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Hydrodynamic theory of vorticity-induced spin transport
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Electron spin transport in a disordered ferromagnetic metal is theoretically studied from the hydrodynamic
viewpoint, focusing on the role of electron vorticity. The spin-resolved momentum flux density of electrons
is calculated microscopically, taking account of the spin-orbit interaction and uniform magnetization, and the
expression for the spin motive force is obtained as the linear response to a driving electric field. It is shown that
the spin-resolved momentum flux density and motive force are characterized by troidal moments, vector products
of the applied external electric field and the spin polarization or magnetization, which act as effective driving
fields when the anomalous or spin Hall effects are taken into account. The spin-vorticity and magnetization-
vorticity couplings are shown to arise naturally as conservative forces driven by the toroidal moments, and
nonconservative forces are also found to exist. Spin accumulation induced by the electron flow is calculated
and vorticity-induced torque and spin relaxation are discussed. The vorticity-induced torque, a linear effect of
the spin-orbit interaction, is argued to be larger than the conventional relaxation torques acting on magnetization
structures such as nonadiabatic (β) current-induced torque. The direct and inverse spin Hall effects and spin-orbit
torque are discussed in the context of spin-vorticity coupling.
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I. INTRODUCTION

Electron transport in magnetic metals has been studied in
various systems. Technologically, the most successful effect
would be the giant magnetoresistance (GMR) effect discov-
ered in magnetic layers [1]. GMR effects in multilayers were
theoretically described based on a two-current electron model
derived from the Boltzmann equation for the conduction elec-
trons with spin up and down [2]. Mutual effects of magnetic
structures and electron transport have been argued in the
context of magnetoresistance and spin-transfer torque [3–7].
In previous works on spin transport, effects of nonuniform
magnetization were focused on, while current density was
treated as uniform. In reality, however, the current is inho-
mogeneous at the edges, inducing local vorticity of electron
flow. Vorticity of current density j, ωe ≡ ∇× j, carries angular
momentum and can couple to the magnetic field and spin,
affecting local spin transport. In fact, an electron’s vorticity
was shown theoretically to couple to electron spin via a quan-
tum relativistic effect called the spin-vorticity coupling [8],
and various phenomena induced by the coupling have been
discussed recently [9–12].

A. Spin, magnetization, and vorticity

Spin-vorticity coupling of electrons is represented by an
energy proportional for the spin s and vorticity ωe, Esv =
−ζsvs · ωe, where ζsv is a coefficient. For a macroscopic
number of spins as an ensemble, the coupling reduces to
a magnetization(M)-vorticity coupling, EMv = −ζMvM · ωe,
where ζMv is a coefficient. The coupling indicates the equiv-

alence of mechanical rotation and magnetization, which was
argued in 1915 by Barnett [13] and Einstein and de Haas [14].
The spin-vorticity coupling was phenomenologically argued
in the context of hydrodynamic coefficients by Snider and
Lewchuk [15], and vorticity was argued to act as a source
for spin density. In the recent context of spintronics, the spin-
vorticity coupling was derived from the Dirac equation in
a rotating frame by Matsuo et al. [8], and mechanical spin
current generation effect was argued [16]. The spin-vorticity
coupling induces a force on the electron spin (spin motive
force) proportional to ∇(s · ωe ). This force is theoretically
identified below in the hydrodynamic approach, calculating
the momentum flux density [see Eqs. (23) and (24)]. Experi-
mental evidence of the effect was reported in mercury liquid
[17]. In Ref. [11], microscopic calculation of stress tensors
for electron spin was carried out in the nonmagnetic case and
spin-vorticity coupling was shown to arise from the spin-orbit
interaction.

It was demonstrated recently [18] that the spin Hall effect,
an electric generation of spin current [19,20], is explained by
the spin-vorticity coupling. In fact, the spin density induced
by the spin Hall effect in a clean conductor was shown to be

s = λshω, (1)

where ω ≡ ∇×E is a vorticity of the applied electric field
and λsh is a constant arising from the spin-orbit interaction
[18]. This relation is equivalent to the spin-vorticity coupling
at the lowest order in the spin-orbit interaction due to the local
relation between j and E.

The effect of an external magnetic field on electron fluid
was studied theoretically and the Hall viscosity was discussed
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in Refs. [21,22]. The Hall viscosity, the Hall component of the
viscosity tensor, ηxy, represents a force f H = ηxyB̂×∇2 j (B̂ is
the direction of the magnetic field). Using ∇2 j = −∇×ωe +
∇(∇ · j) and focusing on the effect of vorticity ωe, the diag-
onal component of the corresponding momentum flux density
πH

i j ( f H
i = −∇ jπ

H
i j ) turns out to be π

H(diag)
i j = δi jηxy(B̂ · ωe );

namely, the Hall viscosity arises from the magnetic field-
vorticity coupling.

Therefore, previous studies indicate that a magnetic field,
a magnetization, and a spin couples to the electron vorticity
in the same manner as is naturally expected from symmetry
[15].

B. Ohmic electron fluid and scope of the paper

Vorticity arises generally near surfaces and interfaces
where longitudinal flow is suppressed, and vorticity-induced
effects are expected to dominate various transport properties
in thin films and mesoscopic systems. For discussing vorticity
effects, hydrodynamic equations are useful to identify the
forces due to inhomogeneity of the flow. Electron transport in
metals with disorder is governed by relaxation force instead
of viscosity force in conventional fluids. Coarse-grained be-
haviors of such disordered metals are described in terms of
an ohmic fluid [23]. A thorough study of two-dimensional
electron fluid in the viscous and ohmic regimes was carried
out focusing on the boundary effects in Ref. [24]. Hydro-
dynamic description of ohmic electron fluid was employed
to describe angular momentum generation in spin transport
[11,25], chiral electron systems, and anomalous Hall effect
[26,27]. Hydrodynamic equations are conventionally repre-
sented in terms of current density j. In ohmic fluids, electric
current density is locally related to a driving electric field E as
j = σeE, where σe is a conductivity tensor. Using the local re-
lation, the hydrodynamic equations can thus be represented in
terms of the driving field. In the driving-field representation,
hydrodynamic coefficients are directly related to microscopic
response functions to the applied field, and are systematically
calculable by use of a microscopic linear response theory
[26,28].

In this paper, we study spin transport effects from the
hydrodynamic viewpoint, focusing on the effects of vorticity.
We calculate on microscopic grounds the spin-resolved mo-
mentum flux density and spin motive force as a linear response
to a spatially inhomogeneous applied electric field.

The spin-vorticity coupling potential induces a force pro-
portional to its gradient, ∇(s · ω). From the symmetry, another
form of the force (s · ∇)ω ≡ f nc is allowed. Noting ∇ · ω =
0, f nc = ∇×(ω×s) is a nonconservative force, which is al-
lowed if there is viscosity or friction. We shall demonstrate
that such a nonconservative force indeed exists in the present
electron spin fluid. In the context of magnetization-vorticity
coupling, the same form of a nonconservative force with s
replaced by magnetization was identified in Ref. [27].

The spin-vorticity coupling indicates that there are current-
induced torques arising from vorticity of current in ferromag-
nets. The torque arises from the inhomogeneity of current
density instead of inhomogeneity of magnetization for con-
ventional current-induced torques argued in the context of
spin-transfer torque [7,29]. The effect would be localized near

FIG. 1. Two scenarios for the spin Hall-induced spin-orbit torque
acting on magnetization M induced by an applied current in a bilayer
of ferromagnet (F) and nonmagnetic metal (NM). (a) Conventional
picture explaining the torque in terms of spin current ( js) generation
in NM. (b) In the spin-vorticity picture, spin accumulation is gener-
ated directly by the vorticity ωe created near the interface as a result
of suppression of current j. They are equivalent, as was argued in
Ref. [18].

surfaces and interfaces and is expected to be enhanced by
introducing artificial roughness or inhomogeneous structures.
We shall demonstrate that the vorticity-induced torque arises
theoretically at the linear order of the spin-orbit interaction,
while conventional current-induced nonadiabatic torque (β
torque) is the second-order effect [7,30]. Moreover, the length
scale of vorticity can be controlled by artificial notches and it
can be reduced to the order of the electron mean-free path
at the smallest. In contrast, the length scale of magnetiza-
tion structures such as domain wall width is determined by
material constants, the exchange and anisotropy energies. In
disordered metal with smaller vorticity size compared to the
domain wall width, therefore, the vorticity-induced torque
is expected to dominate the surface spin-orbit torques. The
vorticity-induced torque has a vanishing bulk component,
while it acts in thin films as an alternating torque, resulting
in a spin relaxation.

