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Equivalence of spatial and particle entanglement growth after a quantum quench
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We analyze fermions after an interaction quantum quench in one spatial dimension and study the growth of
the steady state entanglement entropy density under either a spatial mode or particle bipartition. For integrable
lattice models we find excellent agreement between the increase of spatial and particle entanglement entropy,
and for chaotic models an examination of two further neighbor interaction strengths suggests similar correspon-
dence. This result highlights the applicability of a statistical ensemble to compute expectation values of local
observables after a quantum quench
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I. INTRODUCTION

The time evolution of an initial quantum state after a
sudden change of interaction strength leads to an asymp-
totic steady state, whose local properties are governed by the
buildup of entanglement between spatial subregions of the
system [1–6]. This entanglement is believed to be responsible
for the generation of extensive entropy that validates the use
of statistical mechanics for local expectation values, an idea
which is supported by recent measurements of the second
Rényi entropy [7,8]. The ability to experimentally investigate
the unitary time evolution of pure states in isolated systems
on long timescales in ultracold atoms [7,9,10] now provides
an exciting opportunity to test fundamental ideas on how
quantum statistical mechanics emerges from the many-body
time-dependent Schrödinger equation.

As an alternative to the conventional spatial mode parti-
tioning, a quantum system of N indistinguishable particles
can be bipartitioned into two groups containing n and N − n
particles each [11–21] as shown in Fig. 1. The n-particle
reduced density matrix ρn can be computed in practice by
keeping n particle coordinates fixed while tracing over the
remaining N − n particle positions in the appropriately sym-
metrized first-quantized wave function [22–24]. In this way
the partial trace is performed while fully respecting the in-
distinguishably of quantum particles. The elements of this
reduced density matrix are proportional to correlation func-
tions, and are thus in principle measurable in experiments,
and the resulting entanglement entropy has been shown to be
sensitive to both interactions and particle statistics at leading
order [13,18,20].

A general finite size scaling form has been conjectured
for the ground state particle entanglement (von Neumann
entropy of ρn) of interacting systems [13,14,20] that behaves
like n ln N (n � N), markedly different from the area law
�D−1 of spatial entanglement for subregion size � in dimen-
sion D for gapped quantum systems with reduced density

matrix ρ� with local interactions [25,26]. While there has
been renewed interest in entanglement dynamics for nonspa-
tial single-particle bipartitions [27,28], little is known about
the evolution of entanglement between groups of particles
after a quantum quench. In this paper we compare the growth
of the steady-state entanglement entropy after a quantum
quench under spatial and particle bipartitions, for both in-
tegrable and chaotic models of one-dimensional interacting
lattice fermions. By fully exploiting translational symmetries
of particle subgroups, we exactly determine large six-particle
reduced density matrices for systems containing up to L = 26
sites at half-filling, making a well-controlled extrapolation to
the thermodynamic limit possible. Having access to the ther-
modynamic limit via finite size scaling, we find convincing
agreement between the asymptotic increase of entropy den-
sities computed from spatial and particle bipartitions for an
integrable model, and suggestive equivalence for the chaotic
model where finite size effects are more prevalent. This equiv-
alence with respect to the specific partition of the quantum
state supports the notion that the properties of a steady state
local equilibrium are fundamental to a statistical mechanics
description of many particle systems.

The paper is organized as follows: after introducing the
details of our model and quantum quench protocol in Sec. II,
we discuss the definition of spatial and particle entanglement
dynamics in Sec. III and the approach to extracting the asymp-
totic entanglement density in Sec. IV. Our main results for
both integrable and nonintegrable models are contained in
Sec. V, and we conclude by discussing implications of our
results in Sec. VI.

II. QUANTUM QUENCH

We study a system of N spinless fermions on L lattice sites
in one spatial dimension (1D) with hopping amplitude J and
time-dependent nearest V (t ) and next-nearest neighbor V ′(t )
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interactions described by the Hamiltonian

H = −J
L∑

i=1

(c†
i ci+1 + c†

i+1ci ) + V (t )
L∑

i=1

nini+1

+ V ′(t )
L∑

i=1

nini+2, (1)

where c†
i (ci ) creates (annihilates) a fermion on site i,

{ci , c†
j } = δi j , and ni = c†

i ci is the occupancy of site i. For

V ′(t ) = 0, Eq. (1) can be mapped onto the XXZ spin- 1
2 chain

at fixed total spin S which is exactly solvable via Bethe ansatz
[29,30]. In what follows we will measure all energies in units
of the hopping J .

