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Phase locking and noise-driven dynamics in a Josephson-junction electronic analog
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We present an electronic circuit whose dynamical properties emulate those of a resistively and capacitively
shunted Josephson junction. We show how it reproduces the switching properties of a shunted junction and its
dependence on the quality factor. A thermal noise source is then used to characterize the temperature dependence
of the phase dynamics. In the presence of an AC drive, phase locking is observed at integer and rational multiples
of the drive frequency, and it competes with chaotic behavior when the quality factor of the junction exceeds
unity. We characterize the stability of phase-locked and chaotic states in the presence of thermal noise.
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I. INTRODUCTION

Josephson junctions consist of two superconducting elec-
trodes separated by a weak link [1,2]. The supercurrent
flowing through a junction depends on the superconducting
phase difference φ between the two electrodes. The electronic
properties of a junction largely result from the dynamical
properties of φ(t ), which are equivalent to those of a driven
nonlinear oscillator. In fact, within the resistively and ca-
pacitively shunted junction model (RCSJ) [3,4], φ follows a
differential equation which is identical to that of a driven,
damped, rigid pendulum.

While the phenomenology of Josephson junction dynam-
ics has been well established experimentally, a considerable
amount of information is lost in typical transport measure-
ments since they cannot measure the time evolution of the
phase φ(t ) directly. For example, a measurement of the I-V
curve of a Josephson junction yields only information on the
time average of the phase derivative φ̇, which is proportional
to the voltage, but barely provides any information about the
frequency spectrum of φ(t ).

Electronic circuits relying on mainstream components can
emulate the exact same dynamical system, but on timescales
that are more conducive to time-dependent phase measure-
ments. They thus provide a convenient way to simulate the
properties of Josephson junctions as predicted by the RCSJ
model. Such Josephson junction analogs were proposed in
Refs. [5–12] and typically rely on voltage-controlled oscil-
lators. Prior work also demonstrated how analog circuits
can help characterize noise-driven dynamics [13], such as a
thermally activated escape rate from a potential well [14].
However, to our knowledge this approach has not been used to
investigate the effect of thermal noise on the phase dynamics
of a Josephson junction. Further, our simulations produce
results with much higher resolution than much prior analog
research has yielded due to general advancement in techno-
logical capacity.

*These authors contributed equally to this work.
†ametf@appstate.edu

In this work, we probe some of the common properties of
Josephson junctions using an analog circuit. Our setup allows
us to directly measure φ̇(t ) before time averaging. We can
therefore extract valuable insights into the frequency spectrum
of the junction’s phase while exploring the parameter space of
the RCSJ model. We first determine the switching properties
of the analog junction and its dependence on the quality factor.
The addition of thermal noise to the circuit allows the obser-
vation of phase diffusion in overdamped junctions, as well as
the thermally activated premature switching of underdamped
junctions. In the presence of an AC drive, we observe the AC
Josephson effect [2,15] and its dependence on the Q factor
of the junction, as well as the power and frequency of the
AC drive. To that end, we directly measure the frequency
spectrum of φ̇(t ) and show how it depends on the presence
of integer and fractional phase locking. Using the same tech-
nique, we discuss the onset of chaos in such systems and the
thermal stability of phase-locked and chaotic states. Overall,
this analog system provides a simple, room-temperature setup
to predict phase dynamics and help design circuits based on
Josephson junctions.

II. DESCRIPTION OF THE CIRCUIT

A. Main circuit

A simplified schematic of the circuit is shown on Fig. 1(a).
It is inspired by Ref. [12], and it relies on a voltage-controlled
oscillator (VCO) whose sinusoidal output V2 has an amplitude
α and a frequency which is proportional to the input voltage.
The VCO is in the feedback loop of the circuit; therefore,
its input is actually the output of the operational amplifier
Vout, so V2 = α sin(2πk

∫
Voutdt ). A constant input voltage

Vout therefore results in a sinusoidal output of frequency kVout.
We characterize the VCO in greater detail in the Supple-

mental Material [16]. If we define φ̇ ≡ 2πkVout, we obtain the
following differential equation for φ:

φ̈ + ω0

Q
φ̇ + ω2

0 sin φ = ω2
0
Vb

Vc
. (1)
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FIG. 1. A simplified representation of the circuit is shown in (a),
with the most relevant components labeled. (b) gives an idealized
diagram of washboard potentials at varying bias currents.