Equivalence of spin Hall effect and spin-vorticity coupling,
Eq. (1), pointed out in Ref. [18] provides an alternative view
for the spin Hall-induced spin-orbit torque in bilayers of a
ferromagnet and a nonmagnetic metal (NM) [29] (Fig. 1). A
conventional picture explains the torque as a result of spin cur-
rent generation in NM, which generates the spin accumulation
at the interface [Fig. 1(a)]. In view of spin-vorticity coupling,
the torque is due to the spin accumulation driven directly by
electron vorticity near the interface formed as a result of a
gradient of current [Fig. 1(b)]. As pointed out in Ref. [18],
these pictures are physically equivalent.

For theoretical estimation of spin-orbit torque at interfaces,
calculation of current-induced spin density has been employed
phenomenological [31] and the first-principles [32] calcula-
tions. In Ref. [32], the response function of electron spin
density to the applied current was calculated numerically for
the case of Co/Pt and Mn/W interfaces, but the role of vortic-
ity was not mentioned. The spin-vorticity coupling, Eq. (1),
corresponds to the long-wavelength limit (the first order of
derivative expansion) of the response function of spin and
current.

II. ANOMALOUS HALL FLUID

We first revisit electron transport in a ferromagnetic
metal with a uniform magnetization, i.e., the anomalous Hall
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system, studied from the hydrodynamic viewpoint in
Ref. [27]. In that paper, the electron momentum flux den-
sity was calculated diagrammatically in the presence of a
uniform magnetization at the linear response to the applied
electric field treated as nonuniform. It was shown that there
is a contribution to the viscosity coefficient arising from a
coupling between the magnetization and vorticity of electron
velocity, i.e., the magnetization-vorticity coupling. In terms of
applied field E, the coupling potential is −ζ̃ f

MM · ω, where M
is the magnetization vector and ω ≡ ∇×E is a vorticity of the
applied field and ζ̃ f

M is a coefficient. The force density due to
the coupling is

f Mω = ζ̃ f
M∇(M · ω). (2)

Such a coupling, regarded as a limit of spin-vorticity coupling
where spin has a finite expectation value, has been argued
from phenomenological grounds [15] and derived microscop-
ically [27]. It is consistent with the Hall viscosity under a
uniform external magnetic field studied in Ref. [21].

Here we present a phenomenological argument to derive
the magnetization-vorticity coupling taking account of the
anomalous Hall effect in the conventional fluid theory [33,34].
Fluid dynamics is described by the momentum flux density,
πi j , which is an expectation value 〈p̂iv̂ j〉 of momentum and
velocity operators, p̂ and v̂, respectively (i, j are spatial di-
rections). Its divergence is the force density for the fluid,
fi = −∇ jπi j . In nonmagnetic fluids with high symmetry, πi j

is written in terms of current density j as πi j = ζ0δi j (∇ ·
j) + η0[∇i j j + ∇ j ji], where ζ0 and η0 are viscosity constants
[33]. The momentum flux density may have an antisymmetric
component, π a

i j , which is written generally as π a
i j = εi jkak ,

where a is a vector invariant by the parity inversion (r → −r).
Without broken symmetry, vorticity ωe(= ∇× j) is allowed
as vector a, resulting in an antisymmetric component π a

i j =
ξ0

2 (∇i j j − ∇ j ji ) with a constant ξ0 [34]. The electron current
density is proportional to the applied field as j = σeE, where
σe is the diagonal conductivity in the case of high symmetry.
The momentum flux density in this case is therefore [33,34]

πi j = ζ δi j (∇ · E ) + η[∇iE j + ∇ jEi] + εi jkak, (3)

with ζ ≡ ζ0σe and η ≡ η0σe and a = ξω (ξ ≡ ξ0σe).
In the presence of magnetization, the anomalous Hall ef-

fect tends to distort electron motion toward a perpendicular
direction, i.e., j is modified to be j + αM (M̂× j), where αM is
a constant and M̂ ≡ M/|M|. This means that anomalous Hall
fluid has another driving field M̂×E besides the electric field,
which is a vector called a troidal moment:

M̂ × E ≡ T M̂ . (4)

The troidal moment induces new components of the momen-
tum flux density,

πM
i j = ζMδi j (∇ · T M̂ ) + ηM[∇iTM̂, j + ∇ jTM̂,i] + εi jkaM,k,

(5)

in the same manner as an electric field [Eq. (3)]. A possible
vector aM in the anomalous Hall fluid is [27]

aM = ξω
M (M̂ × ω) + ξ v

MM̂(∇ · E ) + ξT
M (∇ × T M̂ ), (6)

where ξω
M , ξ v

M , and ξT
M are coefficients representing the anoma-

lous Hall component of vorticity, volume change, and troidal
moment, respectively. In the microscopic calculation in the
ohmic regime in Ref. [27], ξω

M and ξ v
M arise from the side-

jump process, while ξT
M vanishes. Using ∇×T M̂ = M̂(∇ ·

E ) − (M̂ · ∇)E for the present case of uniform M̂, differ-
ent representations of aM are possible. In metals, ∇ · E = 0,
and ∇×T M̂ = −(M̂ · ∇)E, resulting in aM = ξω

M∇(M̂ · E ) +
ξ̃T

M (∇×T M̂ ), where ξ̃T
M ≡ ξT

M + ξω
M . The first term ξω

M has no
physical effect because its force density vanishes (∇×∇ = 0)
and is neglected. The antisymmetric component is therefore
written simply as a rotation of the troidal moment,

aM = ξ̃T
M (∇ × T M̂ ), (7)

in the same manner as Eq. (3) for the electric field. The force
density calculated from Eq. (5) in metal thus reads

fM,i ≡ −∇ jπ
M
i j = −ζ

f
M∇i(∇ · T M̂ ) − η

f
M∇2TM̂,i (8)

where ζ
f

M ≡ ζM + ηM + ξ̃T
M , η

f
M ≡ ηM − ξ̃T

M . The result is
consistent with that obtained without using T M̂ in Ref. [27]. In
the case of uniform magnetization, the divergence of a troidal
moment is the magnetization-vorticity coupling:

∇ · T M̂ = −(M̂ · ω). (9)

Furthermore, using ∇2T M̂ = −∇(M̂ · ω) + (M̂ · ∇ )ω, the
force density is written in terms of vorticity as

f M = ζ̃
f

M∇(M̂ · ω) + ξ̃ ω
M (M̂ · ∇)ω, (10)

where ζ̃
f

M ≡ ζ
f

M + η
f
M and ξ̃ ω

M ≡ ξω
M − η

f
M . The first term

on the right-hand side of Eq. (10) is a conservative force
arising from the magnetization-vorticity coupling, while the
second term is a nonconservative force, ξ̃ ω

M[∇×(ω×M̂)].
Equation (10) was derived by a microscopic calculation in
Ref. [27], although the troidal moment explanation was not
provided there. The two contributions, conservative and non-
conservative, to the vorticity-induced motive force leads to an
anisotropic motive force with respect to the direction of M̂
(see Sec. III A).