The system is prepared at times t < 0 in an initial state of
noninteracting spinless fermions with

|�(0)〉 =
∏
k�kF

c†
k |0〉, (2)

where |0〉 is the vacuum state. We employ periodic boundary
conditions for odd N and antiperiodic for even N to avoid
complications arising from a possibly degenerate ground state
such that the lattice Fourier transform picks up a phase in the
antiperiodic case:

ck = 1√
L

L∑
j=1

c j e
−ık j

{
1 N odd,

eıπ j/L N even.
(3)

The quasimomenta are

k ∈
{−π (N − 1)/L, . . . , π (N − 1)/L N odd,

−πN/L + 2π/L, . . . , πN/L N even,
(4)

such that the Fermi momentum is kF = π N
L − π 1−(−1)N

2L .
At time t = 0, interactions of strength V and V ′ are turned

on [V (t ) = V �(t ), V ′(t ) = V ′ �(t ) with � the Heaviside
step function]. The state of the system at time t after the
quench is given by unitary time evolution of |�(0)〉 under H :

|�(t )〉 = e−ıHt |�(0)〉 =
∑

α

e−ıEαt 〈�α|�(0)〉|�α〉, (5)

where we have set h̄ = 1 and Eα and |�α〉 are the energy
eigenvalues and eigenstates of the post-quench Hamiltonian
H |�α〉 = Eα|�α〉, obtained from full exact diagonalization
exploiting the translational, inversion, and particle-hole sym-
metry of Eq. (1). All software, data, and scripts needed to
reproduce the results in this paper are available online [31].

III. ENTANGLEMENT DYNAMICS

Tracing out spatial degrees of freedom outside of a
contiguous region of � sites from the time-dependent den-
sity matrix ρ(t ) = |�(t )〉〈�(t )| yields the spatially reduced
ρ�(t ) = TrL−�ρ(t ). For a particle bipartition, the reduced den-
sity matrix ρn(t ) can be computed by fixing n coordinates
in the properly symmetrized many-particle wave func-
tion �(i1, . . . , iN ; t ) = 〈i1, . . . , iN |�(t )〉 and tracing over the

FIG. 1. Two types of reduced density matrices after a quantum
quench. A quantum system of interacting fermions in one dimension
with periodic boundary conditions can be bipartitioned into a spatial
partition of size � (left) or a particle partition consisting of n fermions
(right). The degrees of freedom which are kept in the reduced density
matrix are indicated in blue, while the orange ones are traced out.
Interactions between the former and latter are pictured with green
lines.

remaining N − n positions:

ρ i1,...,in; j1,..., jn
n (t ) =

∑
in+1,...,iN

�∗(i1, . . . , in, in+1, . . . , iN ; t )

× �( j1, . . . , jn, in+1, . . . , iN ; t ), (6)

where the particle coordinates i1 . . . , iN can take any position
on the lattice. A graphical comparison of their entanglement
structure in real space is depicted in Fig. 1.

The von Neumann entanglement entropy at each time t is
computed from the spatial (�) or particle (n) reduced density
matrix

S(t ; n|�) = −Tr[ρn|�(t ) ln ρn|�(t )]. (7)

In gapless 1D quantum systems after a global quantum
quench, the entanglement entropy under a spatial bipartition
of length � grows linearly with time t : S ∝ t up to t = �/(2v),
and then saturates to a value that is extensively large in the
subregion size: S ∝ �/(2v) [3,32,33] where v is a velocity.
This can be understood in terms of the stimulated emission
of highly entangled quasiparticles inside the subregion that
propagate outwards with v. Saturation of the entanglement
thus occurs after quasiparticles generated in the subsystem
have traversed an extensive spatial subregion. Many of these
results have been tested against numerical calculations on
lattice models starting from unentangled product states [6,34–
36] highlighting the regime of applicability of conformal field
theory.

For particle entanglement, the reduced density matrix ρn

has L2n elements [see Eq. (6)], but due to the indistinguisha-
bility of particles, the effective linear size of the matrix size is
only

(L
n

)
[20]. Even with this reduction, for N = 13 and n = 6

at half-filling (L = 26), the determination of its dynamics re-
quires the full diagonalization of a matrix with over 5 × 1010

elements at each time step. This would make an exact analysis
of the steady state particle entanglement in the thermody-
namic limit computationally intractable. Only when reducing
the number of matrix elements by an additional factor of
∼L2 by exploiting translational invariance within particle sub-
groups (see Appendix), does the numerical diagonalization
become feasible. Our software level implementation of this
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approach for the n-particle reduced density matrices consid-
ered here is included in an online repository [31].

Due to aforementioned exact mapping between the XXZ
model and the spinless fermions considered here, it is interest-
ing to contemplate particle entanglement in the spin system.
When constructing the density matrix from the full XXZ wave
function, there is a spin coordinate per lattice site and these
degrees of freedom are localized and distinguishable. Thus,
choosing a subset of contiguous spins [37] is equivalent to
a spatial bipartition and there is no meaningful definition of
particle entanglement.

IV. ENTANGLEMENT DENSITY

As we are interested in the initial growth and final asymp-
totic steady state value of entanglement entropy, we study the
difference between its value at an observation time t after
the quench, and that of the initial prequench noninteracting
fermionic state:

	S(t ; n|�) ≡ S(t ; n|�) − S(0; n|�). (8)

This removes the t = 0 contribution of the free fermion state
described by a single Slater determinant [38–41]:

S(0; �) = 1

3
ln

2�

π
+ 0.495 . . . ,

S(0; n) = ln

(
N

n

)
.

(9)

It is useful to point out the different scaling properties of
these two quantities in equilibrium. While the spatial mode
entanglement behaves as S(0; �) ∼ ln �, for n � N , S(0; n) ∼
n ln N , and moreover, while the former is insensitive to parti-
cle statistics, the particle entanglement arises purely from the
antisymmetrization of the wave function in first quantization
(it is exactly zero for noninteracting bosons [14,42]). Due to
this qualitative difference in the system size dependence of
the initial state entanglement entropy, it is important to com-
pare the difference between the asymptotic and initial state
entanglement entropies with regards to spatial and particle
bipartitions after the quench.

