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Spin Hall effect in noncollinear kagome antiferromagnets
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The spin Hall effect is commonly considered to be related to spin-orbit interaction that causes a deflection of
charge carriers according to their spin orientation into opposite directions. Thus, this effect creates spin currents
in nonmagnetic materials with spin-orbit coupling. However, recently large spin Hall effects were predicted in
coplanar kagome antiferromagnets Mn3X even when spin-orbit interaction is not considered. Therefore, these
materials are interesting candidates for spintronic applications. In our theoretical study we reveal two sources
that determine the intrinsic spin Hall signal of two-dimensional kagome antiferromagnets. The main contribution
to the spin Hall signal is originating from the noncollinear magnetic texture localized on the Mn sites and it is
maximal for coplanar systems. In addition to that, spin-orbit coupling or an out-of-plane tilting of the magnetic
moments, which are equivalent within the framework of this model, reduce the spin Hall effect effectively.
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I. INTRODUCTION

Conventionally only the charge of electrons is used in
electronic devices like transistors, displays, or solar panels
[1]. However, in the emerging field of spintronics [2,3] the
spin degree of freedom of the electrons is as well exploited
[4,5]. Therefore, the investigation of materials, with regard
to manipulation and control of spin and generation of spin
currents, is mandatory for the development of new low-power
consumption applications [6,7]. Besides, spin-based electron-
ics can build on a wide range of different materials like metals
[8], semiconductors [9–12], or superconductors [13] that have
all been taken into account for application in spintronics de-
vices for the last decades.

Spin currents are generated in metals by the spin Hall
effect as a transverse response to a longitudinal electrical field
[8,14,15]. In experiments, this effect can be quantified by a
transverse accumulation of spin density with opposite sign
at the edges that can be measured directly via the magneto-
optical Kerr effect (MOKE) [16]. Alternatively, the spin Hall
effect can be quantified by a spin Hall conductivity which
is measured indirectly by exploiting the inverse spin Hall
effect where the spin current is converted back into a trans-
verse charge current [17]. A propagation of such spin currents
across a metal/ferromagnet interface allows for magnetization
switching via spin-orbit torque [18]. The same scenario holds
for collinear antiferromagnets [cf. Fig. 1(a)]. Spin-polarized
currents typically occur in ferromagnetic materials. Longi-
tudinal spin-polarized currents are for example responsible
for effects like the giant magnetoresistance and spin-transfer
torque [19,20] which are utilized in magnetic RAMs [21].
Transversal spin-polarized currents are related to the anoma-
lous Hall effect [cf. Fig. 1(b)].
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Recently, materials with antiferromagnetic order gained
attention. Although the observation and manipulation of anti-
ferromagnetic textures and domains is much more challenging
in experiments and applications [22,23], they show interesting
properties like a strong robustness against external magnetic
fields and the absence of magnetic stray fields [5]. Moreover,
they allow for ultrafast spin dynamics and magnetotransport
phenomena [24,25].

A special type of antiferromagnets is considered in this
work: noncollinear magnetic textures on a two-dimensional
kagome lattice. This structure can be found in some man-
ganese compounds Mn3X (X = Rh, Ir, Pt, Ga, Ge, Sn) that are
constituted by layered kagome planes [26] where the magnetic
moments of the Mn atoms form a noncollinear antiferromag-
netic texture. These materials have been the subject of many
recent theoretical and experimental studies about the anoma-
lous and the spin Hall effect, where spin-orbit interaction
plays an important role.

The anomalous Hall effect has been predicted [26–28] in
these noncollinear kagome magnets and confirmed in experi-
ments with Mn3Sn [29] and Mn3Ge [30,31]. Besides, Zhang
et al. showed that in such compensated systems large spin Hall
effects may occur as well [26], and most interestingly, even
when spin-orbit coupling is not considered. Time-reversal
symmetry T is broken in magnetic systems, whereas a com-
bination of T with a spin rotation S by 180◦ around the axis
perpendicular to the kagome plane can still be a symmetry.
This T S symmetry forbids the existence of the anomalous
Hall effect in a noncollinear coplanar magnetic texture but the
spin Hall effect can exist, even without spin-orbit interaction
[32].

