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Antiskyrmions and Bloch skyrmions in magnetic Dresselhaus metals
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We present a microscopic electronic description of how antiskyrmions can be stabilized in a Dresselhaus spin-
orbit-coupled magnetic metal. Furthermore, we show that the antiskyrmions can be tuned into Bloch skyrmions
via a change in sign of the hopping integral. The results are based on the state-of-the-art hybrid Monte Carlo
simulations of lattice models explicitly involving itinerant electrons. The origin of such topological textures is
understood via an effective spin-only model. Our results uncover an important and useful connection between
generic features of the band structure and topological spin textures of immense current interest, and present a
microscopic explanation of skyrmion formation reported recently in certain magnetic Weyl semimetals.
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I. INTRODUCTION

The importance of magnetic skyrmion and antiskyrmion
(ASk) quasiparticles in future technologies has been very well
accepted [1–5]. Consequently, identifying new materials that
host such exotic magnetic textures has become a highly active
and important area of research. The appearance of skyrmions
has been confirmed with small angle neutron scattering and
Lorentz transmission electron microscopy measurements in
bulk as well as in thin films of a variety of chiral magnets
[6–14]. On the other hand, while there are a few reports
of their existence in thin-film samples, antiskyrmions have
been mostly observed in bulk materials [15–19]. Interestingly,
the disappearance of antiskyrmions in the thinner region of
samples of D2d Heusler materials has also been reported [15].
While the early theoretical understanding of these textures
was largely based on phenomenological magnetic models,
recent years witnessed efforts towards a microscopic elec-
tronic description of these topological textures [20–25]. Most
of these recent studies focused on identifying the correct
electronic model to stabilize one specific type of magnetic
textures, such as, Neel- or Bloch-skyrmions or antiskyrmions.

The role of Dzyaloshinskii-Moriya (DM) interactions in
stabilizing skyrmion-like textures is also well documented
[26–30]. Current theories suggest that, while skyrmions are
stabilized by isotropic DM coupling, the stabilization of anti-
skyrmions require anisotropic DM interactions [19,31,32] or
dipolar interactions [33]. At a more fundamental level, the
DM interactions emerge from the spin-orbit coupling (SOC),
which can be of atomic, Rashba, or Dresselhaus type. Re-
cent investigations clarified how even in metallic systems,
where the itinerant nature of electrons plays a crucial role,
the Rashba-type SOC generates terms that resemble the DM
interactions. This has led to an elementary understanding of
the formation of Neel-type skyrmions in magnetic metals
that support a moderate strength of Rashba SOC [34,35].
However, a large number of magnetic metals with broken in-
version symmetry are known to host Bloch-type skyrmions. In

addition to a phenomenological understanding, microscopic
theories based on geometrical frustration can also explain the
formation of Bloch skyrmions [36]. However, not all materials
that exhibit Bloch-skyrmion signatures possess a geometri-
cally frustrated magnetic lattice. Furthermore, most of these
materials are metals where a microscopic picture ignoring
electronic itinerancy is highly questionable. The existence of
skyrmions has also been experimentally inferred in magnetic
Weyl semimetals, which show nodal-point structure in the
electronic bands as well as magnetic ordering [37–40]. Prop-
erties of the Weyl electrons in such materials can get enriched
in the presence of skyrmion-like magnetic textures in real
space. The microscopic mechanism for the formation of these
textures in Weyl semimetals is currently unknown.

In this work, we show that the Dresselhaus double ex-
change (DDE) model microscopically describes the formation
of antiskyrmions. We study the model on a square lattice
via state-of-the-art hybrid Monte-Carlo (HMC) simulations.
We find that the DDE model in the presence of Zeeman
coupling to an external magnetic field stabilizes antiskyrmion
textures. We then show that a simple change in sign of
one of the hopping parameters converts antiskyrmions into
Bloch skyrmions. This is physically relevant as many of the
magnetic materials hosting Bloch skyrmions display the min-
imum location away from the � point confirming a relative
sign-difference between hopping parameters along different
directions [41–44]. An effective spin-model is studied for a
conventional understanding of these results. We further estab-
lish a connection between the DDE model and the magnetic
Weyl semimetals, thereby explaining the recent experimental
observations of skyrmions in the semimetals.

