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We theoretically investigate spin-lattice coupling (SLC) effects on the in-field ordering properties of classical
Heisenberg antiferromagnets on the breathing pyrochlore lattice. Here, we use the two possible simplified models
describing the effect of local lattice distortions on the spin ordering via the SLC, the bond-phonon and site-
phonon models. It is found by means of Monte Carlo simulations that in both models, the 1

2 plateau shows
up in the magnetization curve being relatively robust against the breathing bond alternation, although magnetic
long-range orders (LRO’s) are realized only in the site-phonon model. In the bond-phonon model, additional
further neighbor interactions are necessary to induce a magnetic LRO. In the site-phonon model, it is also found
that in addition to the low-field, middle-field 1

2 plateau, and high-field phases appearing on both the uniform and
breathing pyrochlore lattices, various types of unconventional phases which can be viewed as LRO’s in units
of tetrahedron are induced by the breathing bond alternation just below the 1

2 plateau and the saturation field.
The occurrence of these tetrahedron-based orders could be attributed to the nature characteristic of the breathing
pyrochlore lattice, i.e., the existence of the nonequivalent small and large tetrahedra. Experimental implications
of our result are also discussed.
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I. INTRODUCTION

Frustrated magnets often exhibit a magnetostructural tran-
sition in which the system releases the magnetic frustration
by spontaneously distorting the underlying lattice, resulting
in a magnetic long-range order (LRO). Such a spin-lattice-
coupled ordering can commonly be seen in a series of spinel
chromium oxides ACr2O4 (A = Hg, Cd, Zn, Mg) [1–4], where
the magnetic Cr3+ sites form the pyrochlore lattice, a three-
dimensional network consisting of corner-sharing tetrahedra.
The characteristic properties of these compounds are a first-
order simultaneous magnetic and structural transition at zero
field [1–4] and a field-induced 1

2 -magnetization-plateau phase
[3,5–11] which is considered to originate from the spin-lattice
coupling (SLC). Similar zero-field and in-field properties have
been observed also in LiInCr4O8 which belongs to a new
class of chromium oxides hosting the so-called breathing
pyrochlore lattice, an alternation array of small and large
tetrahedra [12–18]. In this paper, we theoretically investigate
effects of the magnetic field on the spin-lattice-coupled or-
dering in the breathing-pyrochlore antiferromagnets, based on
the two possible simplified models describing the SLC, the
bond-phonon [19–21] and site-phonon [22–26] models which
will be explained below.

In the chromium oxides, Hund-coupled three 3d electrons
at each Cr3+ site occupy the threefold t2g level, constituting a
localized S = 3

2 spin with their orbital degrees of freedom off.
As the magnetic anisotropy is negligible, the classical Heisen-
berg model should provide a reasonable modeling. In the

nearest-neighbor (NN) antiferromagnetic classical Heisen-
berg model, it is theoretically well established that any
magnetic LRO does not occur at any finite temperature due to
a massive ground-state degeneracy [27–29], but in the ACr2O4

family, the degeneracy is lifted, via SLC, by lattice distortions
which lower the lattice symmetry from cubic to tetragonal
or orthorhombic, leading to antiferromagnetic LRO’s [1–4].
Besides, in a magnetic field, ACr2O4 commonly show the
1
2 -magnetization plateau [3,5–11], pointing to a robust 3-up
and 1-down collinear spin configuration on each tetrahedron.
Such a collinear state is considered to be stabilized by the bi-
quadratic interaction of the from −(Si · S j )2 originating from
the SLC [19–21]. In this 1

2 -plateau phase, the crystal struc-
ture changes to cubic in the Hg and Cd compounds [30–32].
These zero-field and in-field experimental results suggest that
SLC is essential in the uniform pyrochlore antiferromagnets
ACr2O4.

Breathing pyrochlore magnets also provide examples of
the spin-lattice-coupled ordering. Among so-far reported
several compounds [33–46], the chromium oxides Li(Ga,
In)Cr4O8 [12–18] exhibit magnetic properties similar to those
of ACr2O4. In Li(Ga, In)Cr4O8, the NN interactions on small
and large tetrahedra, J and J ′, are antiferromagnetic with
different strength, where the ratio J ′/J is estimated from the
bond-length difference to be J ′/J ∼ 0.1 and 0.6 for the In
and Ga compounds, respectively [12]. In these compounds,
the massive ground-state degeneracy, which is still present at
the level of the NN model with different antiferromagnetic
J and J ′ [47], is lifted by distorting the lattice from cubic
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FIG. 1. Real-space spin structures of the low-field P1, middle-field P2, and high-field P3 phases obtained in the MC simulations for the
site-phonon model (4) with J ′/J = 0.6 and b = b′ = 0.15 at (a) H/J = 2.0, (b) H/J = 3.5, and (c) H/J = 4.3. Red and yellow (blue) arrows
represent spins pointing upward (downward) along the applied magnetic field H . In (a), the in-plane components of the red and yellow spins
are antiparallel to each other. In the P1, P2, and P3 phases, local spin configurations on each tetrahedron are the cant 2:2, 3-up 1-down, and
cant3:1, respectively (see the inset of each figure). These three 16-sublattice states are realized on both the uniform and breathing pyrochlore
lattices. Concerning the spin structures of other phases unique to the breathing system (SP1, SP2, SP2′, SP3, and SP4 phases in Fig. 6), see
Fig. 8 in the main text and Figs. 12 and 13 in Appendix C.