In Fig. 2 the time dependence of 	S(t ) for both spatial
and particle bipartitions is shown for a system with N = 13
particles on L = 26 sites (half-filling), for maximal bipar-
tition sizes of n = 6 particles and � = 13 sites with V ′ = 0.
Even/odd parity effects in the particle entanglement entropy
can be mitigated by replacing

S(t ; n) → 1

2

[
S(t ; n) + n

N − n
S(t ; N − n)

]
(10)

when n = N/2�, where · · · � denotes the integer part. We
observe that the particle entanglement entropy rises to a value
larger than the asymptotic one (indicated by the dashed line)
within a microscopic timescale tJ ∼ 1/2, whereas spatial en-
tanglement entropy rises over a longer time tJ ∼ �/4. The
finite size value of the entanglement entropy is larger for
particle than for spatial entanglement, and the amplitude of
oscillations around the asymptotic average (dashed line) is
larger for particle entanglement as well.

FIG. 2. Exact diagonalization results for entanglement. Time de-
pendence of the increase in particle and spatial entanglement entropy
after an interaction of strength V = 0.25J is turned on (V ′ = 0).
The spatial entanglement entropy (red curve) for � = L/2 = 13 sites
grows linearly up to a time tJ ∼ �/4, whereas the particle entan-
glement entropy (purple curve) for n = N/2� = 6 particles rapidly
increases on a scale tJ ∼ 1/2. The dashed lines show the asymp-
totic t → ∞ values extracted from the full time dependence (data
included in Ref. [31]).

An estimate for the asymptotic t → ∞ steady state entan-
glement entropy was obtained via time averaging:

	S(t → ∞; n|�) � 1

t f − ti

∫ t f

ti

dt[S(t ; n|�) − S(0; n|�)].

(11)

The average is started from tiJ = N/2, to correspond to the
first recurrence time (see Fig. 2), and the maximal time t f J =
100 was chosen such that the statistical uncertainty in 	S
obtained by a binning analysis (allowing us to estimate error
bars) was less than 3.5%.

Results in the thermodynamic limit (n, � → ∞ such that
n/N, �/L → const.) can be obtained by fitting finite size
exact diagonalization data for the maximal bipartition (� =
L/2, n = N/2�) to the scaling ansatz:

1

n
	S(t → ∞) = s + C ln N

N
, (12)

where s is the desired entropy density, n is the number of
particles in the subregion, and C is a constant. This choice
is motivated for the spatial entanglement by recognizing that
for a ground state of free fermions, the entanglement scales
logarithmically with subsystem size [Eq. (9)] and thus the
dominant finite size correction to the asymptotic extensive
part will have a similar scaling. For particle entanglement, an
expansion of the equilibrium free fermion value in Eq. (9) for
n = N/2� in the limit of large N yields

2

N
ln

(
N

N/2

)
� 2 ln 2 − 1

N
ln N + O

(
1

N

)
, (13)

further demonstrating the importance of subtracting off an
extensive contribution originating from the prequench ground
state. While finite size scaling is performed for the maxi-
mal spatial or particle bipartition, equivalent results would
be obtained (albeit with enhanced finite size effects) for any
subsystem scaling with L or N .
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FIG. 3. Asymptotic entanglement. Finite size scaling of the
t → ∞ entanglement entropy per particle in the maximal subregion
corresponding to n = N/2� particles or � = L/2 sites for different
nearest neighbor interactions V and V ′ = 0. Symbols correspond to
exact diagonalization data and lines are fits to the finite size scaling
form of Eq. (12). Within the statistical uncertainty (size of shaded
region) for N → ∞, particle and spatial entanglement entropy den-
sity extrapolate to the same interaction dependent value s in the
thermodynamic limit.

V. EQUIVALENCE OF ASYMPTOTIC
ENTANGLEMENT GROWTH

We begin by analyzing the quench of Eq. (1) for the
integrable case with V ′ = 0. We use Eq. (12) to fit exact
diagonalization data for both repulsive and attractive nearest
neighbor interactions V , and thus obtain s. The uncertainty in
s is composed of two parts: the propagated error bars in the
linear fit to the largest four system sizes (N = 10, 11, 12, 13),
and a possible systematic error due to the neglect of higher
order terms in Eq. (12). The latter was estimated by com-
puting the difference between the N → ∞ extrapolated value
for this fit, and two additional fits including N = 11, 12, 13,
or N = 9, 10, 11, 12, 13 and averaging the resulting squared
deviations. The results of this combined finite size scaling and
fitting procedure are shown in Fig. 3, where s corresponds to
the line intercepts as N → ∞. We find agreement within error
bars between particle and spatial bipartitions in the thermody-
namic limit. Thus, we conclude that for the integrable case
with V ′ = 0, the asymptotic entanglement entropy per particle
after an interaction quantum quench is equivalent under both
a spatial and a particle bipartition in the thermodynamic limit.

