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Replica symmetry breaking in the RKKY skyrmion-crystal system
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We study the RKKY Heisenberg model on a three-dimensional stacked-triangular lattice under magnetic fields
by extensive Monte Carlo simulations to get insight into the chiral-degenerate symmetric skyrmion crystal (SkX)
in centrosymmetric metallic magnets. The triple-q SkX and the double-q states are realized, together with the
single-q state. We find an unexpected phenomenon of the replica-symmetry breaking (RSB) well known in
glassy systems, although the Hamiltonian and the ordered state are entirely regular. In the RSB SkX phase, the
triple-q SkX state macroscopically coexists with the single-q state, even though these ordered states cannot be
transformed via any Hamiltonian-symmetry operation. In the thermodynamic limit, the free energies of these
states are degenerate whereas the free-energy barrier between the states diverges, breaking the ergodicity. A
similar RSB is also observed in the RSB double-q phase where the double-q state macroscopically coexists with
the single-q state. Experimental implications are discussed.
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I. INTRODUCTION

Frustrated magnets have been extensively studied because
of their unconventional behaviors, such as spin liquids [1–4],
spin glasses [5–7], and chiral ordered states [8,9]. Frustra-
tion often suppresses ordinary magnetic long-range orders,
and instead induces various intriguing magnetic states. Much
attention has recently been paid to emergent nanoscale spin
objects, e.g., topological spin textures including the vortex
[10–12], the Z2 vortex [13,14], the skyrmion [9,15–18], and
the hedgehog [19,20]. Such interest has also been amplified
by possible applications to spin-electronic devices [21,22].

The skyrmion is a swirling noncoplanar texture whose
constituent spin directions wrap a sphere in spin space, char-
acterized by the integer topological charge in units of the solid
angle 4π . The sign of the topological charge represents the
swirling direction of the skyrmion, or the sign of the scalar
spin chirality representing the handedness of the associated
noncoplanar spin structure. The skyrmion has so far been
observed mostly in the Dzyaloshinskii-Moriya (DM) interac-
tion systems such as MnSi, FeCoSi, or FeGe in the form of
the skyrmion crystal (SkX), the periodic array of skyrmions
[23–25]. These systems exhibit the DM-interaction-induced
spiral structure in a zero magnetic field, and exhibit the SkX
under finite magnetic fields. An especially interesting aspect
of the SkX state might be its nontrivial electromagnetic re-
sponse. Nonzero total scalar chirality of the SkX leads to the
anomalous Hall conductivity [26], the so-called topological
Hall effect. Note that, since the DM interaction breaks the
chiral degeneracy of the Hamiltonian energetically discrim-
inating the right-handed and left-handed spirals, the SkX of
the DM system possesses a definite sign of the topological
charge.

Recent studies have revealed that the SkX phase can also be
realized even in the centrosymmetric magnets without the DM

interaction, which is induced by the frustrated exchange inter-
action, e.g., the classical J1-J3 (or J1-J2) Heisenberg model
on the triangular lattice with the competing nearest-neighbor
(J1) and further-neighbor interactions (J2, J3) [9]. The model
shows the spiral single-q structure in a zero magnetic field
and the multiple-q structures under magnetic fields, including
the double-q and the triple-q phases. The latter corresponds
to the SkX phase. Interestingly, in sharp contrast to the
DM-induced skyrmions, both skyrmions and antiskyrmions
characterized by the mutually opposite signs of the topolog-
ical charge (scalar spin chirality) are possible due to the Z2

chiral degeneracy of the Hamiltonian, either the SkX state or
the anti-SkX state being selected via the spontaneous sym-
metry breaking. Such Z2 chiral degeneracy inherent to the
frustration-induced SkX also gives rise to a peculiar phase,
called the Z phase, the random domain state consisting of
both SkX and anti-SkX. A similar chiral degenerate SkX
state has also been reported in the frustrated classical Heisen-
berg model on the three-dimensional (3D) stacked-triangular
lattice [27]. The effect of the easy-axis-type magnetic
anisotropy in the 3D models was also extensively studied
[17].

Some candidate materials of the frustration-induced SkX
were recently reported, such as Gd2PdSi3 [28,29] and Eu-
CuSb [30]. They are mostly metallic compounds with more
or less 3D interactions. Their magnetism is born by localized
magnetic moments, coupled via the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction mediated by itinerant electrons.
In contrast to the short-range interaction inherent to insulating
magnets, the RKKY interaction is the long-range interaction
falling off as 1/r3 and oscillating in sign with the distance
r [31–33]. While the oscillating nature of the RKKY inter-
action certainly provides frustration, it remains open whether
the chiral-degenerate symmetric SkX state is really stabilized
under magnetic fields in the RKKY system, and if so, how its
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nature could differ from the one stabilized in the short-range
system.

In this paper, in order to address this question, especially
to elucidate the effects of the long-range nature and the 3D
character of the interaction inherent to metallic experimental
systems, we investigate by means of extensive Monte Carlo
(MC) simulations the properties of the classical Heisenberg
model on the 3D stacked-triangular lattice interacting via the
long-range RKKY interaction.

Recently, possible phases in metallic systems were theo-
retically investigated by numerical simulations [15,16,18]. In
Ref. [18], the two-dimensional (2D) Heisenberg model inter-
acting with the RKKY interaction mediated by 2D electron
gas was investigated using the variational calculation, and
various phases, including the SkX state, were reported in
the ground state. In Refs. [15,16], the possible phases were
investigated by numerical simulation on the Kondo-lattice
model [15] and by the analysis of the effective mean-field-type
classical spin model in q space [16]. The SkX was reported to
be stabilized by the contribution of the higher-order four-body
(biquadratic) spin-spin interaction with the positive coupling
constant [16]. Such a situation might be expected when the
exchange interaction between itinerant electrons and localized
moments is comparable to the Fermi energy. Our present mod-
eling presumes the more weak-coupling situation where the
exchange interaction is smaller enough than the Fermi energy,
resulting in the dominant quadratic spin-spin interaction, i.e.,
the standard RKKY interaction.

Via extensive MC simulations, we find that the chiral-
degenerate symmetric triple-q SkX state is stabilized in the
3D RKKY system for a certain parameter range of the RKKY
interaction. The phase diagram turns out to be not much dif-
ferent from the one of the 2D short-range systems reported
earlier [9]. However, the nature of the SkX turns out to
be quite different from that of the 2D short-range system.
Namely, we find an unexpected phenomenon of the so-called
replica-symmetry breaking (RSB), in sharp contrast to the
case of the 2D short-range model.

The notion of the RSB was first introduced to solve the
mean-field spin-glass model in infinite dimensions by us-
ing the replica method [5,34], which is a theoretical tool to
treat the quenched disorder of the Hamiltonian. Although the
original interpretation of the RSB was rather technical, the
physical interpretation of the RSB now widely accepted might
be that multiply degenerate free-energy minima unrelated via
any global symmetry operation of the underlying Hamiltonian
emerge in the phase space accompanied with the divergent
free-energy barrier, quite distinct from the spontaneous sym-
metry breaking in the usual phase transition where degenerate
free-energy minima related via the global symmetry operation
of the underlying Hamiltonian emerge. Thus, in the case of
RSB, many different macroscopic ordered states unrelated by
the Hamiltonian symmetry are realized in the thermodynamic
limit with the divergent free-energy barriers among them,
leading to the broken ergodicity.

More recently, the replica method has been extended and
successfully applied to regular systems without quenched
disorder, e.g., molecular or structural glasses [35] and
disorder-free frustrated magnets [36]. Even in such regular
systems, the RSB could also occur in the large dimensional

limit, and some simulation results supported the prediction of
the mean-field theory even in 3D [37–39]. Thus, although the
RSB is possible even for regular systems without quenched
disorder, the states themselves are still glassy, i.e., spatially
random and infinitely degenerate.

In sharp contrast, the RSB SkX phase we have observed
here consists of regular states with spatial periodicity, realized
under the completely regular Hamiltonian without quenched
disorder: It is a thermodynamic phase in full equilibrium
where the triple-q SkX state macroscopically coexists with
the single-q spiral state in the sense of RSB. Since the triple-
q SkX state cannot be transformed into the single-q spiral
state, nor vice versa, by any global symmetry operation of the
Hamiltonian, the associated symmetry breaking should be the
RSB.

In addition to such an RSB triple-q SkX phase, we find
another RSB phase of a slightly different nature, i.e., the
RSB double-q state where the double-q state and the single-q
state macroscopically coexist together with the spectrum of
intermediate states connecting the double-q and the single-q
states.

The rest of the paper is organized as follows. In Sec. II, we
introduce our model and explain the MC simulation method
employed. Section III is the main part of the paper, where we
present the results of our MC simulations, including the phase
diagram of the model in the temperature versus magnetic-
field plane and the behaviors of various physical quantities.
Particular attention is paid to the nature of the two types of
RSB phases. The nature of the RSB SkX phase is analyzed
in detail in Sec. III A, while that of the RSB double-q phase
is analyzed in Sec. III C. Section III B is devoted to the
dynamical simulation performed further to examine the nature
of the RSB SkX phase. Summary and discussion of the results
are given in Sec. IV. We show some of the details of the Ewald
sum method in Appendix A, additional simulation data not
presented in the main text in Appendix B, typical spin and chi-
rality configurations of the RSB double-q state in Appendix C,
and the mean-field analysis performed to understand better the
RSB double-q phase in Appendix D.