to tetragonal, although in contrast to the uniform case of
ACr2O4, the structural transition slightly preempts the mag-
netic one [13–16]. We note that according to Refs. [14,15],
the structural transition in these breathing systems is incom-
plete and the low-temperature ordered phase is a coexistence
of the original cubic and emergent tetragonal crystal do-
mains. In addition to this zero-field property, recent high-field
measurements on LiInCr4O8 show the occurrence of the 1

2 -
magnetization plateau [17,18], which suggests that the SLC
is also important in the breathing pyrochlore chromium ox-
ides. Interestingly, in the chromium sulfide CuInCr4S8 with
antiferromagnetic J and ferromagnetic J ′, the 1

2 plateau has
also been observed and the effect of the SLC has been pointed
out [39]. In this paper, bearing the chromium oxides in our
mind, we will theoretically investigate the effects of both the
SLC and the external magnetic field on the spin ordering in the
breathing pyrochlore antiferromagnets with antiferromagnetic
J and J ′.

Theories of the SLC in pyrochlore antiferromagnets could
be classified into two. One is a phenomenological theory
based on the group-theoretical classification of the lattice dis-
tortion [48–50], and the other is a microscopic theory taking
account of the effect of local lattice distortions which have
been modeled alternatively by bond phonons or site phonons.
In this work, we take the latter microscopic approach. In
the bond-phonon model which was first introduced by Penc
et al. [19–21] and has conventionally been used to describe
the SLC effect, each bond is assumed to vibrate indepen-
dently, whereas in the site-phonon model [22–26], the lattice
vibration is modeled by the Einstein phonon, i.e., each site
is assumed to vibrate independently. The bond phonon in-
volves only two spins Si and S j residing on both ends of
each bond, giving rise to the effective spin interaction of the
biquadratic form −(Si · S j )2. The site phonon, on the other

hand, additionally involves interbond spins, so that it medi-
ates effective further neighbor interactions in addition to the
biquadratic one.

In both the uniform and breathing pyrochlore antiferro-
magnets at zero field, the site-phonon system undergoes a
first-order transition into a collinear magnetic LRO which is
characterized by (1,1,0)-type [( 1

2 , 1
2 , 1

2 )-type] magnetic Bragg
peaks for weak (strong) SLC [25,26]. The (1,1,0) state re-
alized in the weak SLC regime, which corresponds to the
antiferromagnetic order with the lattice distortion of the Eu

phonon in Ref. [50], has the same spin structure as that
observed in the tetragonal crystal domains of the breathing
pyrochlore antiferromagnets Li(Ga, In)Cr4O8 [14,15]. Fur-
thermore, although the (1,1,0) state itself does not seem to be
reported in the uniform pyrochlore antiferromagnets ACr2O4

[2,4,30,51], it has been shown that a (1,1,0)-like state slightly
modified by the Dzyaloshinskii-Moriya (DM) interaction is
consistent with the Neel state of CdCr2O4 [52]. Thus, the
site-phonon model should capture an essential feature of the
SLC in the chromium oxides. In the bond-phonon model, on
the other hand, any magnetic LRO does not appear and only a
spin nematic state is realized in the low-temperature ordered
phase, so that to induce a magnetic LRO, additional further
neighbor interactions need to be incorporated [21]. Indeed, in
Refs. [7,9,20,21] taking the bond-phonon picture, the addi-
tional ferromagnetic third NN interaction is incorporated as
the simplest example, although the obtained magnetic LRO
at zero field is not consistent with the experimental result. In
spite of the difference in the ordering properties at zero field,
the two models share a common in-field feature at least on the
uniform pyrochlore lattice. The biquadratic interaction com-
mon to both models favors the collinear spin state, stabilizing
the 1

2 -magnetization-plateau phase [19–21,23], which is con-
sistent with the experimental observation in ACr2O4 [3,5–11].
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Furthermore, it has been shown by Bergman et al. [23] that
the site phonon stabilizes the same magnetic structure as that
observed in the 1

2 -plateau phase of HgCr2O4 and CdCr2O4

[30,32]. Then, the natural question is how the magnetization
processes in the two models behave in the breathing case. In
this work, we examine the in-field properties of both the bond-
phonon and site-phonon models on the breathing pyrochlore
lattice, focusing on the weak SLC regime which should be
relevant to the existing materials Li(Ga, In)Cr4O8.

