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Pairing enhanced by local orbital fluctuations in a model for monolayer FeSe
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The pairing mechanism in different classes of correlated materials, including iron-based superconductors,
is still under debate. For FeSe monolayers, uniform nematic fluctuations have been shown in a lattice Monte
Carlo study to play a potentially important role. Here, using dynamical mean-field theory calculations for
the same model system, we obtain a similar phase diagram and provide an alternative interpretation of the
superconductivity in terms of local orbital fluctuations and phase rigidity. Our study clarifies the relation between
the superconducting order parameter, superfluid stiffness, and orbital fluctuations, and provides a link between
the spin/orbital freezing theory of unconventional superconductivity and theoretical works considering the role
of nematic fluctuations.
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I. INTRODUCTION

Monolayer FeSe grown on SrTiO3 (STO) exhibits super-
conductivity with a remarkably high superconducting Tc of
more than ten times the bulk value [1–7]. Various theories
have been proposed to explain this surprising experimen-
tal result, as summarized in Ref. [7]. One possibility is a
phononic mechanism, involving an interface-enhancement of
the electron-phonon coupling, as suggested in the original
paper [1]. Lee et al. observed replica bands using angle-
resolved photoemission spectroscopy [8], consistent with a
strong coupling between FeSe electrons and STO phonons.
Using quantum Monte Carlo simulations, Li et al. [9] showed
that the Tc can be substantially enhanced by introducing an
electron-phonon interaction in the model.

Significant enhancements of Tc, relative to bulk FeSe, are,
however, also found in monolayer systems without STO sub-
strate [10–15]. This shows that the interface effect is not the
only relevant mechanism, and suggests a significant contri-
bution from a purely electronic mechanism. Since bulk FeSe
shows a nematic transition around 100 K, but no magnetic
ordering, an appealing scenario is that the Tc in monolayer
FeSe is enhanced by a mechanism related to nematic fluctua-
tions. In Ref. [16], Dumitrescu et al. used lattice Monte Carlo
simulations of a two-band model with attractive intraorbital
interactions to reveal a connection between superconductivity
and uniform nematic fluctuations, detected through the q = 0
correlation function for the orbital moments.

The model considered in Ref. [16] has some similarity to
multiorbital Hubbard models with negative Hund coupling J
[17–19], which were studied in connection with unconven-
tional superconductivity in the fulleride compounds A3C60

[19–23]. There, the pairing is related to enhanced local orbital
fluctuations and an orbital-freezing crossover. As discussed
in Ref. [18], the two-orbital Hubbard model with J < 0 can
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be mapped to the model with J > 0, which connects orbital
freezing to spin freezing and hence to the unconventional su-
perconductivity observed in materials ranging from uranium
based compounds [24–28] to cuprates [29]. With the aim of
a unified description of unconventional superconductivity in
mind, it is thus interesting to look at the previously studied
model for FeSe monolayers from an orbital-freezing perspec-
tive.

Here we solve the model of Refs. [16,30] using single-
site dynamical mean-field theory (DMFT) [31] and show that
this approximation essentially reproduces the phase diagram
established by lattice Monte Carlo simulations in Ref. [16].
Instead of q = 0 fluctuations, we focus on local orbital fluc-
tuations and ask to what extent these fluctuations contribute
to the pairing. We will show that in the regime of weak-to-
moderate bare couplings, the interactions induced by local
orbital fluctuations play the dominant role in the pairing (as
in the case of fullerides), while in the doped Mott regime, the
bare attraction becomes more relevant. We will comment on
the realistic range for the bare interaction, which is below the
critical value for a paired Mott state.

The paper is organized as follows. In Sec. II we introduce
the effective two-band Hubbard model for monolayer FeSe,
and the DMFT method used to solve it. In Sec. III, we show
the DMFT phase diagram and connect the superconducting
order parameter to the effective attractive interaction, orbital
fluctuations, and the superfluid stiffness. Section IV contains
a summary and conclusions.