II. ANTISKYRMIONS IN A MODEL FOR DRESSELHAUS
MAGNETIC METALS

As a prototype of metallic magnets that lack inversion cen-
ter in their structure, we consider a tight-binding model with
Dresselhaus SOC and Hund’s coupling on a square lattice.
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The Hamiltonian is given by

H = −t
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.) + λ

∑
i

[i(c†
i↓ci+x↑ + c†

i↑ci+x↓)

+ (c†
i↓ci+y↑ − c†

i↑ci+y↓) + H.c.] − JH

∑
i

Si · si. (1)

Here, ciσ (c†
iσ ) annihilates (creates) an electron at site i with

spin σ , 〈i j〉 implies that i and j are nearest-neighbor (nn)
sites. The strengths of hopping and Dresselhaus SOC are
denoted, respectively, by t and λ. The last term describes a
coupling between electronic spin si and localized core spins
Si. In many material involving Mn, Fe, or rare-earth ions a
well-localized core spin explicitly exists, and therefore the last
term is justified. However, the scope of this term is broader
since the Hubbard model at the mean-field level also gen-
erates an effective Hund’s coupling [45,46]. We parametrize
t = (1 − α)t0 and λ = αt0 and set t0 = 1 as the reference
energy scale. This parametrization turns out to be useful in
connecting the extreme limits of vanishing SOC and vanishing
hopping [34]. For a given α, we can readily obtain the more
commonly used parameter λ/t = α/(1 − α). Assuming large
JH and taking the double-exchange approximation, we obtain
the DDE Hamiltonian

HDDE =
∑
〈i j〉,γ

[gγ
i jd

†
i d j + H.c.] − hz

∑
i

Sz
i , (2)

where di(d
†
i ) annihilates (creates) an electron at site i with

spin parallel to the localized spin. The Zeeman coupling of
spins to an external magnetic field of strength hz was also
included in Eq. (2). Site j = i + γ is the nn of site i along spa-
tial direction γ = x, y. The projected hopping gγ

i j = tγ
i j + λ

γ
i j

depends on the orientations of the local moments Si and S j ,

tγ
i j = −t

[
cos

(
θi

2

)
cos

(
θ j

2

)
+ sin

(
θi

2

)
sin

(
θ j

2

)
e−i(φi−φ j )

]
,

λx
i j = iλ

[
sin

(
θi

2

)
cos

(
θ j

2

)
e−iφi + cos

(
θi

2

)
sin

(
θ j

2

)
eiφ j

]
,

λ
y
i j = λ

[
sin

(
θi

2

)
cos

(
θ j

2

)
e−iφi − cos

(
θi

2

)
sin

(
θ j

2

)
eiφ j

]
,

(3)

where θi (φi) denotes the polar (azimuthal) angle for localized
spin Si.

We study the DDE Hamiltonian using numerically exact
HMC simulations [35,47,48]. The presence of skyrmions or
antiskyrmions is inferred via local skyrmion density [26]

χi = 1
8π

[Si · (Si+x × Si+y ) + Si · (Si−x × Si−y )]. (4)

Total skyrmion density is defined as χ = ∑
i χi. We also com-

pute the relevant component of vector chirality η as

η = 1

N

∑
i

(Si × Si+y) · ŷ − (Si × Si+x ) · x̂. (5)

The results obtained via HMC simulations for two rep-
resentative values of α, at electronic filling of n = 0.3, are
shown in Fig. 1. The existence of antiskyrmions in the DDE
Hamiltonian is explicitly demonstrated via the spin con-
figurations [see Figs. 1(a) and 1(c)] as well as skyrmion
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FIG. 1. (a,c) Snapshots of spin configurations and (b,d) the local
skyrmion density at T = 0.01 for representative values of α and hz

as obtained in HMC simulations: (a,b) α = 0.25, hz = 0.03; (c,d)
α = 0.4, hz = 0.06. The HMC simulations are performed on 24 × 24
lattice for an average band filling fraction of 0.3.

density maps [see Figs. 1(b) and 1(d)] at low temperatures
representative of the ground states. The positive sign of χ that
is opposite to the sign of the polarity (defined by magnetiza-
tion of the central spin of the texture) reveals that the ground
states are antiskyrmions. We find that small values of α lead
to sparse antiskyrmions within the zero-field-cooled (ZFC)
protocol and the packing (size) of antiskyrmions increases
(decreases) with increasing α. Note that the Hamiltonian
Eq. (2) does not contain any direct spin-spin interaction
terms. Therefore, the magnetic patterns discussed above are
stabilized by interactions that are mediated via conduction
electrons. A conventional understanding of the formation of
such textures can only emerge via identification of the emer-
gent spin-spin interactions in this model. To this end, we now
present results on an effective spin-only model derived from
the DDE Hamiltonian.