Here, the junction’s frequency is defined as ω2
0 ≡ 2παk

RcC
, the

quality factor Q ≡ RCω0, and the critical voltage Vc ≡ −αRb
Rc

.

A more detailed derivation of this result is provided in the
Supplemental Material [16], and we show how to determine Q
and ω0 experimentally. This equation is similar to the famil-
iar RCSJ model for the phase of a current-biased Josephson
junction [2–4]. The effective potential associated with the
dynamical properties of this phase is shown on Fig. 1(b) and
is given by:

U (φ) = −EJ

(
cos(φ) + Vb

Vc
φ
)
. (2)

Here, EJ is the analog of the Josephson energy in the RCSJ
model and is defined as EJ ≡ α

2πk Rc
. For our circuit, this

quantity is on the order of 80 nJ, which is, of course, many
orders of magnitude greater than the energy scale for a real
junction. Details on the derivation of this result are provided
in the Supplemental Material [16].
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FIG. 2. Switching dynamics. (a) 〈Vout〉 measured as a function of the DC bias voltage for an analog junction with Q = 0.6. The red curve
is a fit to the RCSJ model prediction [Eq. (3)]. Insets: Vout (t ) before time averaging measured at bias values shown by yellow and green dots on
the main curve. The period of oscillation clearly increases closer to the critical voltage. (b) 1/T 2 plotted as a function of V 2

b , which is expected
to be linear according to Eq. (4). A fit, shown in red and relying on Eq. (4), yields a junction period T0 = 2.1 ms. Inset: T (Vb) using the same
data. (c) I-V curves measured for different quality factors. The retrapping voltage decreases at larger Q values. (d) Given the RCSJ model’s
prediction that Vr/Vc ∝ 1/Q, the values of 1/Q versus Vr/Vc were plotted for 12 different Q values to show this proportionality.
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Note that the bias voltage Vb plays the role of what is
usually the current bias in the RCSJ model. In what follows,
we will therefore refer to switching, retrapping, and critical
voltages instead of currents. Curves representing Vout (Vb) will
be referred to as I-V curves to follow the standard terminol-
ogy.

In our setup, the bias voltage is the sum of three com-
ponents: DC and AC voltages, as well as a random voltage
source that emulates thermal noise and is described later.

B. Switching dynamics

Figure 2(a) shows an example of an I-V curve obtained
when the analog junction is nearly overdamped with a Q factor
of 0.6. Here, Vout is time averaged by a low-pass filter with a
time constant of 82 ms. As the bias exceeds the critical volt-
age, Vout becomes finite, which corresponds to the normal state
in the RCSJ model. In the overdamped case, the junction’s
I-V curve is not hysteretic, so the switching and retrapping
voltages are identical [2]. The red curve corresponds to a fit to
the RCSJ model’s prediction in the overdamped case:

Vout = ± f0 Q

k

√(Vb

Vc

)2

− 1. (3)

The two insets in Fig. 2(a) represent Vout ∝ φ̇ before time
averaging. As the bias exceeds the critical voltage, the phase
runs down the tilted washboard potential with an angular ve-
locity that decreases whenever φ goes over a local maximum
of U (φ). This results in an oscillation of φ̇, which is shown as
an inset in Fig. 2(a). As the bias approaches the critical volt-
age, the period of those oscillations diverges, as shown in the
insets in Figs. 2(a) and 2(b). Indeed, in the overdamped case,
the period T of those oscillations is expected to follow [3,4]:

T = T0

Q
√(Vb

Vc

)2 − 1
. (4)

This trend is shown in Fig. 2(b), where T −2 is plotted as
a function of V 2

b , showing a linear trend, as expected from
Eq. (4). The red fit corresponds to a period T0 ≈ 2.1 ms (using
Q ≈ 0.6).

