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Quantum model for rf-SQUID-based metamaterials enabling three-wave mixing and four-wave
mixing traveling-wave parametric amplification
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A quantum model for Josephson-based metamaterials working in the three-wave mixing (3WM) and four-
wave mixing (4WM) regimes at the single-photon level is presented. The transmission line taken into account,
namely Josephson traveling wave parametric amplifier (JTWPA), is a bipole composed of a chain of rf-SQUIDs,
which can be biased by a DC current or a magnetic field to activate the 3WM or 4WM nonlinearities. The
model exploits a Hamiltonian approach to analytically determine the time evolution of the system both in
the Heisenberg and interaction pictures. The former returns the analytic form of the gain of the amplifier, while
the latter allows recovering the probability distributions vs time of the photonic populations, for multimodal
Fock and coherent input states. The dependence of the metamaterial’s nonlinearities is presented in terms of
circuit parameters in a lumped model framework while evaluating the effects of the experimental conditions on
the model validity.
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I. INTRODUCTION

Superconducting amplifiers are nowadays widely used for
the manipulation of single photons in several ranges of the
electromagnetic spectrum. From microwaves to x-rays these
devices have shown unrivalled performances for what con-
cerns quantum efficiency, resolving power and added noise,
compared to their solid-state counterparts [1–6]. The peculiar
characteristics of superconducting materials allow engineer-
ing highly performing resonators and cavities, characterised
by a quality factor of the order of ≈1010 [7–10]. Indeed,
resonator-based superconducting amplifiers show a quite high
gain, in the range of 20 dB [9]; however, they are subjected to
limited bandwidth making them unsuitable for the multiplex-
ing required in complex systems.

Josephson traveling waves parametric amplifiers (JTW-
PAs) and kinetic inductance traveling wave amplifiers (KITs)
promise to be appropriate devices for this aim in the mi-
crowave regime, showing in principle valuable multiplexing
capabilities due to their wide bandwidth [11]. Indeed, it has
been shown how the four-wave mixing (4WM) induced in
all the Kerr-like media allows amplifying very tiny signals
over several GHz bandwidths with a nearly quantum-limited
noise [11–14]. Nevertheless, recent papers show that en-
abling the three-wave mixing (3WM) interaction, through
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the introduction of a quadratic nonlinearity in the medium,
could provide several benefits and experimental simplifica-
tions for what concerns feasibility and integration capabilities.
In particular, a three-wave mixer generally requires a lower
input pump power, easier output filtering and shows a
higher dynamic range [15–17]. These distinctive character-
istics make JTWPAs working in 3WM excellent candidates
for the readout of quantum-limited detectors (e.g., rf-SETs,
rf-SQUIDs), by preserving the quantum properties of their
outputs [18–20]. Moreover, a three-wave mixer can be a
promising candidate for the generation of heralded photons
pairs, since it naturally enables parametric down conversion
(PDC) [21].

In this framework, we develop a quantum model, based on
previous theoretical works [22,23], for a recently proposed
JTWPA concept [16] covering both the 3WM and 4WM
regimes. Previous classical descriptions in terms of electro-
magnetic waves [16,17] were limited to the high power range,
completely neglecting any description of the light-matter
interaction at the single photon level. Our theory exploits
circuit-QED techniques to model a JTWPA made up of a chain
of rf-SQUIDs capacitively shunted to ground. The proposed
layout can be biased by a DC current or an externally applied
magnetic field to activate 3WM or 4WM of the microwave
traveling modes. The quantum description allows to analyti-
cally treat important figures of merit of the amplifier as the
gain, squeezing and the time evolution of arbitrary quantum
states at the single-photon level.
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FIG. 1. Electrical equivalent of a repetition of three elementary
cells (periodicity a) of the rf-SQUIDs based JTWPA. Each cell con-
sists of a superconducting loop containing a geometrical inductance
Lg, a Josephson junction, with an associated capacitance CJ and
inductance LJ, and a ground capacitor Cg. The series can be biased
both through an external DC magnetic field B and a flowing current
IDC. ��̂ is the magnetic flux difference across the nodes of a cell,
while V̂Cg is the voltage drop across the ground capacitor.

The main results of the paper are reported in Sec. II. In par-
ticular, Sec. II A reports the Hamiltonian in first quantization
formalism, based on the circuit model of a nonlinear lossless
transmission line. Then, Sec. II B is dedicated to developing
the theory through the occupation number formalism, and a
3WM/4WM Hamiltonian is found. A selection of modes fol-
lows in Sec. II C, leading to model the 3WM/4WM quantum
mechanical phenomena in the Heisenberg picture. Solving the
dynamics of the system (i.e., Langevin equations) allows to
analytically calculate the gain, noise figures and squeezing
capabilities of the amplifier. In Sec. II D the time evolution of
Fock and coherent input states due to nonlinear interactions
is analytically treated and on these bases various examples of
photon statistics in the Fock space are calculated.