II. MODEL AND THE METHOD

We consider the classical Heisenberg model on the 3D
stacked triangular lattice interacting with the long-range
RKKY interaction. The RKKY interaction is the primary in-
teraction between localized spins in metals originating from
the s-d coupling between itinerant electrons and localized
magnetic moments [31–33]. Assuming the spherical Fermi
surface for itinerant electrons and the s-d coupling being
sufficiently weak compared with the Fermi energy, we derive
the conventional long-range RKKY interaction between two
spins with the distance r in the second-order perturbation with
respect to the s-d coupling as

JRKKY(r) ∼
(

cos(2kFr)

(2kFr)3
− sin(2kFr)

(2kFr)4

)
, (1)

where kF is the Fermi wave vector.

184432-2



REPLICA SYMMETRY BREAKING IN THE RKKY … PHYSICAL REVIEW B 104, 184432 (2021)

FIG. 1. The ground-state in-plane phase structures of the frus-
trated Heisenberg models: (a) The kF dependence for the RKKY
classical Heisenberg model on the stacked-triangular lattice with c =
1.45, where “120◦” means the commensurate 120◦ spin state with
the three-sublattice periodicity, while “incommensurate” means the
incommensurate spiral states on the triangular plane. (b) The J1/|J3|
dependence for the J1-J3 (J1 > 0, J3 < 0) classical Heisenberg model
on the 2D triangular lattice.

The RKKY Heisenberg Hamiltonian employed in our MC
simulations is given by

H = −
∑
i, j

Ji jSi · S j − h
N∑

i=1

Sz
i ,

Ji j = −J0

(
cos(2kFri j )

r3
i j

− sin(2kFri j )

2kFr4
i j

)
, (2)

where ri j = |ri − r j | is the distance between the site i and j in
units of the lattice constant a, and J0 is the energy scale of the
interaction. kF is given in units of a−1. The sum is taken over
all spin pairs on the lattice, while the position of the lattice site
i is given by

ri = naa + nbb + ncc, (3)

a = (1, 0, 0), b = (1/2,
√

3/2, 0), c = (0, 0, c), (4)

where c is the lattice-constant ratio of the interplane
to the intraplane ones, na, nb = 0, 1, 2, , L − 1, nc =
0, 1, 2, . . . , Lz − 1 are integers, and the total number of
lattice sites is given by N = L × L × Lz.

In addition to the dimensionless temperature T̃ =
kBT/(J0) and the dimensionless magnetic field h̃ = h/(J0)
(hereafter we call T̃ and h̃ simply as T and h), the model has
two characteristic dimensionless parameters, i.e., the Fermi
wave number kF and the lattice-constant ratio c. Then, the
ground state in zero field is determined by the set of kF

and c.
For the present classical Heisenberg model, the ground-

state properties in a zero field can be obtained by the simple
Fourier transform, and the resulting ground-state spin config-
urations in the triangular plane are given in Fig. 1, compared
with those of the short-range J1-J3 model on the 2D triangular
lattice. In addition to the ferromagnetic state and the com-
mensurate 120◦ state, incommensurate spiral structures are
stabilized as in the case of the J1-J3 model.

In this study, we concentrate on the parameter range corre-
sponding to the incommensurate structure, and the simulation
is performed for the fixed parameters kF = 2π/2.77 and c =
1.45 lying in this incommensurate region. For this case, the
ground state in zero field takes the incommensurate spiral

FIG. 2. The phase diagram in the temperature (T ) versus
magnetic-field (h) plane of the RKKY classical Heisenberg model
on the stacked-triangular lattice with kF = 2π/2.77 and c = 1.45.
The phase boundaries are determined from the specific-heat peak
(C), the T derivative of the mean total scalar chirality (dχ tot/dT ),
and the T derivative of the mean staggered scalar chirality
(dχ stg/dT ) of the L = 20 data. T = 0 transition point (hc) is deter-
mined from the analytic result of the ground-state energy.

structure in the a-b plane and the ferromagnetic uniform struc-
ture along the c axis.

The lattice sizes studied in our MC simulations are L =
20, 24, 30 and Lz = L/2, periodic boundary conditions ap-
plied in all directions. To take account of the long-range nature
of the RKKY interaction beyond the finite system size L,
especially to avoid the uncertainty associated with a finite-
range cutoff of the long-range interaction, we employ the
Ewald sum method which is a general method to treat the
long-range interaction in numerical simulations [40–43]. In
the method, we sum over the interactions to infinite range by
periodically placing copy images of the finite system in all
directions. Details of the derivation of the Ewald potential for
the RKKY interaction on a stacked-triangular lattice are given
in Appendix A.

To equilibrate the system, we combine the Metropolis
method, the over-relaxation method, and the replica-exchange
method. Our unit Monte Carlo step (MCS) consists of one
Metropolis sweep and L/2 times over-relaxation sweeps.
The replica-exchange trial is performed every five MCS.
We take 1.0 × 105 MCS each for equilibration and for
taking thermal averages. The errors of the physical quanti-
ties were evaluated over three independent runs. On some
special occasions, we turn off the replica-exchange pro-
cess, or both replica-exchange and over-relaxation processes.
One such case corresponds to the measurement of the spin
structure factor, and the other corresponds to the dynami-
cal simulations in equilibrium, as will be referred to when
employed.

III. RESULTS

In this section, we present our simulation results. Figure 2
shows the phase diagram of the model in the temperature
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FIG. 3. The temperature dependence of the specific heat under
applied fields of (a) h = 0.6, and (b) h = 1.2, each crossing the RSB
SkX phase and the RSB double-q phase.

(T ) versus magnetic-field (h) plane, for the parameters kF =
2π/2.77, c = 1.45 where the incommensurate helical spin
structure is realized in the zero-field ground state. In addition
to the single-q phase, occupying a wide region of the phase
diagram, the “double-q” and the “triple-q SkX” phases are
also stabilized under fields. The overall geometry of the phase
diagram looks rather similar to that of the 2D short-range
model, except that the Z phase stabilized in the 2D short-
range model [9] seems absent in the present model, and that
the single-q state extended toward higher temperatures along
the high-field phase boundary in the 2D short-range model
is absent in the present case. Nevertheless, the characters of
each phase, especially those of the “double-q” phase and the
“triple-q SkX” phase, are quite different from the short-model
counterparts, i.e., these multiple-q phases exhibit the RSB,
macroscopically coexisting with the single-q state as will be
detailed below. Hence, these multiple-q phases are described
as “RSB double-q” and “RSB SkX” in the magnetic phase
diagram of Fig. 2.

The phase boundary of Fig. 2 is drawn from the anomaly
of several physical quantities, including the specific heat,
by using the L = 20 data. As an example, we show in
Fig. 3 the temperature dependence of the specific heat for
several sizes L for the case of the magnetic field h = 0.6
[Fig. 3(a)] and h = 1.2 [Fig. 3(b)], each crossing the RSB
SkX phase or the RSB double-q phase when the tempera-
ture is lowered from the high-T paramagnetic phase toward
the low-T single-q phase. While the transition points Tc

between the paramagnetic/RSB-SkX phases, between the
paramagnetic/RSB-double-q phases, and between the RSB-
SkX/single-q phases are eminent from Figs. 3(a) and 3(b), the
transition point between the RSB-double-q/single-q phases
expected for h = 1.2 is hardly visible from Fig. 3(b). How-
ever, it can clearly be identified from other quantities as shown
below. Additional data of various physical quantities are also
given in Appendix B. Note that the phase boundaries between
the single-q phase and the RSB phases have rather strong size
dependencies, and the widths of the RSB phases in the phase
diagram Fig. 2, which are determined based on our L = 20
data, might get narrower somewhat in the thermodynamic
limit. However, as shown in Secs. III A and III C below,
we have numerically confirmed that the RSB phases certainly
exist in the finite regions of the phase diagram in the size-
independent manner. We then expect that the geometry of the
phase diagram in the thermodynamic limit is well reproduced
by Fig. 2.

FIG. 4. Typical spin configurations realized as an equilibrium
state in the RSB SkX phase at (T = 0.34, h = 0.6), given in real
space (left column) and in q space (right column). The lattice size is
L = 20. The real-space spin configurations in the triangular plane of
(a) the single-q state, and of (b) the triple-q SkX state, each realized
as an equilibrium state. To reduce the thermal noise, the short-time
averaging over 100 MCS with only the Metropolis updating is made.
The colors of the rhombuses represent the Sz component of spin and
the arrows represent the (Sx, Sy) components. Along the orthogonal
direction, these spin configurations are stacked ferromagnetically.
The perpendicular static spin structure factor S⊥(q) in the (qx , qy)
plane with qz = 0 of (c) the single-q state, and of (d) the SkX state.
The red hexagon represents the first Brillouin zone. In measuring
S⊥(q), MC simulations are made with only the Metropolis updating
averaged over 104 MCS.

A. RSB SkX phase

Now, we investigate the properties of each phase in more
detail, especially focusing on the RSB character of the RSB
triple-q SkX phase and the RSB double-q phase.

We begin with the RSB SkX phase, the magnetic field
being fixed to a typical value of h = 0.6. The RSB SkX phase
is stabilized in the intermediate temperature region Tc1 > T >

Tc2. While Tc1 is estimated to be Tc1 � 0.37 for h = 0.6, Tc2 is
more subject to the finite-size effect, but its upper limit can be
estimated to be Tc2 � 0.358 (see below).