Changing the value of R modifies the quality factor of
the analog junction, which can be tuned to the underdamped
regime. As expected, the I-V curves become more hysteretic
as the quality factor increases. When Vb > Vs ≈ Vc, the system
starts to rapidly fall toward lower values of the washboard
potential. However, as Vb is decreased, a finite voltage is
observed across the junction until the retrapping voltage Vr <

Vs. Indeed, given the inertia of the system, the tilt of the
washboard potential must be brought closer to the horizon-
tal in order to stop the running phase. Figure 2(c) shows
normalized I-V curves for four different quality factors. The
retrapping current becomes increasingly small deeper in the
underdamped regime. Within the RCSJ model the ratio Vr/Vc

scales like 4/(Qπ ) for Q � 1 [4]; we therefore plot the ratio
Vr/Vc as a function of 1/Q in Fig. 2(d) and, indeed, observe a
linear trend.

C. Effect of thermal noise

Effective temperature

The effect of finite temperature on the phase dynamics
can be emulated by applying Gaussian white voltage noise
to the input of the circuit: this requires a random voltage
source with a flat frequency spectrum and a normal distri-
bution with zero mean. Using the standard expression for
Johnson-Nyquist noise, this emulates an effective tempera-
ture: kBTeff = 〈vrms〉2/4BR, where B is the bandwidth of the
noise.

We numerically generate a random array of voltage values
with a Gaussian white noise distribution and, using a voltage
output digital-to-analog converter (DAC), add it to the DC bias
voltage before feeding it to the input of the junction. The ef-
fective temperature is then simply varied by adjusting the rms
voltage of the white noise. Importantly, since the sampling
rate of the DAC is finite (10 kHz), the spectral density of the
noise is flat up to only a few kilohertz and starts dropping
as it approaches the sampling rate, but this is sufficient in
this low-frequency setup to emulate thermal noise. Indeed,
the junction frequency f0 is typically a few hundred hertz.
Over the relevant range of frequencies (a few hertz to a few
kilohertz), our noise spectral density therefore approximates
white noise very well, despite the simplicity of the setup. This
allows us to determine the temperature dependence of the
phase dynamics in the overdamped and underdamped case.

Around zero bias, phase slips between two local minima
of the washboard potential can still occur at finite tempera-
ture with a probability that scales like the Boltzmann weight
exp(−�U/kBT ), with �U = 2EJ [17]. This causes the phase
to diffuse and a nonzero voltage to develop across the junc-
tion even when the bias voltage is below the critical voltage.
Figure 3(a) shows Vout (Vb) measured at three effective tem-
peratures for an analog junction whose Q factor is 0.6. The
blue, pink, and red curves were obtained when the rms voltage
of the noise source was 2.36, 3.19, and 4.67 V, respectively.
A finite slope develops around zero bias and increases with
temperature. At the highest effective temperature (red curve),
the zero-voltage state effectively disappears.

In the presence of phase diffusion, the zero-bias resistance,
which in our case corresponds to dVout/dVb around Vb = 0, is
known to be thermally activated [18]:

R̃ ≡ dVout

dVb

∣∣∣
Vb=0

∝ 1

T
exp

(−2Ej

kBT

)
. (5)

This implies that ln(R̃T ) is proportional to 1/T with a slope
proportional to Ej , which can be represented on an Arrhenius
plot, as shown in Fig. 3(b). 〈Vout (Vb)〉 was measured in the
presence of thermal voltage noise with varying rms amplitude.
The curves were numerically differentiated to get dVout/dVb

at zero bias. Since the effective temperature is proportional
to V 2

rms, we plotted the decimal logarithm log10(R̃V 2
rms) versus

V −2
rms , which shows an evident activated behavior in Fig. 3(b).