The symmetry analysis is a powerful tool, however, it
does not allow for a quantitative prediction of the size of
the effect. There are cases where the magnetic space group
of a crystalline material would allow for the existence of an
anomalous Hall effect [32,33], but the effect can be absent,
as was shown before in Ref. [34]. There we established a
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FIG. 1. Overview of spin currents and spin-polarized currents in different magnetic systems. Green arrows represent the magnetic texture
{mi} [of the Mn atoms in (c) and (d)]. The thick red arrows indicate the electric field E along y. The electrons participating in transport are
distinguished according to their spin orientation in z direction (blue: ↑, orange: ↓). The small spheres represent the charge of the electrons.
(a) Collinear antiferromagnet (AFM) with spin-orbit coupling (SOC): pure transverse spin current js (yellow arrow) since electrons with
different spin accumulate at opposite sites of the sample and no charge current jc can be measured. (b) Collinear ferromagnet (FM) with SOC
where not only spin but also charge is transported (thin red arrow), resulting in a spin-polarized charge current. (c) Noncollinear AFM without
SOC: In contrast to the situation in (a), spin currents (yellow arrow) may exist even without spin-orbit interaction. (d) Same as (c) but with
SOC that gives rise to an anomalous Hall effect in addition. Therefore, charge currents may flow in addition in analogy to the situation in (b).

microscopic picture that allows us to interpret the anoma-
lous Hall effect in Mn3X systems as an effective topological
Hall effect: spin-orbit interaction induces a virtual tilting of
the magnetic moments out of the kagome plane. Thus, the
opening angle of this virtual noncoplanar texture generates
an effective topological Hall effect due to a net scalar spin
chirality, whereas the magnetic background texture formed by
the magnetic moments of the Mn atoms remains coplanar.

In this work we are investigating the spin Hall effect
[8,14,15] in the same model system and relate the findings
to our previous results of the anomalous Hall effect and the
virtual magnetic texture. We find that the spin Hall signal is
determined by two different mechanisms. First, a large spin
Hall effect emerges from the coplanar magnetic background
texture itself that is independent of the in-plane rotation of
the magnetic moments. In addition to that, spin-orbit coupling
or an out-of-plane tilting of the magnetic moments, which is
equivalent within this model, is related to a spin-polarized cur-
rent that reduces the spin Hall signal of the background texture
effectively. This allows us to distinguish pure spin currents,
where only spin is transported by the electrons, and spin-
polarized currents, where spin and charge are transported,
as a transverse response to an applied electric field in those
systems.

Hence, we find analogies between noncollinear kagome
magnets and collinear (anti-)ferromagnets as illustrated in
Fig. 1. Without spin-orbit interaction a pure spin current is
flowing in coplanar kagome magnets [cf. Fig. 1(c)] like in
a collinear antiferromagnet [cf. Fig. 1(a)]. Taking spin-orbit
coupling into account causes additionally a spin-polarized
current that is related to an anomalous Hall effect which
reduces the spin Hall conductivity [cf. Fig. 1(d)]. The spin-
polarized current is similar to the situation in a collinear
ferromagnet [cf. Fig. 1(b)].

Although we stress the analogy of collinear antiferromag-
nets and noncollinear kagome antiferromagnets with respect
to the generation of spin currents, there is a pronounced
difference. Collinear bipartite antiferromagnets [35] show an
analogy of Kramer’s theorem since the time-reversal op-
eration T in combination with a translation between the
sublattices Td are a symmetry in the system. Consequently, the

bands are doubly degenerate and the corresponding eigenvec-
tors can be classified into “spin-up” and “spin-down” states
[cf. blue and orange small spheres in Fig. 1(a)]. There is no
symmetry in kagome antiferromagnets that fulfills Kramer’s
theorem: the bands are not doubly degenerate [27]. However,
the corresponding eigenvectors consist of equal contributions
of spin-up and spin-down with respect to the quantization axis
perpendicular to the kagome plane, which is illustrated by the
two-colored small spheres in Fig. 1(c). Hence, each eigenstate
generates a pure spin current on its own. Spin-orbit coupling
is changing the equal distribution of spin-up and spin-down
character. As a result an individual state still contributes to
the spin current, however somewhat reduced, and delivers
an appropriate amount of spin-polarized current as well [cf.
Fig. 1(d)].

