hamiltonian
into a form with balanced effective hoppings. Continuing
from Eq. (A20) with T +

23 = e−ikCM (t−
2 /z2 + t−

3 z2
2 ) and T −

23 =
eikCM (t+

2 z2 + t+
3 /z2

2 ),

ĒN=3
∣∣
t±
1 =0 =

√
T +

23 T −
23 (ei( p̃1+θ23 ) + e−i( p̃1+θ23 ) )

=
√

t−
2 t+

2 + t+
3 t−

3 + t−
3 t+

2 z3
2 + t+

3 t−
2 /z3

2

(√
T +

23

T −
23

√∣∣∣∣T −
23

T +
23

∣∣∣∣eip̃1 +
√

T −
23

T +
23

√∣∣∣∣T +
23

T −
23

∣∣∣∣e−i p̃1

)
. (A21)

To achieve balanced hoppings, we will at least need to balance the hoppings in the square root on the left, which resembles that

of a a Hatano-Nelson model with lattice spacing of 3 units. We hence try the analytic continuation z2 → eip̃2 6

√
t−
2 t+

3

t+
2 t−

3
with p̃2 ∈ R,

such that

√
T +

23 T −
23 →

√
t+
2 t−

2 + t+
3 t−

3 + 2
√

(t+
2 t−

2 )(t+
3 t−

3 ) cos 3p̃2 (A22)

and

√
T +

23

T −
23

= e−ikCM
1

z2

√
t−
2 + t−

3 z3
2

t+
2 + t+

3 /z3
2

→ e−i(kCM+p̃2 ) 6

√
t−
3

t+
3

3

√
t−
2

t+
2

√√√√√
√

t+
2 t−

2 + e3i p̃2

√
t+
3 t−

3√
t+
2 t−

2 + e−3i p̃2

√
t+
3 t−

3

= 6

√
t−
3

t+
3

3

√
t−
2

t+
2

⎡
⎢⎢⎣e−i(kCM+p̃2 )

√
t+
2 t−

2 + e3i p̃2

√
t+
3 t−

3√
t+
2 t−

2 + t+
3 t−

3 + 2
√

(t+
2 t−

2 )(t+
3 t−

3 ) cos 3p̃2

⎤
⎥⎥⎦,

(A23)
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with the quantity in the square parenthesis having unit modulus. It is interesting to note that the square root in the denominator

of the last line of Eq. (A23) is exactly
√

T +
23 T −

23 . Hence

¯̄EN=3
∣∣
t±
1 =0 =

√
T +

23 T −
23√

T +
23 T −

23

((
√

t+
2 t−

2 + e3i p̃2

√
t+
3 t−

3 )e−i( p̃2+kCM−p̃1 ) + (
√

t+
2 t−

2 + e−3i p̃2

√
t+
3 t−

3 )ei( p̃2+kCM−p̃1 ) )

= 2
√

t+
2 t−

2 cos( p̃2 − p̃1 + kCM) + 2
√

t+
3 t−

3 cos(2 p̃2 + p̃1 − kCM). (A24)

Indeed, the energy of the skin states as given by Eq. (A24)
coincides with that of two independent Hatano-Nelson chains
of hopping amplitudes t±

2 and t±
3 . While this result can ad-

mittedly be obtained much more simply by treating k̃2 − k̃1 +
kCM and 2k̃2 − k̃1 − kCM as independent momenta from the
outset [Eq. (A19)], doing so will obscure the dissimilar skin
accumulations between particles 1 and 2 vs 2 and 3. In our
basis, the two orthogonal skin accumulation directions occur
in the directions normal to x̃1 = x1 − x2 and x2 = x2 − x3, i.e.,
the relative displacements of particles 1,2 and 2,3, respec-
tively. (The relatively displacement of particles 1,3 is a simple
linear combination x̃1 and x̃2). Since particles 1 cannot hop,
unlike the other two particles, we will expect κ̃1 and κ̃2 to
behave differently. Indeed, in the x̃2 direction, the inverse skin
depth is given by

κ̃2 = − log |z2| = 1

6
log

∣∣∣∣ t+
2

t−
2

∣∣∣∣− 1

6
log

∣∣∣∣ t+
3

t−
3

∣∣∣∣. (A25)

As expected, it is large either when |t+
2 | > |t+

3 | and |t−
3 | >

|t−
2 |, i.e., when the dominant hoppings of particles 2 and 3

are in opposing directions, resulting in a net accumulation
between them.