II. MODEL AND METHOD

For the modeling of monolayer FeSe, we follow
Refs. [16,30] and consider a two-band Hubbard model on the
square lattice

H = −
∑

i, j,a,b,σ

(t ab
i j c†

iaσ c jbσ + H.c.) − μ
∑

ia

nia
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FIG. 1. (a) The two-band tight-binding model (adapted from
Ref. [16]) on the square lattice, with orbitals dxz and dyz schematically
shown in red and blue. The hoppings are t1 = −1.0t , t2 = 1.5t ,
t3 = −1.2t , t4 = −0.95t . (b) The band structure along the indicated
path in the Brillouin zone. (c) The density of states (DOS). The black
dashed lines in (b) and (c) mark the chemical potentials correspond-
ing to n = 1, n = 1.56, n = 2 (half-filling), and n = 3.

with orbitals of dxz, dyz character, as illustrated in Fig. 1(a).
Here, i, j label the lattice sites, a, b = dxz, dyz the orbitals, and
σ =↑,↓ the spin, respectively. The first term in Eq. (1) is the
noninteracting tight-binding model H0, for which the nonzero
hopping terms t ab

i j are shown by the arrows in Fig. 1(a). The
second term in Eq. (1), with the number operator defined
as nia = nia↑ + nia↓, allows to adjust the filling by varying
the chemical potential μ. For g > 0, the last term penalizes
an equal occupation of the two orbitals on a given site and
favors the formation of an orbital moment. Such an interac-
tion term was argued in Ref. [16] to originate from Fe-ion
oscillations and electron-phonon coupling [32], although it
should be noted that the work of Kontani and Onari did not
consider a regime of bare attractive interactions. We use here
the (oversimplified) model of Ref. [16] because our goal is to
connect the discussion on nematicity-induced pairing to that
on spin/orbital freezing [18,19,28].

In momentum (k) space and in the Nambu-formalism, H0

can be expressed as

H0 =
∑

k

[
�

†
k,↑ �−k,↓

][H0(k) 0

0 H0(−k)T

][
�k,↑
�

†
−k,↓

]
,

(2)
where the Nambu spinors are [�†

k,↑ �−k,↓] =
[c†

k,1↑ c†
k,2↑ c−k,1↓ c−k2↓]. Here, H0(k) =

[
ε11

k ε12
k

ε12
k ε22

k

]
is a 2 × 2 matrix with the elements ε11

k = −2t1 cos kx −
2t2 cos ky − 4t3 cos kx cos ky, ε22

k = −2t2 cos kx − 2t1 cos ky −
4t3 cos kx cos ky, and ε12

k = −4t4 sin kx sin ky. For the hopping

amplitudes, we use t1 = −1.0t , t2 = 1.5t , t3 = −1.2t ,
t4 = −0.95t , which are expressed in units of t = 100 meV
[33–35]. Since ε

αβ

k is even in k we have H0(−k)T = H0(k).
The band structure and density of states (DOS) of H0(k) are
shown in Figs. 1(b) and 1(c), respectively. Clearly, there is
no particle-hole symmetry in the tight-binding model. The
chemical potentials associated with filling n = 1, 2, and 3 are
indicated in the band structure and in the DOS. In addition,
we highlight the filling n = 1.56 corresponding to the lower
edge of the upper band since the jump in the DOS at this
value leaves clear traces in the results presented in Sec. III.
Because of the broad band with weak van Hove singularity
near n = 1, and the more narrow band with prominent van
Hove singularity near n = 3, we expect stronger correlation
effects on the electron doped side than on the hole-doped side
of the half-filled (n = 2) system.

The interaction term Hint [third term in Eq. (1)] can be
decomposed using g ≡ −U > 0 into a chemical potential shift
and intra/interorbital density-density interaction terms

Hint = U

2

∑
iασ

niασ + U
∑

iα

niα↑niα↓ − U
∑
iσσ ′

ni1σ ni2σ ′ . (3)

While the bare interaction parameters estimated for d-electron
models of iron pnictides are repulsive [36,37], it was argued in
Ref. [32] that a moderate local electron-phonon coupling sub-
stantially screens these interactions and results in a situation
where orbital fluctuations, rather than spin fluctuations, play
a dominant role. Within our phenomenological description,
U < 0 allows to mimic this situation, but one should keep in
mind that large attractive on-site interactions U are unrealis-
tic. With U < 0, Hint favors intraorbital spin-singlet pairing
[17] and model (1) becomes similar to a two-orbital Hubbard
model with negative Hund coupling J . The difference is that
the interorbital same-spin and opposite-spin interactions are
equal, which is not the case in the usual Kanamori model
with Hund coupling, but at the qualitative level, we can expect
similar low-energy physics.

We solve the correlated lattice system within the frame-
work of DMFT [31], where the lattice model is mapped onto
a self-consistently determined quantum impurity model. This
two-orbital impurity model is solved using the hybridization-
expansion continuous-time quantum Monte Carlo (CT-HYB)
algorithm [38–40]. The hybridization function is diagonal
in orbital space because ε12

k satisfies ε12
(kx,ky ) = −ε12

(−kx,ky ) =
−ε12

(kx,−ky ), which leads to an orbital-diagonal local Green’s
function. We use here a Nambu implementation of the DMFT
loop, as described in Refs. [17,31], to treat the superconduct-
ing phase. To reduce the noise in the impurity self-energy,
we employ (symmetric) improved estimators [41,42]. To map
out the phase diagram, we allow for orbital and sublattice
symmetry breaking (ferroorbital and antiferroorbital order, as
well as charge order), but in the study of the superconducting
state we will suppress these orders.