II. MODEL AND METHODS

The model Hamiltonian that we use was first introduced in
Ref. [27] where the anomalous Hall effect has been predicted
in the compensated kagome magnet Mn3Ir. It is also known
as an sd model that describes the interaction of itinerant s
electrons with d magnetic moments that are localized on the
Mn sites and form a noncollinear magnetic texture. In second
quantization, the tight-binding Hamiltonian reads

H = Hkin + HZ + HSOC, (1)

Hkin = t
∑
〈i, j〉

∑
σ

a†
i,σ a j,σ , (2)

HZ = m
∑

i

∑
σ,σ ′

a†
i,σ (mi · σ)σσ ′ai,σ ′ , (3)

HSOC = iλ
∑
〈i, j〉

∑
σ,σ ′

a†
i,σ (ni j · σ)σσ ′a j,σ ′ , (4)

where a†
i,σ and ai,σ are the creation and annihilation operators

of an electron at site i with spin σ . Here we restrict ourselves
to nearest-neighbor hopping between atomic sites i and j
which is implied by the sum limits 〈i, j〉. The three parameters
t , m, and λ denote the hopping energy, the strength of the
Hund’s coupling between the spin moment of the conduction
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electron with the magnetic texture m = {mi}, and the strength
of spin-orbit interaction, respectively. Here

mi =
⎛
⎝cos(�i ) sin(θi)

sin(�i ) sin(θi )
cos(θi )

⎞
⎠ (5)

is the magnetic moment at site i characterized by the polar
and azimuthal angles �i and θi and the vectors ni j are defined
in Ref. [34] [cf. Fig. 1(a)]. These in-plane vectors ni j form a
set of vectors that are anticlockwise orthogonal to the hopping
vectors Ri j which consider the different environments (left or
right hand) of nearest-neighbor hoppings on a kagome lattice
[27].

In our study the kagome lattice, which is a two-dimensional
hexagonal lattice with a triangular unit cell (formed by Mn
atoms), is located in the xy plane and is assumed to be
periodic. The considered tight-binding model allows for a
continuous rotation of the magnetic moments mi, that are
carried by Mn atoms, within and out of the kagome plane.
Following the notation from Ref. [34], the different magnetic
textures can be characterized as follows. First of all, only
magnetic textures with a positive vector spin chirality [36]

κ ≡ 2
√

3

9

∑
〈i, j〉

(mi × m j ) · ez = +1 (6)

are considered. Rotating each magnetic moment by the same
in-plane offset angle �� within the xy plane, as visualized in
the small cartoons in Fig. 4, does not change the vector spin
chirality since the magnetic moments of neighboring atoms
always differ by a polar angle of 120◦.

Two configurations are special since they have different
symmetries (time reversal T , mirror reflection M): “radial”
(�� = 0◦, three T M planes) and “toroidal” (�� = 90◦,
three M planes). We always assume that all three magnetic
moments have the same azimuthal angle θ ≡ θi for a certain
magnetic texture. Thus, coplanar and noncoplanar configu-
rations are classified by an azimuthal angle of θ = 90◦ and
θ 
= 90◦, respectively, in this work.

We investigate the influence of the spin configuration on
the spin Hall effect. Within linear response theory, the corre-
sponding spin Hall conductivity σ k

i j is a tensor of rank three
and relates an electric field Ej (applied in j direction) to
the spin current jk

s,i = σ k
i jE j that is generated as a response

flowing in i direction with spin polarization in k direction
(i, j, k = x, y, z). We focus on the intrinsic contribution which
can be described by the Berry curvature formalism analog
to the intrinsic anomalous Hall conductivity [37]. For a two-
dimensional system at zero temperature, as considered here,
the intrinsic spin Hall conductivity is defined as follows [26]:

σ z
xy(EF) = e

h̄

∑
ν

1

(2π )2

∫
ε(k)�EF

�z
xy,ν (k) d2k, (7)

where the Fermi energy EF enters as a parameter that can be
varied in practice by doping or by applying a gate voltage. In
this equation, the Brillouin zone integration is performed over
all occupied states for a quantity that is sometimes denoted as

“spin Berry curvature” [26,32]

�z
xy,ν (k) = −2h̄2 Im

∑
μ 
=ν

〈ν, k|�z
x|μ, k〉 〈μ, k|vy|ν, k〉

[εν (k) − εμ(k)]2
(8)

of band ν that is calculated from the eigenvalues εν (k) and
the corresponding eigenvectors |ν, k〉 ≡ ϕν (k) of the tight-
binding Hamiltonian. In contrast to the conventional Berry
curvature, here one has to take into account the spin-current
operator that can be defined by �k

i ≡ 1
2 {vi, sk} as the anticom-

mutator of the velocity operator vi and the spin operator sk .