III. ANTISKYRMIONS IN THE EFFECTIVE SPIN MODEL

We derive an effective spin model for HDDE in close anal-
ogy to the derivation of HRDE in [35]. The resulting effective
model is given by

Heff = −
∑
〈i j〉

Dx(y)
i j f x(y)

i j − hz

∑
i

Sz
i , (6)

where the functional dependence on classical spin variables is
contained in the modulus f x(y)

i j of the complex number gx(y)
i j

appearing in Eq. (2). This is specified by

√
2 f x(y)

i j = [t2{1 + Si · S j} − (+)2tλx̂(ŷ) · {Si × S j}
+ λ2{1 − Si · S j + 2{x̂(ŷ) · Si}{x̂(ŷ) · S j}}]1/2. (7)
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FIG. 2. (a)–(d) Variation of magnetization Mz (triangles), total
skyrmion density χ (circles), and vector chirality η (squares) with
increasing hz for different values of α at T = 0.01.

It has been shown that using a constant value of Dx(y)
i j

captures the essential physics of the Hamiltonian Eq. (6),
therefore we set Dx(y)

i j ≡ D0 = 1 and simulate Heff using the
conventional classical MC [34,35]. The first term on the right-
hand side inside the square-root in the definition of f x(y)

i j is an
isotropic term favoring ferromagnetic ordering. The second
term is an anisotropic DM-like exchange coupling of strength
−2tλ (+2tλ) along the x (y) direction and the last term is a
pseudodipolar term that leads to magnetic ground-state degen-
eracy of nongeometrical origin.

In Fig. 2 we show the field dependence of magnetization
Mz = 1

N

∑
i Sz

i , vector chirality η, and skyrmion density χ

obtained via simulations of Heff Eq. (6). For small values of α,
a linear increase of magnetization for small hz, is followed by
a nonlinear behavior that is accompanied by a sharp increase
in χ [see Figs. 2(a) and 2(b)]. We can infer that the emergence
of antiskyrmions makes it difficult for spins to align along the
direction of the external magnetic field. The existence of a
finite η in the absence of magnetic field can be understood
from the DM-like terms in Heff . Upon increasing hz, η dis-
plays a sharp decrease concomitant with the increase in χ

[see Figs. 2(a) and 2(b)]. Finally, as the system approaches
a field-enforced saturated FM state, both χ and η vanish.
For α = 0.5, the change in χ near hz = 0.25 is accompanied
by a weak discontinuity in both Mz and η [see Fig. 2(c)].
This qualitatively different behavior is an indicator of packed
ASk state, as will be illustrated below with the help of real
space spin configurations. For α = 0.6, χ is finite even at
hz = 0 indicating the existence of a zero-field antiskyrmion
crystal state. A sharp reduction in χ near hz = 0.4 indicates
the destabilization of this low-field ASk state. At higher fields
a qualitatively different finite-field ASk state appears. The

FIG. 3. Snapshots of spin configurations at T = 0.01 for rep-
resentative values of α and hz. (a) Filamentary domain walls at
α = 0.15, hz = 0, (b) sparse antiskyrmions at α = 0.15, hz = 0.036,
(c) packed antiskyrmions at α = 0.3, hz = 0.11, (d) ASk size reduc-
tion at α = 0.3, hz = 0.18 w.r.t. (c,e) ASk number reduction at α =
0.3, hz = 0.22 w.r.t. (d,f) The zero-field ASk crystal at α = 0.6. For
(a)–(e) 60 × 60 lattices are shown. For (f) a smaller section, 16 × 16
of the full lattice is shown for clarity. The color bar corresponds to
the z component of spins.

transition to this high-field phase is identified from the abrupt
rise in χ near hz = 0.75 [see Fig. 2(d)]. This antiskyrmion
phase is similar to the sparse skyrmion phase discussed in
detail in a previous study [35].