The results are shown for temperature T = t/8, which
corresponds to 12.5 meV or 145 K (the same as in Ref. [16]),
unless otherwise noted, and we use t = 100 meV as the unit
of energy.
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FIG. 2. DMFT phase diagram of model (1) in the space of in-
teraction |U | (= g) and total filling n, at temperature T = 1/8. The
white region indicates the normal metallic phase and the red region
the superconducting (SC) phase with order parameter � � 0.01. The
orbital and/or sublattice symmetry breaking phases AFO, CDW, and
FO are sketched by the blue, green, and yellow hashed regions,
respectively. The thin dashed lines mark the same fillings as in Fig. 1.

III. RESULTS

A. Phase diagram and orbital fluctuations

The main results of our study are summarized in Figs. 2
and 3. The phase diagram with superconducting (SC), anti-
ferroorbital order (AFO), ferroorbital order (FO), and charge
density wave (CDW) phases is shown in Fig. 2. Here, the
thick black line indicates the (paired) Mott phase at n = 2
in the system with suppressed electronic orders and attractive
interaction U � −4.4 = U Mott

c . The appearance of AFO order
near half-filling and FO order in the doped system can be
understood by looking at the generic DMFT phase diagram
of the two-orbital Hubbard model with J > 0 in Ref. [43]
and considering the fact that switching J > 0 → J < 0 maps
ferromagnetism to FO and antiferromagnetism to AFO order
(as well as spin-triplet SC to spin-singlet SC) [18], and that
our system is qualitatively similar to the J < 0 case. Because
ferromagnetism (and hence FO order) appears only at strong
coupling [43], we detect FO only on the electron-doped side.
The appearance of a CDW in the half-filled Mott system is
similar to what one finds in the attractive single-band Hubbard
model, where SC and CDW coexist at half-filling [44]. The
strong asymmetry of the phase diagram with respect to n = 2
appears because of the strongly asymmetric DOS.

The superconducting order parameter � = 〈c1σ↑c1σ↓〉 =
〈c2σ↑c2σ↓〉 at T = 1/8 in states with suppressed sublattice and
orbital symmetry breaking is plotted in Fig. 3(b). These results
demonstrate the much stronger pairing near n ≈ 3, compared
to n ≈ 1, and a substantial decrease in the order parameter
below the step in the DOS (n � 1.56), as one may expect
based on the different correlation strengths in the respective
filling regimes. Our results are similar to the lattice Monte
Carlo results reported in Ref. [16] as far as the stability regions
of the SC and AFO phases are concerned, and also with
regard to the filling dependence of the order parameter. What
is different is that the lattice simulations did not detect any
FO and CDW instabilities. Here, we note that lattice simu-
lations on relatively small lattices cannot easily distinguish
short-range correlations from long-range oder, while DMFT
treats these orders at the mean-field level and has a tendency to

FIG. 3. Filling n and interaction |U | dependence of (a) the super-
fluid stiffness DS , (b) the SC order parameter �, (c) the local orbital
fluctuations Δχ orb

loc , and (d) the effective interaction Re
ano(i0+)/�
(white-red color map) for orbital symmetric phases at T = 1/8. The
thick black bars in all panels indicate the paired Mott insulating
phase. The black squares in (a), circles in (b), crosses in (c), and
triangles in (d) mark the corresponding peak positions at a fixed
interaction |U | along the axis of filling n. For the sake of easier
comparison, we also indicate the peak positions from panel (d) in
panel (c), and similarly those from panel (c) in panel (b). The blue
dashed lines link the peak positions in � and DS . Due to a large error
bar in determining the SC phase near n = 2, we truncate the data
in (d) with a cutoff � > 0.03. The stiffness is DS = Dxx

S with units
e2/h̄2.

overestimate their stability region. In the following, we will
suppress AFO, FO and CDW order to investigate the prop-
erties of the SC state and connect the SC state to orbital
fluctuations.
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FIG. 4. Effective interaction |U DMFT
eff | = |Re
ano(i0+)/�| as a

function of bare interaction |U | (points) and parabolic fits a|U | +
b|U |2 to the small-|U | data (dashed lines) for indicated fillings. The
black dot-dashed line plots |U |.