FIG. 4. n dependence of the particle entanglement entropy. Bi-
partition size (n) dependence of the particle entanglement for N = 12
particles on L = 24 sites for various nearest neighbor interaction
strengths V with V ′ = 0. The n-particle entanglement entropy den-
sity is only weakly dependent on the order of the reduced density
matrix. Lines on the right-hand side of the figure show the thermody-
namic limit value of s (n, N → ∞ with n/N = 1/2) extracted from
the fit shown in Fig. 3. Dashed lines are guides to the eye.

Interestingly, we find that finite size corrections are much
smaller for particle entanglement than for spatial entangle-
ment [43]. To explore this effect further, we keep N fixed and
study how particle entanglement entropy changes with n. The
results are shown in Fig. 4 where 1

n	S(t → ∞; n) monoton-
ically decreases with increasing n [41]. This effect can be
explained by considering the growing number of constraints
as correlations of up to n particles are taken into account, with
fewer states realizing the same reduced density matrix. More-
over, the existence of an nonmonotonic entanglement shape
function arising from ρn = ρN−n implies a sublinear growth
of 	S(n) for n ≈ N/2, and thus a decrease of 	S(n)/n. The
result is that the n-particle entanglement entropy density can
be estimated from knowledge of only the few lowest order
density matrices.

To better understand the general applicability of the
observed agreement between entanglement entropy growth
under different bipartitions, we now lift the integrability con-
straint on the time evolution of the initial state due to the
existence of an infinite number of conservation laws. This is
accomplished by including a next-nearest neighbor interaction
V ′ that is quenched simultaneously with V at t = 0.

The equilibrium phase diagram of the V -V ′ model is
known to be extremely complex [44], and we have chosen to
fix V = 0.25J while investigating two next-nearest neighbor
interaction strengths V ′ = 0.025J and V ′ = 0.355J to ensure
we remain inside the quantum liquid phase and do not quench
across a phase boundary. Performing an analysis identical
to the integrable case above, we obtain the asymptotic post-
quench finite size scaling results shown in Fig. 5. For weak
V ′/V = 0.1 we find clear convergence to a common value
of s in the thermodynamic limit, while for extremely strong
V ′/V = 1.42 equivalence is suggestive, but falls outside the
1-σ error bars. For both values of V ′, we find finite size
effects to be more pronounced as compared to the integrable
case (as expected due to the inclusion of a longer range
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FIG. 5. Effects of integrability breaking. Finite size scaling of
the spatial and particle entanglement entropy density for t → ∞
for a fixed nearest neighbor interaction strength V = 0.25J with
V ′ = 0.1V (left) and V ′ = 1.42V (right). Symbols correspond to
exact diagonalization and lines are fits to Eq. (12).

interaction) and larger system sizes are required to enter the
pure log N/N scaling regime. Going to larger system sizes
would be desirable, and while this is possible via the density
matrix renormalization group [45,46] for the spatial entangle-
ment, at present, exact diagonalization remains the only viable
route to obtain the spectra of ρn for n > 3 [47].

Combining the extrapolated t → ∞ and N → ∞ results
of Figs. 3 and 5 we can directly compare the prefactor s of the
extensive term in the asymptotic entanglement entropy under
a spatial mode (sspatial) and particle (sparticle) bipartition with
the results shown in Fig. 6. We observe agreement across a
wide range of interactions spanning the entire quantum liquid
regime including both attractive (V < 0 and repulsive V > 0)
interactions, even in the presence of integrability breaking
V ′ �= 0. We conclude that sspatial � sparticle is consistent with
the reported ≈5% error bars. For the nonintegrable case with
an extremely strong V ′ > V , agreement is within 10%. For
this case, finite size effects are pronounced and exact diago-
nalization data may not yet be in the scaling regime causing
an under reporting of uncertainty.

FIG. 6. Equivalence of spatial mode and particle entanglement.
A comparison of the t → ∞ and N → ∞ entanglement density
s defined in Eq. (12) (extrapolated values in Figs. 3 and 5) as a
function of quenched nearest neighbor interaction strength V . V ′ �= 0
points with V = 0.25J (square and diamond) have been horizontally
shifted to better discern their error bars. Here the colors of individual
symbols denote the interaction strength (see legend of Fig. 4).

VI. DISCUSSION

We have presented numerical results for an interaction
quantum quench for both an integrable and nonintegrable
(chaotic) model of spinless fermions in one dimension,
starting from a gapless and highly entangled noninteracting
ground state. Complementary to the often studied spatial en-
tanglement entropy, we have examined a bipartition in terms
of groups of particles, where the resulting entanglement can
be obtained from the n-particle reduced density matrix. At
short times (as in equilibrium), the growth of entanglement
behaves very differently under these two bipartitions. In con-
trast, in the asymptotic long-time regime after subtracting the
residual ground state value, we find an extensive entanglement
entropy density that appears to be insensitive to the decom-
position of the Hilbert space in terms of spatial or particle
degrees of freedom. The equivalence for the chaotic model
is on the order of 5%–10% and further investigations for
quenches within the rich V -V ′ phase diagram are warranted.