II. RESULTS

A. Hamiltonian of a rf-SQUIDs array embedded in a
transmission line

The JTWPA recently proposed [16] and theoretically quan-
tum mechanically treated in this paper can be modelled as
an array of rf-SQUIDs embedded in a superconducting trans-
mission line. In the following, the Hamiltonian of the system
will be derived as a function of its circuit parameters. As
represented in Fig. 1, each elementary cell is composed by a
superconducting loop containing a Josephson junction (with
its associated capacitance CJ and inductance LJ) and a ge-
ometrical inductance Lg. Furthermore, each loop is coupled
to ground through a capacitor Cg. The system taken into
account is nondissipative and, for the sake of simplicity, all
the elementary cells are considered identical. The length of
the elementary cell along the z direction (i.e., the propagating
direction of the modes) is defined as a.

In presence of an electromagnetic field, each of these cells
stores a certain amount of energy that can be expressed as a
function of the conjugate coordinates �̂ and Q̂, the general-
ized magnetic flux and charge at a certain node respectively,
obeying to the commutation relation [�̂, Q̂] = ih̄. The total
amount of energy can be computed as the sum of the energy
stored in each of its components (see S-III within the Sup-
plemental Material [24]). Moreover, being the system under
analysis a repetition of identical elementary units, the total
energy stored in the whole medium can be expressed as the
sum of the energy stored in each cell.

Under the assumption that the differences between the �̂

(and Q̂) of a couple of consecutive nodes are small enough,
these operators can be considered as functions of both time
and space [i.e., �̂(z, t ) and Q̂(z, t )]. We then define the flux
difference between two subsequent nodes as

��̂(z, t ) = �̂(z + a, t ) − �̂(z, t ). (1)

We can define the Hamiltonian of the system like the sum
of the energies stored in every single cell of the device. The
circuit elements, which appear are discrete, so every cell has
its own ground capacitor, Josehpson capacitor, geometrical
inductance, and Josephson junction. The sum runs over the
index n, which labels all the cells:

Ĥ =
N∑

n=1

Ĥn (2a)

=
N∑

n=1

(ĤLg + ĤLj + ĤCj + ĤCg ) (2b)

=
N∑

n=1

(
1

2Lg
��̂(na, t )2 + ϕ0Ic

(
1 − cos

(
��̂(na, t )

ϕ0

))

+CJ

2

(
∂��̂(na, t )

∂t

)2

+ 1

2Cg
Q̂(na, t )2

)
, (2c)

where in the right-hand side of Eq. (2b) one can recognize re-
spectively the energy associated to the geometrical inductance
Lg, the Josephson inductance LJ, the Josephson capacitance
CJ, and the ground capacitance Cg. N is the number of unit
cells composing the transmission line, Ic is the critical current
of the Josephson junction, and ϕ0 = �0/2π = h̄/2e is the
reduced flux quantum.

As can be seen, the flux difference function ��̂(z, t ) is
defined for every z but is calculated at discrete points in
correspondence to the multiple integers an of the unit cell
length a. In order to compute the Hamiltonian we can switch
from a discrete sum to an approximated continuous sum sub-
stituting the summation sign with an integral [25], adding the
scale factor a (length of a unit cell), which turns the discrete
components in components per unit length. The integration
upper limit is the length of the amplifier l = Na, where N is
the number of unit cells.

Ĥ =
∫ l

0

(
1

2Lg
��̂(z, t )2 + ϕ0Ic

(
1 − cos

(
��̂(z, t )

ϕ0

))
+ CJ

2

(
∂��̂(z, t )

∂t

)2

+ 1

2Cg
Q̂(z, t )2

)
dz

a
(3)
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The integral can be considered as an approximation of the
discrete sum in Eq. (2c), where the flux difference across two
subsequent cells is to be considered due to the presence of a
finite number of Josephson junctions, for which the energy is
defined in relation with the flux difference across them.

The presence of an external magnetic field or a DC current
through the line induces a constant component in the flux
difference across a cell. This means that ��̂(z, t ) can be
considered as the sum of two components, a constant one
��DC and a time-dependent one δ�̂(z, t ):

��̂(z, t ) = ��DC + δ�̂(z, t ). (4)

B. Second quantization framework

Here the Hamiltonian will be expressed in terms of lad-
der operators. In this view, the voltage drop on the ground
capacitors Cg can be expressed using a mode decomposition
assuming that sinusoidal waves are passing through the line
[26]

V̂Cg (z, t ) =
∑

n

√
h̄ωn

2CgN
(ânei(knz−ωnt ) + H.c.), (5)

where ωn and kn are the angular frequency and wave number
of the nth mode while ân is its annihilation operator of the
nth mode. Positive indexes denote progressive waves (kn > 0
and ωn > 0), while negative indexes denote regressive waves
(k−n = −kn < 0 and ω−n = ωn).