First, it should be noted that the appearance of local singlet
pairing in a model with a bare on-site attractive interaction
is of course expected. However, as noted in Ref. [16], the
SC phase in a mean-field treatment of the model appears
at rather large interaction, |U | > 6 at T = 1/8, so that the
superconducting states revealed in Figs. 2 and 3(b) must be
stabilized, or at least enhanced, by an additional source of
attractive interactions. Here, we focus on the role of local
orbital fluctuations.

Following Refs. [28,45] we can, based on a weak-coupling
picture, derive an effective interaction Ueff which takes into
account the leading correction from bubble diagrams. In Ap-
pendix A we show that for the current model, with g =
−U , one finds |U bubble

eff | = |U | + 2|U |2χorb
loc (ω = 0), where

χorb
loc (ω = 0) is the static value of the Fourier transform of

the orbital-orbital correlation function χorb
loc (τ ) = 1

4 〈[n1(τ ) −
n2(τ )][n1(0) − n2(0)]〉. In the strongly correlated regime, the
orbital moment can freeze [18] and it is more natural to re-
place χorb

loc (ω = 0) by the “fluctuating contribution” Δχorb
loc =∫ β

0 χorb
loc (τ )dτ − βχorb

loc (β/2). Based on these arguments, we
expect that the attractive interaction is enhanced as

|U bubble
eff | = |U | + 2|U |2Δχorb

loc , (4)

with a correction term that is proportional to the square of the
bare |U |, at least in the weak-coupling regime.

As discussed in the fulleride context in Ref. [23], the ef-
fective attractive interaction in the SC state can be measured
by computing the ratio between the real part of the anoma-
lous self-energy in the static limit Re
ano(i0+) and the order
parameter �. This provides a way of testing the qualitative
prediction in Eq. (4). Figure 4 plots Re
ano(i0+)/� ≡ U DMFT

eff
as a function of |U | for different fillings, together with a fit to
a linear plus quadratic function. We see that |U DMFT

eff | � |U |
and that at least in the small-|U | regime, where the simple
bubble-estimate (4) is meaningful, the enhancement of the
attractive interaction is approximately quadratic [46]. This
provides direct evidence for an enhancement of the pairing
interaction, and hence SC, by local orbital fluctuations.

FIG. 5. Filling (n) dependence of (a) the superfluid stiffness DS ,
(b) the SC order parameter �, (c) the local orbital fluctuations Δχorb

loc ,
and (d) the effective interaction Re
ano(i0+)/� at a series of |U | val-
ues as indicated in panel (b). The black crosses in (c) and triangles in
(d) mark the corresponding peak positions. For a better comparison
between the peak positions, we also indicate the peak positions from
panel (d) in panel (c) by the gray triangles. Similarly, we reproduce
the maxima of (c) by the gray crosses in (b) on the hole-doped side.
Due to large error bars in determining the SC phase near n = 2, we
truncate the data in panel (d) with a cutoff � > 0.03. The curves
in panel (a) [(b,c,d)] are shifted by multiples of 0.2 [(0.02,0.125,2)]
along the vertical axis for a better presentation. The thin dashed lines
in panels (a,b) mark the filling n = 1.56.

To further investigate the link between Re
ano(i0+)/�
and Δχorb

loc , we show these quantities as intensity plots in
Figs. 3(c) and 3(d). We furthermore show by the dashed
black line with crosses in Fig. 3(c) the peak values of Δχorb

loc
and by the black dashed line with triangles in Fig. 3(d) the
location of the maxima in Re
ano(i0+)/� for |U | � U Mott

c .
We also reproduce the maxima from Fig. 3(d) by the gray
line with triangles in Fig. 3(c). One finds that for interactions
smaller than the U Mott

c of the n = 2 paired Mott insulating
state, there is an almost perfect match between the maxima in
the local orbital fluctuations and the maxima in the effective
attractive interaction, which further supports the picture of
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pairing induced by local orbital fluctuations. In this regime,
the situation is hence very similar to the fulleride systems
discussed in Refs. [19,23], even though in the present case we
have an attractive bare interaction, while the bare interactions
are repulsive (but J < 0, similar to here) in the fulleride case.

To make the connection between the enhanced local orbital
fluctuations and the effective attractive interaction even more
clear, we plot in Figs. 5(c) and 5(d) several cuts at fixed
|U | values. Again, the positions of the maxima in Δχorb

loc are
indicated by crosses, and the maxima in the measured effec-
tive attractive interaction by triangles, and we reproduce the
maxima in Fig. 5(d) by the gray triangles in Fig. 5(c).