To verify that the slope scaled according to Ej , we changed
Ej while keeping Q constant. When we change Ej to 2/3
of its original value, we observe again a thermally activated
behavior, but the slope is reduced by a comparable factor of
≈0.58.
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FIG. 3. Thermal noise. (a) Increasing the rms voltage of the noise source causes the superconducting region to start tilting and causes the
junction to become slightly resistive, even below the critical voltage. At high enough rms voltages the superconducting behavior is entirely
washed out by the thermal noise. (b) Plotting log10(R̃V 2

rms) versus V −2
rms , we expect to see linear relationships with slopes proportional to Ej .

(c) As the thermal noise rms voltage is increased, the probability distribution of the switching voltage becomes broader, and the mean drops
towards lower bias. (d) By considering �U = 2EJ (1 − Vb/Vc )

3
2 , where the switching rate is proportional to e−�U/kT , we see that plotting

log10(�) versus (1 − Vb/Vc )3/2 gives a linear relationship which is confirmed in this plot.

In the underdamped case, a phase slip causes the phase
to durably escape the zero-voltage state. The barrier height
that determines the escape probability is bias voltage de-
pendent and equal to �U = 2EJ (1 − Vb/Vc)

3
2 [14,19–21]. To

determine the switching voltage distribution, 4000 I-V curves
were recorded for each effective temperature, wherein the
bias voltage was ramped up to record the switching voltage.
The distributions of switching voltage values are plotted for
four effective temperatures in Fig. 3(c). As the thermal noise
rms amplitude is increased, the switching voltage distribution
shifts towards lower bias voltages. Additionally, we observe
a clear broadening of the switching voltage distribution with
temperature, which concurs with the T 2/3 scaling predicted by
the RCSJ model [22].

The probability that switching occurs at a given voltage
bias Vb can be expressed in terms of the switching rate � and
the rate of change of the voltage bias v̇ [20,23]:

P(Vb) = �

v̇

(
1 −

∫ Vb

0
P(V )dV

)
. (6)

We can solve Eq. (6) numerically, assuming a thermally
activated switching rate e−�U/kT , where �U = 2EJ (1 −
Vb/Vc)

3
2 . A least-squares fit allows us to fit the histograms

of Fig. 3(c) (dashed black curves) with a dimensionless ratio
2EJ
kT ≈ 22.1 and ≈109 (red and light blue histograms, respec-
tively). Note that since T ∝ V 2

rms, that ratio is expected to
differ by a factor of ≈ 4.6 between the two distributions, in
close agreement with our fit. As a point of comparison, for
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dimensionless). (c) Numerical simulation of (b) via numerical integration of (1).

a Josephson junction with a critical current of 1 μA at 1 K,
this ratio would be on the order of 47. It is therefore worth
noting that even though EJ , kT , and other energy scales in
this system are many orders of magnitude larger than in a typi-
cal low-temperature Josephson junction transport experiment,
the dimensionless ratios of the activation energies over kT
are comparable, and we therefore observe a phenomenology
which is very close to what can be observed in a transport
measurement.

Finally, Eq. (6) allows the direct calculation of � using
the switching histograms. Since � ∝ e−�U/kT , we represent
log10(�) as a function of (1 − Vb/Vc)3/2 to highlight the bias
dependence of the barrier height. Similar to the fits of the red
histogram in Fig. 3(c), the linear fit to Fig. 3(d) suggests a ratio
2EJ/kT ≈ 22.1, in agreement with the previously mentioned
fit.

III. INVERSE AC JOSEPHSON EFFECT

The inverse AC Josephson effect can appear when a
Josephson junction is driven by an AC current [2,11,15].
The dynamics of the current driven case are not analytically
solvable [24], but since (1) is equivalent to a damped driven
pendulum, qualitative descriptions rooted in this mechanical
analog offer useful insights. In the presence of a periodic driv-
ing torque, the pendulum can enter a phase-locked state and
complete q revolutions during p periods of the torque. This
phase-locked state is resilient to small perturbations in the DC
torque. The average angular frequency of the pendulum and
the drive are therefore commensurate: 〈φ̇〉 = p

q ω. In a Joseph-

son junction, the voltage across the junction is h̄φ̇

2e , so phase
locking results in a quantized voltage at rational multiples
of h̄ω/2e. The robustness of the phase-locked state against
perturbations allows it to persist over a finite interval of the
DC current, which creates voltage plateaus in the I-V curve.