III. RESULTS AND DISCUSSION

The results section of our paper is organized as follows:
we investigate the influence of the in-plane and out-of-plane
orientation of the magnetic moments on the intrinsic spin Hall
effect by systematically varying the parameters �� and θ ,
respectively. Thereby we observe pure spin currents without
spin-orbit coupling that cause the spin Hall signal. Spin-orbit
interaction brings about spin-polarized currents, as well, that
reduce the spin Hall signal effectively.

A. Spin Hall effect for the radial and toroidal
coplanar configurations

Throughout this subsection the fixed magnetic texture is as-
sumed to be coplanar (θ = 90◦) and the parameter describing
the Hund’s coupling is set to m = 1.7 t .

First, the radial configuration (�� = 0◦) is investigated
without taking spin-orbit interaction into account (λ = 0.0 t).
Figures 2(a) and 2(b) show the corresponding band structure
where one obtains six individual bands and Dirac points at K
due to the T M symmetry of the magnetic texture [27]. The
color of the energy bands represents the spin Berry curvature
�z

xy,ν in units of a2, where a is the lattice constant. A de-
tailed k- and band-resolved plot of the spin Berry curvature in
Fig. 2(c) illustrates that �z

xy,ν has finite values (green positive,
yellow zero, and red negative) allowing for the occurrence of
the spin Hall effect even though spin-orbit coupling is not con-
sidered, as predicted by Zhang et al. [32]. The corresponding
spin Hall conductivity σ z

xy according to Eq. (7) is plotted in

units of ( e2

h )( h̄
e ) as a function of energy simulated by a change

of the Fermi energy EF [black curve in Fig. 3(b)] which is in
agreement with Ref. [32]. Note that this result corresponds to
the situation illustrated for the sample in Fig. 1(c).

Now we take spin-orbit interaction into account (λ =
0.2 t). Therefore, we briefly summarize the main results of our
former work about the virtual magnetic texture that explains
the anomalous Hall effect in this scenario [34].

We demonstrated via a transformation of the model Hamil-
tonian (1) that spin-orbit coupling and a tilting of the magnetic
texture out of the kagome plane are equivalent.

The application of a set of unitary transformations that tilt
the local z axis at each lattice site i by the same angle α

towards the magnetic moment mi implies that one can change
the reference system to a lattice-site dependent coordinate
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FIG. 2. Band structure and spin Berry curvature of the radial magnetic texture. In (a)–(c) spin-orbit coupling (SOC) is neglected, whereas
in (d)–(f) it is considered. (a) Three-dimensional band structure E (kx, ky ) for all bands over the Brillouin zone (indicated by the black hexagon
in the kx-ky plane). The color of the energy surfaces shows the value of the spin Berry curvature �z

xy (green positive, red negative, and yellow
zero as indicated by the legend on the right). (b) Same as in (a) but represented in the reduced zone scheme where the band structure is only
plotted along the high-symmetry points (�-M-K-�). (c) Visualization of the spin Berry curvature of all bands resolved in the two-dimensional
k space. The blue triangle in the upper left panel in (c) shows the reduced Brillouin zone. (d)–(f) Analog to (a)–(c), but spin-orbit interaction
is taken into account (λ = 0.2 t).

system where the magnetic texture is effectively tilted by α:

m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i) sin(θ − α)
cos(θ − α)

⎞
⎠. (9)

Besides, the unitary transformation of the complete Hamil-
tonian (1) yields effective hopping and spin-orbit coupling
amplitudes t̃ and λ̃. For the radial configurations, the latter
reads

λ̃ = −
√

3

2
sin(α) t + cos(α) λ. (10)

This equation implies that the effective spin-orbit coupling
can be compensated (λ̃ = 0) by a critical tilting angle αc. In
this case, we call the effectively tilted magnetic texture {m̃i}
“virtual” and it is tilted with respect to the fixed magnetic tex-
ture m = {mi} by an azimuthal angle αc = �θc. In particular,
Eq. (10) yields a critical angle αc ≈ 13◦ for λ = 0.2 t .