As discussed in several previous works [23,47,48], to un-
derstand how the order parameter depends on the filling or
(effective) interaction, one also needs to consider the super-
fluid stiffness DS , which we can compute from the Nambu
Green’s functions as explained in Appendix B. DS is plot-
ted in Figs. 3(a) and 5(a). The stiffness is reduced for more
strongly correlated systems, as one can see in Fig. 5 from
the correlation between the peak in Re
ano(i0+)/� and the
dip in DS near n ≈ 2 and |U | � |U Mott

c |, or by noticing
the larger value of DS on the hole-doped side, compared to
the electron-doped side for large |U |. While the situation for
|U | � |U Mott

c | is complicated, and the maxima in � seem to
correlate both with the maxima in Δχorb

loc and those in DS , for
larger |U | and on the electron-doped side, we clearly find that
the maximum in � appears in the filling region (n ≈ 3) where
the stiffness is maximal. The same is true for the strongly
hole-doped system near n ≈ 1. At these doping levels, orbital
freezing is no longer effective and hence there is no longer
a match between the maxima in the local orbital fluctuations
and the maxima in �. This indicates that in the large-|U | and
large-doping regime, the pairing gets dominated by the bare
attractive interaction, rather than by the fluctuation-induced
retarded effective attraction. On the other hand, in the weakly
doped large-U regime, where the orbital-freezing crossover
takes place, there is still a good correlation between the max-
ima in the orbital fluctuations [see crosses in Fig. 5(b)] and
the maxima in �, and similarly, we may interpret the fast
rise of � on the electron-doped side as an effect of orbital-
fluctuation-enhanced pairing. In the later regime, we also note
the apparent connection between the maxima in �χorb

loc and
the FO instability [compare Figs. 2 and Fig. 3(c)]. The rapid
decrease in DS and � with hole doping around n = 1.56
[marked by the dashed line in Figs. 5(a) and 5(b)] is related
to the jump in the DOS at the lower edge of the upper band.

B. Analysis of the spectral functions

We next investigate the real-frequency spectra of the
(orbital- and spin-symmetric) single-particle normal Green’s
functions Gασ (τ ) = −〈Tτ cασ (τ )c†

ασ (0)〉 and the anomalous
Green’s functions Fα (τ ) = −〈Tτ cα↑(τ )cα↓(0)〉, and compare
them to the spectral function of the orbital correlation func-
tion χorb

loc (τ ). While the normal spectral function Anor(ω) =
− 1

π
ImG(ω) is positive, the anomalous one Aano(ω) =

− 1
π

ImF (ω) may have negative spectral weight. For the calcu-
lation of the latter, we employ the maximum entropy analytic
continuation [49] of auxiliary Green’s functions (MaxEnt-
Aux) [50] with positive-definite spectral weight. The idea

FIG. 6. (a) Orbital correlation function in the normal (green)
and superconducting (red) state, plotted on the imaginary-time axis.
(b) The spectra of the local orbital correlation function (red, green)
and the anomalous Green’s function (black). The red (green) curves
are for the SC (normal) phase. The filling is ≈2.33 for all subpanels
and the interaction strengths are indicated in panel (b).

is to introduce the operators âα = 1√
2
[cα↑ + c†

α↓] and b̂α =
1√
2
[cα↑ − c†

α↓], as well as the two auxiliary Green’s functions

Ga,aux
α (τ ) ≡ −〈Tτ âα (τ )â†

α (0)〉
= 1

2 [Gα↑(τ ) − Gα↓(−τ ) + 2Fα (τ )] (5)

and

Gb,aux
α (τ ) ≡ −〈Tτ b̂α (τ )b̂†

α (0)〉
= 1

2 [Gα↑(τ ) − Gα↓(−τ ) − 2Fα (τ )]. (6)

From the corresponding spectra, the spectral function of the
anomalous Green’s function can be extracted as

Aano
α (ω) = − 1

π
ImFα (ω) = 1

2
[Aa,aux

α (ω) − Ab,aux
α (ω)]. (7)

Figure 6 shows Aano(ω) for n = 2.3 and indicated values of
|U | by the black lines in Fig. 6(b). We see that with increasing
|U | the peak in the spectrum shifts to higher energies and
broadens. An interesting question concerns the relation of this
peak to the characteristic energy of the orbital fluctuations.
In the case of A3C60, we showed that (i) the bosonic fluctua-
tions are enhanced in the SC phase, compared to the normal
phase, and (ii) on the strong coupling side of the Tc dome
(“orbital-frozen” regime) the energies of the peaks in Aano and
Imχorb

loc /π approximately match because the transition into the
SC state melts the orbital freezing and lifts the energy scale of
the orbital fluctuations up to that of the pairing fluctuations.