III. SPIN-RESOLVED MOMENTUM FLUX DENSITY
AND SPIN MOTIVE FORCE

In this section, we consider the spin transport, i.e., the
spin-resolved hydrodynamic equation for electrons, in fer-
romagnets. Although the method employed is different, the
study here is essentially an extension of Refs. [11,27] to a
ferromagnetic spinful case. The momentum flux density is
defined spin dependent as π s,α

i j ≡ 〈p̂iv̂ jσα〉, where σα is the
Pauli matrix (α denotes spin direction). The time derivative of
the spin-resolved momentum density

pα
i ≡ 〈p̂iσα〉 (11)

is represented in terms of π s,α
i j as

ṗα
i = −∇ jπ

s,α
i j . (12)

We introduce a unit vector ŝ to represent the spin direction as

πs
i j ≡ (

π s,x
i j , π

s,y
i j , π s,z

i j

) ≡ ŝπ s
i j, (13)

where π s
i j ≡ [(π s,x

i j )2 + (π s,y
i j )2 + (π s,z

i j )2]1/2.
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FIG. 2. Parameterization of spin vectors, s⊥ ≡ s − M̂(M̂ · s) and
s̃ ≡ s × M̂.

The effect of spin (called the internal angular momentum
in Ref. [15]) on the electron fluid was theoretically discussed
on a symmetry basis in Ref. [15], where possible contributions
of the total (spin-neutral) momentum flux density when spin
is present were argued.

Here we represent the momentum flux density as spin
polarized, introducing a spin direction ŝ. The spatial derivative
of the spin-resolved momentum flux density represents a force
acting on spin polarization, i.e., the spin motive force [35].
The spin motive force is a convenient quantity to discuss spin
current generation.

One needs, however, to understand that spin-resolved
quantities pα

i and πs
i j are not directly measurable and are

not physical observables. This is because the flux density πs
i j

is not conserved and cannot be defined uniquely, as is in
the case of spin current [36]. In fact, π s,α

i j is an expectation
value of 〈p̂iv̂ jσα〉, i.e., the velocity (v̂) of momentum and
spin [see Eqs. (29) and (30)], while its expression depends
on the ordering of the three operators p̂i, v̂ j , and σα that
are noncommutative and is thus not unique. Like in the case
of spin Hall effect, predictions for experiments need to be
provided in terms of physical spin accumulation or charge
current by solving the hydrodynamic Eq. (12). Here in this
paper, we discuss spin-resolved momentum flux density and
spin motive force for understanding roles of vorticity on the
spin transport and leave explicit calculations of hydrodynamic
equations as future work. Spin density calculation is carried
out independently from the momentum flux density analysis
in Sec. IV.

A. Phenomenological argument

Let us first proceed phenomenologically, extending the
argument in Sec. II. We first focus on the symmetric (s)
component, π

s(s)
i j . Based on the expression for the anomalous

Hall system [27] [Eq. (5)], we expect an adiabatic component
having a spin polarization ŝ along the magnetization as (η‖

s
and ζ ‖

s are coefficients)

π
s(s)‖
i j = (ŝ · M̂)

(
ζ ‖

s (M̂ · ω)δi j + η‖
s (∇iTM̂, j + ∇ jTM̂,i )

)
. (14)

As for the nonadiabatic contribution due to perpendicular spin
polarization, we introduce (Fig. 2)

ŝ⊥ ≡ ŝ − M̂(M̂ · ŝ), (15)

whose contribution is

π
s(s)⊥
i j = ζ⊥

s (ŝ⊥ · ω)δi j + η⊥
s (∇iTŝ⊥, j + ∇ jTŝ⊥,i ), (16)

where

T ŝ⊥ ≡ ŝ⊥ × E (17)

is a troidal moment due to the spin polarization. Another spin
polarization perpendicular to M̂ is

s̃ ≡ ŝ × M̂, (18)

which is induced by an anomalous Hall effect in the direction
perpendicular to M, and its contribution reads

π
s(s)⊥′
i j = ζ⊥′

s (s̃ · ω)δi j + η⊥′
s (∇iTs̃, j + ∇ jTs̃,i ), (19)

where

T s̃ ≡ s̃ × E (20)

and ζ⊥′
s and η⊥′

s are constants.
Antisymmetric contributions with spin direction α, π s,α

i j ≡
εi jkas,α

k , are similarly argued. We consider the case of ∇ · E =
0. As we saw in Eq. (7), only the troidal moment contribution
survives in this case. Besides the adiabatic component propor-
tional to Eq. (7), we therefore have (with coefficients ξTŝ

s and
ξTs̃

s )

as,α
k = ξTŝ

s (∇ × T ŝ) + ξTs̃
s (∇ × T s̃). (21)

(Here coefficients are defined using ŝ instead of ŝ⊥, i.e., ne-
glecting the adiabatic component.)

Due to Eq. (12), a spin-resolved force (a spin motive force)
acting on the electron spin polarized along direction α is

f α
s,i ≡ −∇ jπ

s,α
i j ≡ ŝ f s,i. (22)

As seen in Eq. (10) for the case of anomalous Hall fluid, the
motive force when ∇ · E = 0 is written in terms of vorticity.
The adiabatic contribution parallel to M̂ is essentially the
same as the anomalous Hall case [Eq. (10)], i.e.,

f
‖
s = (ŝ · M̂)

[
ζ̃ f ,‖

s ∇(M̂ · ω) + ξ̃ ω,‖
s (M̂ · ∇)ω

]
, (23)

with constants ζ̃
f ,‖

s and ξ̃ ω,‖
s , while other contributions lead to

motive force depending on the spin polarization as

f
⊥
s = ζ̃ f ,⊥

s ∇(ŝ · ω) + ξ̃ ω,⊥
s (ŝ · ∇)ω + ζ̃ f ,⊥′

s ∇(s̃ · ω)

+ ξ̃ ω,⊥′
s (s̃ · ∇)ω. (24)

The contributions represented by coefficients ζ̃
f ,⊥

s and ζ̃
f ,⊥′

s

are conservative forces due to coupling potential to vortic-
ity, while ξ̃ ω,⊥

s and ξ̃ ω,⊥′
s represent nonconservative forces.

Interestingly, conservative forces induce spin polarization (ŝ
or s̃) along ω and force along the gradient of ω, while the
noncoservative ones induce force and spin in the direction of
ω and the gradient of ω, respectively.

Let us consider electron fluid in a thin film as in Fig. 3 and
see the contributions of ζ̃

f ,⊥
s and ξ̃ ω,⊥

s connecting vorticity
and ŝ. The driving field E includes all the forces acting on the
electrons, such as friction force from the boundary, besides the
applied external electric field. The field E is therefore locally
proportional to the local fluid current j neglecting the higher
order contributions of the spin-orbit interaction, and is sup-
pressed near the boundary as in Fig. 3 [27]. This suppression
of fluid velocity in the z direction leads to a vorticity along
the y direction, ωy = ∂zEx. The vorticity changes signs on the
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FIG. 3. A schematic picture showing spin motive forces of
Eq. (24) in a thin film in the xy plane with applied current along the
x direction. The contributions ζ̃ f ,⊥

s and ξ̃ ω,⊥
s connecting vorticity and

ŝ are depicted. At the boundaries, the flow vanishes, meaning that
total effective field E including the applied field and friction force
from the boundary vanishes due to proportionality of j and E. The
derivative ∂zEx is therefore finite, namely, vorticity ω emerges near
the boundary along the y direction. The vorticity has opposite signs
on the upper and lower planes, resulting in ∂zωy. The contribution
of conventional conservative spin-vorticity coupling, the term ζ̃ f ,⊥

s ,
thus induces a spin polarization (short arrows with sphere) along
the y direction, and motive force along the z axis (blue arrows).
The nonconservative contribution, ξ̃ ω,⊥

s , in contrast, induces a spin
polarization along the z direction, and motive force along the y axis
(magenta arrows).

upper and lower boundaries and changes along the z direction.
For electron spin along +y direction, the conservative spin
motive force is along the z axis as f ζ

z = ζ̃
f ,⊥

s ∇zωy, i.e., is in
the −z direction (if ζ̃

f ,⊥
s > 0), while it is +z direction for the

electron spin pointing in the −y direction. Thus spin current
along the z axis is induced by the spin-vorticity coupling as
argued in previous works [9]. The nonconservative motive
force described by the term ξ̃ ω,⊥

s , which is mainly from the
asymmetric viscosity, acts in the −y (+y) direction for spin
polarization along +z (−z) direction, inducing a spin cur-
rent in the y direction (Fig. 3). The contribution ζ̃

f ,⊥′
s and

ξ̃ ω,⊥′
s induce orthogonal spin polarizations to ζ̃

f ,⊥
s and ξ̃ ω,⊥

s ,
respectively. The adiabatic contributions and anomalous Hall
contributions are discussed by replacing ŝ by M̂ in the above
argument.