This equivalence can be understood via the universal con-
cept of coarse graining [48]—a description of a quantum
system in terms of only a subset of the degrees of freedom—
a necessary ingredient to obtain effectively classical density
matrices that are described by a generalized statistical ensem-
ble for integrable systems. While the computation of particle
entanglement entropies after a quantum quench discussed in
this study is not standard, in other contexts the connection
between particle reduced density matrices and entropy is well
established. For example, in equilibrium, the thermodynamic
potential, and hence the entropy, can be computed from the
one-particle density matrix when considering an adiabatic
change of the coupling constant [49]. For classical nonequi-
librium systems, according to Green [50] and Kirkwood [51],
the distribution function can be factorized in an infinite hi-
erarchy, enabling an expansion of the entropy in terms of
irreducible correlation functions with increasing order. For
classical liquids, it has been shown that even a termination
of this entropy expansion at the pair level (ρ2) is accurate
to within 2% [52], and for simulations of a system of soft
disks this termination was shown to yield consistent results
in nonequilibrium situations [53].
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APPENDIX: TRANSLATIONAL SYMMETRY RESOLVED
N-BODY REDUCED DENSITY MATRICES

In this Appendix we describe a specific example of how
translational symmetry within particle subgroups can be ex-
ploited for N = 3 fermions on a ring of L = 6 sites and
compute the spectrum of the resulting one-particle reduced
density matrix.

We begin by describing the decomposition of the occupa-
tion basis in terms of translational symmetry then discuss the
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Schmidt decomposition of a candidate ground state of Eq. (1)
with V = V ′ = 0 and finish with the explicit construction
and resulting diagonalization of the reduced density matrix,
comparing to its brute-force construction when no symmetries
are taken into account.

1. Translational symmetry

The translation operator T acts as

T c†
i T † = c†

i+1, (A1)

where c†
L+i = c†

i , as we choose periodic boundary conditions
for odd N = 3. Acting with T , L times will give back the same
operator and thus T L is the identity. This immediately yields
the eigenvalues of the unitary operator T as e−ı2πq/L, where
q = 0, 1, . . . , L − 1.

Now, consider the action of T on the L = 6, N =
3 fermionic site-occupation basis {|111000〉, |011100〉, . . . }
consisting of

(L
N

) = 20 states. Depending on how the indistin-
guishable particles are situated, the states can be grouped into
NT = 4 different types of translational cycles, each containing
Mν states for ν = 1 . . . NT . The first three cycles all have
M1 = M2 = M3 = 6:

|ψ1,1〉 = T 0|ψ1,1〉 = |111000〉 |ψ2,1〉 = T 0|ψ2,1〉 = |110100〉 |ψ3,1〉 = T 0|ψ3,1〉 = |110010〉,
|ψ1,2〉 = T 1|ψ1,1〉 = |011100〉 |ψ2,2〉 = T 1|ψ2,1〉 = |011010〉 |ψ3,2〉 = T 1|ψ3,1〉 = |011001〉,
|ψ1,3〉 = T 2|ψ1,1〉 = |001110〉 |ψ2,3〉 = T 2|ψ2,1〉 = |001101〉 |ψ3,3〉 = T 2|ψ3,1〉 = |101100〉,
|ψ1,4〉 = T 3|ψ1,1〉 = |000111〉 |ψ2,4〉 = T 3|ψ2,1〉 = |100110〉 |ψ3,4〉 = T 3|ψ3,1〉 = |010110〉,
|ψ1,5〉 = T 4|ψ1,1〉 = |100011〉 |ψ2,5〉 = T 4|ψ2,1〉 = |010011〉 |ψ3,5〉 = T 4|ψ3,1〉 = |001011〉,
|ψ1,6〉 = T 5|ψ1,1〉 = |110001〉 |ψ2,6〉 = T 5|ψ2,1〉 = |101001〉 |ψ3,6〉 = T 5|ψ3,1〉 = |100101〉, (A2)

while the last one has M4 = 2:

|ψ4,1〉 = T 0|ψ4,1〉 = T 2|ψ4,1〉 = T 4|ψ4,1〉 = |101010〉,
|ψ4,2〉 = T 1|ψ4,1〉 = T 3|ψ4,1〉 = T 5|ψ4,1〉 = |010101〉,

(A3)

where we have introduced new states |ψν,m〉 with ν = 1 . . . NT

and m = 1 . . . Mν . The eigenstates of T can then be written as

|φν,q〉 = 1√
Mν

Mν∑
m=1

eı
2πq
Mν

(m−1)|ψν,m〉, (A4)

where the corresponding eigenvalues are e−ı2πq/Mν with q =
0, 1, . . . , Mν − 1.

2. Free fermion ground state

Consider Eq. (1) at t � 0 which corresponds to free lattice
fermions (V = V ′ = 0). The Hamiltonian possesses transla-
tional symmetry ([T, H] = 0) and thus the nondegenerate
ground state |�0〉 must also be an eigenstate of the operator
T . Using the occupation basis states |ψν,m〉 introduced above,
all matrix elements 〈ψν ′,m′ |H |ψν,m〉 of H are real, and thus
any nondegenerate eigenstate of H must have real coefficients
(up to an overall phase factor). This is only possible if the
ground state is an eigenstate of T with a real eigenvalue,
i.e., T |�0〉 = ±|�0〉. For free fermions, |�0〉 has zero to-
tal quasimomentum and thus T |�0〉 = +|�0〉. Therefore we
can write

|�0〉 =
NT∑
ν=1

aν |φν,0〉, (A5)

where
∑

ν a2
ν = 1. To evaluate the coefficients aν for free

fermions, we consider the action of H with V = V ′ = 0 on

the states |φν,0〉:

H |φ1,0〉 = −J (|φ2,0〉 + |φ3,0〉),

H |φ2,0〉 = −J (|φ1,0〉 + 2|φ3,0〉 +
√

3|φ4,0〉),

H |φ3,0〉 = −J (|φ1,0〉 + 2|φ2,0〉 +
√

3|φ4,0〉),

H |φ4,0〉 = −
√

3J (|φ2,0〉 + |φ3,0〉).