It will be shown by means of Monte Carlo (MC) simu-
lations that in both the two models, the 1

2 plateau is robust
against the breathing bond alternation, but that whether the
spin-lattice-coupled orderings are affected or not depends on
the model. In the bond-phonon model, the ordering properties
are not altered by the breathing bond alternation: any magnetic
LRO does not appear, and two types of quadruple orders as
well as a spin-liquid-plateau phase appear as in the uniform
case [21]. In the site-phonon model, on the other hand, three
magnetically long-range-ordered states, the low-field, middle-
field 1

2 -plateau, and high-field phases (see P1, P2, and P3
phases in Figs. 1, 5, and 6), appear in the wide range of the
parameter space on both the uniform and breathing pyrochlore
lattices. Local spin configurations on each tetrahedron in the
three phases are the so-called cant 2:2, 3-up 1-down, and cant
3:1, respectively. In addition to the three, the breathing bond
alternation can induce unconventional phases just below the
1
2 -plateau phase and the saturation field (see SP1, SP2, SP2′,
SP3, and SP4 phases in Fig. 6). In contrast to the basic three
phases shown in Fig. 1 where the spin configuration on each
tetrahedron is equivalent to one another, in the SP1, SP2,
SP2′, SP3, and SP4 phases (for their real-space structures, see
Figs. 8, 12, and 13), the spin configuration on each tetrahedron
is not equivalent any more, resulting in tetrahedron-based
LRO’s, which could be attributed to the nature characteristic
of the breathing pyrochlore lattice, i.e., the existence of the
nonequivalent small and large tetrahedra.

The outline of this paper is as follows: In Sec. II, we intro-
duce the models taking account of the local lattice distortions,
i.e., the bond-phonon and site-phonon models, and derive
their effective spin Hamiltonians. Physical quantities relevant
to the present system and numerical methods are explained
in Sec. III. This is followed by Secs. IV and V in which
the ordering properties of the bond-phonon and site-phonon
models are, respectively, discussed. We end the paper with
summary and discussion in Sec. VI. In the Appendix, details
of the numerical method and real-space structures of several
magnetic LRO’s are explained.

II. MODEL

In this section, we derive the effective spin Hamiltonian
describing the SLC in the presence of the breathing bond
alternation. Throughout this paper, the NN sites denote the
neighboring sites connected by a bond independent of its
length. Suppose that the displacement vector at each site i
from its regular position r0

i on the lattice is denoted by ui,
a minimal microscopic Hamiltonian could be written as

H =
∑
〈i, j〉

Jex
(∣∣r0

i j + ui − u j

∣∣)Si · S j − H
∑

i

Sz
i + HL, (1)

 (b) (a)

ui

uj

iju 

bond-phonon model site-phonon model

FIG. 2. Two possible minimal models describing the local lattice
distortions. (a) Bond-phonon model taking account of the indepen-
dent bond-length change ui j . (b) Site-phonon model taking account
of the independent site displacement ui.

where Si is the classical Heisenberg spin at the site i, r0
i j ≡

r0
i − r0

j , Jex is the exchange interaction which is, for simplic-
ity, assumed to depend only on the distance between the two
spins, the summation 〈i, j〉 is taken over all the NN sites, H is
a magnetic field applied in the z direction in the spin space,
and HL denotes the elastic energy. As the displacement is
usually small, i.e., |ui|/|r0

i | � 1, we can expand the exchange
interaction with respect to the displacement as follows:

Jex
(∣∣r0

i j + ui − u j

∣∣) = Jex
(∣∣r0

i j

∣∣) + dJex

dr

∣∣∣∣
r=|r0

i j |
ei j · (ui − u j )

+ O([ei j · (ui − u j )]
2), (2)

where ei j ≡ r0
i j/|r0

i j | is the unit vector connecting NN sites i
and j. Hereafter, we take the leading-order correction of the
order of O[ei j · (ui − u j )] in Eq. (2) into account.

Concerning the elastic energy HL, although in reality
neighboring ui’s should be correlated to each other in the
form of dispersive phonon modes, we use here the local
phonon models, the bond-phonon and site-phonon models,
because they are possible minimum tractable models describ-
ing phonon-mediated spin interactions. In the bond-phonon
and site-phonon models, variables describing the lattice de-
grees of freedom are the length change of each bond ui j ≡
ei j · (ui − u j ) and the displacement at each site ui, respec-
tively (see Fig. 2), and the elastic energy HL in each model
is given by

HL =
{ cBP

2

∑
〈i, j〉 u2

i j (bond-phonon model),
cSP
2

∑
i |ui|2 (site-phonon model),

with elastic constants cBP and cSP [19,23]. Note that compared
with the conventional Deby model, the bond-phonon model
assumes that variables describing lattice degrees of freedom
are not ui’s but ui j’s with the elastic energy HL being the
same as that of the Deby phonon, whereas the site-phonon
(Einstein-phonon) model assumes that the elastic energy is
a local one with the lattice degrees of freedom ui’s being
unchanged. Substituting Eq. (2) into (1) and integrating out
the lattice degrees of freedom ui j for the bond-phonon model
and ui for the site-phonon model, we obtain the bond-phonon
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spin Hamiltonian HBP as

HBP = J
∑
〈i, j〉S

Si · S j + J ′ ∑
〈i, j〉L

Si · S j − H
∑

i

Sz
i

− J b
∑
〈i, j〉S

(Si · S j )
2 − J ′ b′ ∑

〈i, j〉L

(Si · S j )
2, (3)

and the site-phonon spin Hamiltonian HSP as

HSP = J
∑
〈i, j〉S

Si · S j + J ′ ∑
〈i, j〉L

Si · S j − H
∑

i

Sz
i

− J b
∑
〈i, j〉S

(Si · S j )
2 − J ′ b′ ∑

〈i, j〉L

(Si · S j )
2

−
∑

i

{
Jb

4

∑
j �=k∈NS (i)

+J ′b′

4

∑
j �=k∈NL (i)