We show in Fig. 3 the evolution of magnetic textures with
change in α and hz within Heff . Within the ZFC protocol at
finite temperatures, we find states with filamentary domain
wall structure characterized by the diffuse ring pattern in the
spin structure factor [34,35] in the absence of external field
for small α [see Fig. 3(a)]. The filamentary domain walls are
randomly oriented and look similar to those reported in the
Rashba model [34]. However, unlike Rashba systems wherein
a spiral in xz (yz) plane is preferred along the x (y) direction, in
Dresselhaus metals a spiral in an xz (yz) plane along the y (x)
direction is favored. These states can be viewed as the parent
state for the antiskyrmions when magnetic field is applied [see
Fig. 3(b)]. For larger values of α, the SQ spiral state gives
way to the packed ASk phase [see Fig. 3(c)]. For a given α,
increasing hz leads to a reduction of the size by polarizing
the spins at the edges of skyrmions [compare Figs. 3(c) and
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3(d)], followed by a reduction in the number of antiskyrmions
[compare Figs. 3(d) and 3(e)]. A perfectly ordered crystal of
smallest possible antiskyrmions on a square lattice is obtained
in the absence of external field at α = 0.6 [see Fig. 3(f)]. This
value of α corresponds to a very strong SOC given by λ/t =
1.5. While a SOC comparable to bandwidth seems unrealistic,
it may still be effectively realized in flat-band systems where
the bandwidth itself is very low. In this limit, the energy term
is dominated by the pseudodipolar (2{x̂(ŷ) · Si}{x̂(ŷ) · S j})
terms associated with λ2 [see Eq. (7)]. This pseudodipolar
term favors axial spin spiral states. Consequently, the square
arrangement of skyrmions can be understood as a superpo-
sition of two energetically degenerate spin spirals of wave
vectors (Q, 0) and (0, Q).

It is a common practice to describe the skyrmion formation
with the help of phenomenological continuum free-energy
functionals [27,49–52]. The results discussed in our study are,
instead, based on a fully microscopic electronic model. The
mechanism for formation of skyrmions in our model does not
rely on the presence of various anisotropies that are commonly
used in free-energy functionals and spin models [26,51]. As
expected, we find that the antiskyrmion sizes become smaller
upon increasing the strength of SOC. In the small α limit, the
term proportional to λ2 in the effective Hamiltonian Eq. (7)
becomes negligible and the leading correction to ferromag-
netism is contained in the DM-like term proportional to tλ.
Therefore, we expect that the results in the small α limit will
approach those obtained within continuum models [49–52].
This is already seen in our simulations for α = 0.12 [see
Fig. 2(d)]. However, given that one requires much larger lat-
tice sizes to accommodate larger antiskyrmions, we are not
able to explicitly check the limit of very small α in the present
study.

IV. TURNING ANTISKYRMIONS INTO
BLOCH SKYRMIONS

Our results so far show that antiskyrmions exist in Dressel-
haus metals and Neel-type skyrmions in Rashba metals [35].
However, Bloch-type skyrmions were reported in many mag-
netic metals. Our description will certainly remain incomplete
if we cannot show the formation of Bloch-type skyrmions
within our microscopic model. We now discuss an elegant
and physically relevant mechanism to turn antiskyrmions into
Bloch skyrmions.

The introduction of a relative sign between the x and y
direction hopping parameter modifies the f γ

i j of the effective
Hamiltonian Eqs. (6) and (7) as follows:

√
2 f γ

i j = [t2(1 + Si · S j ) + 2tλγ̂ · (Si × S j )

+ λ2(1 − Si · S j + 2(γ̂ · Si )(γ̂ · S j ))]
1/2, (8)

where, γ̂ ∈ {x, y}. Please note that the relative hopping sign
along the x and y directions is unlikely to be reversed within
the same system. Therefore, the results discussed in this sec-
tion highlight how systems with different relative hopping
signs will lead to distinct textures even if the nature of spin-
orbit coupling is identical. We simulate the modified Heff

Eq. (8) using the conventional classical MC. In Fig. 4 we show
the evolution of magnetic textures with change in α and hz

FIG. 4. Low-temperature (T = 0.01) snapshots of ground states
in modified model for representative values of α and hz. (a) Fil-
amentary domain wall state at α = 0.16, hz = 0, (b) sparse Bloch
skyrmions at α = 0.16, hz = 0.036, (c) packed Bloch skyrmions at
α = 0.3, hz = 0.12, and (d) Bloch skyrmions crystal at α = 0.6,
hz = 0.0.