It is trivial to recover the link between the voltage drop
and the current passing through a cell given by the classical
Telegrapher’s equation, which exploits the inductance of the
cell for the nth mode Ln

∂Vn

∂z
= −Ln

a

∂In

∂t
. (6)

Ln can be calculated as the parallel between the effective
inductance Leff,n (composed by the Josephson capacitance
CJ and the geometrical inductance Lg, see S-IV within the
Supplemental Material [24]) and the Josephson inductance
LJ. Exploiting the constitutive relation for a generic inductor
it can be written that �� = L · I . Hence, using the flux-
current relation of a Josephson junction, IJ = Ic sin (��/ϕ0),
the Josephson inductance LJ can be simply expressed, via a
nonlinear relation with ��, as

LJ = ��

IJ
= ϕ0

Ic

��/ϕ0

sin (��/ϕ0)
≡ LJ0

��/ϕ0

sin (��/ϕ0)
(7)

with LJ0 = ϕ0/Ic. It follows that the cell inductance Ln can be
written as

Ln = 	nLg

1 + 	n
Lg

LJ0

sin (��/ϕ0 )
(��/ϕ0 )

(8)

where the dispersion coefficient of the nth node 	n = 1/(1 −
ω2

nLgCJ) (see S-IV within the Supplemental Material [24])
has been defined. The time-dependent component of Eq. (4)
can be found exploiting the mode decomposition for the AC
current through the cell In and the inductance Ln for the corre-
sponding mode as

δ� =
∑

n

LnIn. (9)

Replacing the classical variables by corresponding opera-
tor, and accordingly to the standard quantum description of
electrical circuits [26], it follows that (see S-V within the
Supplemental Material [24])

δ�̂ =
∑

n

⎡
⎢⎣

(
1 + 	n

Lg

LJ0

sin
(

��DC+δ�̂
ϕ0

)
��DC+δ�̂

ϕ0

)− 1
2

δ�̂(0)
n

⎤
⎥⎦, (10)

where the zero-order AC flux component of the nth mode
δ�̂(0)

n has been defined. Equation (10) is an implicit relation
for the flux operator δ�̂, which can be solved at zero order by
the substitution δ�̂ �→ δ�̂(0) in the right-hand side.

In order to find an analytical solution one can perform
the Taylor expansion of the square root into Eq. (10) and of
the Josephson energy into (3) for δ�̂(0) � ϕ0. The maximum
order of expansion was chosen to take into account scattering
events involving at most 4 photons. This procedure provides
a valid approximation for the nonlinear time-dependent flux
operator δ�̂ that can be substituted into Eq. (3) to obtain the
Hamiltonian of the system in terms of ladder operators:

Ĥ = h̄χ0 +
∑

n

h̄χ
(n)
1

(
â†

nân + 1

2

)

+
∑
n,l,m

h̄χ
(n,l,m)
3 {â + â†}n,l,mδ�ωn,l,m, 0

+
∑

n,l,m,s

h̄χ
(n,l,m,s)
4 {â + â†}n,l,m,sδ�ωn,l,m,s, 0. (11)

The subscripts of the braces in Eq. (11) stand for a mul-
tiplication of the form {â + â†}n,l,...,k = (ân + â†

n)(âl + â†
l ) ·

... · (âk + â†
k ). The δ�ω,0 Kronecker functions have the role to

select the only scattering events that fulfill the energy conser-
vation among the three (�ωn,l,m = 0) or four (�ωn,l,m,s = 0)
modes taken into account (for an example see [27]).

With this in hand, the full Hamiltonian of the system is
found to be composed by a sum of four terms, the last two
being interaction terms, where three or more modes give rise
to 3WM or 4WM.

χ
(n)
1 and χ0 describe respectively the free field energy of

the traveling modes and the magnetic energy stored into the rf-
SQUIDs due to the magnetic field or DC current bias applied.
Furthermore, χ

(n,l,m)
3 and χ

(n,l,m,s)
4 are respectively the cou-

pling parameters that characterize the 3WM and 4WM, both
strongly dependent on the circuit parameters of the unit cell
and on the frequency of the modes that populate the JTWPA.
For the complete expression of the coupling coefficients as a
function of the layout and experimental parameters see S-VI
within the Supplemental Material [24]. The distinctive char-
acteristic of the layout under study is the strong dependence
of these coupling parameters to the external bias conditions,
opening the possibility to properly select a working regime
(3WM or 4WM). Each coupling parameter, defined by a set of
indices (e.g., n, l , m, and s), quantifies the interaction strength
of the respective modes. It is then clear that different combi-
nations of indices represent different effects that take place in
the JTWPA, which contribute to the output field. Focusing on
a particular working regime of the amplifier it can be noted
that if the JTWPA is biased so that the Kerr-like nonlinearity
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is suppressed, it is legitimate to consider the amplifier as a
pure three-wave mixer [15], where the conservation of energy
imposes the creation of the so-called idler mode at frequency
ωp − ω, being ωp and ω the pump and signal frequencies
respectively. On the contrary, if the quadratic nonlinearity
gets suppressed, the JTWPA becomes a pure four-wave mixer,
hence, with the degenerate pump assumption valid from now
on for the 4WM regime (e.g., the two pump photons involved
in the scattering have the same frequency), the idler will be
located at 2ωp − ω.