Diagonalizing H in this basis we find the ground state:

|�0〉 =
√

3

6
|φ1,0〉 +

√
3

3
(|φ2,0〉 + |φ2,0〉) + 1

2
|φ4,0〉 (A6)

and thus identify a1 =
√

3
6 , a2 = a3 =

√
3

3 , and a4 = 1
2 . As

the introduction of the interaction terms in the Hamiltonian
post-quench does not break translational symmetry, we are
guaranteed to remain in the q = 0 sector and thus the general
state |�(t )〉 can always be decomposed as in Eq. (A5), how-
ever the time-dependent coefficients may now be complex in
general.

3. Schmidt decomposition of the ground state

In order to perform a particle bipartition, we first need to
artificially distinguish the identical fermions from each other,
i.e., we write the ground state in first quantization by adding a
new label to the states. Thus

|ψν,m〉 = 1√
N!

∑
i

ηi|ψν,m,i〉, (A7)

where the new index i runs over the N! different ori-
entations of the particle labels and ηi = ±1 is the
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corresponding phase factor,

|ψ2,1〉 ≡ |110100〉

= 1√
6

(|111201300〉 + |131101200〉 + |121301100〉

−|121101300〉 − |131201100〉 − |111301200〉),

where the subscripts are particles labels and we use the usual
sign convention based on their permutations.

Now we can partition the particles into two sets, con-
taining n = 1 particle, say the particle with the label 1, and
the remaining N − n = 2 particles with labels 2 and 3. Any
N = 3 particle state can be written as a tensor product from
the two subsets. For example, |111201300〉 = |1100000〉 ⊗
|01201300〉. Performing this decomposition entails finding the
coefficients bν,ν ′,m,m′,i,i′ , such that the state can be expanded as

|�0〉 =
∑
ν,ν ′

∑
m,m′

∑
i,i′

bν,ν ′,m,m′,i,i′
∣∣ψ (n)

ν,m,i

〉∣∣ψ (N−n)
ν ′,m′,i′

〉
,

where |ψ (n)
ν,m,i〉 and |ψ (N−n)

ν ′,m′,i′ 〉 represent the first quantization
basis states for the two groups of particles, respectively. The
resulting Schmidt decomposition matrix of the state |�0〉 is
given by

G(n) =
∑
ν,ν ′

∑
m,m′

∑
i,i′

bν,ν ′,m,m′,i,i′
∣∣ψ (n)

ν,m,i

〉〈
ψ

(N−n)
ν ′,m′,i′

∣∣ . (A8)

In a previous work [20] we have shown that the spectrum
of a n-body reduced density matrix ρn can be obtained by
considering a smaller matrix G̃(n) that contains only 1

n!(N−n)!

of the number of elements in G(n). The matrix G̃(n) is obtained
by choosing a specific orientation of the particles labels in
any of the subsets (i.e., increasing order) and keeping track
of the overall phase (signs) of a N particle configuration by
considering the relative orientation of the particles from the
two sets.

4. Application of translational symmetry
to the occupation subsets

We now consider the effect of translational symmetry on
the particle subgroup occupation states. The number of possi-
ble cycles depends on the number of particles in the group and
we can suppress the explicit particle labels (e.g., 11, 12, 13) by
fixing the orientation such that they are always in increasing
order when written from left to right in a subgroup. We then
use a primed notation to distinguish states in the group with
n = 1 where there is only one translational cycle with six
elements: ∣∣ψ (n)

1,1

〉 = T 0
∣∣ψ (n)

1,1

〉 = |1′00000〉,∣∣ψ (n)
1,2

〉 = T 1
∣∣ψ (n)

1,1

〉 = |01′0000〉,∣∣ψ (n)
1,3

〉 = T 2
∣∣ψ (n)

1,1

〉 = |001′000〉,∣∣ψ (n)
1,4

〉 = T 3
∣∣ψ (n)

1,1

〉 = |0001′00〉,∣∣ψ (n)
1,5

〉 = T 4
∣∣ψ (n)

1,1

〉 = |00001′0〉,∣∣ψ (n)
1,6

〉 = T 5
∣∣ψ (n)

1,1

〉 = |000001′〉, (A9)

from the
( L

N−n

) = (6
2

) = 15 occupation states in the N − n = 2
group. The latter can be decomposed into three translational
cycles as follows:∣∣ψ (N−n)

1,1

〉 = T 0
∣∣ψ (N−n)

1,1

〉 = |110000〉,∣∣ψ (N−n)
1,2

〉 = T 1
∣∣ψ (N−n)

1,1

〉 = |011000〉,∣∣ψ (N−n)
1,3

〉 = T 2
∣∣ψ (N−n)