within modified Heff . We find that, the domain junctions in
the filamentary domain wall states for small α [see Fig. 4(a)]
become nucleation centers for Bloch skyrmions when mag-
netic field is applied [see Fig. 4(b)]. For larger values of α,
packed Bloch skyrmion phase [see Fig. 4(c)] is stabilized as
the ground state. While the packed Bloch skyrmions exist in
the presence of external field, at α = 0.6 the square-lattice
Bloch SkX is the ground state already at hz = 0 [see Fig. 4(d)].
In summary, the evolution of the phases remains the same as
that discussed in previous section for antiskyrmions and the
nature of textures gets converted into Bloch-type skyrmions.
It is also important to note that in some materials skyrmions
and antiskyrmions can coexist [18,53]. While the single-band
model discussed in this work cannot explain such a coexis-
tence, the extension of the key concept to realistic multiband
electronic Hamiltonians may describe such observations.

Interestingly, there is a simple way to find out if the effec-
tive tight-binding model for a given metal has a relative sign
difference between hopping parameters along different direc-
tions. If the maximum or the minimum of the relevant energy
bands that cross the Fermi level lies at the � point, then all
hoppings have the same sign. This observation, together with
the results discussed so far, leads to a very important general
conjecture. Materials that host Bloch skyrmions should not
have the maximum or minimum of the relevant bands without
SOC at the � point. We could identify many materials that
host Bloch skyrmions and have their band extremum away
from the � point [41–44]. Similarly, Neel skyrmions are more
likely when the maximum or the minimum lies at the �

point, and on surfaces or interfaces so that Rashba effect is
dominant. Once again, this condition seems to hold for many
Neel skyrmion hosts [54–56]. It is also important to note that

184434-4



ANTISKYRMIONS AND BLOCH SKYRMIONS IN … PHYSICAL REVIEW B 104, 184434 (2021)

FIG. 5. Spin textures in the momentum space on Fermi contours
at 1/5 filling for (a) Dresselhaus SOC strength λ = 0.3 and tx =
ty = 1.0, (b) λ = 0.3, tx = −1.0, ty = 1.0, and (c) Dresselhaus SOC
strength λ having an extra minus sign along the x direction leading
to a lattice version of the σ · k model with tx = ty = 1.0. In all panels
only the first Brillouin zones are displayed.

a large number of skyrmion-host metals have a complicated
band structure with a large number of bands crossing the
Fermi level. Therefore, it may not be straightforward to test
the above condition for such materials. In principle, it would
be very interesting to write a multiband version of the present
theory to allow predictions for a wider class of materials.

Finally, we discuss a connection with skyrmions in Weyl
semimetals. The Hamiltonian Eq. (1) for JH = 0 can be
easily diagonalized. The spin-momentum locking leads to
well-defined spin textures in the momentum space (see
Fig. 5). From our results we conclude that the nature of
the momentum-space spin textures completely determines the
nature of the real-space magnetic texture that appear when
Hund’s or Hubbard interactions are included. Spin textures on
the Fermi contours for Hamiltonian Eq. 1 at JH = 0 display
a specific antiskyrmion-like pattern [see Fig. 5(a)]. These
results are consistent with an earlier prediction based on
symmetry analysis of different type of SOC terms included
in a continuum model [52,57]. However, our tight-binding
description allows to relate the type of textures to specific
features in the band structure, which is accessible via realistic
ab initio calculations.

If the sign of one of the hopping terms is reversed then the
momentum-space spin textures attain a Neel-skyrmion-like
pattern, but away from the � point [see Fig. 5(b)]. Finally,
introducing a relative sign in the SOC coupling λ along x and
y directions leads to a Neel-skyrmion-like pattern centered at
the � point [see Fig. 5(c)]. In all cases, the real-space magnetic
textures are such that the spin directions around the core are
orthogonal to the momentum space spin directions.

We further emphasize the importance of the effective spin
Hamiltonian in providing a general understanding of the in-
terrelation among the nature of topological magnetic textures,
the relative sign of the hopping parameters, and the type

of SOC. In the starting electronic Hamiltonian Eqs. (1) and
(2), the hopping and the SOC parameters belong to indepen-
dent terms. However, the effective Hamiltonian brings these
parameters together in the form of an explicit DM-like inter-
action. It is this tλ term in Eqs. (7) and (8) that facilitates
a general understanding of the relation between relative sign
change in x- and y-direction hoppings and the types of mag-
netic textures. In a two-dimensional tight-binding model, the
same sign for tx and ty leads to an extremum at the � point.
Therefore, a relative sign change is easily detected as location
of band extremum away from the � point.