C. Gain, noise, and squeezing in 3WM and 4WM

To analytically treat the problem the number of traveling
modes that populate the JTWPA will be restricted to three,
the input pump and signal frequencies plus the idler fre-
quency that changes depending on the active nonlinearity.
This assumption implies that mixed 3WM/4WM conditions
will not be taken into account, these latter would require a
four coupled modes discussion, that goes beyond the scope of
this paper. Furthermore, since now the 3WM regime will be
considered in a nondegenerate condition, that is ω �= ωp/2.
This regime is insensitive to the phase difference between
the incoming waves [22], making the nondegenerate paramet-
ric amplifier phase − preserving. With this in hand the full
Hamiltonian (11) can be reduced to two different forms de-
pending on the regime the amplifier is working in. Concerning
the 3WM, the following Hamiltonian is obtained:

Ĥ3WM = h̄χ0 +
∑
n =

{ωp, ω, ωp − ω}

h̄χ
(n)
1

(
â†

nân + 1

2

)

+ h̄χ
{ωp,ω,ωp−ω}
3

(
â†

ωp
âωâωp−ω + â†

ωâ†
ωp−ωâωp

)
(12)

having introduced χ
{ωp,ω,ωp−ω}
3 as the sum of all the pos-

sible terms arising from index permutations of χ
(ωp,ω,ωp−ω)
3

neglecting permutations signs degeneracy. While the 4WM
Hamiltonian results to be

Ĥ4WM = h̄χ0 + h̄ξ0 +
∑
n =

{ωp, ω, 2ωp − ω}

h̄χ
(n)
1

(
â†

nân + 1

2

)

+
∑
n =

{ωp, ω, 2ωp − ω}

h̄ξnâ†
nân

+
∑
n, l =

{ωp, ω, 2ωp − ω}

h̄ξn,l â
†
nânâ†

l âl

+ h̄χ
{ωp,ωp,ω,2ωp−ω}
4 ·

· (
â†

ωp
â†

ωp
âωâ2ωp−ω + â†

ωâ†
2ωp−ωâωp âωp

)
, (13)

where ξ0 is a small correction to the zero-point energy, ξn is
a small contribution to the free-field energy of the modes and
ξn,l is the coefficient describing the self- (n = l) and cross-
phase (n �= l) modulation phenomena. Likewise the 3WM
case, χ

{ωp,ωp,ω,2ωp−ω}
4 is the sum of all the possible terms that
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–p,s,i˝ 10-2

χ4
–p,p,s,i˝

(χ1
(s)-ωs) 10-5

(χ1
(i)-ωi) 10-5

FIG. 2. Hamiltonian coupling parameters χi characterizing the
Hamiltonian (11) vs the normalized DC flux bias (��DC/�0). The
Hamiltonian coefficient related to the constant flux bias (χ0) has been
scaled by a factor of 10−12, the noninteracting-modes Hamiltonian
coupling constants (χ (n)

1 ) have been shifted by the frequency of the
corresponding photon (ωi) and scaled by a factor 10−5 while χ

(p,s,i)
3

has been scaled by a factor of 10−2. The indices in the superscripts
vary with the considered mode and can take the values p (pump), s
(signal), and i (idler). The blue vertical lines indicate the flux biases
at which the amplifier works as a three-wave mixer, while the red
vertical lines indicate the flux biases at which the amplifier works as
a four-wave mixer (see Sec. II C for a detailed description). The cou-
pling parameters ξn,n and ξn,l refer to the self-phase and cross-phase
modulation due to the 4WM interaction. The circuit parameters used
to perform the numerical evaluations and plots are summarized in
Table I.

derive from index permutations of χ
(ωp,ωp,ω,2ωp−ω)
4 neglecting

permutations signs degeneracy.
Figure 2 shows the behavior of the most significant cou-

pling parameters as a function of ��DC. These coefficients

TABLE I. Circuit parameters and magnetic field flux bias (work-
ing points) used for numerical evaluations.

Parameter Value Description

Ic 5 μA Josephson critical current
Cg 14 fF Ground capacitance
Lg 53 pH Geometrical inductance
CJ 60 fF Josephson capacitance
a 60 μm Unit-cell length
N 900 Number of unit cells
ωp 2π × 12 GHz Pump frequency
ωs 2π × 7 GHz Signal frequency
ωi 2π × 5 GHz 3WM idler frequency
ωj 2π × 17 GHz 4WM idler frequency
��DC,3WM/�0 0.25 3WM working point
��DC,4WM/�0 0 4WM working point
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present a periodic behavior given by the periodicity of the
Josephson inductance and the red and blue vertical lines rep-
resent particular bias values (working points) that select the
4WM or 3WM working regimes respectively. From now on
we recall the 3WM and 4WM regimes by referring respec-
tively to the blue and red vertical lines in the positive ��DC

plane of Fig. 2. For their numerical values see Table I.
Once the Hamiltonian of the system is known, it is

possible to determine the dynamic of the observables. Ex-
ploiting the Heisenberg picture of quantum mechanics, the
time evolution of the creation and annihilation operators can
be computed through the Heisenberg equation dâH(t )/dt =
(i/h̄)[Ĥ, âH(t )] + (∂ â/∂t )H (for the complete calculations see
S-VII within the Supplemental Material [24]). From here to
the end of Sec. II C we will drop the H subscript.