In the temperature range Tc1 > T > Tc2, in the course of
our replica-exchange MC simulations at full equilibrium, we
observe both the single-q state and the triple-q SkX state,
each appearing with a finite probability. Note that both states
are observed as spatially uniform states, any domain states
consisting of domains are hardly observed. At (T = 0.34,
h = 0.6) located in the middle of the RSB triple-q SkX
phase, we show in Fig. 4 the real-space spin configurations
(short-time averaged to reduce the thermal noise) and the spin
structure factor in the (qx, qy) plane with qz = 0 observed in
the course of MC simulation for each state, i.e., the upper
row corresponding to the single-q state and the lower row
to the triple-q SkX state. The spin structure factors for the
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FIG. 5. Typical spatial distributions of the scalar chirality in
(a) the SkX state, and in (b) the anti-SkX state, realized as an
equilibrium state in the RSB SkX phase at (T = 0.36, h = 0.6) for
the lattice size L = 30. To reduce the thermal noise, the short-time
averaging over 100 MCS with only the Metropolis updating is made.
The color represents the sign of the scalar chirality.

field-perpendicular and field-parallel spin components are de-
fined by

S⊥(q) = 1

N

〈⎛
⎝ ∑

μ=x,y

∣∣∣∣∣
N∑

i=1

Sμ
i e−iq·ri

∣∣∣∣∣
2
⎞
⎠

1/2〉
, (5)

S‖(q) = 1

N

〈∣∣∣∣∣
N∑

i=1

Sz
i e−iq·ri

∣∣∣∣∣
〉
. (6)

As can be seen from the figures, both the single-q state and
the triple-q SkX state look quite similar to the corresponding
standard single-q and triple-q SkX states observed earlier in
the 2D short-range model. The unique feature of the present
case is that these states are simultaneously stabilized as a re-
sult of RSB at a common (T, h) point in the phase diagram, in
sharp contrast to the standard case where each state is realized
at different (T, h) points in the phase diagram in different
phases.

Aside from the RSB, more standard spontaneous symmetry
breaking associated with the Hamiltonian symmetry also takes
place in the RSB triple-q state. For example, the triple-q SkX
state spontaneously breaks the Z2 mirror symmetry in the
spin space, e.g., the symmetry under the operation (Sx, Sy, Sz )
to (−Sx, Sy, Sz ), and as a result, both the SkX state and the
anti-SkX state characterized by the mutually opposite signs
of the scalar chirality are equally possible. This nature is
demonstrated in Fig. 5, where both the SkX and the anti-SkX
states are shown, each realized in the RSB triple-q SkX phase.
As pointed out in Ref. [9], the realization of both the SkX
and the anti-SkX states with mutually opposite topological
charges, and the resulting mutually opposite electromagnetic
responses, are interesting features of the frustration-induced
chiral-degenerate SkX state different from the DM-induced
SkX state. The present RKKY system certainly shares this
interesting feature even in the occurrence of the RSB.

Now, we wish to move on to the more quantitative analysis
demonstrating that each constituent state of the RSB SkX
phase, i.e., the single-q state and the triple-q SkX state, are
magnetically ordered states with the 3D long-range order, and
both states macroscopically coexist, leading to the RSB. For
this purpose, we introduce the order parameters characterizing
each constituent state, the total and the staggered scalar chiral-
ities χtot and χstg. In terms of the local spin scalar chirality χ�

(χ�) defined for the three spins i, j, k located at the corner of

the upward (downward) triangle, χtot and χstg are defined by

χtot = 1

2N

⎛
⎝∑

�
χ� +

∑
�

χ�

⎞
⎠, (7)

χstg = 1

2N

⎛
⎝∑

�
χ� −

∑
�

χ�

⎞
⎠, (8)

where the summation
∑

� (
∑

�) runs over all upward

(downward) triangles on the stacked-triangular lattice. These
two quantities play complementary roles, i.e., the SkX state
exhibits a nonzero total scalar chirality with a vanishing
staggered scalar chirality, while the single-q state exhibits a
nonzero staggered scalar chirality with a vanishing total scalar
chirality. Since the scalar chirality changes its sign under the
Z2 spin-mirroring operation, both χtot and χstg can be indica-
tors of the Z2 symmetry breaking.

In Figs. 6(a) and 6(b), we show the distribution of the total
chirality P(χtot ) and that of the staggered chirality P(χstg), re-
spectively, for the sizes L = 20, 24, and 30 at (T = 0.36, h =
0.6) located in the midst of the RSB triple-q SkX phase. The
distribution function for a physical quantity A is normalized
as

∫ ∞
−∞ dA P(A) = 1 and the associated thermal average is

given by 〈A〉 = ∫ ∞
−∞ dA P(A)A. As can be seen from Fig. 6(a),

P(χtot ) exhibits three peaks, one zero peak at χtot = 0 corre-
sponding to the single-q state, and the other two side peaks
at symmetric nonzero χtot = ±χ∗

tot corresponding to the SkX
and the anti-SkX states. Interestingly, as the system size L
is increased, all three peaks tend to grow and sharpen, sug-
gesting that all three states, i.e., the single-q state, the SkX
state, and the anti-SkX state, form the genuine ordered state
in the thermodynamic limit. By contrast, the weight of the
distribution in the intermediate range between 0 and ±χ∗

tot
tends to be suppressed with increasing L almost vanishing for
L = 30, indicating that the domain state consisting of finite-
size domains is not formed for larger sizes. Hence, the data of
P(χtot ) indicate the occurrence of the RSB. Note that the peak
structure of the order-parameter distribution function getting
sharper with increasing the size L is commonly observed even
in the conventional ordered state of the system with the short-
range interaction. A unique point of the RSB phase is that
such a feature is realized simultaneously at two completely
different ordered states, i.e., the single-q state and the triple-q
SkX state. We note that the long-range nature of the RKKY
interaction might play a role in realizing the RSB.

Likewise, as can be seen from Fig. 6(b), P(χstg) also ex-
hibits three peaks, one at χstg = 0 corresponding to the SkX
or the anti-SkX state, and the other two at symmetric nonzero
χstg = ±χ∗

stg corresponding to the single-q states with mu-
tually opposite scalar chiralities. As in the P(χtot ) case, all
three peaks tend to grow and sharpen as the system size L
is increased, whereas the weight of the distribution between
the peaks tends to be suppressed. Hence, the data of P(χstg)
are fully consistent with those of P(χtot ), indicating the occur-
rence of the RSB.

One may suspect that the observed three-peak structure
of the chirality distribution might be due to the possible
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FIG. 6. Equilibrium distribution functions for various sizes L in the RSB SkX phase at (T = 0.36, h = 0.6) of (a) the total scalar chirality,
(b) the staggered scalar chirality, and (c) the energy per spin.

first-order transition where the coexistence of the two different
ordered states is expected in equilibrium just at the transition
point. This seems rather unlikely here, however, since the
three-peak structure of the distribution function is observed
in full equilibrium over a rather wide temperature range cor-
responding to the RSB SkX phase. To further examine the
possible relevance of the first-order transition, we show in
Fig. 6(c) the distribution of the energy per spin, P(E ), at (T =
0.36, h = 0.6), the same point as that of Figs. 6(a) and 6(b). In
contrast to P(E ) at the first-order transition point exhibiting a
double-peak structure, only a single peak is observed. This
observation rules out the possibility that the multiple-peak
structure observed in P(χtot ) and P(χstg) is originated from the
macroscopic phase coexistence associated with a first-order
transition.

The temperature dependence of P(χtot ) and P(χstg) is
shown in Fig. 7 for the size L = 30, in a wide tempera-
ture range covering the paramagnetic, the RSB SkX, and the
single-q phases. In the paramagnetic phase, both P(χtot ) and
P(χstg) exhibit only a central peak, while in the RSB SkX
phase they exhibit the three peaks corresponding to the RSB
as mentioned above. As the temperature is lowered within the
RSB SkX phase, the central peak grows and the side peaks
shrink in P(χtot ), while the side peaks grow and the central
peak shrinks in P(χstg). At the lowest temperature shown
in Fig. 7, T = 0.334, only the central peak (the side peaks)
remains in P(χtot ) [in P(χstg)], indicating that the system is in
the single-q state with nonzero χstg and vanishing χtot.

FIG. 7. The temperature dependence of the chirality distribution
functions at a field h = 0.6 for the size L = 30: (a) the total scalar
chirality, and (b) the staggered scalar chirality.

We also compute the mean total and staggered scalar chi-

ralities χtot =
√

〈χ2
tot〉 and χstg =

√
〈χ2

stg〉 together with their

T derivatives − dχ tot
dT and − dχ stg

dT . Their temperature depen-
dence is shown in Fig. 8 for various sizes L for the total
chirality [Figs. 8(a) and 8(b)] and for the staggered chiral-
ity [Figs. 8(c) and 8(d)]. On decreasing the temperature, the
mean total chirality increases around Tc1 but decreases around
Tc2. One point to be noticed here is that in the T range of
0.358 � T � 0.369 χtot exhibits almost negligible size depen-
dence, suggesting that χtot remains nonzero in this T range
even in the thermodynamic limit. This observation gives an
upper bound of Tc2 as Tc2 � 0.358. By contrast, the mean
staggered chirality χstg monotonically increases with decreas-
ing T . A closer inspection of the large-size data reveals that
this increase occurs in two steps, one around Tc1 and the other
around Tc2: see the L = 30 data of Fig. 8(d). These features are
fully consistent with the behavior of the chirality distribution
functions shown in Fig. 7.