Observation of Shapiro steps

Although this phenomenon is typically observed when
Josephson junctions are exposed to microwave radiation, in

our case, the junction’s frequency f0 is a few hundred hertz, so
the AC drive can be generated by a simple lock-in amplifier.
That AC voltage is added to a DC component and supplied
to the bias input Vb. The equivalent of the I-V curve, which,
as stated previously, in our case is a plot of Vout (Vb), is then
expected to exhibit Shapiro steps [2,11,15].

Figure 4(a) displays the I-V characteristics of the circuit
driven by two different frequencies: one at 160 Hz and one at
280 Hz. I-V curves were collected with a fixed AC driving
voltage of 0.75 V and varied DC driving voltage. 〈Vout〉 is
plotted against Vdc and normalized in units of fac/k, the value
of a voltage step in our setup, where k is the voltage to
frequency gain of the VCO and fac is the driving frequency.
This normalization helps visualize the integer quantization
and shows the frequency dependence of a voltage step. Note
that the different average slopes come from the normalization
procedure.

Figure 4(b) displays a map of experimentally measured
differential resistance R̃ ≡ d〈Vout〉

dVdc
. The data were collected

by measuring 〈Vout〉(Vac,Vdc), with Vdc being the fast axis,
swept from negative to positive voltages. Both voltage axes
were normalized in units of the critical voltage Vc, which
was experimentally measured to be 0.73 V. The resulting I-V
curves were then numerically differentiated, so that voltage
plateaus result in dark blue regions of vanishing R̃, while
yellow boundaries correspond to transitions between plateaus.
The map bears a striking similarity to the patterns observed
in a conventional overdamped Josephson junction under mi-
crowave radiation [25].

The phase dynamics of an AC-driven Josephson junction
can be obtained analytically when it is voltage biased, a case
where the dependence of the Shapiro steps on the AC bias
can be expressed with Bessel functions [2,24]. In our case, the
junction is current-driven, and no such analytical result exists.
Figure 4(c) was generated by numerical integration of (1), and
the same averaging procedures used for the experimental map
in Fig. 4(b) were conducted. A more detailed derivation of the
map in Fig. 4(c) is given in the Supplemental Material [16].
Thus, a comparison of Figs. 4(b) and 4(c) allows a comparison
of theoretical predictions of a differential resistance map and
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FIG. 5. Fractional Shapiro steps. (a) Spectral density of Vout as a function of Vdc obtained by fast Fourier transform. The junction is driven
by an AC voltage Vac = 0.7V . Frequencies are expressed in units of the external drive frequency fac = 457 Hz. The junction analog is tuned to
the overdamped regime with Q = 0.4 and f0 = 410 Hz. (b) DC response 〈Vout〉 measured over the same range of bias values. Vertical dashed
lines are guides to the eye to identify phase-locked regions. (c) Detailed map of the spectral density of Vout as a function of Vdc between the
n = 0 and n = 1 integer plateaus. Measured for input biases Vdc from 1.25 to 2.4 V. (d) Examples of unfiltered time traces Vout (t ) recorded for
bias values that yield subharmonic phase locking at fac/2 (Vdc = 1.65V ), fac/3 (Vdc = 1.4V ), and fac/5 (Vdc = 2.14V ).

the results of data collected by the analog circuit. The strik-
ing similarities between the maps verify the correspondence
between theory and the circuit.

IV. SUBHARMONICS AND CHAOS

We now turn to the observation of subharmonic phase-
locked states at fractional multiples of the drive frequency,
when 〈φ̇〉 = p

q ω and p and q are coprime. Such states have
been observed both numerically [24,26–29] and in transport
measurements [30,31]. The more robust of those states mani-
fest themselves as plateaus in 〈Vout〉(V ) at fractional multiples
of the voltage quanta fac/k. However, we find that a direct
measurement of the frequency spectrum of Vout (t ) detects
fractional phase locking much more sensitively.