From the calculation of the Heisenberg equations a sys-
tem of coupled equations for the creation and annihilation
operators [3WM (S28)–(S30), 4WM (S31)–(S33)] comes out.
This system is in general not solvable analytically unless one
performs some approximations [28]. Indeed, one can proceed
with the so-called undepleted pump approximation to analyt-
ically treat the system. Such an approximation requests the
pump amplitude to be much higher than the signal and idler
ones so that its magnitude does not change significantly during
the interaction process. On the other hand, under the so-called
classical pump approximation, the ladder operator describing
the pump mode can be treated as a classical amplitude√

2h̄ωp

CgN
âp �→ Ap (14)

being Ap the classical voltage amplitude of V̂Cg [Eq. (5)].
The strong interplay between the traveling waves manifests

itself in a system of coupled differential equations for the
annihilation operators describing the signal and idler modes

dâω

dt
= −iϒ â†

ω′e−it (15a)

dâω′

dt
= −iϒ â†

ωe−it (15b)

where the density phase mismatch  has been defined [3WM
- Eq. (S49), 4WM - Eq. (S42)]. In Eq. (15b) the subscript
ω′ stands for a generic idler tone, both for the 3WM and the
4WM case. The main structure of the system remains the same
regardless of the kind of interaction that takes place into the
JTWPA, indeed it is possible to define an interaction parame-
ter ϒ = ϒ3WM,4WM that characterizes the working regime the
amplifier is biased in

ϒ3WM = χ3|Ap,0| (16a)

ϒ4WM = χ4|Ap,0|2 (16b)

χ3,4 are two bias tunable coefficients that incorporate informa-
tion about the strength of the quadratic or cubic nonlinearity
into the device [for their definition refer to Eqs. (S43) and
(S50)]. It has to be noticed that in ϒ3WM,4WM the proportion-
ality to the initial pump amplitude Ap,0 reflects the nature of
the scattering taken into account, hence involving one (linear)
or two (quadratic) pump photons.

Under the undepleted pump assumption and working in
the co-rotating frame one can find the following analytical
solution to Eqs. (15a) and (15b):

âω(t ) =
[

âω,0

(
cosh (gt ) + i

2g
sinh (gt )

)

− iϒ

g
(âω′,0)† sinh (gt )

]
e−i(/2)t (17)

being âω,0 and (âω′,0)† the ladder operators at the initial inter-
action time and with the complex gain factor

g =
√

ϒ2 −
(



2

)2

. (18)

For the 3WM case, under experimentally reasonable pa-
rameters a negligible total phase mismatch approximation,
hence the phase mismatch density times the interaction time
can be considered in Eq. (17) so that t ≈ 0 and the phase
lag between the traveling modes can be neglected. Moreover,
under the undepleted pump approximation, it can be shown
that the gain variation given by the phase mismatch density
in (18) can be neglected since ϒ2 	 2

4 , giving the much
simpler relation

g ≈ |ϒ3WM|. (19)

It is helpful to introduce a set of auxiliary functions that
incorporates the behavior of the JTWPA and simplifies the
notation

u(ω, t ) = cosh (g(ω)t ) + i(ω)

2g(ω)
sinh (g(ω)t ), (20)

v(ω, t ) = − ϒ

g(ω)
sinh (g(ω)t ). (21)

By making use of (17) it is now possible to define the
number of output signal photons as the average number of
photons of frequency ω after a certain amount of time t spent
into the medium

〈n̂ω〉 = 〈â†
ωâω〉 = |u|2 〈(âω,0)†âω,0〉

+ |v|2[〈(âω′,0)†âω′,0〉 + 1]

+ iu∗v〈(âω,0)†(âω′,0)†〉 − iuv∗〈âω′,0âω,0〉. (22)

Equation (22) is a general relation to estimating the number
of outgoing signal photons regardless of the nature of the
incoming state (Fock, coherent, thermal, etc.).

A parametric amplifier is a particular realization of a linear
amplifier, of which the typical output field can be expressed
as âω = √

Gâω,0 + L̂† (Eq. 2.9 in [29]), hence as the sum
of the input field times a real constant plus an additional
operator.

√
G = u is called the amplitude gain of which the

linear amplifier increment of the input signal, while L̂ =
−iv∗âω′,0ei(/2)t is the added noise operator, that is a property
of the sole internal degrees of freedom of the amplifier. It is
then straightforward to rewrite (22) as

〈n̂ω〉 = G 〈(âω,0)†âω,0〉
+ 〈L̂†L̂〉 +

√
G(〈(âω,0)†L̂†〉 + 〈L̂âω,0〉)

= G 〈n̂ω,0〉 + 〈N̂ 〉, (23)
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where n̂ω,0 is the input signal photon number operator. Here
one can recognize two key features of a linear amplifier: the
photon number gain G, that is the contribution to the total
number of output photons given by the sole input field, and
the noise photon number operator 〈N̂ 〉, which embeds the
contribution given by the amplifier itself. If the input idler
mode is in the vacuum state the system acts as an ideal linear
amplifier, hence characterized by a quantum-limited added
noise [29]. By comparing Eqs. (22) and (23) one can write
the gain and the noise photon number of a JTWPA as

G = |u|2 = cosh gt2 + 2

4g2
sinh gt2 + i

2g
sinh gt cosh gt

(24)

〈N̂ 〉 = |v|2[〈(âω′,0)†âω′,0〉 + 1]

+ iu∗v〈(âω,0)†(âω′,0)†〉 − iuv∗〈âω′,0âω,0〉 (25)

and using the above relations the added-noise number of the
amplifier can be defined as the ratio between the symmetric
variance of the added noise L̂ and the gain G [29]

A = 〈|�L̂|2〉
G

(26a)

= 〈|L̂|2〉 − | 〈L̂〉 |2
G

(26b)

= |v|2
|u|2

(
1

2
+ 〈â†

ω′,0aω′,0〉 − | 〈âω′,0〉 |2
)