To further examine the nature of the RSB SkX phase, we
introduce the threefold-rotational symmetry-breaking order
parameter, the Z3-symmetry-breaking parameter, associated
with both the perpendicular and the parallel spin components

FIG. 8. The temperature dependence of the chirality-related
quantities at a field h = 0.6: (a) the mean total scalar chirality χtot

and (b) its T derivative, (c) the mean staggered scalar chirality χstg,
and (d) its T derivative.

184432-6



REPLICA SYMMETRY BREAKING IN THE RKKY … PHYSICAL REVIEW B 104, 184432 (2021)

FIG. 9. The distribution functions of the Z3-symmetry-breaking
parameter in the RSB SkX phase at (h = 0.6, T = 0.36) for the
size L = 30: (a) the 2D distribution of the Z3-symmetry-breaking
parameter ρ3⊥, and (b) the distribution of the absolute value |ρ3⊥|
for various sizes L.

with respect to the magnetic field,

ρ3⊥ = s⊥(q∗
1 )e1 + s⊥(q∗

2 )e2 + s⊥(q∗
3 )e3, (9)

ρ3‖ = s‖(q∗
1 )e1 + s‖(q∗

2 )e2 + s‖(q∗
3 )e3, (10)

where e1 = (1, 0), e2 = (−1/2,
√

3/2), and e3 =
(−1/2,−√

3/2) are the unit vectors, s⊥(q) and s‖(q) are
the instantaneous spin structure factors given by Eqs. (5)
and (6) without the thermal average, and q∗

1, q∗
2 and q∗

3 are
the ground-state wave numbers. These order parameters
ρ3⊥ and ρ3‖ are two-component vectors defined in the
two-dimensional triangular order-parameter space and
represent the extent of the Z3-symmetry breaking. Note that
the Z3 symmetry is kept in the SkX state while it is broken
in the single-q state. More precisely, this is reflected in the
perpendicular component, i.e., |ρ3⊥| = 0 for the SkX state
and |ρ3⊥| > 0 for the single-q state, whereas, for the parallel
spin component, the Z3 symmetry is held both in the SkX and
the single-q states, i.e., |ρ3⊥| = 0 for both states.

Figure 9(a) exhibits the two-dimensional distribution of
ρ3⊥ in the midst of the RSB SkX phase at (T = 0.36, h = 0.6)
obtained by the fully thermalized replica-exchange MC sim-
ulation for L = 30. The intensity at the origin corresponds to
the SkX state preserving the Z3 symmetry, while the inten-
sities at the corner of the triangle correspond to the single-q
states, each spot corresponding to the three different broken
patterns of the lattice Z3 symmetry. The coexistence of these
intensities also supports the RSB picture.

Figure 9(b) exhibits the distribution function of the abso-
lute value of ρ3⊥, |ρ3⊥|, for the sizes L = 20, 24, and 30. The
double peak is observed, the peak at smaller |ρ3⊥| correspond-
ing to the SkX state and the one at larger |ρ3⊥| to the single-q
state. Both peaks tend to grow and sharpen with increasing L,
suggesting that both states develop into the ordered states in
the thermodynamic limit, again supporting the RSB picture.

We also compute the mean |ρ3⊥| and its T derivative, and
their temperature dependence is shown in Figs. 10(a) and
10(b) for the sizes L = 20, 24, and 30. Here, the two-step
increase is visible rather clearly, which is more enhanced with
increasing the system size L as shown in Fig. 10(b). In the
temperature range of 0.360 � T � 0.372, |ρ3⊥| exhibits al-
most negligible size dependence at nonzero values, suggesting

FIG. 10. The temperature dependence of (a) the mean absolute
value of the Z3-symmetry-breaking parameter |ρ3⊥|, and (b) its T
derivative. The magnetic field is h = 0.6

that the ordered state is not just the Z3-symmetric pure SkX
state, further corroborating the RSB picture.

The RSB we have identified in the RSB SkX phase has
a unique feature that the Hamiltonian and the relevant states
are all regular ones: the Hamiltonian is uniform, and the
constituent states are all spatially periodic. This is in sharp
contrast to the standard RSB cases so far studied, where either
the Hamiltonian is random as in spin glasses, or the con-
stituent states are random or glassy even if the Hamiltonian
is regular as in molecular or structural glasses.

Now, we wish to make use of such a unique feature of the
present RSB to illustrate the nature of the RSB in an intuitive
and concrete manner. In this procedure, we pay attention to the
discrete symmetries of the present mode, i.e., the Z2 symmetry
associated with the spin mirroring and the Z3 symmetry asso-
ciated with the lattice rotation. Both Z2 and Z3 symmetries are
spontaneously broken in the single-q spiral state, while only
the Z2 symmetry is spontaneously broken in the triple-q SkX
state. In addition to these discrete symmetries, the model also
possesses continuous symmetries, e.g., the U(1) symmetry
associated with the spin rotation around the Sz axis and the
lattice translation symmetry. These continuous symmetries
are also broken spontaneously both in the single-q and the
SkX states.

Figure 11 shows the schematic picture of the phase
space after Fig. 9(a) and the symmetry-breaking patterns of
the present model. In the paramagnetic phase at T > Tc1,
the ergodicity is not broken and the system can visit the entire
phase space. On decreasing the temperature beyond Tc1, the
system enters the RSB SkX phase where the triple-q SkX
state and the single-q spiral state macroscopically coexist. The
phase space is divided into eight valleys (pure states): Six of
them (1, 2, 3, 5, 6, 7) are the single-q states and two of them
(0, 4) are the SkX states. The single-q states (1, 2, 3) can
be transformed with each other via the Z3-symmetry opera-
tion, similarly for (5, 6, 7), whereas the states (1, 5) can be
transformed with each other via the Z2-symmetry operation,
and similarly for (2, 6) and (3, 7). The triple-q SkX states
(0, 4) keeping the Z3 symmetry can be transformed with each
other via the Z2-symmetry operation. In sharp contrast, the
single-q states (1, 2, 3, 5, 6, 7) and the triple-q SkX states (0,
4) cannot be transformed by any global symmetry operation of
the Hamiltonian. Still, the two sets of states, i.e., the single-q
states (1, 2, 3, 5, 6, 7) and the triple-q SkX states (0, 4) macro-
scopically coexist in the RSB SkX phase at Tc2 < T < Tc1.
On further decreasing the temperature beyond Tc2, the weight
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FIG. 11. Schematic illustration of the phase-space structure after
Fig. 9(a) in each paramagnetic phase, the RSB SkX phase and the
single-q phase realized with varying the temperature in an applied
field. The upper row represents the states with the positive chirality,
while the lower row represents the states with the negative chirality.
The states 0 and 4 correspond to the triple-q SkX states, while the
states (1, 2, 3) and (5, 6, 7) correspond to the single-q states.

of the SkX state becomes zero at T < Tc2, and the system
becomes replica symmetric in the single-q phase.

B. Dynamical simulation of the RSB SkX phase

In this section, we continue our study on the RSB SkX
phase, but by employing the MC method slightly differ-
ent from the one employed in the previous subsection, by
means of the dynamical simulation. After reaching thermal
equilibrium, we turn off the replica-exchange process and
perform MC simulations consisting of the Metropolis and the
over-relaxation updates only. Interestingly, even without the
replica-exchange process, the jump between different pure
states, which we call “state transition” below, occurs as a
finite-size effect including the one between the single-q and
the triple-q SkX states. We then monitor each type of state
transition frequency to estimate the free-energy barrier be-
tween these states and examine its size dependence.

Figures 12(a)–12(c) exhibit the time evolution of the y
component of ρ3⊥, ρ

(y)
3⊥, the total scalar chirality χtot, and the

staggered scalar chirality χstg, during the course of our dy-
namical simulation performed in the RSB SkX phase at (T =
0.36, h = 0.6). As can be seen from the figure, state transi-
tions due to the finite-size effect are occasionally observed.
These state transitions can be classified into two categories:
one is the transition between the states transformable via by
the Z2 or Z3 global symmetry operation, and the other is
the transition between the states not transformable via the
Z2- or Z3-symmetry operation, i.e., the transition between
the single-q and the triple-q SkX states. We call the former
“the RS state transition” and the latter “the RSB state tran-
sition.” We then measure each state transition frequency nt ,
which is expected to be inversely proportional to the average
time to overcome the free-energy barrier separating the pure
states. Figure 12(d) shows the inverse frequencies 1/nt of
the RS and RSB state transitions for L = 20, 24, 30 plotted
versus the inverse temperature 1/T . We find that the inverse

FIG. 12. The MC time evolutions of (a) the y component of the
Z3-symmetry-breaking parameter ρ

(y)
3⊥, (b) the total scalar chirality

χtot , and (c) the staggered scalar chirality χstg, in the RSB SkX phase
at (T = 0.36, h = 0.6) for the size L = 20. Unit MC step consists
of one Metropolis sweep and 20 times over-relaxation sweeps. The
color of the data point represents the ordered-state type given in
Fig. 11(a). (d) Arrhenius plot of the state-transition probability for
various sizes plotted versus the inverse temperature for each of the
RS and the RSB state transitions in the RSB SkX phase at h = 0.6.
(e) The size dependence of the free-energy barrier �F estimated
from the slope of the data in (d) on a log-log plot. The straight-line
fit gives a slope �2.8 both for the RS and the RSB state transitions.

frequencies of both the RS and RSB transitions follow the
Arrhenius law

1

nt
∼ exp

(
−�F

T

)
, (11)

which enables us to estimate �F from the slope of the data
given in Fig. 12(d). In Fig. 12(e), the free-energy barrier �F
obtained in this way is plotted versus the system size L on a
log-log plot. �F of both the RS and the RSB state transitions
turn out to be well fitted by the power law ≈ Lα with a
common exponent α � 2.8, indicating that the free-energy
barrier diverges in the thermodynamic limit and the ergodicity
is broken, not only in the RS case, but also in the RSB case.
This gives another independent support of the RSB occurring
in this phase.

