
PHYSICAL REVIEW B 104, 184416 (2021)

Collective dynamics of domain walls: An antiferromagnetic spin texture in an optical cavity
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Spin canting and complex spin textures in antiferromagnetic materials can be described in terms of
Dzyaloshinskii-Moriya interactions (DMI). Values for DMI parameters are not easily measurable directly, and
often inferred from other quantities. In this work, we examine how domain wall dynamics in an antiferromagnetic
optomagnonic system can display unique features directly related to the existence of DMI. Our results indicate
that the presence of DMI enables spin interactions with cavity photons in a geometry which otherwise allows
no magneto-optical coupling, and on the other hand modulates frequencies in a geometry where coupling is
already realized in the absence of DMI. This result may be used to measure the DMI constant in optomagnonic
experiments by comparing resonances obtained with different polarizations of the exciting field.
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I. INTRODUCTION

Cavity optomagnonics in which precision measurements of
interactions between photons and magnons are studied [1] has
potential applications in quantum information processing [2]
and spintronics [3]. Essentially, it allows a description where
the force on magnetic moments appears as an optical pressure
of photons. We discuss here an optomagnonic analog of cavity
optomechanics [4] in which one is able to observe the cou-
pling of electromagnetic radiation to spin texture oscillations
[1,5]. As a consequence, one is able to realize optomechan-
ical phenomena in magnonic systems, which includes mode
attraction—the coalescence of two eigenmodes marked by
two exceptional points [6]. Described as an anticrossing gap
in Ref. [7] where the coupling between a microwave cavity
mode and a ferromagnetic magnon mode was studied, this be-
havior has continued to gain attention and has been observed
experimentally in the microwave regime in a planar geometry
[8] and in a microwave cavity [9] with frequencies in GHz
range. The physical mechanisms behind level attraction in
these cavity-magnonic experiments have been proposed as
dissipative coupling [10–12] and also attributed to an insta-
bility in optomechanical systems associated with a negative
frequency in the effective Hamiltonian of an externally driven
system [13,14].

Cavity magnonics has been explored primarily for ferro-
magnetic systems, with frequencies in the GHz range [15–21].
At present, antiferromagnets are receiving attention as pos-
sible platforms for exotic spin textures such as skyrmions,
which can exist in low-dimensional materials with broken
inversion symmetry. Antiferromagnets are characterized by
dynamics in the THz range [22], typically have large magnetic
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anisotropies and zero net magnetization that make them useful
for spintronic applications, but at the same time makes exper-
imental observation of collective magnetic dynamics difficult.
Here, we propose to use magneto-optical coupling, which is
a well established experimental technique to study ultrafast
dynamics in antiferromagnetic insulators [23] to study the
collective motion of antiferromagnetic textures.

The Dzyaloshinskii-Moriya interaction (DMI) can exist
in noncentrosymmetric magnetic materials and is known to
play an important role in describing nontrivial spin textures
[24,25]. In one spatial dimension, DMI can lead to long-
periodic modulated structures known as soliton lattices, while
in two spatial dimensions DMI helps to stabilize topologically
nontrivial skyrmion lattices. It is also known to play an impor-
tant role in domain walls [26,27], where it affects the domain
wall structure and lifts degeneracy between domain walls with
opposite chiralities. In this paper, we show that DMI can also
affect how spin textures are coupled to optical photons.

Optomagnonics opens the possibility of coupling electro-
magnetic waves to nonuniform magnetic ground states such
as a magnetic vortex in a microdisk [28]. Whereas some
of the most interesting textures are found in two and three
dimensions, there have been some studies on one-dimensional
structures such as solitons in antiferromagnets [29–31] and
helimagnets [32,33]. Here, we examine the case of the cou-
pling of optical cavity photons to a domain wall. Domain
walls are one-dimensional topological textures whose dynam-
ics can be described in analogy to that of massive particles
[34,35]. The collective motion of ferromagnetic and antifer-
romagnetic domains walls is well studied [35–41].

Coupling of collective magnon modes to optical cavity
modes have been realized in a number of experiments [20,42].
Recently, a model for cavity magnonics with a ferromagnetic
domain wall was proposed and parameters for the coupling
were estimated [43]. In that case the frequency of the ferro-
magnetic domain wall oscillation in a pinning site is in the
GHz range.
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In this paper, we discuss a cavity optomagnonic system
where an antiferromagnetic domain wall is coupled to optical
photons via the inverse Faraday effect [23,44,45]. This leads
to a nonlinear optomechanical-type coupling where the do-
main wall reacts to pressure from cavity photons. We discuss
the hybridization of optical and magnonic modes and identify
a level attraction regime.

We also investigate the effects of DMI on the domain wall
dynamics in two different geometries. We find that, in one
geometry, where DMI favors one chirality of the domain wall,
the presence of DMI enables coupling of magnons to photons
which is otherwise nonexistent without DMI. In a second
geometry, the DMI exerts a torque which leads to the domain
wall tilt and consequent effects on the coupling terms. We
expect that these features are not limited to the case of a single
domain wall and can be found in other chiral spin textures.
This can assist detection and quantification of DMI in thin
films of antiferromagnetic materials.