The virtual texture is hidden in the model Hamiltonian
(1) and is thereby determined by the symmetry of the sys-
tem. Consequently, the virtual texture is responsible for the

electronic properties and thus, the equivalence of spin-orbit
interaction and an out-of-plane tilting allows for an interpre-
tation of the anomalous Hall effect in the coplanar kagome
magnet (θ = 90◦) as an effective topological Hall effect due to
a nonvanishing scalar spin chirality of the virtual noncoplanar
magnetic texture (θ̃ = 90◦ − αc).

Moreover, a noncoplanar background texture {mi} that is
characterized by a critical azimuthal angle θc = 90◦ + �θc

with spin-orbit coupling (λ 
= 0) is equivalent to a virtual
coplanar texture, since {m̃i} is tilted by αc = �θc with respect
to {mi}. Hence, spin-orbit coupling is effectively compensated
(λ̃ = 0) and the Hall effect vanishes again since the already
mentioned T M symmetry of the radial configuration, and
thus of the Hamiltonian, is restored.

The out-of-plane tilting mechanism that arises from spin-
orbit interaction is parameter dependent and the influence on
the in-plane orientation of the magnetic moments is given by
a cosine function [34]. Hence, it is maximal for the radial
configuration and zero for the toroidal configuration which
implies that the virtual texture is not tilted with respect to the
original toroidal texture. The reason for this is that spin-orbit
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FIG. 3. Band structure and spin Hall conductivity σ z
xy plotted against the Fermi level EF for different spin-orbit coupling strengths λ as

indicated. (a) and (b) show the results for the radial configuration (�� = 0◦), where band gaps occur due to spin-orbit coupling and broaden
with increasing λ, whereas the spin Hall signal is reduced for most energies. (c) and (d) show the results of analog calculations for the toroidal
texture (�� = 90◦) which is obtained by an in-plane rotation of each magnetic moment by 90◦ within the kagome plane.

coupling breaks the T M symmetry of the radial configu-
ration (�� = 0◦), whereas M in the toroidal arrangement
(�� = 90◦) is still conserved [27,36]. Note that the magnetic
moments of textures with different in-plane orientations as
discussed in Sec. III B can be interpreted as a superposition
of a radial and a toroidal part. The tilting increases with the
spin-orbit interaction strength λ.

Now we discuss the consequences of the virtual texture
on the band structure and the spin Hall signal for the radial
texture. Since spin-orbit coupling is considered, the T M
symmetry of the magnetic texture is broken and therefore de-
generacies are lifted and global band gaps open [cf. Fig. 2(e)].
In Fig. 3(a) the dependence of the electronic band structure on
the spin-orbit interaction strength λ is presented. Figure 3(b)
shows the corresponding spin Hall signals, where we find that
the magnitude of the spin Hall conductivity is decreasing for
most energies with increasing λ. For the red curve in Fig. 3(b)
we set λ = 0.2 t in correspondence to Ref. [32].

According to Ref. [38], a phase transition from the radial
phase (�� = 0◦) to the toroidal phase (�� = 90◦) has been
found experimentally at a critical temperature TC = 163 K in
the antiperovskite Mn3NiN. Repeating the calculations for the
toroidal texture reveals that both the electronic structure and
the spin Hall signal are hardly affected by spin-orbit coupling
[cf. Figs. 3(c) and 3(d)]: the Dirac points do not open as band
gaps but the bandwidth is slightly broadened with increasing
λ.

B. Spin Hall effect under in-plane rotation of
the magnetic moments

The electronic properties (i.e., the band structure and the
spin Hall conductivity) without spin-orbit coupling (black
curves in Fig. 3) are identical for the two special configura-
tions, but the effect of spin-orbit interaction is quite strong
for the radial phase and almost negligible for the toroidal
one. Motivated by this, we investigate the spin Hall effect
for configurations between those two arrangements. Since the
band structures of the radial and the toroidal configurations
can differ significantly, if spin-orbit coupling is taken into ac-
count [cf. Fig. 3(a)], it is helpful to calculate the conductivity
as a function of the occupation number nocc instead of the

Fermi energy EF to compare different systems with each other.
Therefore, we calculate σ z

xy upon a continuous variation of the
in-plane offset angle �� while nocc is fixed.