C. RSB double-q phase

In this section, we study the nature of the RSB double-q
phase stabilized in the high-field region of the phase diagram
shown in Fig. 2. If one recalls that, in the case of the 2D
short-range model studied earlier, the corresponding part of
the phase diagram is occupied by the double-q phase [9],
the natural expectation might be that the stable phase in this
high-field region is the double-q phase. In the double-q state,
both the total and the staggered scalar chiralities χtot and χstg

vanish (see below and Appendix C).
In this section, we fix the magnetic field to a typi-

cal value h = 1.2, and employ the fully thermalized MC
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FIG. 13. The perpendicular spin structure factor S⊥(q) [the upper
row; (a), (c), and (e)] and the parallel spin structure factor S‖(q)
[the lower row; (b), (d), and (f)] in the qz = 0 plane realized as an
equilibrium state in the RSB double-q phase at (T = 0.30, h = 1.2)
for the size L = 20. After reaching thermal equilibrium, the replica-
exchange and the over-relaxation processes are turned off, and the
measurements are made by making the short-time average of 100
MCS. The red hexagon represents the first Brillouin zone, and the red
star at the origin represents the intensive uniform q = 0 component
induced by applied magnetic fields: the left column (a) and (b) cor-
responds to the single-q state, the middle column (c) and (d) to the
double-q state, and the right column (e) and (f) to the intermediate
state.

simulation with the replica-exchange process. The specific-
heat data shown in Fig. 3(b) shows that, at this field of h =
1.2, a phase transition from the paramagnetic phase to the
ordered phase takes place at T = Tc1 � 0.34.

To probe the nature of the ordered state below Tc1, we com-
pute the spin structure factor both for the perpendicular and
parallel components S⊥(q) and S‖(q) at T = 0.30, and the re-
sults are shown in Fig. 13. As in the case of Figs. 4(c) and 4(d)
of Sec. III A, we first fully thermalize the system by utilizing
the combination of the Metropolis, the over-relaxation, and
the replica-exchange processes. Such fully thermalized states
turn out to provide a variety of patterns of S⊥(q) and S‖(q)
as the MC time goes on. We then turn off the over-relaxation
and the replica exchange process at a certain point to “pick
up” each pattern, and compute both S⊥(q) and S‖(q) by the
short-time averaging of 100 MCS consisting of the Metropolis
updating only to reduce the thermal noise. Three typical S(q)
patterns obtained in this way are given in Fig. 13, S⊥(q) in the
upper row and S‖(q) in the lower row. One typical pattern is
that of the single-q state as shown in Figs. 13(a) and 13(b),
and the other typical one is that of the double-q state as shown
in Figs. 13(c) and 13(d).

The double-q state is characterized by the appearance of
two pairs of intensities in S⊥(q) as shown in Fig. 13(c), and
of one pair of intensities in S‖(q) which is complementary to
those in S⊥(q) as shown in Fig. 13(d). The typical spin and
chirality configurations of the double-q state in real space are
shown in Figs. 20(a) and 20(b) of Appendix C. As can be
seen from these figures, the Sz component of spin and the

FIG. 14. The temperature dependence of equilibrium chirality
distribution functions at a magnetic field h = 1.2 at various temper-
atures of (a) the total scalar chirality, and of (b) the staggered scalar
chirality. The lattice size is L = 20. The temperature dependence of
(c) the mean staggered chirality χ stg, and of (d) its T derivative for
various sizes.

scalar chirality form a single-q linear density wave along a
certain direction on the triangular lattice, say, the q∗

1 direction,
which is complementary to the q∗

2 and q∗
3 directions forming

the double-q structure in S⊥(q) [see Figs. 13(c) and 13(d)].
From Fig. 20(b) of Appendix C, one can also see that both the
total and the staggered chiralities vanish in the double-q state.
These features of the double-q state are similar to the double-q
state of the short-range J1-J3 (J1-J3-J1c) model [9,27].

Since both the single-q and the double-q states are realized
in equilibrium in this phase, the phase is likely to be the
RSB state where the single-q state and the double-q state
coexist macroscopically. Thus, we call the state the “RSB
double-q phase.” While the RSB double-q phase is similar to
the RSB triple-q SkX phase consisting of the single-q state
and the SkX state studied in previous subsections, it also has a
different character. As shown in Figs. 13(e) and 13(f), the RSB
double-q phase contains the intermediate-type state, where the
two pairs of S⊥(q) intensities in the double-q pattern have
mutually different intensities. Indeed, such intermediate states
with continuously varying relative intensities are observed
from one equilibrium state to the other, apparently connecting
the pure single-q and the pure double-q states. Hence, the RSB
pattern appears to be continuously degenerate, unlike the RSB
SkX phase.

In this high-field region, the triple-q SkX state is com-
pletely absent. As shown in Fig. 14(a), the total chirality
distribution is always sharply zero peaked for h = 1.2, in-
dicating the absence of the SkX state. In Fig. 14(b), we
show the staggered chirality distribution P(χstg) for various
temperatures at h = 1.2. Below Tc1 � 0.34 determined from
the specific-heat peak, P(χstg) gradually develops a nontrivial
form with symmetric side peaks located at ±χ∗

stg, while the
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weight of the distribution between the two side peaks remains
finite in the wide temperature region below Tc1, in contrast
to the case of the RSB SkX phase shown in Fig. 6(b). These
nonzero weights are likely to arise from the double-q and the
intermediate states identified in Figs. 13(e) and 13(f). When
the temperature is further lowered, the weight between the
side peaks eventually goes away. The result suggests that
the low-temperature phase below Tc2 � 0.30 is the replica-
symmetric single-q state.

We also compute the mean staggered scalar chirality χstg

and its T derivative − dχstg

dT , and their temperature dependence
is shown in Figs. 14(c) and 14(d) for various sizes L. Note
that the staggered chirality is an indicator of the single-q
state since it becomes zero for the double-q and the triple-q
SkX states. As can be seen from the figures, especially from
Fig. 14(d), the staggered chirality grows in two steps on de-
creasing the temperature, and this tendency is more eminent
for larger sizes. This two-step growth is associated with Tc1

and Tc2, and is consistent with our interpretation that the phase
at Tc2 < T < Tc1 is the RSB double-q phase, while the one at
T < Tc2 is the standard single-q phase.

In order to get further insight into the intermediate state
apparently connecting the single-q and double-q states, we
perform the mean-field analysis based on the Landau theory
[9,44]. The details of the analysis are given in Appendix D.
The mean-field equation possesses the solution which is a
superposition of the single-q and the double-q solutions

Si = S(s)
i + S(d )

i , (12)

with

S(s)
i =

⎛
⎝I (s)

xy cos(q∗
3 · ri + θ3)

I (s)
xy sin(q∗

3 · ri + θ3)
0

⎞
⎠, (13)

S(d )
i =

⎛
⎜⎝

I (d )
xy [cos(q∗

2 · ri + θ2) + cos(q∗
3 · ri + θ3)]

−I (d )
xy [sin(q∗

2 · ri + θ2) + sin(q∗
3 · ri + θ3)]

s‖(0) + 2s‖(q∗
1 ) cos(q∗

1 · r + θ1)

⎞
⎟⎠, (14)

where I (s)
xy = √

2[s⊥(q∗
3 ) − s⊥(q∗

2 )], I (d )
xy = √

2s⊥(q∗
2 ), and

θi (i = 1, 2, 3) is an arbitrary phase parameter satisfying
cos(θ1 + θ2 + θ3) = −1.

Indeed, once we properly choose the parameters contained
in the above formulas (13) and (14), the resulting mean-field
spin configurations well reproduce the MC spin configura-
tions of the RSB double-q state. The detailed procedure and
the comparison with the MC results are given in Appendix D.

The Z3-symmetry-breaking parameters ρ3⊥ and ρ3‖ are
also informative. Note that, for the perpendicular spin struc-
ture factor S⊥(q), the Z3 symmetry is broken both in the
single-q and the double-q states but not in the triple-q SkX
state. By contrast, for the parallel spin structure factor S‖(q),
the Z3 symmetry is broken only in the double-q state, not
in the single-q nor the triple-q SkX state. As a result, ρ3‖
becomes nonzero only for the double-q state. This means that
|ρ3‖| serves as the order parameter of the double-q ordered
state.