II. MODEL

Our model assumes a Néel domain wall in a one-
dimensional antiferromagnet as shown in Fig. 1(a). Sublat-
tices A and B have opposite spins, SA and SB, respectively.
The preferred magnetization rotation plane is the x-z plane.
The Hamiltonian describing this system is

Hdw =
∑
〈i, j〉

J �Si · �S j − Kz

∑
i

(�Si,z )2 −
∑

i

Kx(�Si,x )2

+
∑

i

(−1)i+1 �D · (�Si × �Si+1). (1)

The first term on the right is the nearest-neighbor exchange
interaction between spins on the sublattices. The second and
third terms are the uniaxial anisotropies in the z and x direc-
tions, respectively [46], with constants Kz � Kx. The last term
is the antisymmetric interfacial DMI whose alternating sign
prevents a spiral spin state [47].

We introduce the total and staggered magnetizations, �mi =
(�Si

A + �Si
B)/2S and �li = (�Si

A − �Si
B)/2S, respectively, subject to

the constraints that �m · �l = 0 and �m2 + �l2 = 1 [35,38,48,49].
Going by this definition, we make the substitutions, �Si

A =
S( �mi + �li ) and �Si

B = S( �mi − �li ), into Eq. (1). This results in
a sum over lattice points rather than spins. We simplify the
non-DMI part of the Hamiltonian based on the approach in
Ref. [38] by introducing the following identities: 2 �mi �mi+1 =
�m2

i + �mi+1 − ( �mi+1 − �mi )2 and (�li �mi+1 − �mi�li+1) = �li( �mi+1 −
�mi ) − �mi(�li+1 − �li ). The simplification of the DMI term is
included in Appendix B. It is useful make a continuum ap-
proximation, �mi+1 ≈ �mi + a0(∂ �mi/∂z) + · · · and �li+1 ≈ �li +
a0(∂�li/∂z) + · · · , where a0 is the lattice constant. In Eq. (1),
we replace �mi and �li by �m(z) and �l (z), respectively, and the
sums are replaced by integrals. We describe the dynamics
of the AFM in the exchange approximation and consider a
slowly varying AFM domain wall. In this description, the
exchange interaction is much larger than the anisotropic terms
and | �m|2 � |�l|2. Thus the anisotropic terms proportional to
the total magnetization can be neglected [38,50] (details are
provided in Appendix A). Adding the DMI term, our expres-

FIG. 1. (a) Schematic illustration of the geometry where the ef-
fective magnetic field of the light along x̂ interacts with the domain
wall with width λ and axis along ẑ in the presence of DMI along ŷ.
(b) Hybridized frequency of the cavity modes and magnon modes
of the antiferromagnetic domain wall as a function of the detuning
parameter in the absence of DMI. In the absence of DMI, there is no
coupling achieved as indicated by the dotted lines. The thick lines
represent what happens in the presence of DMI when the magnon
modes couple to the cavity modes. The real part of the two modes
attract in the region of negative detuning and repulsion is observed
in the region of positive detuning.

sion in the continuum model is similar to that in Ref. [24]:

Hdw =
∫ ∞

−∞

dz

a0

[
a

2
| �m|2 + A

2

∣∣∣∣ ∂�l
∂z

∣∣∣∣
2

+ L

(
�m · ∂�l

∂z

)

− kz

2
(�l · ẑ)2 − kx

2
(�l · x̂)2 + �d ·

(
∂�l
∂z

× �l
)

+ �d0 · ( �m × �l )

]
, (2)

where a = 8JS2 and A = a2
0JS2 are the homogeneous

and nonhomogeneous exchange constants, respectively, L =
2a0JS2 is the parity-breaking term [24,38], the anisotropies
are kz = 2KzS2 and kx = 2KxS2, and the DMI coefficients are
�d = a0S2 �D and �d0 = 4S2 �D.

The Lagrangian of the system, L = LB − Hdw, is
constructed using the Berry phase, LB = 2h̄S �m(∂t �l × �l )
[24,38,40], which accounts for the inertia of the antiferromag-
netic domain wall. By varying the Lagrangian with respect to
�m, we derive an expression for �m in terms of the temporal and
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spatial derivative of �l:

�m = ρ

a

(
�l × ∂�l

∂t

)
− L

a

(
∂�l
∂z

)
+ 1

a
�d0 × �l, (3)

where ρ = 2h̄S. Equation (3), which implies that �m is a slave
variable to �l [24,38], is substituted into Eq. (2), making it
possible to eliminate �m from Eq. (2). We simplify Eq. (2)
and disregard the total time derivatives proportional to the
homogeneous DMI and terms proportional to the topological
term, L, that do not contribute to the equations of motion [24]
(see Appendix A for details). The Hamiltonian is thus

Hdw =
∫ ∞

−∞

dz

a0

[
ρ2

2a

(
∂�l
∂t

)2

+ A

2

∣∣∣∣ ∂�l
∂z

∣∣∣∣
2

− kz

2
(�l · ẑ)2

−kx

2
(�l · x̂)2 + �d ·

(
∂�l
∂z

× �l
)]

. (4)

We parametrize the staggered magnetization �l by polar
and azimuthal angles θ and φ in spherical coordinates: �l =
(sin θ cos φ, sin θ sin φ, cos θ ). For the static wall configura-
tion, ∂�l/∂t = 0 in Eq. (4). By this definition, the Hamiltonian
of the system is