(26c)

In the case where the phase mismatch can be neglected
ϒ2 	 2

4 (this happens for low values of CJ and Lg, which
reduce the chromatic dispersion in the line) the gain becomes

G ≈ cosh2 gt (27)

in accordance with the classical approach given by [16].
It is now worth making few observations on Eqs. (24) and

(25). The gain G only depends on the layout of the amplifier
and on the amplitude and frequency of the pump tone, as
expected from a linear amplifier; in other words the gain does
not depend on the input state. The expected value of the noise
photon number operator (〈N̂ 〉) has a nontrivial dependence
on the annihilation and creation operators, and it is interesting
evaluating this quantity for two simple cases: a Fock state
|ψF〉 = |NS

in〉s |N I
in〉i and a coherent state |ψc〉 = |α〉s |β〉i

〈N̂ 〉F = |v|2(1 + N I
in

)
(28)

〈N̂ 〉C = |v|2(1 + |β|2) − iuv∗αβ + iu∗vα∗β∗ (29)

Regardless of its nontrivial dependence, it turns out that
if the input idler mode is in its vacuum state (N I

in = β = 0)
the noise photon number simplifies becoming just 〈N̂ 〉F =
〈N̂ 〉C = |v|2.

Figure 3(a) shows the photon number gain as a function of
the signal frequency in 3WM and 4WM regimes at different
pump powers. The curves, representing G with and with-
out negligible phase mismatch, show that the approximation
 ≈ 0 holds in all the bandwidth for the 3WM and the 4WM
regimes, for the set of parameters reported in Table I.

The correlation of the signal and idler photons results in a
squeezed output field of the JTWPA. To model these correla-
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Ψ4WM 
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FIG. 3. (a) Photon number gain G of the JTWPA under the unde-
pleted pump approximation expressed by equation (24) in the 4WM
(light blue/orange) and 3WM (blue/red) regimes. For each pump
power one can see the cases with and without zero phase mismatch,
respectively  = 0 and  �= 0. (b) Squeezing spectrum S [Eq. (33)]
as a function of the signal frequency calculated for a vacuum input
state in the 4WM and 3WM regimes. Different colors express differ-
ent pump currents (Ip) for which G and S are calculated: blue/light
blue Ip/Ic = 0.99 (Pp = −64.6 dB), red/orange Ip/Ic = 0.81 (Pp =
−66.3 dB). The working points in the 3WM and 4WM cases are
respectively ��DC,3WM/�0 = 0.25 and ��DC,4WM/�0 = 0. Refer
to Table I for the experimental parameters used in the computations

tions, one can introduce quadratures as

Ŷ θ (ω) = i(eiθ/2â†
ω − e−iθ/2âω ) (30)

with their associated fluctuations

�Ŷ θ (ω) = Ŷ θ (ω) − 〈Ŷ θ (ω)〉 (31)

being θ the so-called squeezing angle. From the previous defi-
nitions, one can compute (see S-VIII within the Supplemental
Material [24]) the relation between the squeezing spectrum S
and the quadratures fluctuations as

S(ω) =
∑

n

〈�Ŷ θ (ω)�Ŷ θ (ωn)〉. (32)

For a vacuum input state, it can be shown that the product
of the fluctuations of the two quadratures gives the minimum
possible value allowed by the Heisenberg uncertainty princi-
ple, the fingerprint of a quantum-limited amplification [30].
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FIG. 4. Added-noise number (A) as a function of the normal-
ized pump current, for a pump frequency of 12 GHz and a signal
frequency of 7 GHz in 3WM working point. The dashed curves
are calculated in case of negligible phase mismatch while the solid
curves in the case of non-negligible phase mismatch. The blue curves
are considered for an input Fock state where the idler is in the vacuum
state (|NS

in, 0〉), while the red curves for an input Fock state with one
idler photon (|NS

in, 1〉).

From (32) the squeezing spectrum is then

S(ω) = 1 + 2|v(ω, t )|2 − 2|v(ω, t )|
√

|v(ω, t )|2 + 1. (33)

Figure 3(b) shows the squeezing spectrum of Eq. (33)
plotted as a function of the signal frequency for different input
pump powers, calculated for a vacuum input state.

The behavior of the amplifier is determined not only by
its constructive parameters but also from some dynamical
features like the pump and signal power and frequency that
can by adjusted during the experiment. An example of this
can be appreciated by evaluating the added-noise number A
as a function of the pump power. Figure 4 reports A in the
3WM working point, for a Fock input state in the case of one
and no idler input photons (respectively |NS

in, 1〉 and |NS
in, 0〉)

both for negligible and non-negligible phase mismatch as a
function of the pump current. For an initial idler vacuum state
(|NS

in, 0〉) the value of A grows from zero and saturates up to
the value 0.5 for high pump currents both for negligible and
non-negligible phase mismatch, as expected from a quantum
limited amplifier. It is straightforward considering an input
state with one idler photon (|NS

in, 1〉). In that case the added-
noise number saturates at 1.5 for high pump currents, hence
the value coming from standard quantum limit (0.5) plus the
number of incoming idler photons (1).