We set the AC excitation amplitude and frequency and
record the output frequency spectrum as a function of the bias
Vdc. To that end, for each value of Vdc, we record a time trace
Vout (t ) with 106 data points spread over 2000 to 4000 cycles of

the drive. We then compute the fast Fourier transform (FFT)
for that particular time trace. Repeating this procedure at each
bias value allows us to generate a map of the spectral density
as a function of f and Vdc, as shown in Fig. 5(a). Here, one
vertical cross section of the map corresponds to the FFT of
Vout (t ) at a given value of the bias. This map is measured for
an analog Josephson junction with a Q factor of 0.4, at an
AC frequency of 457 Hz, and with an AC amplitude of 0.7 V.
Understandably, a strong peak in the frequency spectrum is
seen at all biases at the fundamental drive frequency fac, as
well as at the corresponding higher harmonics. The effective
I-V curve 〈Vout〉(V ) is shown in Fig. 5(b) over the same range
of DC bias. We observe n = −1, n = 0, and n = +1 integer
phase-locked states, which correspond to regions of the fre-
quency spectrum where a spectral weight is significant only
at the drive frequency and its higher harmonics. In the region
|Vdc| > 2.5 V, where the I-V curve exhibits what would be
a conventional Ohmic behavior in a regular junction, Vout (t )
is modulated at a frequency that increases with DC bias and
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is visible as a diagonal curve in Fig. 5(a). In this region of
parameter space, the phase derivative is quasiperiodic and is
not locked to the drive [24].

The region of parameter space between phase-locked states
n = 0 and n = 1 exhibits a richer phenomenology and is
shown in much greater detail in Fig. 5(c). A plethora of
subharmonic phase-locked states are observed, as evidenced
by steplike resonances in the FFT map. We show the corre-
sponding time domain Vout (t ) in Fig. 5(d) for three of those
subharmonics corresponding to fac/2, fac/3, and fac/5 (mea-
sured, respectively, at Vdc = 1.65 V, Vdc = 1.4 V, and Vdc =
2.14 V).

We observed subharmonic phase-locked states for both
underdamped and overdamped analog Josephson junctions.
However, they are easier to see for Q < 1 as they do not
compete with chaotic states, and transitions between integer
phase locked states in 〈Vout〉(Vdc) are less sharp, which leaves
greater regions of parameter space where subharmonics are
visible. Prior work showed that the I-V curve of a shunted
Josephson junction at the onset of chaos forms a complete
devil’s staircase, a fractal of dimension D ≈ 0.86 [26–28,32–
34]. Our data are reminiscent of this fractal behavior. In par-
ticular, the main resonance that goes from the bottom left to
the top right of the map in Fig. 5(c) is shown in greater detail
in the Supplemental Material and shows stable plateaus at
every rational number lower than 1 with a denominator up
to ≈ 17 [16]. However, the resolution of the data set does
not allow a satisfying determination of the fractal dimension.
In the Supplemental Material, we show how solving Eq. (1)
numerically can also provide the frequency spectrum of the
phase and reproduce Fig. 5(c) with remarkable accuracy [16].
This confirms that the observed bias dependence of the fre-
quency spectrum is, indeed, a dynamical effect predicted by
the RCSJ model.

When the quality factor exceeds unity, Vout (t ) can exhibit
chaotic behavior in addition to phase locking [24,26,33–45].
This is easier to see in the fast Fourier transform of Vout (t ):
when it is chaotic, the spectral density is significant at all fre-
quencies, so the FFT exhibits a large background as opposed
to only a discrete number of peaks [6,35,37,44,45]. Fig-
ure 6(a) shows an example of a frequency spectrum measured