In the next section, we carry out microscopic calculations
on a simplified model to confirm the above argument.

B. Microscopic derivation

We first derive the definition of the spin-resolved mo-
mentum flux density by deriving a hydrodynamic equation
for the time-derivative of momentum density, ṗ, following
Refs. [26,27]. In the present case with spin, spin-resolved
momentum density, defined as

pα
i ≡ 〈c† p̂iσαc〉, (25)

is considered, where p̂i and σα denote the operators for
momentum and spin (i and α represents direction), respec-
tively, 〈〉 denotes quantum average, and c and c† are electron

field operators. Its time derivative is derived by use of the
Heisenberg equation of motion, ṗα

i = i〈[H, c† p̂iσαc]〉, where
[A, B] ≡ AB − BA is a commutator and H is the total Hamil-
tonian. The Hamiltonian we consider is

H =
∫

d3rc†

(−∇2

2m
− (M · σ)

)
c + Hso + Hi, (26)

where M is a vector representing the magnetization including
the exchange coupling constant. The spin-orbit interaction by
impurities is represented by

Hso = λ

∫
d3rc†(r)[(∇v(r) × p̂) · σ]c(r)

= iλ
∑
kk′

vk′−k(k′ × k) · c†
k′σck, (27)

where λ is a coupling constant, v(r) = vi
∑

Rn
δ(r − Rn) is

an impurity potential, where vi and Rn are the strength
of the impurity potential and the position of nth impurity,
respectively, and the impurity scattering potential is Hi =∫

d3rv(r)c†(r)c(r). The impurity scattering induces an elec-
tron lifetime of elastic scattering, τ , given by τ−1 = 2πνnivi

2,
where ni is the impurity concentration and ν is the density of
states of electron. In this paper, we treat τ as spin-independent
for simplicity.

A driving electric field for electron flow, E, is included
using a vector potential A satisfying E = −Ȧ [37]. As is
known generally for transport theories, dominant nonequilib-
rium contributions for the case of time-independent E are
those containing both retarded and advanced Green’s func-
tions [26], and we shall focus on these contributions. Spatial
inhomogeneity is taken into account by expanding response
functions with respect to the wave vector q of E to the linear
order.

In the present model, the driving field is not only the
applied external field but is an effective one that includes other
extrinsic forces such as those introduced by boundaries. At the
boundary, fluid velocity vanishes and this fact is imposed usu-
ally as a boundary condition in solving fluid dynamics. (See
Ref. [24] for boundary effects.) In the present microscopic
modeling of the ohmic fluid, such boundary effects are effec-
tively taken into account by assuming that the total driving
field vanishes at the boundary, as was done in Refs. [26,27].
This is because vanishing fluid velocity indicates that the force
due to the applied field and the friction from the boundary
cancel each other. Practically speaking, our total effective field
is related to the actual current density j, which vanishes at
the boundary, via a local relation E = (σe )−1 j, where σe is
a conductivity tensor. In the present analysis focusing on the
lowest order of the spin-orbit interaction, σe can be treated as
diagonal. (It would be an interesting future work to numeri-
cally solve the whole hydrodynamic equation, taking account
of off-diagonal conductivity.)

The hydrodynamic equation for spin-resolved momentum
density is (see Sec. A for derivation)

ṗα
i = −∇ jπ

s,α
i j + f α

s,i, (28)
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FIG. 4. Feynman diagrams for the dominant contribution to the spin-resolved momentum flux density π s,α
i jk at the linear order in the

spin-orbit interaction and linear response to the applied field, denoted by × at the right end (suffix k represents the direction of the applied field).
Solid lines represent free electron Green’s functions, where upper and lower lines denote retarded (gr

k) and advanced (ga
k) Green’s functions,

respectively, and k and k′ are the electron wave vectors. The wave vector q is that of the external field and represents the inhomogeneity of
flow. Complex conjugate processes (turned upside down) are also taken into account. (a) Skew-scattering contribution π

(ss)α
i jk . The left vertex

with kik j represents the vertex for the momentum flux density, and a vertex with λ denotes the spin-orbit interaction. (b) A small contribution
that is neglected. (c) The contribution arising from the anomalous velocity δv in π0α

i jk , called the side-jump contribution. (d) The anomalous
contribution δπα

i jk .

where π s,α
i j ≡ π0α

i j + δπα
i j with

π0α
i j (r, t ) ≡ −itr[ p̂i{v̂ j, σα}G<(r, t, r, t )] (29)

is a conventional contribution in the form of momentum and
velocity (tr is a trace over spin and {A, B} ≡ AB + BA), while

δπα
i j (r, t ) ≡ −i

λ

2
tr[(∇i∇kV )(δ jαδkβ − δ jβδkα )

× σβG<(r, t, r, t )] (30)

is an anomalous contribution from the spin-orbit poten-
tial. Here G<(r, t, r′, t ) ≡ i〈c†(r, t )c(r′, t ′)〉 is the full lesser
Green’s function including the external field and

v̂ j = p̂ j

m
+ δv̂ j (31)

is the total velocity operator with the anomalous velocity

δv̂ j = −λ(∇V × σ) j (32)

due to the spin-orbit interaction. The term f α
s,i in Eq. (28)

is the one which cannot be written as a divergence of flow,
interpreted purely as a force. The spin-resolved momentum,
which is essentially the spin current, is not conserved in the
presence of spin relaxation processes, and this is why we have
force density besides the momentum flux density. This fact
means that the definition of the spin-dependent momentum
flux density is not unique. Nevertheless, it is a useful quantity
to study the roles of vorticity on the spin transport, like spin
motive force (spin gauge field) in spintronics [38].

Based on the above Hamiltonian, we calculate the momen-
tum flux density, Eqs. (29) and (30), as the linear response
to an external field E. The momentum flux density is written
as π s,α

i j = π s,α
i jk Ek , where π s,α

i jk is a correlation function of spin
momentum current and current calculated diagrammatically
(Fig. 4) using the Green’s function method [37] in the same
manner as Refs. [26,27]. The spin-orbit interaction, which is
essential to couple electron flow and its spin, is included to
the linear order. There are two spin-orbit processes, one aris-
ing from the normal velocity p

m , the contribution historically
called skew scattering contribution, and the other arising from
the anomalous velocity δv, called the side-jump contribution.
Below, we evaluate dominant contributions to π s,α

i jk , which are

those including both retarded and advanced Green’s functions,
following Refs. [26,27].