The x̃1 direction accumulation, on the other hand, is
characterized by the inverse skin depth [from Eqs. (A19)
and (A23)]

κ̃1 = − log |z1| = 1

2
log

∣∣∣∣T +
23

T −
23

∣∣∣∣ = 1

2
log

∣∣∣∣ t+
2 z2 + t+

3 /z2
2

t−
2 /z2 + t−

3 z2
2

∣∣∣∣
= 1

3
log

∣∣∣∣ t+
2

t−
2

∣∣∣∣+ 1

6
log

∣∣∣∣ t+
3

t−
3

∣∣∣∣. (A26)

Here, since particle 1 cannot hop, the skin accumulations
solely arises from the left/right asymmetry of the hoppings
of the other particles. Even though particle 3 is not directly
involved in the interparticle displacement x̃1 = x1 − x2, the
fact that it enters the CM of all the particles, which needs to
be conserved, causes its hoppings to also affect κ̃1 to a smaller
extent.

(2) t−
1 = t+

2 = t+
3 = 0: In this case, all the exponents of

z1 in Eq. (A18) are positive, and the GBZ is degenerate,
with all eigenvalues Ē collapsing onto zero via the so-called
non-Bloch band collapse [65]. This is because the separations
between particle 1 and particles 2,3 can only decrease, not
increase, as particle 1can only hop to the right while parti-
cles 2 and 3 can only hop to the left. With no counteracting
hoppings, the skin accumulations degenerate such that all
particles are right next to each other with 100% probability.

(3) t−
1 = t−

2 = t−
3 = 0: In this other nontrivial special

case, all the (real) hoppings for the three species/particles
are directed to the right. In other literature where OBCs are
considered, all skin states will become degenerate, piling up
on the rightmost site due to non-Bloch band collapse. But in
our PBC scenario, having only rightwards hoppings do not
lead to a trivial scenario, since the skin accumulations occur
between particles. The dispersion relation

EN=3
∣∣
t−

j =0 = z2
1[t+

1 ei(kCM+k̃2 )]

+ 1

z1
[t+

2 ei(kCM+k̃2 ) + t+
3 ei(kCM−2k̃2 )]

= z2
1A + B

z1
, (A27)

which is of the form of Eq. (A1) with α = 2, β = 1 and A, B
given as above. As first derived in Ref. [77] and representing
a special case of Eq. (A4), we have

ĒN=3
∣∣
t−

j =0 ∝ 3
√

AB2e
2π iν

3 , (A28)

which traces out a 3-spiked star in the complex plane, where ν

labels the spikes. To derive ¯̄EN=3|t+
j =0, we attempt to balance

AB2 = e3ikCMt+
1 z2

(
t+
2 z2 + t+

3 /z2
2

)2

= e3ikCMt+
1

(
t+
2 z3/2

2 + t+
3 /z3/2

2

)2

→ e3ikCMt+
1

(
2
√

t+
2 t+

3 cos
3p̃2

2

)2

∝ e3ikCMt1t2t3 (A29)

via z3
2 → z3

2
t+
3

t+
2

, such that it takes the form of a Hatano-Nelson
model with lattice constant being 3/2 units. With this, we
obtain the skin state eigenenergies, which are proportional to

¯̄EN=3
∣∣
t−

j =0 ∝ ei(kCM+2πν/3) 3

√
t+
1 t+

2 t+
3 . (A30)

This result expresses how the eigenenergies scale on the whole
with the geometric mean of the hoppings. The distribution of
the individual eigenenergies, which are in principle indexed
by p̃1 and p̃2, is numerically displayed in Fig. 2(c) of the
main text. As expected, all the nonzero hoppings enter sym-
metrically via 3

√
t+
1 t+

2 t+
3 . In the next subsection, we shall see

that this result generalized to N particle species with only
rightwards hoppings.