We also note that a change in sign of SOC strength
λ along one direction transform the continuum version of
the Dresselhaus Hamiltonian λ(σ xkx − σ yky) form to Weyl
semimetal λ(σ · k). Therefore, the Weyl semimetals that are
described by the σ · k Hamiltonian should naturally lead to
Bloch skyrmions [37]. Once again, it is the tλ term in the
effective Hamiltonian that connects directly the magnetism of
Dresselhaus and Weyl Hamiltonians. Therefore, our results
are directly relevant for understanding the ground states of
magnetic Weyl semimetals.

V. CONCLUSION

A number of antiskyrmion host materials, such as
Mn1.4Pt0.9Pd0.1Sn, Mn1.4PtSn, and Mn2Rh0.95Ir0.05Sn, happen
to be inverse Heusler metals lacking a center of inversion
[15–17]. The presence of a magnetic ion together with heavy
elements suggests that an appropriate description of the mag-
netism of these materials can be in terms of a double exchange
model modified by Dresselhaus SOC. We establish this by
explicitly showing that magnetic Dresselhaus metals support
nanoscale antiskyrmions. An understanding of the stability of
antiskyrmions is achieved in terms of a conventional spin-
only model derived from the microscopic DDE Hamiltonian.
We provide a recipe for turning antiskyrmions into Bloch
skyrmions, and thereby providing a novel connection between
the type of topological magnetic textures and the underlying
electronic band structure. Such a connection will be com-
pletely missed in a spin-only model written without reference
to a starting microscopic model. We also discuss the con-
nection between the σ · k model typically used to describe
Weyl semimetals and the hopping-sign modified Dresselhaus
Hamiltonian. This connection supports the experimental stud-
ies of skyrmions in magnetic Weyl semimetals [37–40] and
puts forward a clear recipe for design of new skyrmion-host
materials.

ACKNOWLEDGMENT

We acknowledge the use of the computing facility at IISER
Mohali.

[1] A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031
(2017).

[2] R. Wiesendanger, Nat. Rev. Mater. 1, 16044 (2016).
[3] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152

(2013).

[4] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[5] A. N. Bogdanov and C. Panagopoulos, Phys. Today 73(3), 44

(2020).
[6] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S.

Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106 (2011).

184434-5

https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1063/PT.3.4431
https://doi.org/10.1038/nmat2916


KATHYAT, MUKHERJEE, AND KUMAR PHYSICAL REVIEW B 104, 184434 (2021)

[7] S. Meyer, M. Perini, S. von Malottki, A. Kubetzka, R.
Wiesendanger, K. von Bergmann, and S. Heinze, Nat.
Commun. 10, 3823 (2019).

[8] P.-J. Hsu, L. Rózsa, A. Finco, L. Schmidt, K. Palotás, E.
Vedmedenko, L. Udvardi, L. Szunyogh, A. Kubetzka, K. von
Bergmann et al., Nat. Commun. 9, 1571 (2018).

[9] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose,
N. Kanazawa, H. S. Park, and Y. Tokura, Nano Lett. 12, 1673
(2012).

[10] X. Yu, W. Koshibae, Y. Tokunaga, K. Shibata, Y. Taguchi,
N. Nagaosa, and Y. Tokura, Nature (London) 564, 95
(2018).

[11] T. Nagase, M. Komatsu, Y. So, T. Ishida, H. Yoshida, Y.
Kawaguchi, Y. Tanaka, K. Saitoh, N. Ikarashi, M. Kuwahara,
and M. Nagao, Phys. Rev. Lett. 123, 137203 (2019).

[12] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,
K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

[13] X. Yu, N. Kanazawa, W. Zhang, T. Nagai, T. Hara, K. Kimoto,
Y. Matsui, Y. Onose, and Y. Tokura, Nat. Commun. 3, 988
(2012).

[14] X. Zhao, C. Jin, C. Wang, H. Du, J. Zang, M. Tian, R. Che, and
Y. Zhang, Proc. Natl. Acad. Sci. USA 113, 4918 (2016).

[15] A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo,
F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, Nature
(London) 548, 561 (2017).

[16] P. Vir, N. Kumar, H. Borrmann, B. Jamijansuren, G. Kreiner, C.
Shekhar, and C. Felser, Chem. Mater. 31, 5876 (2019).