}
(Si · S j )(Si · Sk )

−
√

J J ′ b b′
∑

i

∑
j∈NS (i)

∑
k∈NL (i)

ei j · eik (Si · S j )(Si · Sk ),

(4)

where two kinds of NN exchange interactions J ≡
Jex(|r0

i j |Small ) and J ′ ≡ Jex(|r0
i j |Large), NN sites NS (i) and

NL(i), and the summations 〈i, j〉S and 〈i, j〉L are defined only
on the small and large tetrahedra, respectively. The degree
of the breathing lattice distortion is quantified by the ratio
0 < J ′/J � 1, and the dimensionless parameters

b = 1

cJ

[
dJex

dr

∣∣∣∣
r=|r0

i j |Small

]2

,

b′ = 1

cJ ′

[
dJex

dr

∣∣∣∣
r=|r0

i j |Large

]2

(5)

measure the strength of the SLC for small and large tetrahe-
dra, respectively, where c = 2cBP in the bond-phonon model
and c = cSP in the site-phonon model. We take J, J ′ > 0
and dJex/dr < 0, so that b, b′ > 0. In the uniform case of
J ′/J = 1, there is, of course, no distinction between the small
and large tetrahedra, so that there is only one SLC parameter,
i.e., b = b′.

The feature common to the two models is the existence of
the biquadratic interaction of the form −(Si · S j )2. Since the
overall sign of this interaction is always negative irrespective
of the signs of J and J ′, the −(Si · S j )2 term tends to align
neighboring spins to be collinear and is known to be an origin
of the spin nematic state. In contrast to the bond-phonon
model (3), the site-phonon model (4) contains additional
intratetrahedron interactions [the third line in Eq. (4)] and
intertetrahedron ones [the fourth line in Eq. (4)]. Due to the
intertetrahedron interactions involving further neighbor spins,
a magnetic LRO becomes possible in the site-phonon model.
By contrast, as we will demonstrate in Sec. IV, the bond-
phonon model does not exhibit any magnetic LRO because
of the absence of such effective further neighbor interactions.

III. RELEVANT PHYSICAL QUANTITIES AND
NUMERICAL METHOD

In this section, we first introduce physical quantities rel-
evant to our systems described by the Hamiltonians (3) and

(4), and then explain the numerical method to calculate them.
Throughout this paper, N is a total number of spins and 〈O〉
denotes the thermal average of a physical quantity O.

A. Relevant physical quantities

Since both the bond-phonon and site-phonon models have
the biquadratic term −(Si · S j )2 favoring collinear spin states,
a key physical quantity is the spin collinearity which can be
measured by

P = 3

2

〈
1

N2

∑
i, j

(Si · S j )
2 − 1

3

〉
. (6)

As the magnetic field H is applied in the Sz direction, it is
convenient to divide P into the spin collinearity for the direc-
tion parallel to the field P‖ and the ones for the perpendicular
direction P⊥1 and P⊥2 as follows:

P = P‖ + P⊥1 + P⊥2,

P‖ = 3
4

〈(
Q3z2−r2)2〉

,

P⊥1 = 3
4 〈|Q⊥1|2〉, Q⊥1 = (Qxz, Qyz ),

P⊥2 = 3
4 〈|Q⊥2|2〉, Q⊥2 = (Qx2−y2

, Qxy). (7)

Here, we have introduced the rank-two tensor order parame-
ters Qα defined by Qα = 1

N

∑
i Qα

i with the local quadrupole
moments [21]

Q3z2−r2

i = 1√
3

{
2
(
Sz

i

)2 − (
Sx

i

)2 − (
Sy

i

)2}
,

Qx2−y2

i = (
Sx

i

)2 − (
Sy

i

)2
,

Qxy
i = 2Sx

i Sy
i ,

Qxz
i = 2Sx

i Sz
i ,

Qyz
i = 2Sy

i Sz
i . (8)

For a spin-space rotation in the SxSy plane by the angle φ,
Q⊥n is rotated by the angle nφ, so that P⊥n can be used as
an order parameter to detect the n-fold breaking of rotational
symmetry in the SxSy plane. When a magnetic (dipolar) LRO
is absent but a quadruple LRO characterized by nonzero value
of P⊥1 (P⊥2) exists, such a LRO is called the vector-multipole
(nematic) order [21].

Whether a magnetic (dipolar) LRO is present or not can be
examined by measuring the spin structure factors

FS‖(q) =
〈∣∣∣∣ 1

N

∑
i

Sz
i eiq·r0

i

∣∣∣∣
2〉

,

FS⊥(q) =
〈 ∑

ν=x,y

∣∣∣∣ 1

N

∑
i

Sν
i eiq·r0

i

∣∣∣∣
2〉

. (9)

Noting that the magnetic field H is applied in the Sz direction,
we have introduced FS‖(q) for the Sz component of spins and
FS⊥(q) for the SxSy-plane component. Also, since the breath-
ing bond alternation has already been incorporated in the spin
Hamiltonian, we have taken r0

i in Eqs. (9) as a regular position
of the uniform pyrochlore lattice ignoring the bond-length
alternation for simplicity.
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FIG. 3. Temperature and magnetic-field phase diagrams obtained in the bond-phonon model with b = b′ = 0.15 for J ′/J = 1 (left), J ′/J =
0.6 (center), and J ′/J = 0.2 (right). Note that a gray cross merely indicates a broad-peak temperature of the specific heat C and, thus, it does
not mean a phase transition (for details, see the text).