In Fig. 15, we show the temperature dependence of |ρ3⊥|
(a) and |ρ3‖| (c), and their temperature derivatives d|ρ3⊥|

dT (b)

FIG. 15. The temperature dependence of the Z3-symmetry-
breaking parameters at a magnetic field h = 1.2 for various sizes.
(a) The mean absolute value of the perpendicular one |ρ3⊥|, and
(b) its T derivative. (c) The mean absolute value of the parallel one
|ρ3‖|, and (d) its T derivative.

and
d|ρ3‖|

dT (d). The two-step growth of |ρ3⊥| associated with
Tc1 and Tc2 is discernible for larger sizes [see the double-peak

structure of d|ρ3⊥|
dT shown in Fig. 15(b)]. By contrast, Fig. 15(c)

indicates that |ρ3‖| exhibits the nonmonotonic temperature
dependence, remaining nonzero only in the intermediate T
range between Tc1 and Tc2. This observation suggests that the
double-q state comes into play only between Tc1 and Tc2, con-
sistently with the above identification that the phase between
Tc1 and Tc2 is the RSB double-q phase and the one below Tc2

is the standard single-q phase.
We next investigate the behavior of ρ⊥ and ρ‖ in the RSB

double-q phase in the full two-component order-parameter
space. The typical distributions of ρ⊥ and ρ‖ are shown in
Figs. 16(a) and 16(b), respectively, at (T = 0.3, h = 1.2). The
perpendicular one shown in Fig. 16(a) exhibits the triangular
ring form in the two-dimensional order-parameter space with-
out an appreciable weight around the origin. Here, note that
the corner of the triangle corresponds to the single-q-like S(q)
pattern, the middle of the triangle side to the double-q-like

FIG. 16. The 2D distribution of the Z3-symmetry-breaking pa-
rameters in the RSB double-q phase at (T = 0.30, h = 1.2) for
(a) the perpendicular component ρ3⊥, and for (b) the parallel com-
ponent ρ3‖. The lattice size is L = 20.
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FIG. 17. The 2D distribution of the Z3-symmetry-breaking pa-
rameters in the RSB double-q phase at (T = 0.30, h = 1.2). The
lattice size is L = 20. The upper row corresponds to the perpendicu-
lar component ρ3⊥ [(a), (c), (e)], and the lower row to the parallel
component ρ3‖ [(b), (d), (f)]. The left column corresponds to the
single-q-like state satisfying the constraint 4χmax

stg /5 < |χstg| < χmax
stg

[(a), (b)], the middle column to the double-q-like state satisfying the
constraint |χstg| < χmax

stg /5 [(c), (d)], and the right column to the inter-
mediate state satisfying the constraint 2χmax

stg /5 < |χstg| < 3χmax
stg /5

[(e), (f)].

S(q) pattern, and the center (origin) to the triple-q-like or
the Z3-symmetry-preserved S(q) pattern. Figure 16(a) demon-
strates clearly that the RSB double-q state consists of the
single-q, the double-q, and intermediate states spanning these
two states in a continuous manner.

Likewise, the parallel one |ρ3‖| shown in Fig. 16(b) also
exhibits the continuous triangular distribution, with enhanced
weights at the single-q points and with an appreciable weight
around the origin, in contrast to the perpendicular case shown
in Fig. 16(a). This difference reflects the facts that, in the
parallel S‖(q), the double-q-like pattern is realized neither
in the single-q nor in the double-q state, and that the pure
single-q state preserves the Z3 symmetry in S‖(q).

Note that the RSB double-q phase observed here is not
a floating phase which is known to appear in several low-
dimensional models such as the 2D clock model [45–47].
This can be confirmed from the observation that the order
parameters such as χstg, ρ3⊥, and ρ3‖ are nonzero in the RSB
double-q phase in the thermodynamic limit, which means
that each constituent state is the long-range ordered state and
the ergodicity between the constituent states is broken in the
thermodynamic limit.

In order to give further support to our picture of the
RSB double-q phase, especially the nature of intermedi-
ate states spanning from the single-q state to the double-q
state, we investigate the 2D ρ⊥ and ρ‖ distributions in terms
of the staggered-chirality distribution shown in Fig. 14(b).
In Fig. 17, we draw the 2D ρ⊥ and ρ‖ distributions for
the divided subspaces, divided depending on the values
of the staggered scalar chirality. More precisely, we di-
vide the staggered-chirality space 0 < |χstg| < χmax

stg into five
equally spaced subregions, and show the subaveraged ρ⊥

and ρ‖ distributions (upper row and lower row, respectively),
each corresponding to the subregion 4χmax

stg /5 < |χstg| < χmax
stg

[Figs. 17(a) and 17(b)], |χstg| < χmax
stg /5 [Figs. 17(c) and

17(d)], and 2χmax
stg /5 < |χstg| < 3χmax

stg /5 [Figs. 17(e) and
17(f)]. The results clearly demonstrate the character of each
constituent state forming the RSB double-q phase.

IV. SUMMARY AND DISCUSSION

To summarize, we performed extensive equilibrium MC
simulations of the RKKY classical Heisenberg model on the
3D stacked-triangular lattice. We determined the magnetic
phase diagram in the temperature versus magnetic-field plane
for a typical parameter set realizing the incommensurate mag-
netic order. While the obtained phase diagram turned out to
exhibit the phase structure more or less similar to the one of
the 2D short-range model, containing the single-q, the double-
q, and the triple-q SkX states, the character of each phase
turned out to be entirely different. Namely, we have found
that the two of the ordered phases, i.e., the RSB double-q
phase and the RSB triple-q SkX phase, exhibit the unexpected
RSB phenomenon, where the double-q or the triple-q SkX
states macroscopically coexist with the single-q state. The free
energies of the constituent states are degenerate at O(1), while
the free-energy barrier separating these states diverges in the
thermodynamic limit, and the ergodicity is spontaneously bro-
ken. Since the single-q state and the triple-q SkX state (or
the double-q state) have entirely different symmetries and
cannot be transformable by any symmetry operation of the
Hamiltonian, the spontaneous symmetry breaking observed
here differs from the standard Hamiltonian-symmetry based
spontaneous symmetry breaking, i.e., the spontaneous RSB.

The relative weights of the states constituting the RSB
phases, the RSB triple-q SkX phase, and the RSB double-
q phase depend on the relative position of the state in the
RSB phase given in the phase diagram of Fig. 2. Close to
the phase boundary to the paramagnetic phase, the triple-q
SkX state (the double-q state) dominates over the single-q
state, meaning that the free energy of the triple-q SkX state
(the double-q state) is considerably lower than that of the
single-q state, though the free-energy difference is of O(1).
By contrast, close to the phase boundary to the single-q phase,
the single-q state dominates over the triple-q SkX state (the
double-q state), meaning that the free energy of the single-q
state is considerably lower than that of the triple-q SkX state
(the double-q state).

From the viewpoint of discrete symmetries, the triple-q
SkX phase consists of a finite number of pure states, only eight
states: The two of them are triple-q SkX states related via the
Z2 symmetry, and the six of them are single-q states related
via the Z2 and Z3 symmetries (6 = 2 × 3), whereas these two
and six states cannot be related via any symmetry operation.
By contrast, the RSB double-q phase actually consists of an
infinite number of states: In addition to the single-q and the
double-q states, there are an infinite number of intermedi-
ate states which are superpositions of the single-q and the
double-q states with arbitrary relative weight, continuously
connecting the single-q and the double-q states. Even in such
a situation, the ergodicity is broken among an infinite number
of constituent states.
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Note that the RSB we identified for the 3D RKKY model
is not realized in the 2D short-range model, e.g., the J1-J3

(J1-J2) triangular Heisenberg model, where only the standard
replica-symmetric triple-q SkX or the double-q state is re-
alized. Which aspect of the model brings about the unique
RSB character is an interesting question. There might be two
possible driving factors. One is the difference in the spatial
dimensionality, 3D in the present case versus 2D in Ref. [9],
and the other is the difference in the interaction range, the
long-range RKKY interaction in the present case versus the
short-range interaction in Ref. [9]. To get further insight, fur-
ther study on the 3D short-range mode and/or the 2D RKKY
model would be informative.

We note that the RSB was also not reported in the
2D Kondo-lattice model on the triangular lattice studied in
Ref. [15]. There, the lattice was 2D, and the SkX was stabi-
lized via the competition (or frustration) between the two-spin
and the four-spin (biquadratic) interactions [16], in contrast to
the competition between the ferromagnetic and the antiferro-
magnetic two-spin interactions in the present RKKY model.
How the difference in the frustration type affects (or does not
affect) the resulting SkX is an interesting open question. The
SkX of Ref. [15] can be stabilized even in zero field, while the
present SkX requires finite magnetic fields for stabilization.

In addition to the presence or absence of the RSB dis-
cussed above, if one compares the properties of the long-range
RKKY model with those of the 2D short-range model [9],
there are some differences in spite of the basic similarity in
their phase structures.

First, the 2D short-range model exhibits the Z phase, the
random domain state consisting of the SkX and the anti-SkX,
while there is no indication of the Z phase in our present com-
putation, at least in the range of sizes studied. One possibility
might be a finite-size effect. As the stabilization of the Z phase
requires minimum lattice sizes to accommodate several SkX
and anti-SkX domains, typically of the linear size 10 ∼ 20 lat-
tice spacings, our present maximum lattice size might not be
sufficiently large to stabilize the Z phase. The other possibility
might be that the absence of the Z phase is a real effect. The
Z phase is stabilized by fluctuations, not describable by the
Landau mean-field theory. Generally speaking, since the high
spatial dimensionality and the long-range interaction tend to
suppress fluctuations, the Z phase might well be absent even
in the bulk limit in the present 3D RKKY model.

In the T -h phase diagram of the 2D short-range model,
the single-q phase extends toward high temperature forming
a narrow band between the double-q phase and the param-
agnetic (field-induced magnetized) phase. Such a feature is
absent in the present 3D RKKY model. Presumably, this is
due to the occurrence of the RSB in the RSB double-q phase
where the single-q state already takes considerable weight
macroscopically coexisting with the double-q state, in contrast
to the double-q state of the 2D short-range model which is
replica symmetric and cannot contain the single-q state with a
nonzero weight.