1. Skew-scattering contribution

We first consider the process of Fig. 4(a) (skew scattering),
which is

π
(ss)α
i jk (q) = e

V 3

i

π

λnivi
3

m2
Re

∑
kk′

kik jk
′
k

[(
k′+ q

2

)
×

(
k + q

2

)]
β

× tr
[
σαgr

k+ q
2
σβgr

k′+ q
2
ga

k′− q
2
ga

k′′ga
k− q

2

]
, (33)

where q is the wave vector of the external field, gr
k ≡ [− k2

2m +
εF + M · σ + i

2τ
]−1 is the free electron retarded green’s func-

tion with elastic lifetime τ arising from the impurities and
ga

k ≡ (gr
k)∗, εF being the Fermi energy. The real (imaginary)

part is denoted by Re (Im).
We calculate the response function to the lowest order

in the external wave vector q and neglecting contributions
smaller by a factor of (εF τ )−1. Noting that

tr[σαAσβB] = (δαβ − δαzδβz )
∑

σ

Aσ B−σ + δαzδβz

∑
σ

Aσ Bσ

− iεαβz

∑
σ

σAσ B−σ (34)

for diagonal matrices A = (A+ 0
0 A−) and B, the trace over the

spin is calculated to obtain [neglecting O(q2)]

π
(ss)α
i jk (q) = i

∑
σ

Re
[
I−σ,σ
i jkα

+ δαz
(
Iσ,σ
i jkz − I−σ,σ

i jkz

)
+ iεαβzσ I−σ,σ

i jkβ

]
, (35)

where Iσ ′σ
i jkα ≡ 1

π
λnivi

3

m2 Ĩσ ′σ
i jkα , with

Ĩσ ′σ
i jkα = 1

V 3

∑
kk′k′′

kik jk
′
k (k′ × k)αgr

k+ q
2 ,σ ′gr

k′+ q
2 ,σ

ga
k′− q

2 ,σ
ga

k′′,σ

× ga
k− q

2 ,σ
. (36)
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The summation over the wave vectors are carried out using

1

V

∑
k

ga
k,σ = iπνσ ,

1

V

∑
k

kik jg
r
k,σ ga

k,σ = 2π

3
νσ k2

Fσ τδi j,

1

V

∑
k

kik jkkgr
k+ q

2 ,σ
ga

k− q
2 ,σ ′ = i

π

15m
(δi jqk + δikq j + δ jkqi )

νσ k4
Fσ + νσ ′k4

Fσ ′[
(σ − σ ′)M + i

τ

]2 , (37)

where νσ , kFσ are density of states at the Fermi energy and Fermi wave vector of electron with spin σ = ±, respectively, as

Ĩσ ′σ
i jkα = − 2π3

45m
(νσ )2(kFσ )2τεαkm(δi jqm + δimq j + δ jmqi )

νσ ′k4
Fσ ′ + νσ k4

Fσ[
(σ ′ − σ )M + i

τ

]2 . (38)

Thus,

π
(ss)α
i jk (q) = i

[
[(α̂ × q)kδi j + εikαq j + ε jkαqi]Re

∑
σ

Jσ
− + δαz[(ẑ × q)kδi j + εikzq j + ε jkzqi]Re

∑
σ

(Jσ
+ − Jσ

− )

− εαβz[−εβklqlδi j + εikβq j + ε jkβqi]Im
∑

σ

σJσ
−

]
, (39)

where

Jσ
− = 2π2

45m3
λnivi

3

(∑
σ ′

νσ ′k4
Fσ ′

)
(νσ )2(kFσ )2τ

4M2 − 1
τ 2 + 4iσ M

τ(
4M2 + 1

τ 2

)2 ,

Jσ
+ = − 2π2

45m3
λnivi

3(νσ )3(kFσ )62τ 3. (40)

We thus obtain

π
(ss)α
i j = η

(ss)
‖ M̂α

(
(M̂ · ω)δi j + ∇iTj + ∇ jTi

)
+ η

(ss)
⊥

(
(α̂⊥ · ω)δi j + ∇iT

α⊥
j + ∇ jT

α⊥
i

)
+ η

(ss)
⊥′

(
(α̂⊥′ · ω)δi j + ∇iT

α⊥′
j + ∇ jT

α⊥′
i

)
, (41)

where α̂ is the unit vector along the spin direction α, α̂⊥ ≡
α̂ − M̂(M̂ · α̂), α̂⊥′ ≡ M̂ × α̂, and

η
(ss)
‖ ≡ −Re

∑
σ

Jσ
+,

η
(ss)
⊥ ≡ −Re

∑
σ

Jσ
−,

η
(ss)
⊥′ ≡ −Im

∑
σ

σJσ
−. (42)

In terms of spin polarization vector ŝ [Eq. (13)], the amplitude
of the flux density is

π
(ss)
i j = η

(ss)
‖ (ŝ · M̂)

(
(M̂ · ω)δi j + ∇iTM̂, j + ∇ jTM̂,i

)
+ η

(ss)
⊥ ((ŝ⊥ · ω)δi j + ∇iTs⊥, j + ∇ jTs⊥,i )

+ η
(ss)
⊥′ ((ŝ⊥′ · ω)δi j + ∇iTs⊥′ , j + ∇ jTs⊥′ ,i ), (43)

a result consistent with the phenomenological argument in
Sec. III A.

Let us estimate the magnitude of the coefficients. Our anal-
ysis in the ohmic regime (dirty metal) assumes εF τ � 1. We
first consider a strong ferromagnet with Mτ � 1. We simplify
ν+ ∼ ν− ∼ 1/εF and kFσ ∼ kF for order of magnitude esti-

mate and neglect numerical factors. We then have

Jσ
+ ∼ εso

m
τ 2, Jσ

− ∼ εso

m

1

M2

(
1 + iσ

1

Mτ

)
, (44)

and thus

η
(ss)
‖ ∼ εso

m
τ 2, η

(ss)
⊥ ∼ εso

m

1

M2
, η

(ss)
⊥′ ∼ εso

m

1

M3τ
, (45)

where εso ≡ λvikF
2 is the energy scale of the spin-orbit inter-

action, namely, the adiabatic component is the largest, while
η

(ss)
⊥ contribution is dominant as a nonadiabatic contribution.

In the limit of M = 0, Jσ
+ = Jσ

− ∼ εso
m τ 2 and we have

η
(ss)
‖ = η

(ss)
⊥ ∼ εso

m
τ 2, η

(ss)
⊥′ = 0, (46)

which is natural from the rotational symmetry when M = 0.
There is a similar process with less impurity scattering,

shown in Fig. 4(b). Compared to the contribution π
(ss)α
i j , it

is without a factor of iπνvi. Due to the extra factor of i, the
imaginary and real parts are replaced, resulting in a vanishing
contribution for M = 0 and a reduction factor of (Mτ )−1 in
the case of Mτ � 1. Considering a factor of νvi ∼ √

ντ ,
the contribution vanishes (M = 0) or smaller by a factor of
(Mτ )−1/2. We thus neglect this process.

2. Side jump and other contributions

The contributions arising from the anomalous velocity δv

[the side-jump contribution, depicted in Fig. 4(c)] is

π
(sj)α
i jk (q) = −i

4π

1

V 2

λniv
2
i

2m
εα jl

∑
kk′

(k′ + k + q)i

(
k + q

2

)
k

× (k′ − k)l Retr
[
gr

k′gr
kga

k+q

]
. (47)
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It turns out to be

π
(sj)α
i jk (q) = iη(sj)

0

(
2

3
εαi jqk + δikεα jl ql + εα jkqi

)
, (48)

where

η
(sj)
0 ≡ π

15

λniv
2
i

m2

∑
σ

(νσ )2k4
Fσ τ 2. (49)

Thus, neglecting the term that vanishes in the force, we obtain

π
(sj)
i j = η(sj),Tŝ (∇iTŝ, j + ∇ jTŝ,i ) + εi jka(sj)

k , (50)

where

a(sj) = ξ (sj),vŝ(∇ · E ) + ξ (sj),Tŝ (∇ × T ŝ), (51)

with η(sj),Tŝ = − 1
2η

(sj)
0 , ξ (sj),v = 2

3η
(sj)
0 , ξ (sj),Tŝ = − 1

2η
(sj)
0 . A

unique feature of the side-jump contribution is that it does not
vanish for M = 0, in contrast to the skew-scattering contribu-
tion. In the same order of estimate as in Eqs. (45), we have

η
(sj)
0 ∼ εso

m

√
τ 3

εF
. (52)

The nonadiabatic contribution with spin polarized perpendic-
ular to M̂ is therefore dominated by the side-jump contribution
instead of skew-scattering contribution represented by η

(ss)
⊥ in

the disordered metal with Mτ � 1.
Finally, the anomalous contribution to the momentum flux

density is [Fig. 4(d)]

δπα
i j (q) = (−i)2

2V 3

λniv
3
i

m

∑
kk′k′′

(k′ − k)i(k
′ − k)l

(
k′ + q

2

)
k

× (δ jαδlβ − δ jβδlα )tr
[
σβ

(
gr

kgr
k′′ + ga

kga
k′′

)
gr

k′ga
k′+q

]
.