In both the bond-phonon and site-phonon models, once a
spin state is obtained, the local lattice distortions can be evalu-
ated directly from the given spin configuration [25,26,53,54],
so that the essential information of the spin-lattice-coupled
orders consists in the spin state. Thus, in this paper, we will
focus basically on the ordering properties only of spins. By
measuring the above physical quantities defined in Eqs. (7)
and (9) as well as the fundamental ones such as the spe-
cific heat C = 1

T 2N (〈H2〉 − 〈H〉2) and the magnetization m =
〈| 1

N

∑
i Si|〉, we identify low-temperature phases in the applied

magnetic field H .

B. Numerical method

To calculate the physical quantities introduced above, we
perform Monte Carlo (MC) simulations for the bond-phonon
and site-phonon Hamiltonians (3) and (4). Since our cubic unit
cell contains 16 sites (see Fig. 1), the total number of spins N
is related to the linear system size L via N = 16L3. In our MC
simulation, we basically perform 2 × 106 MC sweeps at each
temperature and magnetic field with the periodic boundary
condition, and the first half is discarded for thermalization.
A single spin flip at each site consists of the conventional
Metropolis update and a successive over-relaxation-like pro-
cess in which we try to rotate a spin by the angle π around
the local mean field [55]. Observations are done in every 10
MC steps and the statistical average is taken over 4–8 inde-
pendent runs. In most cases of the present system, efficient
MC algorithms such as the temperature exchange method [56]
and a cluster update method, so-called loop-flip algorithm
[55], do not work except for some parameters (see below).
Thus, we perform the single-spin-flip MC simulations, as
mentioned above.

In the present single-spin-flip MC simulation, we often
encounter various metastable states, as the spin state is not
efficiently updated, being trapped in a local minimum. In
particular, in the site-phonon model possessing intertetrahe-
dron complex interactions, the low-temperature spin states
obtained in the four different processes, cooling and warming
runs at a fixed field and field-increase and field-decrease runs

at a fixed temperature, sometimes differ. In such a situation,
we compare the thermal-averaged values of the energy of
these states and regard the lowest-energy state as the equi-
librium state. Since this procedure could be applicable only
to the lower-temperature region where the entropy effect is
relatively weak, in relatively higher-temperature regions, we
use the mixed-phase method (see Ref. [57] and Appendix A)
taking account of the entropy effect. Based on the above anal-
ysis, we determine the temperature and magnetic-field phase
diagrams shown in Figs. 3 and 6, where the phase boundary
between the low-temperature ordered and high-temperature
disordered states is determined by the cooling runs. We note
in passing that near the strong first-order transition between
the low-field and middle-field 1

2 -plateau phases, we first use
the mixed-phase method to obtain the equilibrium state, and
then calculate the thermal average of the physical quantities
(for details, see Appendix A).

In addition to the local-update MC simulations, we use
the temperature-exchange method [56] to verify the spin-
liquid behavior appearing in the 1

2 -plateau region in the
bond-phonon model [see Fig. 4(c)] and the complex magnetic
structures of the SP3 and SP4 phases in the site-phonon model
shown in Fig. 13. In the latter case, the temperature-exchange
method can be applied to the L = 3 system which is the
smallest size for the SP3 and SP4 phases, but for the larger
size of L = 6, it does not work because of the first-order char-
acter of the transition from the high-temperature paramagnetic
phase.

Furthermore, we examine the ground state of the site-
phonon model for the small number of spins N = 32, and
check that the results obtained in the finite-temperature MC
simulations are consistent with those obtained in the ground-
state analysis. To search for the global minimum of the
Hamiltonian (4), we use the “NMinimize” function in the
Wolfram Mathematica software 11.3.0. With these multiple
checks, we believe that the finite-temperature phases deter-
mined in the above procedure are the true equilibrium states,
although we cannot rule out the possibility that there exists an-
other phase which cannot be reached by any of the numerical
methods used here.
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FIG. 4. MC results for the bond-phonon model with b = b′ =
0.15 and J ′/J = 0.2. (a) Field dependence of the magnetization m
(upper panel) and the SxSy-plane spin collinearities P⊥1 and P⊥2

(lower panel) at T/J = 0.04. (b) Temperature dependence of the
specific heat C (upper panel) and the spin collinearities P‖, P⊥1, and
P⊥2 (lower panel) at H/J = 2.5. (c) Spin structure factors FS‖(q) (up-
per panels) and FS⊥(q) (lower panels) in the (h, h, l ) plane obtained
at H/J = 0.8 and T/J = 0.06 (left), H/J = 2.5 and T/J = 0.04
(center), and H/J = 3.4 and T/J = 0.04 (right) for L = 8. In FS‖(q),
the high-intensity trivial peak at q = 0 indicated by the cross, which
corresponds to m2, has been removed.

Throughout this paper, we restrict ourselves to the case of
b = b′ for simplicity, although in general the SLC parameters
b and b′ defined in Eq. (5) should take different values in the
breathing case.