Since this eigenenergy is complex for ν �= 0, we ex-
pect states to undergo nontrivial attenuation/growth with
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FIG. 6. Time evolution of real-space particle density under the PBC skin effect for an initial state with (a) kCM = 0 and (b) kCM �= 0. The
three particles are impenetrable with t−

j = 0, t+
j = j in a PBC system of size L = 8. Time t = 0 to 1 from black to blue in (a), and t = 0 to

3 from black to green in (b). For (a), these initial states are randomly chosen representatives given by the coherent sum of the eigenstates of
the 41st, 161st, and 210th largest eigenvalues. For (b), they are the coherent superposition of particles localized at x = 2, 4, and 6 for (b). The
evolution remains nondivergent in (a) despite the fully unbalanced hoppings, with particle clustering at two locations. For (b), it diverges due
to kCM �= 0, although clustering still occurs at a single peak that spreads across adjacent sites.

time, with the fractional rate of change proportional to

Im | ¯̄EN=3|t−
j =0| ∝

√
3

2
3

√
t+
1 t+

2 t+
3 .

b. Dynamics for PBC skin states

One main distinction between PBC skin states is that the
real space particle density does not accumulate at physical
boundaries, which are no longer present. This is especially
salient when the CM momentum kCM = 0, since the over-
all particle distribution does not move despite the nontrivial
pumping from unbalanced couplings, which can even be uni-
directional.

Illustrated in Fig. 6 is the time evolution of two randomly
chosen initial states for the impenetrable particle model with
N = 3 particles as above, with hoppings t−

j = 0, t+
j = j. For

(a), kCM = 0, such that the state belongs to the real eigenen-
ergy branch [see Fig. 2(c) of the main text]. As time increases,
particle clustering (peaks) appear around x = 3 and x = 7,
demonstrating that skin accumulation can occur without phys-
ical boundaries. Since the CM remains invariant, no gain/loss
occurs, even though all particle hoppings are asymmetric. This
would not have been possible had the particles been allowed
to penetrate each other, since the wave function inevitably
experiences large gain as it is pumped by the very unbalanced
non-Hermitian hoppings.

By contrast, Fig. 6(b) shows another case where a ran-
domly chosen initial state possesses kCM �= 0. In this case,
very significant gain is observed as time evolves, even though
the particles still eventually cluster at a single skin accumu-
lation peak. This peak moves and becomes spread out over a
few sites as time goes by, since the particles are not allowed
to occupy the same site.

5. Extension to certain scenarios with large
number of particles N

The thermodynamic (large N) limiting description of our
system can be written down with the M matrix results in the
previous section, from Eq. (A10) through Eq. (A14). Gener-
ically, it will involve N − 1 iterated GBZ constructions for
k̃1 through k̃N−1, and can only be performed numerically.
However, here we show how the thermodynamic limit can be
analytically accessed in the scenario with only unidirectional
hoppings.

From the form of M in Eq. (A11) and the discussion that
followed, our N-particle system with only nearest-neighbor
hoppings to the right can be described by

EN
∣∣
t−

j =0 = eikCM

N∑
j=1

t+
j

N−1∏
i=1

z
Mi j

i , (A31)

which for N = 3 reduces to Eq. (A27):

EN=3
∣∣
t−

j =0 = eikCM

3∑
j=1

t+
j

2∏
i=1

z
Mi j

i

= eikCM
(
t+
1 z2

1/z2 + t+
2 z2/z1 + t+

3

/(
z1z2

2

))
, (A32)

where zi = eik̃i . Owing to the form of the matrix elements
Mi j = Nθ (i − j) − i, at iteration i where the GBZ of zi is
being constructed, Mi j = N − i for the first i elements Mi1 to
Mii, and Mi j = −i for the i + 1th to N th elements Mi,i+1 to
MiN .

Suppose we construct the GBZs in the order of
z1, z2, . . . , zN−1. For the first iteration, we have

EN
∣∣
t−

j =0(z1, z2, . . . , zN−1) = eikCM

(
zN−1

1

[
t+
1

N−1∏
i �=1

zMi1
i

]
+ 1

z1

[
N∑

j>1

t+
j

N−1∏
i �=1

z
Mi j

i

])

→ ĒN
∣∣
t−

j =0(z2, . . . , zN−1) ∝ eikCM

[
t+
1

N−1∏
i �=1

zMi1
i

] 1
N
[

N∑
j>1

t+
j

N−1∏
i �=1

z
Mi j

i

] N−1
N
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FIG. 7. [(a),(b)] Complex spectra of H1D for N = 4 bosons with fully unidirectional hopping t+
j = j, t−

j = 0 for j = 1, 2, 3, 4, with
interactions V ±

σ turned off and on, respectively. This is qualitatively similar to the analogous unidirectional case in Fig. 5 with N = 3 particles.
[(c),(d)] Complex spectra for the N = 4 case in Fig. 2(d) of the main text, with interactions V ±

σ turned off and on, respectively. Indeed,
the spectrum is modified dramatically by the interactions. [(e),(f)] Complex spectra for another case with symmetric t±

1 = t±
3 , and almost

symmetric t∓
2 = t±

4 = ±2, with interactions V ±
σ turned off and on, respectively. A curious 4-fold symmetry emerges in the spectrum, and the

noninteracting case has an almost uniform distribution of eigenenergies. L = 8 was used throughout.