Hdw =
∫ ∞

−∞

dz

a0

[
A

(
∂θ

∂z

)2

− kx sin2 θ cos2 φ − kz cos2 θ

− dx

(
∂θ

∂z

)
sin φ + dy

(
∂θ

∂z

)
cos φ

]
, (5)

where dx and dy are the x and y components of the DMI,
respectively. The domain wall static profile is obtained us-
ing standard methods [38,46,49,51,52]. The domain wall tilt
angle is defined as φ with respect to the x-z plane and as-
sumed to be constant throughout the wall [46]. The energy
density is minimized via the Euler-Lagrange equation giv-
ing a wall profile θ (z) = 2 tan−1 exp[(z − z0)/λ], where λ =√

A/(kz − kx cos2 φ) is the characteristic domain wall width.
Our analysis of the static wall profile dependence on DMI
agrees with the results in Ref. [46]. We summarize the key
details in subsequent paragraphs.

The wall energy E = 4
√

A(kz − kx cos2 φ) − dxπ sin φ +
dyπ cos φ is obtained by substituting the wall profile into
Eq. (5) and integrating with respect to z. Since the energy den-
sity depends on only the x and y components of the DMI, two
DMI directions are considered. When coupling the domain
wall to the cavity modes, we find that the direction of photon
propagation must be perpendicular to both the DMI and the
domain wall axis (z axis) in order for coupling to be achieved.
This requires two possible geometries be considered.

First, DMI is considered to be present in the x̂ direction.
This results in a distortion of the spin orientation on the
sublattices and consequently results in a DMI-dependent tilt
angle [46],

φ(dx ) = sgn dx · cos−1

(
±
√(

8Jk2
x − d2

x kzπ2
)

(
8Jk2

x − d2
x kxπ2

)
)

, (6)

which minimizes the energy density. This dependence re-
mains valid until a saturated DMI strength of dx,sat =
4/π

√
Jk2

x /2kz is reached beyond which φ(dx ) = π/2.
For the second geometry where DMI is present along ŷ,

the DMI breaks the degeneracy of the domain wall energy
minima and favors one chirality of the wall at a critical value,
dy,c = 4kx/π

√
J/2(kz − kx ). The tilt angle φ(dy) = 0 if dy <

dy,c. Otherwise, φ(dy) = π .

III. DOMAIN WALL DYNAMICS

We discuss the effects of DMI on the dynamics of an an-
tiferromagnetic domain wall when coupled to optical photons
in an electromagnetic cavity. The dynamics of the antiferro-
magnet is described in the semiclassical approximation. For
this purpose, the Lagrangian of the system is L = LB − Hdw

[24], where the first term corresponds to the Berry phase
[24,38,40] and the second term is the magnetic energy in
Eq. (5). We describe the domain wall dynamics using the col-
lective coordinate method [35,53], treating the position of the
domain wall Z0(t ) as a dynamical variable. The effective La-
grangian in terms of the domain wall position Z0(t ) and small
fluctuations around the domain wall profile, δθ (t ), is obtained
from Eq. (5) by performing the expansion φ(z, t ) = φ0[z −
Z0(t )] and θ (z, t ) = θ0[z − Z0(t )] + δθ [z − Z0(t )]. For the
fluctuations δθ (t ), we obtain the Pöschl-Teller equation. The
solution is δθ = p(t ) sech{[z − Z0(t )]/λ}, where p is the am-
plitude of the out-of-plane component.

In order to fully describe the dynamics of the antifer-
romagnetic domain wall, we include a pinning potential.
The pinning potential provides a restoring force and is
introduced as a point defect which contributes to the
anisotropy along ŷ at z = 0. The pinning potential Vpin =
−Kpin

∫
[ dz

a0
δ(z) sin2 θ (z) sin2 φ(z)] ≈ Kpin Z2

0 /λ2. We proceed
to construct the total Lagrangian of the system following
the approach in Ref. [24]. The effective Lagrangian for the
collective coordinate Z0(t ) in addition to the pinning potential
L = LB − Hdw − Vpin is expressed below:

L = 1

a0

(
2ρ2

aλ
Ż2

0 − a0Kpin

λ2
Z2

0 − 2Aλ + 2Kx cos2 φ

− πλdx sin φ + πλdy cos φ

)
. (7)

We define the generalized momentum Pz = ∂L/∂Ż0 =
(4ρ2/a0λ) and Ż0 = (a0λPz )/(4ρ2).

From the Lagrangian in Eq. (7), we transform to the Hamil-
tonian description. The Hamiltonian of the pinned domain
wall, excluding terms that do not contribute to the equations
of motion, can then be written in terms of the wall position as

H′
dw = 2ρ2Ż2

0

a0 aλ
+ KpinZ2

0

2
, (8)

where we have dropped terms proportional to the out-of-plane
component.

The Hamiltonian in Eq. (8) shows that the low energy mo-
tion of the pinned domain wall is similar to that of a massive
particle in a parabolic potential. This motion can be quantized
using a standard quantum-mechanical method of the quan-
tization of a harmonic oscillator. From Eq. (8), we derive
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the canonical conjugate momentum PZ0 corresponding to Z0,
and the Hamiltonian is quantized by making the transforma-
tions Ẑ0 = √

h̄/2M	m(b̂ + b̂†) and P̂Z0 = −i
√

h̄M	m/2(b̂ −
b̂†), where b̂ and b̂† are the annihilation and the creation opera-
tors of the oscillator in Eq. (8), M is the domain wall effective
mass, and 	m is the characteristic oscillation frequency of the
domain wall.