IV. RESULT IN THE BOND-PHONON MODEL

In this section, we will discuss the ordering properties
of the bond-phonon model. In the bond-phonon model on
the uniform pyrochlore lattice, it was shown by Shannon,
Penc, and Motome that any magnetic (dipolar) LRO does
not appear at any finite temperature and magnetic field but,
instead, the two different quadruple LRO’s, the nematic and
vector-multipole orders each characterized by the nonzero
value of P⊥2 and P⊥1, are realized at low and high fields,
respectively, whereas at middle fields, the paramagnetic phase
persists down to T = 0 showing the spin-liquid behavior
[21]. This spin-liquid state consists only of the 3-up and
1-down tetrahedra, so that it possesses the magnetization of
m = 1

2 . Furthermore, the spin-liquid state with m = 1
2 extends

over the middle-field window, exhibiting the 1
2 plateau in

the magnetization curve, so that it is called the spin-liquid
plateau phase. In this section, we will discuss the stabilities of
the nematic, vector-multipole, and spin-liquid-plateau phases
against the breathing bond alternation, i.e., the change in
J ′/J . Figure 3 shows the J ′/J dependence of the temperature
and magnetic-field phase diagram in the bond-phonon model
with b = b′ = 0.15. Although the characteristic temperature
scales, e.g., the transition temperature between the paramag-
netic and ordered phases, are suppressed with decreasing J ′/J
(increasing the strength of the breathing bond alternation),
the relative stability among the nematic, vector-multipole, and
spin-liquid-plateau phases is almost unchanged. Below, we
will discuss the nature of these three phases.

In Fig. 4, we show the field dependence of various physical
quantities in the strongly breathing case of J ′/J = 0.2. One
can see from the upper panel of Fig. 4(a) that the magneti-
zation m increases linearly with increasing the applied field
H and, via a discontinuous first-order transition, it shows
the 1

2 plateau which is followed by the continuous growth in
the higher-field phase. The low-field, middle-field 1

2 -plateau,
and high-field phases correspond to the nematic, spin-liquid-
plateau, and vector-multipole phases, respectively. As one can
see from the SxSy-component spin structure factors FS⊥(q)
shown in the lower panels of Fig. 4(c), any magnetic Bragg
reflections cannot be found in all the three phases, suggesting
that the spin components perpendicular to the applied field
are disordered. Such a situation is also the case for the Sz spin
component parallel to the field. Actually, in the Sz-component
spin structure factors FS‖(q) shown in the upper panels of
Fig. 4(c), one cannot find nontrivial Bragg peaks except the
(1,1,1)-type peaks originating from the uniform magnetization
m. Thus, in all the three phases, spins (dipole moments) are
still disordered down to the lowest temperature.

The low-temperature ordered and high-temperature para-
magnetic phases can be distinguished by the spin collinearity.
One can see from the lower panel of Fig. 4(a) that the low-field
nematic and high-field vector-multipole phases are character-
ized by the nonzero values of P⊥2 and P⊥1, respectively. In
middle-field 1

2 -plateau phase, on the other hand, a LRO does
not occur for the quadruple moments as well as the dipole
moments (spins), i.e., P⊥2 = P⊥1 = 0, so that this phase is a
spin-liquid state as is also suggested from the specific-heat
data shown in Fig. 4(b) where a signature of a phase transition
cannot be seen. Note that the broad peak in C is associated
with the growth of the collinearity along the field direction
P‖ [see the lower panel of Fig. 4(b)] which could also be
interpreted as the formation of the 3-up and 1-down spin
configuration on each tetrahedron. The broad-peak temper-
ature is indicated by the gray cross in the temperature and
magnetic-field phase diagrams in Fig. 3.

V. RESULT IN THE SITE-PHONON MODEL

In this section, we will discuss the ordering properties of
the site-phonon model in which the intertetahedron interac-
tions work as effective further neighbor interactions, leading
to magnetic LRO’s.

Since, as mentioned in Sec. I, the zero-field phase real-
ized in the weak SLC regime of the site-phonon model has
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FIG. 5. Result of the ground-state analysis of the site-phonon model for the small number of N = 32 spins. (a) SLC parameter b = b′ and
the magnetic field H dependence of the ground state for J ′/J = 1 (left), J ′/J = 0.6 (center), and J ′/J = 0.2 (right). Filled (open) symbols
denote 16-sublattice (32-sublattice) magnetic structures. (b) Associated magnetization curves for b = b = 0.02 (red), b = b = 0.05 (green),
and b = b = 0.10 (blue) in the cases of J ′/J = 1 (top), J ′/J = 0.6 (middle), and J ′/J = 0.2 (bottom).

the same spin structure as that observed in Li(Ga, In)Cr4O8

[14,15,26], we will focus on this weak SLC regime of b =
b′ < 0.25 which should be relevant to the existing mate-
rials. This zero-field spin state, which is realized on both
the uniform and breathing pyrochlore lattices, is tetragonal
symmetric being characterized by the (1,1,0)-type magnetic
Bragg reflections. Concerning the in-field properties of the
site-phonon model on the uniform pyrochlore lattice, it was
shown by Bergman et al. that the 1

2 plateau shows up in
the magnetization curve as in the case of the bond-phonon
model and that the ground-state spin structure of the 1

2 -plateau
phase is the R state with the P4332 symmetry [23] (the P2
phase explained below is exactly the same as the R state)
which consists of the ↑↑↑↓ chains running along all the bond
directions, keeping the 3-up and 1-down configuration on
each tetrahedron. This ↑↑↑↓ state is cubic symmetric, which
is consistent with the experimental results on HgCr2O4 and
CdCr2O4 [30,32]. Bearing these fundamental physics in our
mind, we will discuss in-field properties of the site-phonon
model on the breathing pyrochlore lattice.