1,1

〉 = |001100〉,∣∣ψ (N−n)
1,4

〉 = T 3
∣∣ψ (N−n)

1,1

〉 = |000110〉,∣∣ψ (N−n)
1,5

〉 = T 4
∣∣ψ (N−n)

1,1

〉 = |000011〉,∣∣ψ (N−n)
1,6

〉 = T 5
∣∣ψ (N−n)

1,1

〉 = |100001〉,
∣∣ψ (N−n)

2,1

〉 = T 0
∣∣ψ (N−n)

2,1

〉 = |101000〉,∣∣ψ (N−n)
2,2

〉 = T 1
∣∣ψ (N−n)

2,1

〉 = |010100〉,∣∣ψ (N−n)
2,3

〉 = T 2
∣∣ψ (N−n)

2,1

〉 = |001010〉,∣∣ψ (N−n)
2,4

〉 = T 3
∣∣ψ (N−n)

2,1

〉 = |000101〉,∣∣ψ (N−n)
2,5

〉 = T 4
∣∣ψ (N−n)

2,1

〉 = |100010〉,∣∣ψ (N−n)
2,6

〉 = T 5
∣∣ψ (N−n)

2,1

〉 = |010001〉,
∣∣ψ (N−n)

3,1

〉 = T 0
∣∣ψ (N−n)

3,1

〉 = T 3
∣∣ψ (N−n)

3,1

〉 = |100100〉,∣∣ψ (N−n)
3,2

〉 = T 1
∣∣ψ (N−n)

3,1

〉 = T 4
∣∣ψ (N−n)

3,1

〉 = |010010〉,∣∣ψ (N−n)
3,3

〉 = T 2
∣∣ψ (N−n)

3,1

〉 = T 5
∣∣ψ (N−n)

3,1

〉 = |001001〉. (A10)

We have now exposed enough structure to express the
Schmidt decomposition matrix G̃(n) as being composed of
three submatrices

G̃(n) = [A1,1 A1,2 A1,3], (A11)

where Aν ′,ν = ∑
m′,m cν ′,ν,m′,m|ψ (n)

ν ′,m′ 〉〈ψ (N−n)
ν,m | and the coeffi-

cients cν ′,ν,m′,m can be read off from Eq. (A6) combined with
Eq. (A7) to yield

A1,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ā1 ā3 ā2 ā1 0

0 0 ā1 ā3 ā2 −ā1

ā1 0 0 ā1 ā3 −ā2

ā2 ā1 0 0 ā1 −ā3

ā3 ā2 ā1 0 0 −ā1

ā1 ā3 ā2 ā1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A12)

A1,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ā2 ā4 ā3 0 ā1

−ā1 0 ā2 ā4 −ā3 0

0 −ā1 0 ā2 −ā4 −ā3

ā3 0 −ā1 0 −ā2 −ā4

ā4 ā3 0 −ā1 0 −ā2

ā2 ā4 ā3 0 ā1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A13)

A1,3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ā3 ā2

−ā2 0 ā3

−ā3 −ā2 0

0 −ā3 −ā2

ā2 0 −ā3

ā3 ā2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A14)
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with ā1 = a1/6, ā2 = a2/6, ā3 = a3/6, and ā4 = a4/
√

12.
To understand how these are actually obtained it is use-
ful to consider a specific example for the element [A1,2]1,3

which is the coefficient corresponding to |ψ (n)
1,1〉〈ψ (N−n)

2,3 | =
|1′00000〉〈001010|, which comes from the decomposition of
the N-particle state |1′01010〉. Re-introducing the particle la-
bels |110120130〉, we note the orientation has a positive phase
and it appears in the ground state only through |ψ4,1〉 with a
factor of 1/

√
6 and the latter has a unique contribution through

|φ4,0〉 and thus the targeted coefficient is ā4 = a4/(
√

2
√

6).
Similarly, starting from this position and moving one step in
the diagonal direction results in shifting all the particles one
site to the right, and thus we get [A1,2]2,4 as the coefficient of
|011012013〉 which is also ā4 due to the translational symmetry
of the ground state. However, if we proceed along the same
diagonal and evaluate the coefficient [A1,2]3,5 we get −ā4

as it corresponds to |120110130〉 which has a negative phase
as particle 2 in group 2 has wrapped around the boundary.
The appearance of this minus sign is somewhat spurious,
and arises from the chosen first-quantized labeling scheme
of particles in the subgroups in increasing order. This can be
understood by considering Eq. (A10) where the translational
symmetry such that T 6 = 1 is arising from true indistin-
guishability of the particles. Such signs are always attached
to either a full row or column and we note that if we were to
multiply columns 5 and 6 of the matrix A1,2 by −1 then the
resulting matrix is periodic. Similarly, multiplying the sixth
column of A1,1 by −1 results in a periodic matrix. Also, the
matrix A1,3 is periodic in the vertical direction (rows), while
its antiperiodic in the horizontal direction (columns).

In general, if we account for the negative signs that are
attached to columns and/or rows, the resulting A matrices
are either periodic, antiperiodic, or mixed, depending on the
relationship between the number of particles in each sub-
group and the number of elements in the symmetry cycles
involved. The spatial symmetries can be determined by com-
puting the parity of the product n(N − n)M (n)

ν ′ /L for rows and
n(N − n)M (N−n)

ν /L for columns with even/odd corresponding
to periodic/antiperiodic and M (n)

ν ′ is the number of elements
in the translational cycle ν ′ corresponding to the n-particle
group.