= eikCM

[
t+
1

N−1∏
i �=1

zN−i
i

] 1
N
[

N∑
j>1

t+
j

N−1∏
i �=1

zNθ (i− j)−i
i

] N−1
N

= (eikCMt+
1 )

1
N

[
eikCM

N∑
j>1

t+
j

N−1∏
i>1

z
N

N−1 (Nθ (i− j)−i)
i

] N−1
N

→ (
eikCMt+

1

) 1
N
[
EN−1

∣∣
t−

j =0(z2, . . . , zN−1)
] N−1

N (A33)

The first → comes about from the GBZ construction of z1,
which results in a modified spectrum ĒN |t−

j =0(z2, . . . , zN−1)
computed via Eq. (A4). The second → involves the replace-
ment zi → z(N−1)/N

i for all i > 1, which amounts to a rescaling
of the unit cell by the factor (N − 1)/N . We have thus shown
that, after one iteration of GBZ construction, the N-particle
spectrum is proportional to the (N − 1)/N th power of the
N − 1-particle spectrum with particle 1 omitted. Applying
this procedure repeatedly, we finally arrive at

ĒN
∣∣
t−

j =0 ∝ eikCM N

√
t+
1 t+

2 · · · t+
N e2π iν/N . (A34)

This result shows that the spectrum scales overall with the
geometric mean of all the hoppings, consistent with symme-
try. This finding is nonetheless nontrivial, since there exist
various other symmetric polynomials that could have been
involved. As with the 3-body case, the detailed distribution of
individual eigenenergies is much more complicated and can in
most cases only be obtained numerically. Examples for N = 4
are shown in Fig. 7.

Note that Eq. (A34) also implies that, if there are only
a finite number of species s with respective particle number
proportions f1, f2, . . . , fs, each experiencing only hoppings
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FIG. 8. Complex spectra for H1D with N = 2 particles for hopping strengths t−
a = t−

b = 1, t+
a = 2, t+

b = 3. From (a) to (f), we have
n = t±

σ /V ±
σ = 1/(1 − �) with � ranging across � = 1 (no interactions), 10−1, 10−2, 10−3, 10−4 to 0 (full interaction that prevents double

occupancy). The spectrum resembles the � = 1 case even for a relatively small � of 0.01 to 0.1.

ti in the same direction, the skin spectrum will scale
with

ĒN
∣∣
t−

j =0 ∝ eikCM

s∏
j=1

t
f j

j e2π iν/N , (A35)

which implies a spectral distribution independent of the total
number of particles.

6. Cases with partial “boundaries”

In the main text, we have explicitly analyzed only cases
where interactions or particle statistics fully render certain
configurations inaccessible. But realistic interactions cannot
be perfectly tuned. Furthermore, partial suppression of hop-
pings also enrich the set of possible dynamics.

In general, the incomplete attenuation of hoppings can be
systematically studied by interpolating between full PBCs
and OBCs of the configuration space. In the non-Hermitian
setting, this can be shown to correspond to the spectral flow
generated by an imaginary flux [70], at least up to a cer-
tain extent. The key takeaway is that the OBC spectrum is
exponentially sensitive, such that even a small perturbation
is likely to make the spectrum qualitative resemble the PBC
limit. Shown in Fig. 8 is the spectrum of H1D with N = 2
particles [Eq. (1) of main text] with asymmetric t−

a = 1, t+
a =

2, t−
b = 1, t+

b = 3, such that the interaction V ±
σ successively

approaches exponentially close to t±
σ , such that the net hop-

ping towards an occupied site ∝ � exponentially approaches
zero.