as a function of the DC bias. The I-V curve 〈Vout〉 is superim-
posed in red on top of the map. Similar to Fig. 5, a resonance
at fac dominates the spectrum of integer phase-locked states
visible from n = −2 to n = +2. Between plateaus, green
bands corresponding to a significant spectral density at all
frequencies are visible and correspond to chaotic states. These
bands are ubiquitous in those frequency spectrum maps as
soon as Q exceeds 1 [24,35,43]. Transitions to chaos through
period-doubling bifurcations [6] are clearly visible: they cor-
respond to the emergence of subharmonics in the spectrum
when the DC bias approaches a chaotic region (for example,
slightly above Vdc = −1 V). Figures 6 and 5(c) also clearly
depict intermittency. Such subharmonics appear in the spec-
trum before 〈Vout〉 starts deviating from a plateau value. This
highlights the cascade of period-doubling preceding chaos,
as the chaotic regions of the system are located within the
jumps between plateaus. Figure 6(b) offers a more detailed
view of a cascade of bifurcations in the frequency spectrum
of the same analog junction, shown only between the n = 1
and n = 2 plateaus. We observe an alternation of period 2,
period 4, and period 3 bifurcations as well as chaotic bands.
In the Supplemental Material, comparable transitions between
phase-locked and chaotic states are shown numerically [16].

Thermal noise in the AC-driven analog junction

Our experimental setup allows us to probe the stability of
phase-locked and chaotic states in the presence of thermal
noise.

We first discuss integer phase-locked states. The circuit
is first tuned to a quality factor of approximately 0.6 and a
junction frequency of 450 Hz. An AC bias is applied to the
circuit at a frequency of 241 Hz, a large fraction of f0. In
what follows, the bias amplitude is fixed at a value of 1.35 V.
The time-averaged output voltage of the circuit 〈Vout〉 then
shows Shapiro steps as a function of the DC bias, as shown
on Fig. 7(a).

In addition to the AC and DC biases, we apply a random
voltage source of variable amplitude to the circuit. We again
use the fact that the effective temperature corresponding to
the noise source scales like V 2

rms. The resulting I-V curves
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FIG. 7. (a) Plot of 〈Vout〉 as a function of the DC bias in the presence of an AC excitation at 241 Hz, Vac = 1.35 V, and for thermal noise
levels ranging from Vrms = 0 to Vrms = 3 V. (b) Arrhenius fit of the deviation from the plateau value δV represented in logarithmic scale as a
function of V −2

rms , which is proportional to 1/T , measured at DC bias values increasingly close to the center of the plateau: Vdc = −1.45 V (light
gray), Vdc = −1.41 V (dark gray), and Vdc = −1.375 V (black). (c) Activation energy as a function of bias (black).

are shown in Fig. 7(a) at different effective temperatures,
ranging from zero to Vrms = 3 V. Transitions between plateaus
become more rounded as the effective temperature increases.

The deviation from the plateau value δV is expected to
be thermally activated as δV ∝ e−�U/kT , where �U is the
quasipotential quantifying the stability of the phase-locked
state [24]. We thus plot the error voltage δV in logarithmic
scale as a function of V −2

rms , which is proportional to the inverse
effective temperature [Fig. 7(b)]. The thermal activation be-
havior is evident from the linearity of the Arrhenius plot over
more than one order of magnitude. That trend is represented
for three different DC bias values (Vdc = −1.45, −1.41, and
−1.375 V) at bias values that get closer to the center of
the n = 2 plateau. The activation energy gets larger closer
to the center of plateau, indicating an increased stability of
the phase-locked state. We turn to a more systematic repre-
sentation of the quasipotential �U as a function of the bias.
Figure 7(c) represents the I-V curves 〈Vout〉(Vdc) at increas-
ingly large effective temperatures (blue to red curves). This
data set allows us to determine the activation energy scale �U
as a function of the DC bias for a given phase-locked state. It
is represented in black and in units of the Josephson energy for
the circuit. One can see how �U , which quantifies the stability
of the phase-locked state, vanishes at the boundaries of the
plateau. Meanwhile, �U is largest at the center of the plateau,
where the phase-locked state is most robust. Very close to the
center of the plateau (Vdc ≈ −1.1 V), the high temperature
traces intersect the middle of the low-temperature plateau.
The deviation δV therefore becomes vanishingly small even
at high temperature, and it is therefore experimentally un-
feasible to extract the energy scale �U for the few points
closest to that plateau center. Finally, note that the quasipo-
tential is expressed in units of the Josephson energy; the
procedure we followed to make this conversion is detailed in
the Supplemental Material [16]. The bias dependence of the
quasipotential is consistent with theory [24], as well as our
numerical simulations of Eq. (1) in the presence of both an
AC drive and Gaussian white noise, which are shown in the
Supplemental Material [16].