The coupling mechanism between the domain wall and
cavity photon is assumed to be the inverse Faraday effect
[44]. In this way, the coupling appears as a reaction force to
photon pressure exerted as compensation to changes in photon
polarization. Details can be found in Refs. [23,43,54–56]. The
magneto-optical interaction energy [56] is expressed as

Hmo = − i

4
f ε0

∫
d3r �m(�r) · [ �E∗(�r, t ) × �E (�r, t )], (9)

where �m is the total magnetization vector, f is the Faraday
rotation material-dependent parameter, ε0 is the permittivity
of free space, and �E is the electric field vector of light. In this
work, �m is given by Eq. (3).

The first of the two geometries considered is that in which
there is an electromagnetic wave propagating along x̂ and
circularly polarized in the y-z plane. In this geometry, the
resulting effective magnetic field of light in Eq. (9) is given
by �E∗(x) × �E (x) = x̂ (ih̄ω)/(2V ε0)[â†

RâR − â†
LâL], where V

is the volume of the cavity and âR(L) is related to the right (left)
circularly polarized basis. The magneto-optical Hamiltonian
obtained from Eq. (9), considering only the right-circular
polarization, is Hx

mo = (−i f /4)(A⊥/2V )[(−ρ/a) sin φŻ0 +
(2dy/a)Z0]h̄ωcâ†

RâR, where A⊥ is the sample cross section.
This shows that the interaction along x̂ is proportional to the
tilt angle of the domain wall and the y component of the
DMI (perpendicular to both the wall axis and the direction
of propagation of electromagnetic waves).

In addition, we introduce the photonic Hamiltonian
Hph = h̄ωcâ†â and an external laser driving term Hdrive =
εâ†e−iωd t + ε∗â eiωd t , where ε is the pump amplitude and
ωd is the driving frequency. In order to remove the time
dependence of the driving terms, we move to a rotating
frame defined by the cavity field photon number, rotating
at a drive frequency ωd by performing the unitary transfor-

mation H′
(ph,drive) = −ih̄(dÛ †/dt )Û + Û (Hdrive + Hph)U †,

where Û (t ) = eih̄ωd t â†â [4]. This gives H′
(ph,drive) = −h̄â†â +

εâ† + ε∗â, where  = ωd − ωc is the laser detuning parame-
ter. The effective Hamiltonian of the system is

Htot = h̄	mb̂†b̂ − h̄â†â + εâ† + ε∗â

− h̄g0

(
−i sin φ

h̄	m

Kz
(b̂−b̂†)+2dy

a
(b̂ + b̂†)

)
h̄ωcâ†

RâR,

(10)

where g0 = 1
4 f Seffωc. Seff = A⊥xzpf/V , where A⊥ is the sam-

ple cross section, V is the volume of the cavity, and xzpf =√
h̄/(2M	m). f = 2cθ f

√
ε/ωc is the Faraday rotation per

length, c is the speed of light in vacuum, and ε is the dieletric
constant of the material. The antiferromagnetic domain wall
effective mass is M = 4h̄2/(a0Kzλ) and the characteristic os-
cillation frequency 	m = √Kpin/(Mλ2).

As an example, we estimate values for a common antifer-
romagnet using experimental data for NiO having a domain
wall width of approximately 150 nm [23], a0 = 0.418 nm
[57], and Kz = 4 K/kB [58], where kB is the Boltzmann con-
stant. We assume Kpin = 1 K/kB such that it is of the same
order of magnitude as the anisotropy constant. This gives
M ≈ 10−29 kg and 	m ≈ 10 GHz. Due to the lack of ex-
perimental data on optomagnonic coupling with AFMs, we
assume a material size similar to a YIG sphere of diameter
0.25 mm in a cavity having a dimension of 40 × 25 × 15 mm3

[17], such that Seff ≈ 10−10, ε = 5, and θ f = 419 rad m−1

[1,59,60]. We estimate the coupling strength in Eq. (10) as
g0 = cθ f

√
εSeff/2 ≈ 40.7 Hz.

The equations of motion for â, â†, b̂, and b̂† in the Ap-
pendixes are obtained from Eq. (10) and linearized by splitting
the operators into an average plus a fluctuating term, e.g.,
â = 〈â〉 + δâ, where 〈â〉 is related to the average number
of cavity photons, n̄c = |〈â〉|2 [4]. Solving the equations of
motion for the hybridized frequency ω, we obtain two pairs of

FIG. 2. (a) Frequency gap in the presence of DMI of strength 0.06J as a function of the negative detuning around the point of attraction
for different coupling strengths: g = 0.10 MHz, g = 0.12 MHz, and g = 0.14 MHz represented by the purple dotted, orange dashed, and green
solid lines, respectively. Around the exceptional point, attraction dominates a wider range for larger coupling strengths and decreases for lower
coupling strengths. (b) Frequency gap in the presence of DMI of strength 0.06J as a function of the positive detuning. For the same value of
detuning, larger frequency gaps are observed for larger coupling. In all cases, the gap is minimum at resonance and increases as we move away
from resonance. (c) Frequency gap as a function of negative and positive DMI present along the ŷ. At dy = 0 there is no gap. In the presence of
DMI, the frequency gaps increase linearly with increasing magnitude of DMI and the gap is observed to be larger for larger coupling strengths.
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eigenmodes:

ω± =

√√√√2 + 	2
m

2
±
√(

2 − 	2
m

)2
4

− 16g2d̃2
y 	m, (11)

where d̃y = dy/a and g = √
n̄cg0 is the measure of the photon-

enhanced coupling of magnons to photonic modes. g ≈
0.1–1 MHz for a microcavity that can support up to 107–109

photons [1]. Equation (11) shows that, if there was no cou-
pling (i.e., g = 0), there would be crossing of the modes. The
same result is realized in the absence of DMI since dy = 0 and
φ(dy) = 0 do not provide coupling in Eq. (11). The dotted
lines in Fig. 1(b) show crossing of modes in both regions
( > 0 and  < 0) when DMI is absent, and no coupling is
evident. The thick lines show that, in the presence of DMI, de-
generacy is broken and avoided crossing of modes is realized
for positive detuning ( > 0), indicating coherent coupling of
the modes. In the region of negative detuning ( < 0), there
are exceptional points where the eigenfrequencies become
complex and there is coalescence of their real parts resulting
in mode attraction.

In order to illustrate the consequence of the presence of
DMI on resonances, we study the frequency gaps, ω =
ω+ − ω−. In Fig. 2, ω is shown as a function of  for differ-
ent values of g. In the region of negative detuning [Fig. 2(a)],
around the exceptional points, there is no frequency gap and
the attraction regime spans a wider range of detuning for in-
creasing coupling strengths. Away from the exceptional points
we observe a difference in frequencies of the two modes. On
the other hand, in the region of repulsion [Fig. 2(b)], there
exists a frequency gap. This gap can be seen to increase with
increasing coupling strength. Figure 2(c) provides a descrip-
tion of how frequency gaps for positive and negative  depend
on DMI at resonance. The gaps increase with increasing mag-
nitude of DMI and vanish in the absence of DMI. We conclude
that the coupling of the photonic mode to the magnonic mode
is dependent on the DMI strength.

The second geometry considered in this work is the case
where the domain wall interacts with waves propagating along
ŷ and circularly polarized in the x-z plane [Fig. 3(a)]. In
this geometry, the coupling of cavity modes to the domain
wall excitations is realized even in the absence of DMI. We
observe that this coupling is stronger than in the first ge-

FIG. 3. (a) Schematic illustrating the geometry where the effec-
tive magnetic field of the light along ŷ interacts with the domain
wall of width, λ with axis along ẑ in the presence of DMI along
x̂. (b) Hybridized frequency of the cavity modes and magnon modes
of the antiferromagnetic domain wall as a function of the detuning
parameter in the absence of DMI. The red and blue thick lines
indicate coupling between the magnonic and photonic modes in
the absence of DMI. The real part of the two modes attract in the
region of negative detuning and repulsion is observed in the region
of positive detuning. As the magnitude of DMI increases, coupling
between modes reduces until no coupling is achieved. The black
dotted lines show that there is no coupling at the saturated value of
DMI.

ometry considered due to the fact that the electromagnetic
wave is applied in a direction perpendicular to the easy
plane of the domain wall, thus maximizing coupling to the
variation of magnetization. Following a similar approach de-
scribed for the first geometry considered, we obtain two pairs
of eigenmodes:

ω± =

√√√√2 + 	2
m

2
±
√(

2 − 	2
m

)2
4

− 16g2d̃2
x 	m − 2g2π2	(1 + cos 2φ), (12)

where d̃x = d/a. Figure 3(b) shows a plot of the hybridized
frequency in Eq. (12) as a function of the detuning parameter,
.

We discuss what happens when DMI is absent (dx =
0). The thick red and blue lines in Fig. 3(b) indi-
cate that there is coupling even in the absence of DMI.
However, when DMI is present along x̂, the spin orien-
tations are distorted out of the plane of the wall and

we have a nonzero tilt angle which depends on the DMI
strength. This modifies the domain wall width as λdx =√

A/[kz − kx(8Jk2
x − d2

x kzπ2)/(8Jk2
x − d2

x kxπ2)]. The conse-
quence of this is a weaker magneto-optical coupling in the
interaction for both positive and negative values of DMI
and symmetric about dx = 0 up to the saturated value dsat =
4/π

√
Jk2

x /2kz (when crossing of the modes emerges in both
regions). As indicated by the black dotted lines in Fig. 3(b),
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FIG. 4. Effect of DMI of strength 0.06J on the frequency gaps as (a) a function of the negative detuning around the point of attraction for
different coupling strengths: g = 0.10 MHz, g = 0.12 MHz, and g = 0.14 MHz represented by the purple dotted, orange dashed, and green
solid lines, respectively. Around the exceptional point, attraction dominates a wider range for larger coupling strengths and decreases for lower
coupling strengths. (b) Frequency gap in the presence of DMI of strength 0.06J as a function of the positive detuning. For the same value
of detuning, larger frequency gaps are observed for larger coupling. In all cases, the gap is minimum at resonance and increases as we move
away from resonance. (c) Frequency gap as a function of negative and positive DMI present along the ŷ. The values of the coupling strength g
become more important as dx approaches zero. The frequency gap reduces for increasing magnitude of the DMI and vanishes as the saturated
value of DMI is reached.