As such, the hoppings need to be attenuated to at least
an order of magnitude smaller than their original amplitude
before they can behavior like “boundary” hoppings. Note,
however, that our discussion is based on a scenario where

high densities suppress hoppings, which is the case for our
H1D at sufficiently low densities, even if n deviates from an
integer value. At higher densities, H1D should be replaced
by a more phenomenologically realistic nonlinear model that
always suppresses hoppings towards densely populated sites.

APPENDIX B: CHIRAL TOPOLOGICAL STATES FROM
PBC 2-BODY HOPPING MODEL

We start from

H topo
1D = t

∑
�x1,�x2=±1

μ
†
x1+�x1

ν
†
x2+�x2

μx1νx2 eiλφ|�x1+�x2|

+ t ′ ∑
x

λ(μ†
x+2μx − ν

†
x+2νx ) + H.c. (B1)

of the main text (see Fig. 3 therein), which can be inter-
preted as a 2-fermion hopping model on a 1D zigzag lattice
with PBCs. The even/odd sites of the chain correspond to
the top/bottom levels of the zigzag chain, which are labeled
λ = (−1)x. μ, ν refers to the 2nd-quantized operators of the
two fermions. In anticipation of obtaining a Checkerboard
geometry for the configuration space, we design the hoppings
such that the fermions are on the same level of the zigzag
chain at any one time, i.e., x1 + x2 ≡ 0 (mod 2): they should
not simultaneously occupy an odd and an even site.

There are 4 possible 2-body hopping processes of ampli-
tudes t , with each fermion either hopping left or right. When
the two fermions hop in the same direction, a flux from a
vertical time-reversal breaking field gives rise to a phase factor
of e±2iφ , the sign depending on whether the two fermions were
initially on the upper or lower level. When the fermions hop
in opposite directions, no phase is incurred. (As we see later,
the topology remains stable even if small asymmetric phases
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FIG. 9. Profiles of representative eigenstates in the 2-body configuration space, obtained by diagonalizing H topo
1D (and not H topo

config directly).
(a) Somewhat delocalized E = 2 at the edge of the bulk gap, (b) in-gap eigenstate at E = 1.7, which is localized against the x1 = x2 “boundary”,
(c) even more strongly localized eigenstate at E = 1.2.

are accrued in these cases, but having these phases make the
system less realistic).

Additionally, there are also minimal 1-body hoppings ±t ′
across two sites [1-site single-body hoppings will result in
x1 + x2 ≡ 1 (mod 2)]. To open up the bulk gap, we stipulate
that the hopping is +t when fermion μ(ν) is on the up-
per(lower) level, and −t vice versa.

Putting this system into its 2-body configuration space, and
defining k⊥ = k1 − k2, kCM = k1 + k2, the system takes the
form of a Checkerboard lattice [Fig. 3(a) of the main text]
with t ′ taking alternate signs in adjacent “Checkers”, and flux
of alternating signs along the CM direction. Since this system
is periodic in both x1 and x2, the Hamiltonian can be expressed
in momentum space as

H topo
config(k) = 2t (cos k⊥ + cos kCM cos 2φ)σx

− 2t sin 2φ cos kCMσy − 4t ′ sin k⊥ sin kCMσz,

(B2)

where σx = (0 1
1 0), σy = (0 −i

i 0 ) and σz = (1 0
0 −1) are

the Pauli matrices. In real space, H topo
config contains only

inter-sublattice couplings of t in the directions �x =
(1, 1), (1,−1), (−1, 1), and (−1,−1). Along the CM direc-
tions �x ∝ (1, 1), the couplings from the upper/lower to the
lower/upper sublattice are also multiplied by phases e±2iφ .

As plotted in Figs. 3(b) and 3(c) of the main text, with
“open boundaries” perpendicular to k⊥ arising from Pauli
exclusion that prohibits occupancy of x1 = x2 states, 2 sets
of localized mid-gap states appear inside the bulk gap. These
chiral modes traverse the bulk gap twice in one period of
kCM, signifying a Chern number of 2 for the lower occupied
band, which is also corroborated by the integral of the Berry
curvature distribution. The in-gap chiral modes are well-
localized with IPR < 0.1L, and are displayed explicitly in
Fig. 9.