A. Ground-state analysis

We first discuss results of the ground-state analysis for N =
32 spins. Since the zero-field ground state of the site-phonon
model is a 16-sublattice state characterized by (1,1,0) Bragg
reflections or a 32-sublattice one characterized by ( 1

2 , 1
2 , 1

2 )
reflections [26], even the small number of spins N = 32 can
describe at least the zero-field magnetic structures. Figure 5(a)
shows the SLC parameter b = b′ and the magnetic field H
dependence of the ground state for J ′/J = 1 (left), J ′/J = 0.6

(center), and J ′/J = 0.2 (right), where the magnetic field is
normalized by the saturation field for b = b′ = 0, i.e., 4J +
4J ′ [39]. Note that in the limit of b = b′ → 0, the ground state
remains disordered even in the presence of a magnetic field at
least in the uniform case of J ′/J = 1 [21]. For the parameter
sets we investigated, we obtain 14 kinds of magnetic struc-
tures except for the trivial high-field fully polarized state. Half
of them are 16-sublattice states and the remaining half are 32-
sublattice ones the stability regions of which are, respectively,
represented by filled and open symbols in Fig. 5(a).

In the uniform case of J ′/J = 1, three magnetically long-
range-ordered states are realized in a wide range of the
parameter space, i.e., the low-field, middle-field, and high-
field phases which, hereafter, will be called P1, P2, and P3
phases, respectively. These P1, P2, and P3 phases appear
also in the breathing cases of J ′/J = 0.6 and J ′/J = 0.2.
For smaller values of b = b′, an intermediate phase appears
between the P1 and P2 phases in both the uniform and breath-
ing cases [see the orange and yellow regions in Fig. 5(a)]. This
intermediate phase is the cant 2:1:1 state [19,21] or the “1-up,
1-down, and V” state which will be called P4 and P5 phases,
respectively (for their real-space structures, see Fig. 11 in
Appendix B). The P4 phase is favored in the strongly breath-
ing case of J ′/J = 0.2, whereas in the uniform and weakly
breathing cases of J ′/J = 1 and 0.6, the P4 phase is de-
generate with the P5 phase at least within our computation
accuracy.

For moderate SLC, on the other hand, additional new
phases are favored by the breathing bond alternation. For
example, in the weakly breathing case of J ′/J = 0.6, there
exists a higher-field phase between the saturation field and
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the P3 phase which we call SP1 phase. The SP1 phase is
the 16-sublattice state, similarly to the P1, P2, P3, P4, and
P5 phases. In the relatively large-b region, a variety of 32-
sublattice states become favorable near the saturation field and
the 1

2 plateau, reflecting the fact that in the strong SLC regime
of b, b′ > 0.25, the zero-field ground state is the ( 1

2 , 1
2 , 1

2 )-type
32-sublattice state.

Figure 5(b) shows the parameter dependence of the mag-
netization curve. One can see that with increasing the SLC
parameter b = b′, the 1

2 plateau, which corresponds to the
P2 phase, gets wider and the associated magnetization jump
from the P1 phase becomes more remarkable. The existence
of the P4 or P5 phase is reflected as the bending of the plateau
just above the magnetization jump. We note that although the
top and middle panels of Fig. 5(b) are obtained by assuming
that the intermediate phase is the P5 phase, the magnetization
curve is not altered even if it is assumed to be the P4 phase.

Although the above ground-state analysis for N = 32 spins
offers crucial information about magnetic LRO’s in the site-
phonon model, careful analysis is necessary to check whether
the states obtained for N = 32 are really stable or not in the
thermodynamic limit of L → ∞ or, equivalently, N → ∞. In
particular, in the relatively large-b and smaller-J ′/J regions,
the occurrence of the 32-sublattice states in the ground-state
analysis indicates that a large number of possibly more than
32 spins should be taken into account to lower the energy
of the system. Indeed, as we will see below, in the finite-
temperature MC simulations, the tetrahedron-based orders
involving more than 32 spins (SP2, SP2′, SP3, and SP4
phases) appear just below the saturation field and the 1

2 plateau
for J ′/J = 0.2. In addition, the P3 phase is slightly modified
in the strongly breathing case J ′/J = 0.2.