In Fig. 6(a) we plot the orbital correlation functions in the
normal metal state (green) and in the SC state (red), while
the corresponding lines in Fig. 6(b) show the bosonic spectral
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functions Imχorb
loc (ω)/π . At the qualitative level, we find the

same effect as previously discussed for the repulsively inter-
acting fulleride model, namely that the orbital freezing, which
manifests itself at large |U | by the slow decay of the orbital
correlation function, partially melts in the superconducting
state, which results in an enhancement of the peak in the
spectral function and a shift of the peak to higher energy.
In the weak-coupling regime, the bosonic energy scale is
higher than the fermionic one, while for strong couplings, in
the normal phase, it is lower, again in qualitative agreement
with the results of Ref. [23]. However, there is no lock-in
between the bosonic and fermionic energy scales in the large-
|U | superconducting state, even though the bosonic one is
clearly increased compared to the normal phase. The missing
lock-in phenomenon in the strongly correlated electron-doped
compound is another indication that the pairing in this regime
occurs not only because of fluctuation-mediated retarded in-
teractions, but to a significant extent because of the attractive
bare interaction. This distinguishes model (1) from the ful-
leride systems with purely repulsive bare interactions.

A systematic analysis of the energies of the main peaks
in Anor, Aano, and Imχorb

loc /π as a function of filling and bare
|U | yields the curves shown in Fig. 7. These results confirm
the general trend of an increasing (decreasing) characteristic
energy in Aano (Imχorb

loc /π ) with increasing |U |, the significant
increase in the bosonic energy when switching from the nor-
mal to the superconducting phase, especially for larger |U |, as
well as the absence of a lock-in between the peaks in Aano and
Imχorb

loc /π .

IV. DISCUSSION AND CONCLUSIONS

Using DMFT, we solved a model which was previously
discussed in the context of monolayer FeSe and SC induced
by uniform (q = 0) nematic fluctuations. Our study provides
an alternative point of view by focusing on local orbital fluc-
tuations and their effect on superconductivity. We showed
that DMFT produces a qualitatively and even quantitatively
similar phase diagram to the one previously obtained by lattice
QMC [16], apart from the prediction of different long-range
ordered phases. In particular, DMFT predicts a relatively
narrow FO phase in the strongly correlated electron-doped
regime, roughly along the line of maximum orbital fluctua-
tions, and a CDW instability at n = 2 and |U | � |U Mott

c | ≈
4.4. If the symmetry breaking is restricted to on-site pairing,
the results are, however, similar, with SC most prominent on
the electron-doped side, near n = 3.

For |U | � |U Mott
c | we demonstrated a clear connection

between orbital fluctuations and the effective attractive inter-
action, which in the SC phase can be calculated from the ratio
|Re
ano(i0+)/�|. Both quantities peak in the same region
of the phase diagram, along a line which starts near filling
n ≈ 2.5 at low |U | and decreases toward n = 2 as the inter-
action approaches |U Mott

c |. At fixed filling, |Re
ano(i0+)/�|
increases faster than |U |, with a correction term that scales
approximately quadratically, as expected from the bubble es-
timate Eq. (4) for the effective interaction. These observations
suggest a pairing induced by local orbital fluctuations, similar
to the situation in repulsively interacting multiorbital sys-
tems with J < 0, such as fulleride compounds [18,19]. To
understand the maximum in the order parameter and Tc it is,

FIG. 7. Energy of the peak in Aano(ω) (empty triangles) and of
the peak in Imχ loc

orb (ω) for the SC phase (red solid squares) and the
normal metal (NM) phase (orange empty squares) at (a) |U | = 2.5,
(b) |U | = 3.0, (c) |U | = 3.75, and (d) |U | = 5.5.

however, also important to consider the superfluid stiffness
DS , which peaks at larger dopings. Especially in the strongly
correlated regime (|U | � |U Mott

c |) the order parameter reaches
its largest value at n ≈ 3 and n ≈ 1, near the fillings corre-
sponding to the maximum DS rather than near the peak in
Δχorb

loc .
A relevant question is which parameter regime is repre-

sentative of FeSe. This material is strongly correlated with
repulsive Hubbard interactions within and between the d or-
bitals. In Ref. [32] it was argued that the coupling to local
phonons can significantly screen the static interactions, lead-
ing to an overscreening of the Hund exchange, and an effective
low-energy model which favors orbital fluctuations, similar
to the one considered in this work. The filling per dxz and
dyz orbital in monolayer FeSe is about 1.2, according to the
density functional theory plus DMFT calculation in Ref. [51],
which implies n ≈ 2.4. A rough idea of the realistic values of
|U | may be obtained by comparing the computed transition
temperatures Tc to the experimentally established Tc ≈ 109 K
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[52]. This suggests |U FeSe| � 2 (= 0.2 eV), which places the
material close to the line of maximum �χorb

loc [black crosses
in Fig. 3(c)]. Within the current model description, the experi-
mentally relevant parameter regime is thus the electron-doped
weak-|U | region (below U Mott

c ), where the effective attraction
is controlled by local orbital fluctuations.