In the case of fractional phase-locked states the error volt-
age δV between low and high temperature is much smaller,

which prevents us from obtaining a satisfying Arrhenius fit
to δV (T ). We thus turn to a determination of the fast Fourier
transform of Vout (t ) at different effective temperatures. Fig-
ure 8(a) represents this FFT as a function of the DC bias
voltage Vdc and the frequency in units of fac. It is measured
between the n = 1 and n = 2 Shapiro steps in a region of
parameter space where numerous subharmonic steps are vis-
ible (the circuit is tuned so that Q = 0.93, f0 = 430 Hz, and
fac = 457 Hz). Similar to previous FFT maps, a resonance at
the excitation frequency is visible in all maps, and additional
resonances at rational multiples of fac indicate fractional
phase locking. Three panels are measured at increasing effec-
tive temperatures, which are controlled by the rms amplitude
of the voltage noise. We see how fractional resonances are
smeared by thermal noise, with low denominator fractions
being the most robust (the period-doubling resonance at fac/2
is the last to survive).

To better visualize the smearing of fractional phase-locked
states, we show in Fig. 8(c) cross sections of the FFT as a
function of frequency at two different effective temperatures.
Cross sections are shown for subharmonics fac/3 and fac/5.
The FFT are normalized so that the peak amplitude at the drive
frequency has a weight of 1. Evidently, the background of
the FFT rises with temperature, which causes the prominence
of the FFT peak to drop with temperature. This prominence
is shown as a function of thermal noise in Fig. 8(e). We
defined the prominence as the average of the peak amplitudes
of the FFT at multiples of fac/n, divided by the average of the
background FFT value. This prominence is seen to drop with
thermal noise, with a steeper drop for the larger denominator
subharmonic (n = 5). This reflects the disappearance of the
phase-locked state as the Vout (t ) becomes noisier.

We turn to the dependence of the chaotic bands on the
thermal noise level. Similar to Fig. 8(a), in Fig. 8(b) we
represent the FFT of Vout (t ) as a function of Vdc at differ-
ent effective temperatures. Here, the circuit is tuned to be
underdamped, with Q = 1.6, f0 = 470Hz, fac = 457Hz, and
Vac = 0.9V , which allows for chaotic behavior to arise at cer-
tain bias values. As opposed to the fractional resonances, these
chaotic bands do not depend on temperature within the range
of applied noise levels. This distinction is most clear by com-
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paring how the phase-locked regions smear while the chaotic
regions remain essentially unchanged. To illustrate this, we
take cross sections of these maps in Fig. 8(d) just as we did
for Fig. 8(c). The top map is taken in a chaotic region, and
we can see that the background does not noticeably change at
higher effective temperatures (Vrms = 0.11V). This is in good
agreement with prior numerical [6,35,37,44] and experimental
work [31,45] that showed how the background spectral den-
sity in the chaotic regime vastly exceeds that of thermal noise
at typical measurement temperatures. The bottom map was
taken when only the fundamental frequency was present, and
as temperature is increased, the background increases, which
causes the prominence of the peak to drop.

Our results illustrate how this analog circuit replicates a
wide range of Josephson junction phenomena. In the under-
damped case, the retrapping voltage scales like the inverse of
the quality factor, and the effective temperature dependence

of the switching voltage distribution closely matches expec-
tations from the RCSJ model. In overdamped junctions, we
observe the diffusion of the phase in the presence of thermal
noise. The addition of an AC excitation allows us to observe
chaotic states, integer and fractional phase-locked states, and
their dependence on AC power and temperature. This circuit
paves the way toward the implementation of more complex
analog circuits emulating the phase dynamics of driven mul-
titerminal Josephson junctions [46–48], which have recently
attracted a lot of interest due to the novel quantum and topo-
logical phenomena they can help engineer [49].
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