This model exhibits the RSB in the regularly ordered states
with spatial periodicity. The present RSB realized in the reg-
ularly ordered phase has a unique simplicity not shared by
the standard RSB in glassy ordered states, e.g., spin glasses
and molecular or structural glasses. One can specify each

constituent pure state by the standard order parameter, e.g.,
the chiralities and the Z3-symmetry-breaking parameter, in
contrast to the standard RSB in glassy systems where each
constituent pure state is rather complex without any periodic-
ity and is difficult to be specified. Especially in the case of the
triple-q SkX phase, the number of constituent pure states is
finite when viewed from the discrete symmetries, in contrast
to an infinite number of pure states in glassy systems.

One might wonder why the RSB consisting of the regularly
ordered states, which is rarely seen in other models, is realized
in the present model. While the detailed understanding of the
formation mechanism of the RSB requires further studies,
the close competitions among various ordered states with
different symmetries, e.g., the single-q state, the double-q
(double-q-like) state, and the triple-q state, which are induced
by the underlying frustration effect, are likely to set the stage
for the RSB to come into play.

Finally, we wish to discuss the possible experimental ob-
servation of the RSB feature. How the RSB features manifest
themselves in experiments is an important but subtle question.
First, let us consider an ideal situation without any perturba-
tive interaction nor impurities or imperfections. In the RSB
SkX phase of such an ideal system, either the SkX state or
the single-q state is realized by chance. Experimentally, this
would mean that, depending on the initial conditions of the
measurements and the details of each run, either the triple-q
SkX state or the single-q state is realized by chance, each with
a finite probability. If we could perform cooling experiments
in such an ideal situation many times from the paramagnetic
phase to the RSB SkX phase by using the same sample and
the same protocol, and measure the topological Hall effect in
each run, we would obtain the characteristic distribution func-
tion of the anomalous Hall conductivity, with a central peak
corresponding to the single-q spiral state and the symmetric
positive and negative peaks corresponding to the SkX state
and the anti-SkX state.

Of course, the real situation could be more complex. In
reality, the sample contains weak perturbative interactions,
e.g., the dipolar interaction, which are likely to discriminate
the constituent states of the RSB. If the energy difference
between the constituent states is larger than the thermal energy
∼kBT , only the preferable state could be realized in reality.
If the energy difference is smaller than or comparable to the
thermal energy ∼kBT , all the constituent states of RSB would
be realized, perhaps with a certain bias in its realization prob-
ability. In the presence of impurities and imperfections, which
is inevitable in real samples, these constituent states would
form macroscopic or semimacroscopic domains, which might
be more or less pinned by these impurities and imperfections.
Hence, in reality, the RSB would appear in the form of macro-
scopic (or semimacroscopic) domains consisting of both the
single-q and the triple-q SkX (or the double-q) states. How
to detect and control these macroscopic (semimacroscopic)
domains would then be an interesting and challenging future
problem.
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APPENDIX A: EWALD SUM OF THE RKKY
INTERACTION ON A STACKED-TRIANGULAR LATTICE

In this Appendix, we give some of the details of the ap-
plication of the Ewald-sum method to our Hamiltonian (2).
In this method, we take account of the long-range RKKY
interaction beyond the finite-system size L in the form adapted
to the imposed periodic boundary conditions

JEwald
i j = −J0

∑
λ

Ji j (λ), (A1)

Ji j (λ) = cos(2kF|ri j + Lλ|)
|ri j + Lλ|3 − sin(2kF|ri j + Lλ|)

2kF|ri j + Lλ|4 , (A2)

where L is linear size of the system, and

λ = naa + nbb + Lznc

L
c, (A3)

with a = (1, 0, 0), b = (1/2,
√

3/2, 0), c = (0, 0, c). The
sum in Eq. (A1) runs over integers nμ = −∞, . . . , 0, . . . ,∞
(μ = a, b, c), Lλ mapping the original cell of the size L × L ×
Lz to the image cell with exactly the same spin configuration
as that in the original cell.

Noting the identity

1 = 1

�( 3
2 )

[
�

(
3

2
, π

|ri j + Lλ|2
L2

)
+ γ

(
3

2
, π

|ri j + Lλ|2
L2

)]
,

(A4)

where �(α) = ∫ ∞
0 dt e−t tα−1 is the gamma function,

�(α, x) = ∫ ∞
x dt e−t tα−1 and γ (α, x) = ∫ x

0 dt e−t tα−1 are
the incomplete gamma functions. �(α, x) and γ (α, x) take
large values for small x and for large x, respectively. We insert
Eq. (A4) to Eq. (A1) and obtain

JEwald
i j = − J0

�(3/2)

(
Cshort

i j + Clong
i j + Sshort

i j + Slong
i j

)
, (A5)

Cshort
i j =

∑
λ

�

(
3

2
, π

|ri j + Lλ|2
L2

)
cos(2kF|ri j + Lλ|)

|ri j + Lλ|3 ,

(A6)

Clong
i j =

∑
λ

γ

(
3

2
, π

|ri j + Lλ|2
L2

)
cos(2kF|ri j + Lλ|)

|ri j + Lλ|3 ,

(A7)

Sshort
i j = −

∑
λ

�

(
3

2
, π

|ri j + Lλ|2
L2

)
sin(2kF|ri j + Lλ|)

2kF|ri j + Lλ|4 ,

(A8)

Slong
i j = −

∑
λ

γ

(
3

2
, π

|ri j + Lλ|2
L2

)
sin(2kF|ri j + Lλ|)

2kF|ri j + Lλ|4 .

(A9)

Cshort
i j and Sshort

i j are well-converging functions with respect to

|ri j + Lλ|. To make Clong
i j and Slong

i j converge faster, we deal

with them in the Fourier space. For example, Clong
i j can be

rewritten as

Clong
i j =

∫
d3ρ

∑
λ

δ(ρ − Lλ)γ

(
3

2
, π

|ri j + ρ|2
L2

)
cos(2kF|ri j + ρ|)

|ri j + ρ|3

= 1

J

∫
d3k

∑
h

δ

(
k − h

L

) ∫
d3ρ e−2π ik·ργ

(
3

2
, π

|ri j + ρ|2
L2

)
cos(2kF|ri j + ρ|)

|ri j + ρ|3

= 1

J

∫
d3k

∑
h

δ

(
k − h

L

)
e2π ik·ri j

k

∫ ∞

0
dρ

γ
(

3
2 , π

ρ2

L2

)
ρ2

[sin(2πk+ρ) + sin(2πk−ρ)], (A10)

where

h = maka + mbkb + L

Lz
mckc, (A11)

and k± = k ± kF/π . The sum
∑

h runs over all integers mμ = −∞, . . . , 0, . . . ,∞ (μ = a, b, c). In the deformation from the fist
line to the second line, we used the Parseval’s theorem∫

d3ρ A(ρ)B(ρ) =
∫

d3k Ã(k)B̃(k), (A12)

where f̃ (k) = ∫
d3ρ f (ρ)e−2π ik·ρ is the Fourier transform of f (ρ), and the Poisson’s summation formula

∑
λ

e2π ik·Lλ =
∑

ma,mb,mc

δ(Lk · a − ma)δ(Lk · b − mb)δ(Lzk · c − mc) = 1

J
∑

h

δ

(
k − h

L

)
, (A13)

where J =
√

3
2 L × L × Lz is the Jacobian determinant. Applying a formula [48]

∫ ∞

0
dρ

γ ( 3
2 , π

ρ2

L2 )

ρ2
sin(2πkρ) = π

3
2 k

2
E1(πk2L2), (A14)
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FIG. 18. (a) The RKKY Ewald potential is plotted versus the spin distance along the (100) direction for the incommensurate case of
kF = 2π/2.77 and c = 1.45. The dashed line is the bare RKKY interaction without the Ewald sum. (b) The 2D intensity map of the Fourier
transform of the RKKY Ewald potential in the (qx, qy ) plane with qz = 0 for the incommensurate case of kF = 2π/2.77 and c = 1.45. The
lattice size L = 96. The red hexagon represents the first Brillouin zone.

where E1(x) = ∫ ∞
x dt e−t/t is the exponential integral func-

tion, we get Clong
i j as

Clong
i j = 1

J
∑

h

π
3
2 e2π i h

L ·ri j

2h
[h+E1(πh2

+) − h−E1(πh2
−)],

(A15)

where h = |h| and h± = h ± LkF/π . Since E1(x) is a well-
converging function, we can take the sum

∑
h numerically

with high precision.
In the same manner, Slong

i j can be written as

Slong
i j = − 1

2kFJ
∑

h

π
3
2 e2π i h

L ·ri j

2hL

[
πh2

+E1(πh2
+) − h2

−E1(πh2
−)

− (
e−πh2

+ − e−πh2
−
)]

. (A16)

For the parameter choice of our present MC simulation
on the RKKY Hamiltonian, kF = 2π/2.77 and c = 1.45, we
show in Fig. 18(a) the Ewald periodic potential JEwald

i j in
units of J0 as a function of the spin distance along the (100)
direction. The potential has a symmetric form with respect to
r (100) = L/2 due to the applied periodic boundary conditions.
In Fig. 18(b), we show the Fourier transform of JEwald

i j , defined
by

JEwald
q (ri j ) = 1

N

N∑
j=1

JEwald
i j (q)e−iq·ri j (A17)

in the (qx, qy) plane with qz = 0. For our present choice of
the parameters kF = 2π/2.77 and c = 1.45, the maximum
intensities are located at the incommensurate wave numbers
±q∗

1,±q∗
2,±q∗

3, as indicated by the arrows in Fig. 18(b).