The finite dispersions of the chiral states with respect to
kCM implies nonzero unidirectional group velocities of wave
packets near x1 = x2. In the physical zigzag chain, they corre-
spond to states with the two fermions clustered close to each
other. While the chiral transport of ordinary Chern modes
can be understood through a flux pumping argument across
physical edges, in our case, there are no edges, only dynamical

“boundaries” set by one impenetrable fermion on another. Al-
though the hoppings in H topo

1D appear symmetric, they are not
when one particle is near the other, since certain hoppings will
be forbidden by fermionic statistics. As one fermion cannot
be on both sides of another at the same time, this hopping
suppression becomes intrinsically asymmetric, leading to the
emergence of chiral propagation.

APPENDIX C: ULTRACOLD ATOMIC IMPLEMENTATION
AND CHARACTERIZATION OF PBC SKIN “BOUNDARY”

STATES

In this section, we discuss how interaction-induced PBC
skin states may potentially be realized and detected in ex-
periments, hopefully in the near future. For this purpose, we
shall focus on ultracold atomic systems in optical lattices,
from which a large number of effective models have been
simulated. This discussion will not be restricted to Eq. (1) of
the main text, which is just one example of a class of models
that are easy to investigate analytically.

As previously discussed, PBC “boundary” states occur due
to the emergence of effective boundaries due to particle statis-
tics or interactions in the many-body configuration space. In
particular, PBC skin states require at least two species of par-
ticles that experience different unbalanced hoppings [Fig. 1(b)
of the main text], such that they accumulate against each other,
unable to pass each other due to inter-particle repulsion. For
that, the necessary physical ingredients are:

(1) Unbalanced hoppings: These are consequences of the
simultaneous presence of non-Hermiticity and nonreciproc-
ity. Although unbalanced hoppings per se do not occur in
atomic couplings, the key idea is that, up to basis rotation,
they can also be effectively realized in systems where non-
Hermiticity and nonreciprocity occur separately [50,58]. In
other words, all that is needed is an effective flux that coexists
with species-dependent dissipation/depopulation losses, not
necessarily acting on the same site.

(2) Mechanism for generating effective boundaries: For
fermions, Pauli exclusion already naturally prohibits occu-
pation of the “diagonal boundary” xi = x j in configuration
space. For both bosons and fermions, repulsive or attractive
interactions can also be engineered through Feshbach reso-
nances [108,109] or the Efimov effect [110,111].
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Controlled magnetic Feshbach resonances have been ex-
perimentally achieved in ultracold 40K atoms [112]. Such
techniques are highly tunable, affording possibilities like
center-of-mass-dependent interactions (which will break
translation invariance in the CM direction, which augments
an additional nontrivial degree of freedom onto what has
been the main text), as well as non-Hermitian interactions
rrrr [113,114].

Below, we shall mainly focus on how to design a minimal
cold-atom setup for realizing unbalanced couplings necessary
for the PBC skin effect. While a huge variety of possible in-
teractions are in principle possible [109,111], involving three
or even four bodies, a proper study of these possibilities is
beyond the scope of this paper.

To realize unbalanced couplings, a prototypical demon-
strated avenue is to add non-Hermitian dissipation to a 1D
Creutz ladder lattice with flux. Such a Creutz ladder with
effective flux has been previously experimentally realized in a
degenerate Fermi gas of 173Yb atoms in the F = 5/2 hyperfine
ground state [115]. The ingredient of nonreciprocity is intro-
duced by lattice shaking, which can in general be performed
to achieve couplings of effective Hamiltonians that are hard
to realize in static settings [116,117]. To realize the Creutz
ladder, consider a 1D optical lattice formed by the interference
of two laser beams. By modulating the frequency difference
δ�(t ) of the two laser frequencies � and � + δ�(t ) via
δ�(t ) = �0 sin(ωt + ϕ), it can be shown [115] that the lattice
position oscillates with time as x0(t ) = − �0a

2πω
cos(ωt + ϕ).

The laser frequency � is set to correspond to a wavelength of
532 nm in the experiment, and is related to the lattice spacing
a via a =

√
3πc
�

.
This lattice shaking modulates the effective orbitals, i.e.,

the s and p orbitals of the linear array of trapped 173Yb
atoms, which forms the two degrees of freedom making up
each “rung” of the 1D Creutz ladder. In this basis, one can
write down the effective time-dependent tight-binding model
as [115]

HCr(t ) =
∑
j;μν

Kμν (t )d†
j;μd j;ν −

∑
j;μν

[Jμν (t )d†
j;μd j+1;ν + H.c.]