As visible in Fig. 4(a), we find for each fixed occupation
number that the spin Hall conductivity as a function of ��

is constant if spin-orbit interaction is not taken into account.
This is in agreement with the above discussion of the spin
transport in the radial and the toroidal configurations without
spin-orbit coupling. The signal is independent of the in-plane
orientation of the magnetic texture (illustrated by the small
cartoons below the panel in Fig. 4). If spin-orbit interaction
is taken into account (λ = 0.2 t), we observe an extra contri-
bution to the spin Hall signal that is oscillating with a period
of 180◦ [cf. Fig. 4(b)]. This periodic behavior is in agreement
with symmetry arguments since the (intrinsic) spin Hall con-
ductivity, which is considered in this work, is even under time
reversal T which is equivalent to a rotation of each magnetic
moment by 180◦ in the kagome plane. Consequently, the spin
Hall signal fulfills σ z

xy(�� + 180◦) = σ z
xy(��).

The spin Hall conductivity for a fixed occupation can be
strongly diminished depending on the in-plane orientation.
The difference is maximal for the radial configuration and
minimal for the toroidal one. To illustrate this more clearly,
the spin Hall conductivity for those two magnetic textures
and configurations in between are shown as a function of
the occupation number in one diagram in Fig. 4(c) where the
horizontal lines indicate the number of the occupied states that
have been chosen for the in-plane rotation in Figs. 4(a) and
4(b).

C. Relation of spin Hall effect to anomalous Hall effect and
magnetization density

Now we would like to interpret our results and relate them
to the findings in Ref. [34] where the anomalous Hall effect
has been investigated.

Without spin-orbit coupling, our calculations revealed that
the anomalous Hall effect is absent and there is only a con-
stant contribution to the spin Hall signal originating from the
magnetic background texture. In this case there is only a pure
spin current [cf. Fig. 1(c)]. As we will show in the following,
the contribution which is arising from spin-orbit coupling and
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FIG. 4. Spin Hall conductivity for different fixed occupation numbers nocc upon a continuous rotation of the magnetic moments within
the kagome plane as indicated by the small cartoons below the panel. (a) Spin-orbit coupling is not taken into account and in this case the
spin Hall signal is nonzero, but constant and thus independent of the in-plane orientation of the magnetic moments. (b) Same as (a) but
spin-orbit interaction is considered (λ = 0.2 t). Here the spin Hall conductivity is oscillating with a period of 180◦ and so does the out-of-plane
component of the magnetic moments of the virtual texture (red arrows in the small cartoons). (c) σ z

xy plotted against nocc for the radial (red) and
toroidal phase (black) and configurations in between the two with spin-orbit interaction taken into account [λ = 0.2 t as in (b)]. The horizontal
lines indicate the values of the fixed occupation numbers in (a) and (b).

which is reducing the spin Hall signal is roughly proportional
to the anomalous Hall conductivity σxy multiplied with the
magnetization density μs

z,

�σ z
xy(SOC) ∝ σxy μs

z. (11)

We will demonstrate this now by examining the behavior of
the systems while varying the parameter m that describes the
Hund’s coupling strength between the spin moment of the
conduction electron and the magnetic texture {mi}. Therefore,
we are calculating not only the spin Hall conductivity σ z

xy but
also the anomalous Hall conductivity σxy and the out-of-plane
component of the magnetization density μs

z upon rotating the
magnetic moments within the kagome plane, as before.

The calculation of σxy is performed via Kubo formalism
[37]:

σxy(EF) = − e2

h

∑
ν

1

2π

∫
ε(k)�EF

�xy,ν (k) d2k, (12)

where one has to integrate over the conventional Berry curva-
ture

�xy,ν (k) = −2h̄2 Im
∑
μ 
=ν

〈ν, k|vx|μ, k〉 〈μ, k|vy|ν, k〉
[εν (k) − εμ(k)]2

. (13)

The magnetization density can be calculated from the spin
texture of the itinerant magnetic moments of the conduction
electrons’ spins in reciprocal space. The z component of the
spin texture of band ν is obtained by the calculation of the spin
expectation value 〈

sz
ν (k)

〉 = 〈ν, k|σ z|ν, k〉 , (14)

where σ z is the Pauli matrix. Integrating over all occupied
states in the Brillouin zone and summing over all bands yields

the out-of-plane component of the magnetization density

μs
z = μB

∑
ν

1

(2π )2

∫
ε(k)�EF

〈
sz
ν (k)

〉
d2k. (15)