(53)

After some calculation, we obtain

δπα
i jk (q) = iδπ

(
8

3
(δizδ jα − δiαδ jz )qk + δik (qzδ jα − qαδ jz )

− (δ jzδkα − δ jαδkz )qi

)
, (54)

where

δπ ≡ − 2π3

15m2
λniv

3
i τ

2
∑

σ

σν3
σ k4

Fσ . (55)

Neglecting the unphysical contribution that vanishes in the
force,

δπ i j = δηT⊥′ (∇iTs̃, j + ∇ jTs̃,i ) + εi jkδas̃
k, (56)

where δηT⊥′ = δπ and

δas̃ = δξ vs̃(∇ · E ) + δξTs̃ (∇ × T s̃), (57)

with δξ v = 8
3δπ , δξTs̃ = δπ . The order of magnitude for

Mτ � 1 is δπ ∼ εso
m

τ
εF

and is smaller than the side-jump con-
tribution but is larger than the skew-scattering nonadiabatic
contribution.

In the limit of M = 0, the order of magnitudes of η
(sj)
0

and δπ are the same as in the Mτ � 1 case. Thus, these

contributions are smaller than the skew-scattering contribu-
tion for M = 0, Eqs. (46). The side-jump contribution being
smaller than the skew scattering one is due to the fact that
the contribution involves less Green’s functions than the skew
scattering, resulting in smaller order of εF τ (� 1) considering
the fact that the peak magnitude of the Green’s function is
∼τ . When Mτ � 1, in contrast, the side-jump contribution
dominates over the skew scattering as for the perpendicular
spin polarization, as the Green’s functions for the spin-flip
processes are suppressed to be ∼M−1, while the side-jump
process contains a contribution without spin flip [Eq. (47)].

The phenomenological results in Sec. III A are therefore
confirmed by microscopic calculations in this subsection and
coefficients were determined by use of microscopic quantities.

IV. VORTICITY-INDUCED SPIN

Spin-resolved force density represents a force acting on
spin components, namely, spin motive force driving spin cur-
rent. Although it would be interesting to explore spin transport
phenomena solving the hydrodynamic equation with spin, we
leave it as a future work and study the result of the spin
current generation, namely, the spin accumulation induced by
the vorticity-induced spin motive forces.

Like spin current, spin-resolved force density is not a clear
physical observable, as the force acting on electrons with a
particular spin is not detectable. In contrast, the spin density
which we are going to calculate here is a physical observable.
In fact, spin Hall effect originally argued as a relation between
the spin density and an applied electric field by Dyakonov
and Perel [19] is free from the ambiguity of definition of spin
current [18]. Here we discuss spin density taking account of
inhomogeneous electric field to support physical consequence
of spin hydrodynamic equations.

A. Spin Hall effect in the viewpoint of spin-vorticity coupling

As was pointed out [18], an inhomogeneous electric field
applied to a metal with spin-orbit interaction induces a spin
density as in Eq. (1). This relation, indicating that the spin
Hall effect is a consequence of spin-vorticity coupling, is a
representation of spin Hall effect written in terms of spin
density instead of spin current. The spin accumulation given
by Eq. (1) in fact represents the spin accumulation formed at
the edges as a result of spin current generated by the applied
electric field. The expression corresponds to the clean system
where electron diffusion is not relevant and, in the disordered
case, the expression is multiplied by a diffusion propagator
[18] [see Eq. (65)]. The spin generation by the spin Hall effect
has been argued mostly in the absence of magnetization, to
discuss the pure spin current [20]. When a magnetization is
present, spin polarization along the magnetization M̂ (the adi-
abatic component) and orthogonal components M̂×ω arise,
and spin density is extended as

s(r) = λshω + λ‖M̂(M̂ · ω) + λ⊥(M̂ × ω), (58)

with coefficients λ‖ and λ⊥. The term λ‖ represents the adi-
abatic component (along M) of the spin polarization and λ⊥
represents the anomalous Hall effect for the vorticity.

184414-8
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B. Miscroscopic calculation

Here we calculate the spin density induced by the electric
field based on the model of spin-orbit interaction due to heavy
impurities of Sec. III B. The spin density polarized along

direction α induced by the electric field along the k direc-
tion is written as sα = sα

k Ek , where sα
k is the linear response

coefficient. The dominant contribution arises from the same
diagram as in Fig. 4(a) with the left vertex replaced by a Pauli

matrix, which reads

sα
k (q) = e

V 3

i

π

λnivi
3

m
Re

∑
kk′

k′
k

[(
k′ + q

2

)
×

(
k + q

2

)]
β
tr
[
σαgr

k+ q
2
σβgr

k′+ q
2
ga

k′− q
2
ga

k′′ga
k− q

2

]
. (59)

Using Eq. (34), we obtain

sα
k (q) = ssh,α

k (q) + δα,zs
‖
k (q) + εαβzs

⊥
k (q),

ssh,α
k (q) = e

V 3

i

π

λnivi
3

m
Re

∑
kk′k′′

k′
k[k′ × k]α

∑
σ=±

gr
k+ q

2 ,σ
gr

k′+ q
2 ,−σ

ga
k′− q

2 ,−σ
ga

k′′,−σ
ga

k− q
2 ,−σ

,

s‖
k (q) = e

V 3

i

π

λnivi
3

m
Re

∑
kk′k′′

k′
k[k′ × k]z

∑
σ=±

(
gr

k+ q
2 ,σ

− gr
k+ q

2 ,−σ

)
gr

k′+ q
2 ,σ

ga
k′− q

2 ,σ
ga

k′′,σ ga
k− q

2 ,σ
,

s⊥
k (q) = e

V 3

i

π

λnivi
3

m
Re(−i)

∑
kk′k′′

k′
k[k′ × k]β

∑
σ=±

σgr
k+ q

2 ,σ
gr

k′+ q
2 ,−σ

ga
k′− q

2 ,−σ
ga

k′′,−σ
ga

k− q
2 ,−σ

. (60)

After summation over the wave vectors, the coefficients in Eq. (58) are obtained as

λsh = e
π2

3

λnivi
3

m2
τ

4M2 − 1
τ 2(

4M2 + 1
τ 2

)2

∑
σσ ′

νσ k2
Fσ ν2

σ ′k2
Fσ ′,

λ‖ = e
π2

3

λnivi
3

m2
(−2τ )

∑
σ

[
ν3

σ k4
Fσ τ 2 + ν2

σ k2
Fσ

∑
σ ′

νσ ′k2
Fσ ′

(
4M2 − 1

τ 2

)(
4M2 + 1

τ 2

)2

]
,

λ⊥ = e
π2

3

λnivi
3

m2

−4M(
4M2 + 1

τ 2

)2

∑
σσ ′

νσ k2
Fσ ν2

σ ′k2
Fσ ′σ

′. (61)

In the disordered case with Mτ � 1, the order of magnitude
of each term is

λsh ∼ εso

kF
2

1

M2
, λ‖ ∼ εso

kF
2 τ 2, λ⊥ ∼ εso

kF
2

1

M3τ
, (62)

meaning that the adiabatic spin polarization is dominant,
while the spin Hall effect dominates the perpendicular compo-
nent. In the limit of M = 0, λsh representing the spin-vorticity
coupling and spin Hall effect remains finite, while λ‖ and λ⊥
vanish.