DMI reduces the coupling strength between the modes until
crossing of the mode is achieved just as dx = dsat.

The dependence of the frequency gaps on the detuning
in the presence of DMI along x is similar to what we ob-
served along y except that the attraction and repulsion are
stronger for the same value of DMI if we compare Figs. 2(a)
and 2(b) to Figs. 4(a) and 4(b). The most striking feature
that distinguishes both geometries is how the frequencies
change with respect to the DMI. Contrary to the previous
geometry, increase in the DMI applied along x leads to
decrease in the frequencies until the gap vanishes at the
saturated value of DMI [Fig. 4(c)]. It is useful to define
the frequency gap ω(d̃x ) in order to see clearly how the
frequency gap depends on DMI at resonance. We calculate
this from Eq. (12): ω(dx ) = ω+ − ω−|	m==1 ≈ 2g{8d̃2

x +
π2[1 + cos 2φ(d̃x )]}. For example, if we assume a coupling
strength of 0.1 MHz at a tilt angle of π/2, then ω ≈
2d̃2

x MHz. This shows that the gap depends on the DMI
constant and may be used to determine the DMI strength for
given values of the coupling strength.

IV. CONCLUSION

We demonstrated that the collective excitation of a Neél
antiferromagnetic domain wall can be realized through

magneto-optical coupling to cavity photons. The resulting
Hamiltonian is of an optomagnonic type, which allows real-
ization of optomechanical instabilities such as level attraction
in a driven system. We find that the presence of DMI enables
coupling between a domain wall and cavity photons in a
geometry where there is no coupling otherwise. This opens a
possibility for estimating DMI in antiferromagnetic materials
by measuring the interaction of antiferromagnetic resonances
to optical modes in an optical cavity. This approach is not
limited to a single domain wall dynamics but applicable to
other one-dimensional textures like chiral soliton lattice in
ferromagnets and antiferromagnets and can, in principle, be
extended to antiferromagnetic spin textures in two spatial
dimensions such as skyrmions and skyrmion lattices, which
remains a future problem.
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APPENDIX A

1. Domain wall configuration

Our model begins with a one-dimensional (1D) Heisenberg antiferromagnetic chain, which contains an even number of lattice
sites. The 1D AFM chain can be described by the Hamiltonian which comprises the exchange coupling between spin vectors on
two sublattices and uniaxial anisotropies in the ẑ and x̂ directions:

W =
2N−1∑
i=0

[J �Si · �Si+1 − Kx(�Si,x ) − Kz(�Si,z )]. (A1)

We split the chain into lattice cells with sublattices A and B:

W =
N−1∑
i=0

[
J
(�Si

A · �Si
B + �Si

B · �Si+1
A

)− Kx

2

((�Si
A · x̂

)2 + (�Si
B · x̂

)2)− Kz

2

((�Si
A · ẑ

)2 + (�Si
B · ẑ

)2)]
. (A2)
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Next, we define the total magnetization �mi and staggered magnetization �li of the sublattices, respectively, as

�mi = �Si
A + �Si

B

2S
, (A3a)

�li = �Si
A − �Si

B

2S
, (A3b)

subject to the constraints �m · �l = 0 and �m2 + �l2 = 1.
From Eqs. (A3a) and (A3b),

�Si
A = S( �mi + �li ), (A4a)

�Si
B = S( �mi − �li ). (A4b)

By substituting Eqs. (A4a) and (A4b) into Eq. (A2), the Hamiltonian reduces to a sum over the antiferromagnetic lattice
points and no longer sums over spins:

W =
N−1∑
i=0

[
JS2(( �mi + �li )( �mi − �li ) + ( �mi − �li)( �mi+1 + �li+1)) − KxS2

2

(
( �mi + �li )2

x + ( �mi − �li )2
x

)− KzS2

2

(
( �mi + �li )2

x + ( �mi − �li )2
z

)]
,

(A5)

W =
N−1∑
i=0

{JS2( �mi − �li )[( �mi + �li ) + ( �mi+1 + �li+1)] − KxS2[(mi,x )2 + (li,x )2] − KzS
2[(mi,z )2 + (li,z )2]}. (A6)

We introduce the following identities to simplfy Eq. (A6) [38]:

2 �mi �mi+1 = �m2
i + ( �mi+1)2 − ( �mi+1 − �mi )

2, (A7a)

�mi�li+1 − �li �mi+1 = �mi(�li+1 − �li ) − �li( �mi+1 − �mi ). (A7b)

Substituting (A7a) and (A7b) into (A6) and working through the algebra carefully, we arrive at

W =
N−1∑
i=0

{
JS2

[
2
(
�m2

i − �l2
i

)+ �mi(�li+1 − �li ) − �li( �mi+1 − �mi ) + 1

2
[(�li+1 − �li )2 − ( �mi+1 − �mi )

2]

]

− KxS2( �m2
i,x + �l2

i,x

)− KzS
2( �m2

i,z + �l2
i,z

)}
. (A8)

We move to the continuum model:

W =
N−1∑
i=0

{
JS2

[
2
(
�m2

i − �l2
i

)+
(

�mi
∂�li
∂z

− �li ∂ �mi

∂z

)
a0 + a2

0

2

((
∂�li
∂z

)2

−
(

∂ �mi

∂z

)2
)]