We have to note that some aspects of model (1) are debat-
able. The strong screening by local phonons and the resulting
dominance of orbital fluctuations over spin fluctuations was
proposed in Ref. [32] in the context of the general discussion
of s+− versus s++ pairing in iron pnictides and the impurity
effect. This work suggested an overscreening of J , similar
to the case of A3C60, while the phonon-screened intraorbital
interaction remains positive. Model (1) also mimics a nega-
tive J , as mentioned in Sec. II, but it also has an attractive
intraorbital interaction. This attractive U may not play an es-
sential role in the (physically relevant) weak-coupling regime,
but it becomes questionable in the strong coupling regime
|U | � |U Mott

c | that was discussed in Ref. [16].
Also, the Fermi surface structure of this model is actually

for a monolayer of the bulk system [35], which features hole
pockets at the � point and electron pockets at the X point in
the extended Brillouin zone (1 Fe per unit cell) [7] for n ∼ 2.
In the FeSe/STO system, the hole pockets at the � point sink
below the Fermi energy [2], a situation which in our model
is only achieved for n � 3. However, model (1) qualitatively
captures the doping evolution of the pockets, i.e., the shrinking
of the hole pockets at the � point and the expansion of the
electron pockets at the X point with increasing filling.

A recent resonant inelastic x-ray scattering study fur-
thermore revealed profound differences between the spin
excitation spectrum of bulk and monolayer FeSe [53], which
suggested a possibly important role of spin fluctuations in the
pairing. Such physics is not captured by model (1).

The main purpose of the present study was to relate the
concept of nematicity enhanced pairing, which was discussed
on the basis of model (1) [16,30], to the deeper concept of
unconventional superconductivity induced by the freezing of
local (spin or orbital) moments, which has emerged over the
past six years [18,19,23,28,29,54]. We showed that in the
realistic parameter regime, the pairing in model (1) can be
understood as arising from enhanced local orbital fluctuations,
which grow as the system approaches an orbital-freezing
regime, very similar to what occurs in A3C60 on the weak-
coupling side of the Tc dome. In this regime the results fit into
the picture of orbital-freezing induced SC. We, however, also
concluded that for U > |U Mott

c | and n ≈ 3, outside the realis-
tic regime for FeSe, the orbital-fluctuation-induced effective
attraction no longer plays the dominant role in the pairing.
In this regime, the authors of Ref. [16] found a correlation
between pairing and q = 0 nematic fluctuations. Our DMFT
study cannot directly measure such uniform fluctuations (this
would require the measurement of a vertex and a postprocess-
ing analogous to what was performed for multiorbital models
in Refs. [18,28]). Our results, however, suggest that the max-
imum of � in the large-|U | regime, which is dominated
by the bare attraction, is primarily explained by the filling
dependence of the superfluid stiffness DS , which exhibits a
peak near n ≈ 3. It would be interesting to test these DMFT
predictions by lattice QMC simulations.
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APPENDIX A: EFFECTIVE INTERACTION

Following the authors of Ref. [28], we derive the effective
interaction

U bubble
αβ (q) = Uαβ −

∑
α1

Uαα1χα1 (q)U bubble
α1β

(q), (A1)

which takes into account the effect of bubble diagrams. Here,
α = (spin,orbital) is the flavor index, and q = (q, iνm) a com-
bined momentum and frequency index, with νm = 2πm/β the
Bosonic Matsubara frequency. The susceptibility χα in the
second term is defined as

χα (q) = −
∑

k

Gα (k)Gα (k + q), (A2)

with Gα (k) the single-particle Green’s function for flavor α.
In the DMFT approximation, we only consider local vertex
corrections, i.e., χα (q) ≈ χ loc

α (iνm), and for local interactions
may eliminate the q-dependence in Eq. (A1). In the following,
we are interested in the static limit of these local interac-
tions, and thus use χ loc

α ≡ χ loc
α (iν0) = ∫ β

0 χ loc
α (τ )dτ . In the

weak-coupling limit, the above local susceptibility may be
identified with either the orbital or spin susceptibility. As the
attractive interaction U increases in magnitude, the orbital
susceptibility grows and the spin susceptibility is suppressed.
We thus interpret χ loc