C. Vorticity-induced torque

In ferromagnets, the vorticity-induced spin, Eq. (58), gen-
erates a current-induced torque near surfaces given by

Tω = λshMγ [M̂ × (∇ × E )]

+ λ⊥Mγ [M̂ × [M̂ × (∇ × E )]], (63)

where γ ≡ e
m is the electron gyromagnetoratio. This is a kind

of so-called spin-orbit torque [29] arising from inhomogenu-
ity of current. In ferromagnets with Mτ � 1 and M/εF =
O(1), the first term dominates, as seen from Eqs. (62). In-
terestingly, the coefficient λsh does not depend on τ in this
regime, resulting in a universal torque when written in terms

of the applied field E. Although current-induced torques on
magnetic textures have been discussed intensively [29], the
effect of vorticity and inhomogeneous current density has not
been focused on. It is of interest to confirm experimentally the
correlation between the vorticity-induced torque and the spin
Hall effect, both determined by the coefficient λsh.

Let us compare the vorticity-induced torque to the so-
called β-torque [39,40] induced by spin relaxation and
magnetization structure,

T β = βa3[M̂ × ( j · ∇)M̂], (64)

where β is a small constant representing the rate of spin relax-
ation and a is the lattice constant. Its magnitude in common
ferromagnets is typically of the order of β ∼ (Mτsf )−1, where
τ−1

sf ∼ ε2
so/εF in the case of spin-orbit interaction [30,41].

In terms of the field E , T β = e
kF

2 β̃[M̂×(E · ∇)M̂], where

β̃ ≡ kF
2

e βa3σe ∼ ε̃so
2εF τ , with ε̃so ≡ εso/εF . Thus the ratio

of the torque and the field is T β/E ∼ e
kF

2�M
ε̃so

2εF τ , while
for the vorticity-induced torque it is Tω/E ∼ e

kF
2�ω

ε̃so, where
�M is the length scale of the magnetization structure and �ω

is the length scale of surface vorticity in the case of ohmic
fluid. Considering the fact that the β torque is second order
in the spin-orbit interaction [30], while the vorticity torque
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FIG. 5. (a) Schematic figure showing the current profile near the
boundary (chosen as z = 0). Vorticity is finite in the length scale of
�ω, where the current density changes. (b) Schematic figure showing
vorticity-induced spin relaxation mechanism due to electron diffu-
sion. The sign denotes the direction of vorticity ω. Electron diffusion
is represented by a zigzag line.

is linear, surface vorticity may have a crucial role in current-
induced torques. An even stronger effect is expected when
surface roughness is considered, as roughness would enhance
generation of vorticity. Nucleation of magnetic domain wall
and skyrmion by artificial notches [42] would be carried out
by the vorticity-induced torque as argued in Ref. [12]. Taking
account of diffusion of electron, the spin density of Eq. (58)
is modified to be long-ranged as [18]

s(r) =
∫

d3r′Ds(r − r′)[λshω(r′) + λ‖M̂(M̂ · ω(r′))

+ λ⊥(M̂ × ω(r′))], (65)

where Ds(r) ≡ 1
τ

∑
q

eiq·r
Dq2+ 1

τs

is a diffusion propagator of elec-

tron spin, D and τs are the diffusion constant and spin
relaxation time of electron, respectively. The electron spin dif-
fusion length is �s ≡ √

Dτs. In the disordered case, therefore,
the vorticity-induced torque is determined by the vorticity
average over the spin diffusion length, ω. Let us consider
the case where �s is larger than the surface depth where the
vorticity is finite, �ω. Choosing the axis as in Fig. 5(a), local
vorticity of current density j is ω

( j)
y = ∂z jx and its average is

ω( j)
y = 1

�ω

∫ �ω

0
dz∂z jx = jx

�ω

, (66)

where jx is the current far from the surface and jx at the
surface (z = 0) is assumed to vanish. The averaged torque
near the surface,

Tω = λshMγ (M̂ × ω) + λ⊥Mγ [M̂ × (M̂ × ω)], (67)

is therefore

Tω = Mγ

σe

[
λsh

�ω

[M̂ × (ẑ × j)] + λ⊥[M̂ × [M̂ × (ẑ × j)]]
]
,

(68)

where ẑ denotes the direction normal to the surface. The
torque represented by λsh has the same form as the one due
to the surface Rashba-Edelstein effect, which induces spin
polarization proportional to ẑ × j [43].

For thin films as in Fig. 3, the vorticity-induced torque
points opposite on the upper and lower plane and has no bulk
effects.

D. Vorticity-induced spin relaxation

The vorticity-induced torque is naturally inhomogeneous,
and would lead to spin relaxation effects. Let us consider a
thin film [Figs. 3 and 5(b)] of thickness d with electric field
parallel to the magnetization. The vorticity is then perpendicu-
lar to M. The vorticity-induced torque drives the electron spin
as

ṡ = γ [λsh(s × ω) + λ⊥(s × M̂)(M̂ · ω) + λ⊥[s × (M̂ × ω)]],
(69)

and thus the electron spin polarized along M gets flipped in a
timescale of (λshω)−1 [neglecting λ⊥(� λsh )]. In a thin film,
vorticity ω arising from inhomogeneous flow points oppo-
site on the upper and lower surfaces [Fig. 5(b)]. If calling
the length scale where vorticity is finite measured from the
surface as �ω [in the ohmnic fluid, �ω � � (mean-free path)],
2�ω/d of the total electron spins are disturbed by the vorticity-
induced torque. The vorticity-induced spin relaxation time is
therefore estimated as

τω
−1 = �ω

d
λshω, (70)

assuming that the spin diffusion length is longer than d .
Its magnitude is τω

−1 ∼ ε̃so
eE
kF

1
kF d , assuming ω ∼ E/�ω. For

E = 10−2 V/μm and kF
−1 ∼ a = 10−10m, eE

kF
= 10−6 eV =

2 × 108 Hz. Let us define a damping constant as αω ≡ τω
−1tM ,

where tM is the timescale of magnetization dynamics. For
tM−1 ∼ 1 GHz, the above estimate leads to αω ∼ 0.2 × ε̃so

kF d .
For a large spin-orbit metal of a thin film, in particular,
with surface roughness, the vorticity-induced relaxation may
dominate over the intrinsic Gilbert damping. Experimentally,
vorticity-induced damping would be separable from other
isotropic intrinsic origins by using the anisotropic nature, i.e.,
vorticity-induced damping is suppressed if E ⊥ M.

V. VORTICITY-INDUCED INVERSE SPIN HALL EFFECT

Spin-current generation by fluid vorticity in a pipe was
discussed in Ref. [10], and the inverse spin Hall voltage due
to the spin current and measured on heavy metal leads was
argued. In the case of the Hagen-Poiseuille flow considered
there, the generated spin current is in the radial direction
with spin polarization perpendicular to both radian and pipe
directions and the inverse spin Hall voltage is along the flow.

The vorticity-induced inverse spin Hall effect is studied
in the present context by calculating the spin-neutral force
density (motive force for electric charge), taking account of
the spin-orbit interaction to second order in the absence of M.
The inverse spin Hall voltage here is an intrinsic one without
leads of heavy metals, and would not apply to experimental
situations with heavy metal leads.