− KxS2( �m2
i,x + �l2

i,x

)− KzS
2( �m2

i,z + �l2
i,z

)}
,

(A9)
where a0 is the length of the antiferromagnetic unit cell and is equal to twice the nearest neighbor spacing in the linear chain.
Converting the sums to integrals,

W =
∫ Lz

0

dz

a0

{
2JS2( �m2 − �l2) + JS2a0

[
�m · ∂�l

∂z
− �l · ∂ �m

∂z

]
+ JS2a2

0

[(
∂�l
∂z

)2

+
(

∂ �m
∂z

)2
]

− KxS2[( �m · x̂)2 + (�l · x̂)2] − KzS
2[( �m · ẑ)2 + (�l · ẑ)2]

}
. (A10)

Using the constraints �m · �l = 0 and �m2 + �l2 = 1, which give �l2 = 1 − �m2, and recognizing that ∂
∂z ( �m · �l ) = �m · ∂�l

∂z + �l · ∂ �m
∂z

leads to �m · ∂�l
∂z = −�l · ∂ �m

∂z . The energy thus becomes

W =
∫ ∞

−∞

dz

a0

{
a

2
| �m|2 + A

2

[(
∂ �m
∂z

)2

+
(

∂�l
∂z

)2]
+ L

(
�m · ∂�l

∂z

)
− kx

2
[( �m · x̂)2 + (�l · x̂)2] − kz

2
[( �m · ẑ)2 + (�l · ẑ)2]

}
, (A11)

where a = 8JS2 and A = a2
0JS2 are the homogeneous and nonhomogeneous exchange constants, respectively, L = 2a0JS2 is the

parity-breaking term [24,38], and the anisotropies are kz = 2KzS2 and kx = 2KxS2. We describe the dynamics of the AFM in the
exchange approximation (J � K) and also consider the slowly varying AFM domain wall in our description of the staggered
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magnetization such that | �m|2 � |�l|2. In this approximation, (∂ �m/∂z)2 = ( �m2/�l2)(∂�l/∂z)2 → 0 and we neglect the anisotropic
terms proportional to ( �m · x̂)2 and ( �m · ẑ)2. We arrive at

W =
∫ ∞

−∞

dz

a0

[
a

2
| �m|2 + A

2

∣∣∣∣ ∂�l
∂z

∣∣∣∣
2

+ L

(
�m · ∂�l

∂z

)
− kx

2
(�l · x̂)2 − kz

2
(�l · ẑ)2

]
, (A12)

which when combined with the DMI terms gives Eq. (2) in the main text:

Hdw =
∫ ∞

−∞

dz

a0

[
a

2
| �m|2 + A

2

∣∣∣∣ ∂�l
∂z

∣∣∣∣
2

+ L

(
�m · ∂�l

∂z

)
− kz

2
(�l · ẑ)2 − kx

2
(�l · x̂)2 + �d ·

(
∂�l
∂z

× �l
)

+ �d0 · ( �m × �l )

]
. (A13)

Having obtained the Hamiltonian of the system, we proceed to derive the Lagrangian for the system by introducing the Berry
phase term: LB = 2h̄S �m(∂�l/∂t × �l ). The Lagrangian L = LB − Hdw is

Ldw =
∫ ∞

−∞

dz

a0

[
ρ �m ·

(
�l × ∂�l

∂t

)
− a

2
| �m|2 − A

2

∣∣∣∣ ∂�l
∂z

∣∣∣∣
2

− L

(
�m · ∂�l

∂z

)
+ kz

2
(�l · ẑ)2 + kx

2
(�l · x̂)2 − �d ·

(
∂�l
∂z

× �l
)

− �d0 · ( �m × �l )

]
,

(A14)
where ρ = 2h̄S. We can exclude �m from the Lagrangian by minimizing Eq. (A14) with respect to �m. The result of the
minimization is given in Eq. (3) of the main text:

�m = ρ

a

(
�l × ∂�l

∂t

)
− L

a

(
∂�l
∂z

)
+ 1

a
�d0 × �l. (A15)

Equation (3) implies that �m is a slave variable to �l [24,38]. Substituting this result into (A14) and simplifying, we obtain

Ldw =
∫ ∞

−∞

dz

a0

[
ρ2

2a

(
∂�l
∂t

)2

+ 3

2a
( �d0 × �l )2 + ρ

a

(
�l × ∂�l

∂t

)
· (�l × �d0) − A

2

∣∣∣∣ ∂�l
∂z

∣∣∣∣
2

+ kz

2
(�l · ẑ)2 + kx

2
(�l · x̂)2 − �d ·

(
∂�l
∂z

× �l
)]

,

(A16)
where we have neglected terms proportional to the topological term, L. We recognize that ( �d0 × �l )2 = d2

0 l2 − ( �d0 · �l )2 =
const − ( �d0 · �l )2, which will not contribute to the equations of motion. Also, we neglect the total derivatives associated with
the homogeneous DMI as they do not contribute to the equations of motion [24]. This leaves us with a Lagrangian which has no
dependence on the total magnetization, �m:

Ldw =
∫ ∞

−∞

dz

a0

[
ρ2

2a

(
∂�l
∂t

)2

− A

2

∣∣∣∣ ∂�l
∂z

∣∣∣∣
2

+ kz

2
(�l · ẑ)2 + kx

2
(�l · x̂)2 − �d ·

(
∂�l
∂z

× �l
)]