D. Interaction of quantum states through 3WM or 4WM

The time evolution of the state vectors can give important
hints on the behavior of the JTWPA in presence of single-
photon signals. Moving to the framework of the interaction
picture it is possible to calculate the output photon statistics in
the Fock base for any incoming state. The time evolution of a
quantum state |ψ (t )〉 can be expressed as

|ψ (t )〉 = e− i
h̄

∫ t
0 Ĥintdt ′ |ψ (0)〉, (34)

where Ĥint = Ĥint,3WM(4WM) is the three-, four-wave mixing
Hamiltonian written in the corotating frame under the unde-
pleted pump approximation:

Ĥint,3WM = h̄χ3|Ap,0|(âsâie
it + â†

s â†
i e−it ), (35)

Ĥint,4WM = h̄χ4|Ap,0|2(âsâie
it + â†

s â†
i e−it ). (36)

To give an analytical solution of the problem we consider a set
of parameters where the negligible phase mismatch condition
can be considered valid (i.e., t � 1). Under this assumption
Eq. (34) becomes

|ψ (t )〉 = eiκ(âsâi+â†
s â†

i )|ψ (0)〉, (37)

where κ = −χ3|Ap,0|t (κ = −χ4|Ap,0|2t) is the amplification
factor for the 3WM (4WM) case. Equation (37) can be written
in a normal ordered form [31] as

|ψ (t )〉 = ei tanh (κ )â†
s â†

i ·
· e− ln [cosh (κ )](1+â†

s âs+â†
i âi )·

· ei tanh (κ )âsâi |ψ (0)〉 (38)

In the following, the time evolution of two different classes
of initial input states will be analyzed.

1. Fock States input

This subsection focuses on the time-evolution of an initial
Fock state |ψF(0)〉 = |NS

in〉s |N I
in〉i. Considering the action of

Eq. (38) on the initial state, by means of a power expansion
of each exponential function, the expression of the quantum
state at a certain time t can be derived.

Then, the expectation value of the signal photon number
operator n̂s = â†

s âs on the final state |ψF(t )〉 can be expressed
as

〈n̂s〉ψF (t ) = 〈ψF(t )|n̂s|ψF(t )〉 =
∑
NS

fin

PF
(
NS

fin

) · NS
fin, (39)

where PF(NS
fin) is the probability to measure NS

fin signal pho-
tons in the final state, and NS

in − min {NS
in, N I

in} < NS
fin < ∞.

This normalized probability distribution can be expressed by
exploiting the binomial coefficients as a function both of the
characteristics of the initial state and of the characteristics of
the medium

PF =
min {NS

in,N
I
in}∑

n,n′=0

(−1)n−n′
[tanh (κ )]2(NS

fin−NS
in+n+n′ )

[cosh (κ )]2(1+NS
in+N I

in−n−n′ )
·

·
(

NS
in

n′

)(
N I

in

n

)(
NS

fin

NS
in − n

)(
NS

fin − NS
in + N I

in

N I
in − n′

)
(40)

In Fig. 5 the time evolution of the probability distribu-
tion is represented for three different initial number states,
for a 3WM interaction and for the experimental parameters
reported in Table I. In all cases, at the beginning of the inter-
action, the probability distribution is single-peaked and has a
maximum in correspondence of NS

in, then the distribution can
turn into a multipeaked distribution if N I

in �= 0. In this case, the
distance between peaks increases with time. After the initial
transition time, the number of maxima becomes constant and
equal to min{NS

in, N I
in} + 1. This value reflects the number of
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FIG. 5. Time evolution inside the medium, from its input port
(t = 0) to the output port (t = tT ) of the probability distribution
PF to find NS

fin signal photons for three different initial Fock states
(a)|3〉s |0〉i, (b)|3〉s |2〉i, and (c) |6〉s |6〉i calculated for Ip = 0.5Ic. The
dashed white lines represent the time evolution of the expectation
value 〈n̂s〉.

possible combinations that can occur between the initial signal
and idler photons at the beginning of the interaction. Consider-
ing the case of an initial state |3〉s |2〉i [Fig. 5(b)], at t = 0 and
with a certain probability, two couples of signal-idler photons
may virtually recombine to create a pair of pump photons.
This leads to the effective propagation and amplification of
a single remaining signal photon. Yet, with a different given
probability, just a single couple of signal-idler photons or
none of them virtually recombine, leading to the effective
propagation and amplification of, respectively, two or three
signal photons. In addition, considering Fig. 5(c) it can be
noted that in the case of NS

in = N I
in, so an equal number of

signal and idler photons, despite the the fact that NS
in �= 0, the

probability to observe at the end of the amplifier a vacuum
state is significantly nonzero. This is in accordance with the
fact that an effective propagation and amplification of the
vacuum state can occur.

2. Coherent States input

Similarly to what has been performed in the case of a Fock
state input, the expectation value of the signal photon number
operator can be derived by (39) considering an initial bimodal
coherent state |ψc(0)〉 = |α〉s |β〉i. The calculation leads to the
following probability distribution:

PC =
∞∑

m,n,n′=0

(−1)n−n′
[tanh (κ )]n+n′

[cosh (κ )]2(1+NS
fin+m−n′ )

· αNS
fin−n(α∗)NS

fin−n′
βm(β∗)m+n−n′

e[|α|2+|β|2+i(α∗β∗−αβ ) tanh (κ )]

· 1

m! (NS
fin − n)!