The spin Hall coefficient λsh is a coefficient of the corre-
lation function of spin and charge current density linear in
the external wave vector [18]. The inverse spin Hall effect is
represented as

j = λish(∇ × Bω ), (71)

where λish is a coefficient proportional to λsh and Bω is an
effective magnetic field that drives spin density [18]. In the
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FIG. 6. Feynman diagram representing the vorticity-induced in-
verse spin Hall effect at the second order of the spin-orbit interaction
(λ). The anomalous velocity vertex gives rise to an antisymmetric
component of the momentum flux density that describes inverse spin
Hall current, Eq. (71).

vorticity-driven case, the effective field is induced by the
vorticity as

Bω = λsh

χ
ω, (72)

where χ is spin susceptibility. In the ohmic regime, the rela-
tion Eq. (71) indicates that there is a motive force f a acting on
electron charge that is proportional to the rotation of vorticity,
∇ × ω. The inverse spin Hall motive force is therefore rep-
resented by an antisymmetric component of the momentum
flux density for charge (spin neutral), π a

i j = ξ aεi jkak , with a
constant ξ a and a vector a, as f a = −ξ a(∇ × a), resulting in
an inverse spin Hall current j ∝ (∇ × a). As has been argued
[34] [see also Eq. (3)], an antisymmetric component arises
from vorticity, a ∝ ω. We thus obtain the inverse spin Hall
current j ∝ ∇ × ω, consistent with Eqs. (71) and (72). Let us
confirm this fact by a microscopic calculation of spin-neutral
momentum flux density πi j ≡ 〈p̂iv̂ j〉 ≡ πi jkEk in the case of
M = 0, including the spin-orbit interaction to second order.
Obviously, the skew-scattering contribution is symmetric with
respect to i and j [27] and the antisymmetic contribution arises
from the side-jump contribution, whose dominant contribu-
tion is (shown in Fig. 6) [(sj)(2) denotes the side-jump process
at the second order of the spin-orbit interaction]

π
(sj)(2)
i jk (q) = 1

4πV 4

λ2v5
i n2

i

2m
iεα jlεmnβ

×
∑

kk′k′′k′′′
(k′ + k + q)i

(
k′′ + q

2

)
k
(k′ − k)l knk′′

mi

× Imtr
[
gr

k′σαga
k+qσβga

k′′+qgr
k′′gr

k′′′gr
k

]
. (73)

The antisymmetric component of π
(2)
i j is written in terms of a

vector aω as π
(2)a
i j = εi jkaω,k , where

aω = ξ (2)
ω ω,

ξ (2)
ω = π

12

(
εso

εF

)2

Dτ 2vi = λsh

(
εso

εF

)
(viτ )εF . (74)

The inverse spin Hall field induced by vorticity is therefore

Eω = −∇ × aω = −ξ (2)
ω ∇ × ω. (75)

The inverse spin Hall voltage due to the vorticity-induced spin
current in the present situation is therefore along the applied
field E, like the case with leads [16]. We note that the inverse
spin Hall voltage in reality would be mixed with contributions

from the symmetric components of the momentum flux den-
sity (see argument in Sec. II).

VI. SUMMARY AND DISCUSSION

We have explored the effects of vorticity of electron flow
in ferromagnetic metals on the spin transport based on a
hydrodynamic viewpoint. The spin-resolved momentum flux
density was discussed, extending the results for anomalous
Hall fluid studied previously in Ref. [27]. We have argued
that the anomalous Hall contributions to the momentum flux
density are written in terms of a troidal moment, T M = M×E,
which acts as an effective driving field. When electron spin is
taken into account, the spin-resolved momentum flux density
πα

i j (i and j represent the spatial direction and α denotes
spin direction) are characterized by the three contributions,
namely, the adiabatic contribution where spin s is parallel to
M, the nonadiabatic contribution written by s⊥ ≡ s − M̂(M̂ ·
s) and a contribution written by s̃ ≡ s×M. The troidal mo-
ment T M is therefore extended to include two nonadiabatic
contributions, T s⊥ ≡ s⊥×E and T s̃ ≡ s̃×E. Those results
were confirmed by linear response calculations in a model
with the impurity-induced spin-orbit interaction.

The spin-resolved force density −∇ jπ
α
i j , or spin motive

force, was argued and roles of electron vorticity on the
motive force were discussed. Besides the conventional con-
servative force due to spin-vorticity coupling, proportional
to ∇(s · ω) (ω is the vorticity), there is a nonconservative
force, proportional to ∇×(ω×s) = (s · ∇)ω. Like spin cur-
rent, the spin-resolved momentum flux density and force
density are physical conserved currents and their definitions
are not unique.

Spin density induced by vorticity was calculated and direct
and inverse spin Hall effects were argued in the context of
the spin-vorticity coupling. The vorticity-induced damping
near the surface and interface was discussed. The torque
arises from the homogeneity of the current (or total field),
in contrast to conventional current-induced relaxation torques
such as β torque arising from inhomogeneous magnetization.
The vorticity-induced torque is a linear effect of spin-orbit
interaction, while the conventional relaxation torque is second
order, meaning that vorticity effects may dominate in thin
films. The effect leads to torque and relaxation localized near
surfaces and interfaces. Spin Hall-induced spin-orbit torque
was explained in terms of the spin-vorticity coupling. The in-
verse spin Hall effect due to the vorticity-induced spin current
was shown to be described by the antisymmetric part of the
momentum flux density evaluated at the second order of the
spin-orbit interaction.

We considered the case of uniform magnetization with
inhomogenuity of the applied electric field. For a complete
discussion of the troidal moment, inhomogeneous magnetiza-
tion needs to be taken into account. For this future work, an
effective gauge field approach [38] is expected to be useful.
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APPENDIX A: DERIVATION OF MOMENTUM FLUX
DENSITY OF EQS. (29) and (30)

Here we derive the expression for the spin-resolved mo-
mentum flux density by evaluating the time derivative of the

spin-resolved momentum. (See Ref. [27] for a simpler spin-
less case.) The Heisenberg equation for field representation of
spin-resolved momentum ṗα

i (i and α are the directions of mo-
mentum and spin, respectively) reads ṗα

i = i〈[H, c† p̂iσαc]〉,
where [A, B] ≡ AB − BA is a commutator. The contribution
from the spin-orbit coupling is focused. The commutator is
calculated using ∇r

i δ(r − r′) = −∇r′
i δ(r − r′) and integral by

parts as

i[Hso, (c† p̂iσαc)r] = − i

4
λ

∫
dr′ε jkl

(∇r′
j V (r′)

)[
c†(r′)σl (∇kc(r′)) − (∇kc†(r′))σl c(r′), c†(r)σα (∇ic(r)) − (∇ic

†(r))σαc(r)
]

= − i

2
λ
[
(∇ jV )[−ε jkα∇k[c†

↔∇i c] + iε jklεlαβ[c†σβ

↔∇i (∇kc) − (∇kc†)σβ

↔∇i c]]

+ (∇i∇ jV )[−ε jkα (c†
↔∇k c) + iε jklεlαβ∇k[c†σβc]]

]
= −∇ jπ̂

so,α
i j + f̂ α

s,i, (A1)

where

π̂ so,α
i j = i

2
λ
[
(∇kV )ε jkα[c†

↔∇i c] − i(∇i∇kV )ε jklεlαβ (c†σβc)
]
, (A2)

f̂ α
s,i = i

2
λ
[
(∇i∇ jV )ε jkα (c†

↔∇k c) − i(∇ jV )ε jklεlαβ[c†σβ

↔∇i (∇kc) − (∇kc†)σβ

↔∇i c]
]

(A3)

are the spin-orbit contributions to the momentum flux density and force density, respectively.
The contribution of the kinetic term, π̂K,α

i j , is similarly calculated, and the total momentum flux density operator is

π̂K,α
i j + π̂ so,α

i j (r, t ) = c†

[
1

m
p̂i p̂ jσα − λ(∇kV )ε jkα p̂i + 1

2
λ(∇i∇kV )(δ jαδkβ − δ jβδkα )σβ

]
c

≡ π̂ s,α
i j (A4)

whose expectation value is Eqs. (29) and (30). The hydrody-
namic equation for spin transport is therefore Eq. (28).

The fact that the time derivative of the spin-resolved mo-
mentum density is not written in terms of conserved current
in the presence of spin relaxation, in the same way as the case
of spin current. This means that the momentum flux density

cannot be defined uniquely. In other words, spin-resolved
momentum density is not physical observable. In this paper,
we use the form of Eq. (A2). Different definitions result in
different values of viscosity constants. We note, however, that
physical quantities like spin density are uniquely defined as in
the spin current case [18].
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