The results for σxy (in units of e2

h ) and μs
z (in units of μB)

are presented together with σ z
xy in Fig. 5 where we set the

occupation number nocc = 0.9.
Without spin-orbit interaction (cf. dashed lines), the

anomalous Hall effect is prohibited and the spin texture is
coplanar, whereas the spin Hall effect is constant. σxy and μs

z
vanish identically, independent of m and the in-plane rotation.
The amount of σ z

xy is decreased with increasing m [39].
Taking spin-orbit interaction into account (λ = 0.2 t , solid

lines in Fig. 5), yields a cosinusoidal behavior [40] of both
the anomalous Hall conductivity and the z component of the
magnetization density as a function of ��, whereas the spin
Hall conductivity oscillates with the half-period, as before in
Fig. 4. Now, enlarging the strength of the Hund’s coupling
m causes not only a reduction of the amount of the spin
Hall signal, but also of the out-of-plane magnetization density,
i.e., the spin texture aligns more and more with the coplanar
texture. The amplitude of σxy is hardly affected by m.

For the toroidal configurations (�� = 90◦, 270◦), the
anomalous Hall effect is absent and the spin texture remains
coplanar, protected by the M symmetry. Consequently, there
is no reduction of the spin Hall signal [cf. Eq. (11)] and we
would observe a pure spin current even upon considering
spin-orbit coupling. For all other configurations, the product
of the finite and cosinusoidal signals σxy and μs

z explains the
reduction of the spin Hall signal which is oscillating with a
period of 180◦.

We interpret the nonvanishing out-of-plane magnetization
and charge current emerging due to spin-orbit interaction as
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FIG. 5. Dependence of anomalous and spin Hall conductivity and the magnetization density on the Hund’s coupling parameter m calculated
for a fixed occupation number (nocc = 0.9) as a function of ��, analog to Fig. 4. For calculations with spin-orbit interaction (solid lines), we
set λ = 0.2 t . The dashed lines indicate the results of analog calculations without spin-orbit coupling. (a) The anomalous Hall conductivity σxy

is only finite (and cosinusoidal) if spin-orbit coupling is taken into account. The anomalous Hall signal is only weakly reduced with increasing
m and remains zero for the toroidal arrangements (�� = 90◦, 270◦). (b) Spin Hall conductivity σ z

xy analog to Fig. 4(b). The amplitude of the
contribution originating from the magnetic texture is reduced by spin-orbit coupling for all configurations except for the toroidal one. This
additional contribution is shrinking with growing m. (c) Like σxy, the z component of the spin texture and thus the magnetization density μs

z is
only nonzero if spin-orbit coupling is taken into account. As visible, the spin texture is continuously aligning with the real coplanar magnetic
texture upon increasing Hund’s coupling strength m. Note that μs

z remains zero for the toroidal configurations independent of λ and m.

a spin-polarized current. The latter is reducing the pure spin
current of the magnetic background texture that causes the
spin Hall effect, which is illustrated in Fig. 1(d).

D. Spin Hall effect under out-of-plane rotation
of the magnetic moments

Summing up to this point, two different mechanisms con-
tribute to the intrinsic spin Hall effect in noncollinear kagome
antiferromagnets. One source is the Hund’s coupling of the
spin of the conduction electron to the chiral antiferromagnetic
texture {mi} itself where spin-orbit interaction is not required.
The second contribution to the signal is mainly reducing the
spin conductivity and it is originating from spin-orbit coupling
that gives rise to a virtual magnetic texture {m̃i}. As explained
before, the virtual texture determines the electronic properties
and can be interpreted as tilting with respect to the real texture
depending on the in-plane orientation �� and on the spin-
orbit coupling strength λ.

Motivated by these findings, magnetic textures that are
already tilted out-of the kagome plane [θ 
= 90◦; cf. Eq. (5)]
are investigated, in order to analyze the two contributions to
the spin Hall signal. This could be achieved by applying an
external magnetic field along z. However, we assume that the
magnetic moments are only rotated and their magnitude does
not change.

We calculate σ z
xy for a fixed Fermi energy upon varying

θ while �� is constant [cf. small cartoons in Figs. 6(a) and
6(b)]. Since the tilting mechanism of the virtual magnetic tex-
ture is strongest for the radial arrangement, we set �� = 0◦.