[17] J. Jena, R. Stinshoff, R. Saha, A. K. Srivastava, T. Ma, H. Deniz,
P. Werner, C. Felser, and S. S. P. Parkin, Nano Lett. 20, 59
(2020).

[18] L. Peng, R. Takagi, W. Koshibae, K. Shibata, K. Nakajima,
T.-H. Arima, N. Nagaosa, S. Seki, X. Yu, and Y. Tokura, Nat.
Nanotechnol. 15, 181 (2020).

[19] M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff,
N. S. Kiselev, C. Melcher, and S. Blügel, Nat. Commun. 8, 308
(2017).

[20] S. Hayami and Y. Motome, Phys. Rev. Lett. 121, 137202
(2018).

[21] S. Hayami and Y. Motome, Phys. Rev. B 99, 094420 (2019).
[22] Z. Wang, Y. Su, S.-Z. Lin, and C. D. Batista, Phys. Rev. Lett.

124, 207201 (2020).
[23] A. V. Bezvershenko, A. K. Kolezhuk, and B. A. Ivanov, Phys.

Rev. B 97, 054408 (2018).
[24] S. Hayami and R. Yambe, J. Phys. Soc. Jpn. 90, 073705 (2021).
[25] L. Jin, B. Xi, J.-W. Mei, and Y. Liu, arXiv:2106.00207.
[26] J. P. Chen, D.-W. Zhang, and J. M. Liu, Sci. Rep. 6, 29126

(2016).
[27] U. K. Roessler, A. Bogdanov, and C. Pfleiderer, Nature

(London) 442, 797 (2006).
[28] N. Mohanta, E. Dagotto, and S. Okamoto, Phys. Rev. B 100,

064429 (2019).
[29] J. Iwasaki, A. J. Beekman, and N. Nagaosa, Phys. Rev. B 89,

064412 (2014).

[30] S. D. Yi, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 80,
054416 (2009).

[31] S. Huang, C. Zhou, G. Chen, H. Shen, A. K. Schmid, K. Liu,
and Y. Wu, Phys. Rev. B 96, 144412 (2017).

[32] L. Qiu, J. Xia, Y. Feng, L. Shen, F. J. Morvan, X. Zhang, X.
Liu, L. Xie, Y. Zhou, and G. Zhao, J. Magn. Magn. Mater. 496,
165922 (2020).

[33] W. Koshibae and N. Nagaosa, Nat. Commun. 7, 10542 (2016).
[34] D. S. Kathyat, A. Mukherjee, and S. Kumar, Phys. Rev. B 102,

075106 (2020).
[35] D. S. Kathyat, A. Mukherjee, and S. Kumar, Phys. Rev. B 103,

035111 (2021).
[36] T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108,

017206 (2012).
[37] Y. Araki, Ann. Phys. (Leipzig) 532, 1900287 (2020).
[38] H. Wu, P. Sun, D. Hsieh, H. Chen, D. C. Kakarla, L. Deng,

C.-W. Chu, and H. Yang, Mater. Today Phys. 12, 100189
(2020).

[39] P. Puphal, V. Pomjakushin, N. Kanazawa, V. Ukleev, D. J.
Gawryluk, J. Ma, M. Naamneh, N. C. Plumb, L. Keller, R.
Cubitt, E. Pomjakushina, and J. S. White, Phys. Rev. Lett. 124,
017202 (2020).

[40] M. Redies, F. R. Lux, J.-P. Hanke, P. M. Buhl, S. Blügel, and Y.
Mokrousov, Phys. Rev. B 102, 184407 (2020).

[41] K. V. Shanavas and S. Satpathy, Phys. Rev. B 93, 195101
(2016).

[42] H. Choi, Y.-Y. Tai, and J.-X. Zhu, Phys. Rev. B 99, 134437
(2019).

[43] T. Nomoto, T. Koretsune, and R. Arita, Phys. Rev. Lett. 125,
117204 (2020).

[44] T. Koretsune, N. Nagaosa, and R. Arita, Sci. Rep. 5, 13302
(2015).

[45] I. Martin and C. D. Batista, Phys. Rev. Lett. 101, 156402
(2008).

[46] K. Pasrija and S. Kumar, Phys. Rev. B 93, 195110 (2016).
[47] S. Kumar and P. Majumdar, Eur. Phys. J. B 50, 571 (2006).
[48] A. Mukherjee, N. D. Patel, C. Bishop, and E. Dagotto, Phys.