(C1)

where μ, ν index the s and p orbitals and K (t ), J (t ) are
2-by-2 matrices representing the onsite and nearest-neighbor
couplings in the chain, which can be exactly computed from
orbital overlaps [58,115]. Onsite energies [diagonal terms
in K (t )] are unmodulated and thus independent of time.
However, the rest of the couplings all contain a first-order
contribution proportional to sin(ωt + ϕ), being affected by
the shaking. In addition, K (t ) also contains constant diagonal
contributions representing the static nearest-neighbor cou-
plings between the intra-leg (same orbital) sites. By taking the
Magnus approximation

H eff
Cr = H0 +

∞∑
n=1

[Hn, H−n]

nh̄ω
, (C2)

where Hn is the nth time Fourier harmonic of HCr(t ), we
obtain the effective high-frequency Floquet Hamiltonian for

the Creutz ladder for ν = 1, 2-photon processes [115]:

H eff
Cr (k) = − (tp + ts) cos k I − tv sin(ϕ − νπ/2)σx

− 2td sin k cos(2ϕ − νπ/2)σy

+
(

εsp − ν h̄ω

2
− (tp − ts) cos k

)
σz, (C3)

where εsp ≈ ν h̄ω is the onsite energy difference between the
s and p orbitals, which determines the near-resonant ω to
be used. tp, ts are the nearest neighbor tunneling amplitudes
between p and s orbitals and tv, td are additional energy
parameters of these orbitals [115]. Even without changing
the type of atom, a reasonable large parameter space can be
explored by tuning the driving phase ϕ.

To induce the NHSE, depopulation losses can addition-
ally be asymmetrically induced on the s and p orbitals by
using a resonant beam to excite atoms to another higher
energy state [118]. Besides an overall complex energy shift
proportional to I, this will create a igσz non-Hermitian term
that is proportional to the rate of the loss [58]. Through a
basis rotation that transforms σz to σy, we see that igσz →
iσy becomes an effective unbalanced hopping term, which,
combined with the other terms of H eff

Cr (k), becomes a variant
of the non-Hermitian SSH model exhibiting the skin effect
[47,68]. Species-dependent skin effect can be realized by
loading the optical lattice with two or more types of atoms
[119], each with different excitation probability and hence
non-Hermitian loss term. This avenue for achieving the NHSE
has also been rigorously justified via the Lindblad master
equation [50].

To detect these PBC “skin” states induced by quantum
statistics or interactions, correlation functions need to be mea-
sured, particularly the 2-body correlation. Typically, PBC skin
states are characterized by large correlations at short distances
that however vanish as positions coincide. Unlike ordinary
skin states that accumulate at physical boundaries, it is not
sufficient to measure single-particle local density. Note that
such “PBC” skin states exists regardless of whether the system
has a physical boundary, being essentially many-body phe-
nomena, and it is not necessary to remove physical boundaries
if they are inevitably present. There are multiple experimen-
tally established avenues for measuring particle correlations
in cold atoms. For instance, photoassociation tends to occur
when particles are very close together, i.e., between 1.6 and
1.9 nm for 87Rb atoms [120], with the photoassociation rate
consequently used as a measure of local pair correlation [121].
Higher-order correlations up the the 10th order in 1D have
also been measured in such atoms via matter-wave interfer-
ometry between two identical coherent halves of the system
[122]. Data on higher-order correlations can shed light not
just on the presence of PBC skin phenomena, but also on the
geometric profile of the skin states in the high-dimensional
many-body configuration space. Furthermore, it has also been
proposed that cold-atom correlations can even be nondestruc-
tively measured through multiple impurity atoms that take the
role of quantum probes [123].

A variety of effective models that host PBC skin states can
be obtained by modifying the above proposal. In particular,
by varying the laser frequency relative to the atomic energy
levels, models with different numbers of effective bands can
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be achieved. To recap, what is necessary for PBC skin states
are: (i) effective fluxes that may be achieved through lattice
shaking or optical driving, (ii) inhomogeneous non-Hermitian
loss mechanism that can hopefully be reliably generated in the
near future, upon more careful study of Langevin noise terms,

and (iii) many-body effects, i.e., Pauli exclusion or interac-
tions resulting from Feshbach resonances, the Efimov effect,
etc. Enhancements of the pair correlation at short distances
indicate the presence of particle clustering, which is signature
of PBC skin states.
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