APPENDIX B: TEMPERATURE AND MAGNETIC-FIELD
DEPENDENCE OF PHYSICAL QUANTITIES

In this Appendix, we present the temperature and
magnetic-field dependence of several physical quantities
which supplement the data shown in the main text. Fig-
ures 19(a)–19(f) exhibit the temperature dependence of
various physical quantities under magnetic fields, including

the magnetic susceptibility along the magnetic-field direction
(Sz direction) calculated from the magnetization fluctuation.
As can be seen from Fig. 19(b), the magnetic susceptibility in
the RSB SkX phase tends to be suppressed, exhibiting a dip
feature there.

APPENDIX C: SPIN AND CHIRALITY CONFIGURATIONS
IN REAL SPACE IN THE DOUBLE-q STATE

In this Appendix, we show the spin and the chirality con-
figurations in real space for the double-q state. In Fig. 20,
for a typical double-q state realized as an equilibrium state in
the RSB double-q phase at (T = 0.30, h = 1.2), we show the
real-space (a) spin and (b) chirality configurations. The asso-
ciated spin structure factors are given in Figs. 13(c) and 13(d)
of the main text, each for the perpendicular and the parallel
components. As can be seen from Fig. 20, both the spin Sz

component and the scalar chirality form a linear spin-density-
wave pattern along the x direction, just corresponding to the
single-q-like pattern of S‖(q) shown in Fig. 13(d). As can be
seen from such chirality configuration shown in Fig. 20(b),
both the total and the staggered scalar chiralities χtot and χstg

vanish in the double-q state.

APPENDIX D: MEAN-FIELD CALCULATION FOR THE
RSB DOUBLE-q PHASE

In this Appendix, we present the results of our mean-field
calculation performed to better understand the character of the
RSB double-q phase, with particular interest in the intermedi-
ate states apparently connecting the pure single-q and the pure
double-q states.

The Landau free energy up to the fourth order is given by

F

N
= 1

2

∑
q

[3T − Jq]|Bq|2 − HB0,z

+ 9T

20

∑
q1∼q4

′[
Bq1

· Bq2

][
Bq3

· Bq4

]
, (D1)
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FIG. 19. The temperature and magnetic-field dependence of physical quantities. The lattice size is L = 20. (a) The specific heat, (b) the
magnetic susceptibility along the field direction, (c) the total scalar chirality, (d) the staggered scalar chirality, (e) the Z3-symmetry-breaking
parameter for the perpendicular spin component, and (f) the Z3-symmetry-breaking parameter for the parallel spin component.

where

Bq = 1

N

∑
r

B(r) exp(−iq · r) (D2)

is the Fourier component of the spin field B(r) = 〈S(r)〉
[9,44]. The sum

∑
q1∼q4

′ runs over q1 ∼ q4’s satisfying the
constraint q1 + q2 + q3 + q4 = 0. The mean-field transition
temperature is given by Tc = 1

3 Jq∗ . Below Tc, we consider only
the six incommensurate modes q = ±q∗

1,±q∗
2,±q∗

3 and the
uniform mode q = 0, where q∗

1, q∗
2, and q∗

3 are the q values
giving the J (q) maxima (q∗

1 + q∗
2 + q∗

3 = 0).
Now, we restrict the phase space to that relevant to the RSB

double-q phase, and assume

B0 ‖ ez, B±1 ‖ ez, (D3)

B±2 ⊥ ez , B±3 ⊥ ez, B±2 ⊥ B±3. (D4)

FIG. 20. Typical real-space (a) spin and (b) chirality configura-
tions of the double-q state, taken from MC simulations of the RSB
double-q phase at (T = 0.30, h = 1.2). The colors of the rhombuses
in (a) represent the Sz component of spin and the arrows represent
the (Sx, Sy) components. To reduce the thermal noise, the short-time
averaging over 100 MCS is made by using the Metropolis updating
only.

Putting |B0| = m0, |B±1| = m1, |B±2| = m2, |B±3| = m3,
and using the abbreviation B±qi

= B±i (i = 1, 2, 3), the
quartic term of the free energy in Eq. (D1) can be written as

f4 = m4
0 + 4m2

0m2 + 4m4 + 8m2
0m2

1 + 2
∑

i

|B+i · B+i|2

+ 8
∑
i �= j

[|B+i · B+ j |2 + |B+i · B− j |2]

+ 8[[B0 · B+1][B+2 · B+3] + [B0 · B−1][B−2 · B−3]],

(D5)

where

m2 = m2
1 + m2

2 + m2
3. (D6)

The quartic term of the free energy f4 is minimized when
|B±2 · B±2| = |B±3 · B±3| = |B±2 · B∓3| = 0. Explicit forms
of B±1, B±2, and B±3 satisfying these conditions are given by

B±1 = (0, 0, m1e±iθ1 ), (D7)

B±2 = m2√
2

(e±iθ2 , e±i(θ2− π
2 ), 0), (D8)

B±3 = m3√
2

(e±iθ3 , e±i(θ3+ π
2 ), 0), (D9)

where θ1, θ2, and θ3 are phase factors of the modes 1, 2, and
3, respectively. In the real space, they are given by

B(r) =
⎛
⎝

√
2m2 cos(q∗

1 · r + θ2) + √
2m3 cos(q∗

3 · r + θ3)
∓√

2m2 sin(q∗
2 · r + θ2) ± √

2m3 sin(q∗
3 · r + θ3)

m0 + 2m1 cos(q∗
1 · r + θ1)

⎞
⎠.

(D10)
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FIG. 21. The mixing-rate parameter u dependence of (a) the
quartic part of the free energy f4 and of (b) the amplitude of the
q3 mode associated with the linear density wave m3, where u = 0
corresponds to the pure single-q state, u = 1 to the pure double-q
state, and 0 < u < 1 to the intermediate state.

Equation (D10) represents the single-q state if m1 = m2 = 0,
while it represents the double-q state if m1 > 0 and m2 =
m3 > 0. If m1 > 0 and m2 �= m3 > 0, it represents the inter-
mediate state. For these B±i’s, f4 is given by

f4 = m4
0 + 4m2

0m2 + 4m4 + 8m2
0m2

1 + 2m4
1 + 8m2

2m2
3

+ 16m0m1m2m3 cos(θ1 + θ2 + θ3), (D11)

which is minimized for

cos(θ1 + θ2 + θ3) = −1, (D12)

yielding

f4 = m4
0 + 4m2

0m2 + 4m4 + 8m2
0m2

1 + 2m4
1 + 8m2

2m2
3

− 16m0m1m2m3. (D13)

Once m and m0 are given, which can be regarded as the
measure of the temperature and the applied magnetic field,
f4 under the constraint Eq. (D6) becomes only the function of
the “mixing ratio” u, i.e., the ratio between the amplitudes of
the two in-plane modes m2 and m3,

u = m2

m3
(0 � u � 1), (D14)

where u = 0 and 1 represent the single-q and the double-q
states, respectively.

In Fig. 21(a), we show the mixing-ratio u dependence of
f4 computed for m = 0.1 for several values of m0. It takes a
minimum for the single-q state with u = 0, takes a maximum

FIG. 22. Real-space spin configurations prepared (a) from MC
simulations by Fourier converting the S(q) intensities at q =
q∗

1, q∗
2, q∗

3 shown in Figs. 13(e) and 13(f), and (b) from the mean-field
formula (D10) by properly determining its parameters (see the text of
Appendix D for details). The colors of the rhombuses represent the Sz

component of spin and the arrows represent the (Sx, Sy) components.

for the double-q state with u = 1, and connects these two ends
via the intermediate states with 0 < u < 1. At the mean-field
level, the single-q state has been known to give a global min-
imum [9], and the same situation arises in our present result.
Figure 21(b) exhibits the u dependence of m3, which becomes
zero for the single-q state and becomes nonzero when the
double-q state is mixed with a nonzero portion.

Although the mean-field analysis cannot provide an or-
dered state corresponding to the true free-energy minimum
because of its inadequacy to take account of the fluctuation ef-
fect, it still gives useful information for the intermediate states
we have found in the RSB double-q state by MC simulations.
Thus, we compare the spin configuration of the intermediate
state realized as an equilibrium state of the RSB double-q
phase in our MC simulation with those of the mean-field
calculation given by Eq. (D10).

In Fig. 22(a), we show the real-space spin configuration
from our MC simulation corresponding to the spin structure
factor S(q) shown in Figs. 13(e) and 13(f), which is pre-
pared by Fourier converting the observed S(q) intensities at
q = q∗

1, q∗
2, q∗

3. For comparison, we show in Fig. 22(b) the
real-space spin configuration obtained from the mean-field
calculation (D10), where the coefficients m0, m1, m2, and m3

are determined from S(q) of Figs. 13(e) and 13(f) as m0 =
S‖(0), m1 = S‖(q1), m2 = S⊥(q2), m3 = S‖(q3). As can be
seen from the figure, the two spin configurations (a) and (b)
resemble quite well, indicating that Eq. (D10) well describes
the spin configuration of the intermediate state in the RSB
double-q phase.
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