α as the local orbital susceptibility χ loc
orb =∫

dτ 〈O(τ )O(0)〉 with O = 1
2 (n1 − n2). U bubble may then be

obtained by a matrix inversion as

U bubble = (
I + Uχorb

loc

)−1
U, (A3)

where the bare interaction in matrix form (using the ordering
[ 1 2 3 4
1 ↑ 1 ↓ 2 ↑ 2 ↓]) reads

U =

⎡
⎢⎢⎢⎣

0 U −U −U

U 0 −U −U

−U −U 0 U

−U −U U 0

⎤
⎥⎥⎥⎦. (A4)

The explicit calculation yields the effective static intra-orbital
interaction

U bubble
1↑1↓ = U[(

1 + Uχorb
loc

)2 − 4
(
Uχorb

loc

)2] . (A5)

In the weak-coupling limit, we have

U bubble
1↑1↓ ≈ U − 2U 2χorb

loc + 3U
(
Uχorb

loc

)2
. (A6)

Since U < 0 and χorb
loc > 0, the bubble corrections make the

intraorbital effective interaction in Eq. (A6) more attractive.
We thus expect that SC is enhanced by the local orbital fluc-
tuations. If we take the absolute value of the interaction and
truncate Eq. (A6) at second order, we find

|U bubble| = |U | + 2|U |2χorb
loc . (A7)
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APPENDIX B: SUPERFLUID STIFFNESS

The stiffness, or phase rigidity, measures how stable the superconducting state is against phase twisting. In the BCS mean-field
theory, Tc scales with the pairing gap. However, such a scaling is not valid in many unconventional superconductors [57], where
Tc is related to the superfluid stiffness DS . Here, the superconducting order melts by fluctuations of the phase of the order
parameter, rather than by the suppression of its amplitude. Within the framework of linear response and in the long-wavelength
limit (q → 0), the general formula for the stiffness [48,58] is

Dab
S = e2

h̄2βV N

∑
k,iωn

{
Tr

[
G(k, iωn)

(
σ0 ⊗ λb

k

)
G(k, iωn)

(
σ0 ⊗ λa

k

) + G(k, iωn)eiωn0+(
σ3 ⊗ λab

k

)]}
, (B1)

where the first and second terms of Eq. (B1) represent the paramagnetic and diamagnetic parts, respectively. Here

G(k, iωn) = [iωnI4×4 + σ3 ⊗ μI2×2 − σ3 ⊗ H0(k) − 
Nambu(iωn)]−1 (B2)

is the interacting lattice Green’s function (4 × 4 matrix) calculated with the local self-energy 
Nambu from DMFT. λa
k and λab

k
are the 2 × 2 matrices

λa
k ≡ ∂ka H0(k), λab

k ≡ ∂ka∂kbH0(k), (B3)

with a, b an index for the Cartesian axes x, y and z.
The Kronecker product ⊗ in the first term of Eq. (B1) is

σ0 ⊗ λa
k =

[
λa

k 0

0 λa
k

]
, (B4)

while that in the second term corresponds to

σ3 ⊗ λab
k =

[
λab

k 0

0 −λab
k

]
. (B5)

Here, σ0 = I2 and σ3 is the third Pauli matrix.
In the following, we list the explicit expressions for λa

k and λab
k :

∂kx H0(k) =
(

4t3 sin kx cos ky + 2t1 sin kx −4t4 cos kx sin ky

−4t4 cos kx sin ky 4t3 sin kx cos ky + 2t2 sin kx

)
, (B6)

∂ky H0(k) =
(

4t3 cos kx sin ky + 2t2 sin ky −4t4 sin kx cos ky

−4t4 sin kx cos ky 4t3 cos kx sin ky + 2t1 sin ky

)
, (B7)

∂kx ∂kx H0(k) =
(

4t3 cos kx cos ky + 2t1 cos kx 4t4 sin kx sin ky

4t4 sin kx sin ky 4t3 cos kx cos ky + 2t2 cos kx

)
, (B8)

∂ky∂ky H0(k) =
(

4t3 cos kx cos ky + 2t2 cos ky 4t4 sin kx sin ky

4t4 sin kx sin ky 4t3 cos kx cos ky + 2t1 cos ky

)
, (B9)

∂kx ∂ky H0(k) = ∂ky∂kx H0(k) =
( −4t3 sin kx sin ky −4t4 cos kx cos ky

x − 4t4 cos kx cos ky −4t3 sin kx sin ky

)
. (B10)
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