First of all, we discuss the results if we neglect spin-orbit
interaction [cf. Fig. 6(a)]. For the collinear configurations
(θ = 0◦, 180◦), the spin Hall signal is zero since the spin Hall
effect is absent in ferromagnets without spin-orbit coupling

that would deflect electrons with different spin in opposite
directions [41]. For all other configurations we get finite val-
ues and the spin Hall signal is completely symmetric with
respect to θ = 90◦. In this case, the virtual magnetic texture is
not tilted with respect to the real texture but the noncoplanar
texture has an opening angle that gives rise to a pure topolog-
ical Hall effect which implies that charge is transported as a
response to an applied electric field. Since the spin Hall signal
without spin-orbit interaction is independent of the in-plane
rotation ��, it is worth noting that analog calculations for
arbitrary �� yield the same results, as shown exemplarily for
�� = 0◦ in Fig. 6(a).

With spin-orbit coupling (λ = 0.2 t), the collinear ferro-
magnets exhibit a spin Hall effect [cf. Fig. 6(b)] which is
equal for both collinear phases (θ = 0◦, 180◦) since the spin
Hall effect in ferromagnets is not affected by reversal of the
magnetic moments [42]. Besides, the shape of the signal is
only slightly deformed and the curves are mainly shifted by
�θ ≈ 13◦. This can be seen by comparing the positions of the
local extrema in Figs. 6(a) and 6(b). This angle is the same
critical angle �θc that we revealed for λ = 0.2 t in Ref. [34].

As explained before, the anomalous Hall effect is absent
for this noncoplanar (radial-type) texture characterized by
θc = 90◦ + �θc. In this case, the virtual texture is coplanar
and the effective spin-orbit coupling according to Eq. (10) is
compensated. Therefore, the noncoplanar system behaves as if
it was effectively coplanar due to the equivalence of spin-orbit
interaction and out-of-plane tilting of the magnetic texture that
compensate each other, here.

To corroborate this, we compare the spin Hall signal as a
function of EF for this critical angle [black curve in Fig. 6(c)]
with the one of the coplanar configuration [red curve in
Fig. 6(c)] that we have already shown before. As visible,
the spin Hall signal characterized by this critical angle with
spin-orbit coupling is the same as the one of the coplanar
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FIG. 6. Spin Hall conductivity under out-of-plane rotation of the radial-type magnetic texture (�� = 0◦). (a) The spin Hall signal is
symmetric with respect to θ = 90◦ if spin-orbit coupling is not considered. (b) If spin-orbit interaction is taken into account, the curves of
(a) are slightly deformed and mainly shifted by the critical angle �θc ≈ 13◦, as well. (c) The spin Hall conductivity as a function of EF for the
radial-type arrangement (with spin-orbit coupling) that is characterized by the critical out-of-plane orientation (black curve) is identical to the
signal of the coplanar configuration without spin-orbit coupling [cf. black curve from Fig. 3(b)]. The red curve is the same as the red curve in
Fig. 3(b) for the coplanar texture with spin-orbit coupling. The horizontal lines indicate the values of the Fermi level chosen in (a) and (b).

configuration where spin-orbit interaction is neglected [black
curve in Fig. 3(b)].

This explicitly proves that tilting the texture has the same
effect as spin-orbit coupling in this model.

IV. CONCLUSION

In summary, we have identified two mechanisms deter-
mining the spin Hall signal. We showed via tight-binding
calculations that the main contribution is a pure spin cur-
rent that originates from the coplanar magnetic background
texture. Besides, spin-orbit coupling is equivalent to an out-of-
plane tilting of the magnetic moments and thereby generates
an asymmetry in the spin polarization with respect to the
quantization axis perpendicular to the kagome plane. Thus,
with spin-orbit interaction a spin-polarized current is flowing
as well that reduces the spin Hall signal of the pure spin
current effectively.

Therefore, noncollinear kagome antiferromagnets have the
potential for applications in spintronic devices where they
might be utilizable as alternative generators for spin currents
and spin-polarized currents in analogy to collinear antiferro-
magnets and ferromagnets, respectively (cf. Fig. 1).

Besides, our results might be insightful for the exper-
imental observation of the spin Hall effect in manganese
compounds with a positive vector spin chirality like Mn3Ir. In
this material, the anomalous Hall effect was predicted theoret-
ically seven years ago [27,28], but it has not been measured up
to now. The reason is that domains with different phases that
we characterize by �� = 0◦ and 180◦ occur in that material
[43]. The anomalous Hall effect is allowed in both phases but
both signals compensate each other due to their opposite sign
[27,34]. However, our findings show that the spin Hall signal
would be the same for both phases and therefore there could
be the possibility to measure the spin Hall effect without the
need to prepare single-domain samples.
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