Based on this analysis we can build unitary transformations
to simplify the matrix G̃(n). We begin by defining unitary op-

erators that diagonalize the matrices Aν ′,ν . Starting with A1,1,
we first account for the row/column spurious signs which can
be dealt with via the unitary operator P1, with [P1]m′,m = 0 for
m′ �= m, [P1]6,6 = −1 and [P1]m,m = 1 for m � 6. The matrix
A1,1P†

1 is then fully periodic and can be diagonalized with the
periodic square Fourier transform matrix Fν as

D1,1 = F1A1,1P†
1F†

1, (A15)

where

[Fν]m′,m = 1√
Mν

e−ı2π (m′−1)(m−1)/Mν . (A16)

In the same fashion we can diagonalize A1,2 as

D1,2 = F1A1,2P†
2F†

2, (A17)

where we have accounted for the extra signs via P2 which
has [P2]m′,m = 0 for m′ �= m, [P2]5,5 = [P1]6,6 = −1 and
[P2]m,m = 1 for m � 4. Finally, the rectangular matrix with
mixed periodicity/antiperiodicity A1,3 can be diagonalized as

D1,3 = F1A1,3F̃†
3, (A18)

where the antiperiodic Fourier matrix is

[F̃ν]m′,m = 1√
Mν

e−ı2π (m−1)(m′−1/2)/Mν (A19)

with M3 = 3 corresponding to the number of states in the third
cycle for the N − n group of particles [see Eq. (A10)]. The
matrix

D = [D1,1 D1,2 D1,3] (A20)

can be obtained directly from G̃(n) via D = UG̃(n)V†, where

U = F1 (A21)

and

V† =

⎡
⎢⎣

P†
1F†

1 0 0

0 P†
2F†

2 0

0 0 F̃†
3

⎤
⎥⎦. (A22)

We now arrive at the explicit form of the D matrix

D =

⎡
⎢⎢⎢⎣

[D1,1]1 0 0 0 0 0 [D1,2]1 0 0 0 0 0 0 0 0

0 [D1,1]2 0 0 0 0 0 [D1,2]2 0 0 0 0 [D1,3]1 0 0

0 0 [D1,1]3 0 0 0 0 0 [D1,2]3 0 0 0 0 0 0

0 0 0 [D1,1]4 0 0 0 0 0 [D1,2]4 0 0 0 [D1,3]2 0

0 0 0 0 [D1,1]5 0 0 0 0 0 [D1,2]5 0 0 0 0

0 0 0 0 0 [D1,1]6 0 0 0 0 0 [D1,2]6 0 0 [D1,3]3

⎤
⎥⎥⎥⎦,

(A23)

which can be put in a block diagonal form by a rearrangement of the columns and rows (in this example, we only rearrange the
columns) via a final unitary transformation that exchanges the basis of D. This leads to

D̃ =

⎡
⎢⎢⎢⎣

[D1,1]1 [D1,2]1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 [D1,1]2 [D1,2]2 [D1,3]1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 [D1,1]3 [D1,2]3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 [D1,1]4 [D1,2]4 [D1,3]2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 [D1,1]5 [D1,2]5 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 [D1,1]6 [D1,2]6 [D1,3]3

⎤
⎥⎥⎥⎦.

(A24)
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A singular value decomposition of D can be performed by obtaining the singular values of each of the six blocks. In this
example we find d1 = 1/

√
6, d2 = 1/

√
6, d3 = 0, d4 = 0, d5 = 0, and d6 = 1/

√
6. The resulting eigenvalues of the n-body

reduced density matrix ρn are [20]

λk = n!(N − n)!d2
k , (A25)

thus

λ1 = 1
3 , λ2 = 1

3 , λ3 = 0, λ4 = 0, λ5 = 0, λ6 = 1
3 . (A26)

This efficient approach can be compared with the brute-force construction of the n-particle reduced density matrix for this
case using no particle subgroup symmetries which yields

ρn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 0 α3 0 α2

α2 α1 α2 0 α3 0

0 α2 α1 α2 0 α3

α3 0 α2 α1 α2 0

0 α3 0 α2 α1 α2

α2 0 α3 0 α2 α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A27)

where

α1 = 1
6

(
a2

1 + a2
2 + a2

3 + a2
4

)
,

α2 = 1
18

[
a1(a2 + a3) + 2a2a3 +

√
3a2a4 +

√
3a3a4

]
,

α3 = 1
18

(
2a2

1 − 2
√

3a1a4 − a2
2 − a2

3

)
. (A28)

The eigenvalues can be easily confirmed to yield λk but here we must diagonalize one
(L

n

) × (L
n

)
matrix as opposed to L

considerably smaller matrices whose maximal linear dimension can be reduced by a factor up to max[n!, (N − n)!]L.
The full implementation of these particle subgroup translational symmetries (with details in the released code [31]) has

allowed us to compute the post-quench dynamics of particle entanglement entropies for reduced density matrices with n =
N/2� = 6 for systems up to L = 26 sites and N = 13 fermions at half-filling for long times tJ = 100.
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