. (A17)

For the static configuration, we set ∂�l/∂t = 0 and parametrize �l by polar and azimuthal angles in spherical coordinates: �l =
(sin θ cos φ, sin θ sin φ, cos θ ). The equivalent Hamiltonian of the system given by Eq. (5) in the main text is

Hdw =
∫ ∞

−∞

dz

a0

[
A

(
∂θ

∂z

)2

− kx sin2 θ cos2 φ − kz cos2 θ − dx

(
∂θ

∂z

)
sin φ + dy

(
∂θ

∂z

)
cos φ

]
. (A18)

APPENDIX B

1. Dzyalonshinskii-Moriya interaction (DMI)

The DMI between two atomic spins Si and Si+1 can be expressed as a vector product formed by the magnetic moments Si

of two magnetic ions,

HDMI =
∑

i

(−1)i �D · (�Si × �Si+1). (B1)

When written in terms of the nearest neighboring spins on the sublattices, we have

HDMI =
∑

n

�D · (�SA
n × �SB

n

)+ �D(�SA
n+1 × �SB

n

)
,

where �SA = �m + �l and �SB = �m − �l . Substituting these into the previous expression and doing some lines of vector algebra, we
arrive at the expression

HDMI =
∑

n

{4 �DS2 · ( �mn × �ln) − �DS2[ �mn+1 × �mn − �ln+1 × �ln − ( �mn+1 − �mn) × �ln + (�ln+1 − �ln) × �mn]}.
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In the continuum limit,

HDMI =
∫

dz

a0

{
�d0 · ( �m × �l ) −

[
�d ·
(

∂ �m
∂z

× �m
)

− �d ·
(

∂�l
∂z

× �l
)

− �d ·
(

∂ �m
∂z

× �l
)

+ �d ·
(

∂�l
∂z

× �m
)]}

, (B2)

where �d0 = 4S2 �D and �d = a0S2 �D. Integrating by parts, we find that �d · ( ∂ �m
∂z × �l ) = �d · ( ∂�l

∂z × �m) and thus the last two terms
cancel out. Neglecting the second term, we are arrive at

HDMI =
∫

dz

a0

{
�d0 · ( �m × �l ) + �d ·

(
∂�l
∂z

× �l
)}

. (B3)

The Lagrangian of the system which includes the DMI term in Eq. (B3) is varied with respect to �m to obtain an expression for �m
as a slave variable to �l which depends on �d0, �l , and the spatial and temporal derivatives of �l:

�m = ρ

a

(
�l × ∂�l

∂t

)
− L

a

(
∂�l
∂z

)
+ 1

a
�d0 × �l, (B4)

where a is the homogeneous exchange constant.

2. DMI-dependent equations of motion

The equations of motion in the presence of DMI are given. First, we consider the case where electromagnetic waves
propagating along x̂ couple to the wall position with DMI present in the ŷ direction. The equations of motion in frequency
space⎛
⎜⎜⎜⎝

−i(ω − 	m) 0 −g(π	m sin φ − 2idy) −g(π	m sin φ − 2idy)

0 −i(ω + 	m) −g(π	m sin φ + 2idy) −g(π	m sin φ + 2idy)

g(π	m sin φ + 2idy) −g(π	m sin φ − 2idy) −i(ω − ) 0

−g(π	m sin φ + 2idy) g(π	m sin φ − 2idy) 0 −i(ω + )

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

b̂
b̂†

δâ
δâ†

⎞
⎟⎟⎠ =

⎛
⎜⎝

0
0

−iε
iε∗

⎞
⎟⎠.

(B5)
In this configuration, the propagating wave is in the hard axis of the wall and results in no magneto-optical coupling. We found
that, for DMI to play a role, it must be perpendicular to both the wall direction (ẑ) and the direction of propagating wave (x̂).
Therefore, we consider DMI present along ŷ. The presence of DMI breaks the degeneracy which occurs at resonance and allows
for magneto-optical coupling which depends on the y component of the DMI vector.

The second geometry considered is the one in which an electromagnetic wave propagating along ŷ couples to the wall position
with DMI present in the x̂ direction. The electromagnetic wave is circularly polarized in the easy plane of the domain wall. As
a result, there is a strong coupling. The plot of hybridized frequency against the detuning parameter is shown in Fig. 3(b). We
draw the conclusion that in this geometry, whether DMI is present or not, there is coupling of photons to magnons; however, the
presence of DMI leads to modulation of the frequencies. The equation of motion is given in matrix form:⎛
⎜⎝

−i(ω − 	m) 0 g(π	m cos φ − 2idx ) g(π	m cos φ − 2idx )
0 −i(ω + 	m) g(π	m cos φ + 2idx ) g(π	m cos φ + 2idx )

−g(π	m cos φ + 2idx ) g(π	m cos φ − 2idx ) −i(ω − ) 0
g(π	m cos φ + 2idx ) −g(π	m cos φ − 2idx ) 0 −i(ω + )

⎞
⎟⎠
⎛
⎜⎜⎝

b̂
b̂†

δâ
δâ†

⎞
⎟⎟⎠ =

⎛
⎜⎝

0
0

−iε
iε∗

⎞
⎟⎠.

(B6)
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