Rev. E 91, 063303 (2015).
[49] R. Keesman, A. O. Leonov, P. van Dieten, S. Buhrandt, G. T.

Barkema, L. Fritz, and R. A. Duine, Phys. Rev. B 92, 134405
(2015).

[50] S. Banerjee, J. Rowland, O. Erten, and M. Randeria, Phys. Rev.
X 4, 031045 (2014).

[51] M. N. Wilson, A. B. Butenko, A. N. Bogdanov, and T. L.
Monchesky, Phys. Rev. B 89, 094411 (2014).

[52] U. Güngördü, R. Nepal, O. A. Tretiakov, K. Belashchenko, and
A. A. Kovalev, Phys. Rev. B 93, 064428 (2016).

[53] K. Karube, L. Peng, J. Masell, X. Yu, F. Kagawa, Y. Tokura, and
Y. Taguchi, Nat. Mater. 20, 335 (2021).

[54] K. Xu and H. J. Xiang, Phys. Rev. B 92, 121112(R) (2015).
[55] S. Bhowal and S. Satpathy, npj Comput. Mater. 5, 61 (2019).
[56] S. Bhowal and S. Satpathy, Phys. Rev. B 99, 245145 (2019).
[57] S.-J. Lee, K.-W. Kim, H.-W. Lee, and K.-J. Lee, J. Magn. Magn.

Mater. 455, 14 (2018).

184434-6

https://doi.org/10.1038/s41467-019-11831-4
https://doi.org/10.1038/s41467-018-04015-z
https://doi.org/10.1021/nl300073m
https://doi.org/10.1038/s41586-018-0745-3
https://doi.org/10.1103/PhysRevLett.123.137203
https://doi.org/10.1126/science.1240573
https://doi.org/10.1038/ncomms1990
https://doi.org/10.1073/pnas.1600197113
https://doi.org/10.1038/nature23466
https://doi.org/10.1021/acs.chemmater.9b02013
https://doi.org/10.1021/acs.nanolett.9b02973
https://doi.org/10.1038/s41565-019-0616-6
https://doi.org/10.1038/s41467-017-00313-0
https://doi.org/10.1103/PhysRevLett.121.137202
https://doi.org/10.1103/PhysRevB.99.094420
https://doi.org/10.1103/PhysRevLett.124.207201
https://doi.org/10.1103/PhysRevB.97.054408
https://doi.org/10.7566/JPSJ.90.073705
http://arxiv.org/abs/arXiv:2106.00207
https://doi.org/10.1038/srep29126
https://doi.org/10.1038/nature05056
https://doi.org/10.1103/PhysRevB.100.064429
https://doi.org/10.1103/PhysRevB.89.064412
https://doi.org/10.1103/PhysRevB.80.054416
https://doi.org/10.1103/PhysRevB.96.144412
https://doi.org/10.1016/j.jmmm.2019.165922
https://doi.org/10.1038/ncomms10542
https://doi.org/10.1103/PhysRevB.102.075106
https://doi.org/10.1103/PhysRevB.103.035111
https://doi.org/10.1103/PhysRevLett.108.017206
https://doi.org/10.1002/andp.201900287
https://doi.org/10.1016/j.mtphys.2020.100189
https://doi.org/10.1103/PhysRevLett.124.017202
https://doi.org/10.1103/PhysRevB.102.184407
https://doi.org/10.1103/PhysRevB.93.195101
https://doi.org/10.1103/PhysRevB.99.134437
https://doi.org/10.1103/PhysRevLett.125.117204
https://doi.org/10.1038/srep13302
https://doi.org/10.1103/PhysRevLett.101.156402
https://doi.org/10.1103/PhysRevB.93.195110
https://doi.org/10.1140/epjb/e2006-00173-2
https://doi.org/10.1103/PhysRevE.91.063303
https://doi.org/10.1103/PhysRevB.92.134405
https://doi.org/10.1103/PhysRevX.4.031045
https://doi.org/10.1103/PhysRevB.89.094411
https://doi.org/10.1103/PhysRevB.93.064428
https://doi.org/10.1038/s41563-020-00898-w
https://doi.org/10.1103/PhysRevB.92.121112
https://doi.org/10.1038/s41524-019-0198-8
https://doi.org/10.1103/PhysRevB.99.245145
https://doi.org/10.1016/j.jmmm.2017.07.006