(
NS

fin

n

)(
m + n

n′

)
(41)

The time evolution of the probability distribution PC is
presented in Fig. 6 for three different initial bimodal co-
herent states. In contrast with PF, this distribution is always
single-peaked over the whole range of the interaction and its
maximum shifts in time starting from NS

fin = |α|2. It can also

Log10[PC(Nfin
S )]

- 30 - 25 - 20 - 15 - 10 - 5 0

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Nfin
S

t/
t T

(a)
0 5 10 15 20

Nfin
S

(b)
0 5 10 15 20

Nfin
S

(c)

FIG. 6. Time evolution inside the medium, from its input port
(t = 0) to the output port (t = tT ) of the probability distribution PC

to find NS
fin signal photons for three different initial bimodal coherent

states |α〉s |β〉i, (a) |1〉s |0〉i, (b) |0〉s |1〉i, and (c) |1〉s |1〉i calculated
for Ip = 0.2Ic. The dashed purple lines represent the time evolution
of the expectation value 〈n̂s〉.

be noticed that, for a fixed α, the distribution becomes wider
and wider with the increase of β.

III. IMPEDANCE MATCHING, PARAMETER SPACE
AND NOISE PERFORMANCE

To couple the JTWPA with its electromagnetic environ-
ment a characteristic impedance matching (e.g., Zc = 50 �) is
commonly required. This target can be reached with nontriv-
ial additional on-chip components or by properly tuning the
cells parameters. To keep the induced magnetic flux function
into the rf-SQUID single-valued, a design characterized by a
screening parameter β, given by

β = 2πLgIc

φ0
< 1 (42)

is required. It is evident that a certain β sets a hyperbolic
relation between Lg and Ic. Moreover, in standard fabrication
techniques, the Josephson capacitance turns to be experimen-
tally constrained to the critical current via a linear relation that
links CJ with Ic passing through the junction area.

For completeness, it has to be noted that the proposed lay-
out of JTWPA does not take into account any parasitic series
inductances into the line. The presence of this stray circuit
component tends to dilute the nonlinearity reducing the partic-
ipation ratio of the Josephson nonlinearity [32]; nonetheless
this feature can be practically minimised by reducing the
physical gap between two consecutive rf-SQUIDs, bringing
this effect to be a small perturbation.

For a generic mode n, an expression for Cg having set
Ic (consequently Lg) and Zc can be inferred starting from
the relation for the characteristic impedance of a lossless
transmission line (Zn = √

Ln/Cn
g )

Cn
g = Ln

Z2
n

= 1

Z2
n

	nLg

1 + 	n
Lg

LJ

=
Lg

1−LgCJω2
n

Z2
n

(
1 + 1

1−LgCJω2
n

Lg
ϕ0
Ic

��/ϕ0
sin ��/ϕ0

) . (43)
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FIG. 7. (a) The plot shows three sets of curves calculated for
different values of the screening parameter β representing the cell
parameters for a 50 � matching of the signal mode, at 7 GHz, as
a function of the critical current Ic. The solid lines refer to the left
axis and report the geometrical inductance Lg vs Ic. On the contrary,
the dashed curves refer to the right axis and represent the ground
capacitance Cg vs Ic.(b) Gain G of the JTWPA in 3WM mode (solid
line) as a function of the critical current Ic for different values of the
screening parameter β. The dashed curves represent the limit above
which the undepleted pump approximation cannot be considered
valid considering the input state |1, 0〉 while the dotted curves con-
sidering the input state |100, 0〉 (see Eq. S2 within the Supplemental
Material [24]).

It has to be noticed that the impedance matching can
be achieved just for a single-mode since the characteristic
impedance Zn of the line is frequency dependant. The matched
mode can be engineered ad hoc depending on the experi-
ment requirements. If a low power reflection is required, the
matched mode should be the pump one, instead, if no signal
loss is preferred, the signal mode should be the matched
one. Figure 7(a) reports several curves representing the trends
given by Eqs. (42) and (43) plotted as functions of Ic for
different values of β and for a 50 � matching of a signal at
7 GHz.

Figure 7(b) shows instead the gain (solid lines) as a func-
tion of the Josephson critical current for different values of

β. The dashed and dotted lines express the model validity
limit corresponding to the undepleted pump approximation
reported in Eq. (S2), considering |1, 0〉 and |100, 0〉 input
states respectively and for each explored value of β. It is
clear how the input photons number affects the maximum gain
reached without pump depletion.

IV. CONCLUSIONS

A quantum theory for parametric amplification via
a chain of rf-SQUIDs embedded in a waveguide has
been developed through a circuit-QED approach. A mixed
lumped/distributed-element approach has been adopted to
define the Hamiltonian of the system, valid for both 3WM
and 4WM interactions. The dynamics of the system has been
calculated first in the Heisenberg picture where, through the
solution of a system of quantum Langevin equations for
the traveling modes, a closed form for the evolution of the
photonic populations, photon number gain, and squeezing
spectrum were found. Then, using the interaction picture,
the time evolution of some representative input states (Fock
and coherent states) has been calculated, allowing to model
the quantum dynamics of photonic amplification and virtual
recombination into the JTWPA in the few photons regime.

All data generated or analysed during this study are in-
cluded in this published article.
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