B. Temperature and magnetic-field phase diagram

Now that we have understood the ground-state properties
of the site-phonon model for N = 32, we will next discuss
finite-temperature properties for larger numbers of spins N =
16L3 with L � 4. Since the characteristic in-field feature of
the spin-lattice-coupled system is the occurrence of the 1

2
plateau, hereafter, we will focus on the SLC parameters of
b = b′ � 0.10 for which the 1

2 plateau is relatively wide.
Figure 6 shows the J ′/J dependence of the temperature

and magnetic-field phase diagram in the site-phonon model
with the SLC parameters of b = b′ = 0.10, 0.15, and 0.20.
The finite-temperature results in Fig. 6 are basically consistent
with the results obtained in the ground-state analysis for the
small number of spins N = 32 [see Fig. 5(a)] except that in
the strongly breathing case of J ′/J = 0.2, LRO’s involving
more than 32 spins appear as the lowest-energy state. We note
that according to the ground-state analysis for b = b′ = 0.15
and J ′/J < 1, an additional higher-field phase may exist just
above the P3 or P3′ phase in the center and right panels of
Fig. 6(b), but it is not obtained in the temperature range of our
MC simulations. Before going to the details of the ordered
phases, here, we will briefly summarize the result.

In the uniform case of J ′/J = 1, the three magnetically
long-range-ordered states P1, P2, and P3 phases are stabilized
in the low-field, middle-field, and high-field regions, respec-
tively. The P1 and P2 phases are robust against the breathing

alternation, while the P3 one is not. Although the P3 phase
still exists in the weakly breathing case of J ′/J = 0.6, its
spin structure is modified in the strongly breathing case of
J ′/J = 0.2. We call such a modified state P3′ phase. For the
weak SLC’s of b = b′ = 0.10 and 0.15, only the above four
phases P1, P2, P3, and P3′ come into play. By contrast, for
the moderate SLC of b = b′ = 0.20, additional new phases
are induced by the breathing bond alternation. In the weakly
breathing case of J ′/J = 0.6, the SP1 phase appears in a
higher-field region, whereas in the strongly breathing case of
J ′/J = 0.2, there are two corresponding higher-field phases
which will be called SP3 and SP4 phases. Another noteworthy
aspect in the case of J ′/J = 0.2 is the occurrence of the
intermediate phase between the P1 and P2 phases. This phase
just below the 1

2 plateau will be named SP2 phase and its
lower-temperature state is SP2′ phase in which the correlation
between the SxSy components of spins is different from that
in the higher-temperature SP2 phase. Now, we shall discuss
the details of the ordered states, starting from the P1, P2,
and P3 phases appearing on both the uniform and breathing
pyrochlore lattices.

C. Ordered states appearing on both the uniform and breathing
pyrochlore lattices

Figure 7 shows the field dependence of various physi-
cal quantities in the uniform (J ′/J = 1), weakly breathing
(J ′/J = 0.6), and strongly breathing (J ′/J = 0.2) cases for
b = b′ = 0.15. As readily seen from the upper panels of
Figs. 7(a)–7(c), the 1

2 plateau shows up in the magnetization
curve being relatively robust against the breathing bond alter-
nation, i.e., the change in J ′/J . This 1

2 -plateau phase is the
P2 phase, and the low-field (high-field) phase below (above)
the 1

2 plateau is the P1 (P3 or P3′) phase. As one can see
from the lower panels of Figs. 7(a) and 7(b), the P1 and P3
phases are characterized by nonzero values of P⊥2 and P⊥1,
respectively. These features of the low-field (P1), middle-field
(P2), and high-field (P3) phases are quite similar to those of
the nematic, spin-liquid-plateau, and vector-multipole phases
in the bond-phonon model [see Fig. 4(a)], but in the present
site-phonon model, magnetic LRO’s are realized in the P1,
P2, and P3 phases, as is indicated by Bragg peaks in the spin
structure factors FS⊥(q) and FS‖(q) shown in Fig. 7(e).

In the low-field P1 phase, FS⊥(q) for the SxSy spin com-
ponent perpendicular to the field exhibits Bragg peaks at
±(1, 1, 0), while FS‖(q) for the Sz spin component parallel
to the field only exhibits the trivial (0,0,0) and (1,1,1) peaks
stemming from the uniform magnetization [see the left panels
of Fig. 7(e)]. The P1 phase characterized by the (1,1,0)-type
Bragg reflections is tetragonal symmetric in the sense that
among the three equivalent points (1,1,0), (1,0,1), and (0,1,1),
only one is selected. The real-space spin configuration of the
P1 phase is shown in Fig. 1(a). As one can see from the
periodic pattern of the yellow and red arrows in Fig. 1(a),
the perpendicular spin components constitute ↑↓↑↓ chains
along the facing two bonds of a tetrahedron and ↑↑↓↓ chains
along the rest four bonds. All the spins are canted along the
field direction. In units of tetrahedron, each of all the tetrahe-
dra takes the cant 2:2 spin configuration.
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FIG. 6. Temperature and magnetic-field phase diagrams obtained in the site-phonon model with (a) b = b′ = 0.10, (b) b = b′ = 0.15, and
(c) b = b′ = 0.20 for J ′/J = 1 (left), J ′/J = 0.6 (center), and J ′/J = 0.2 (right).

In the middle-field P2 phase characterized by the 1
2 -

magnetization plateau, as one can see from the real-space
spin configuration shown in Fig. 1(b), the parallel spin com-
ponents constitute ↑↑↑↓ chains along all the six tetrahedral
bonds, keeping the 3-up and 1-down configuration on each
tetrahedron. This ↑↑↑↓ chain structure is reflected in FS‖(q)
as the magnetic Bragg peaks at (1,1,0) [see the center up-
per panel of Fig. 7(e)] and other cubic-symmetric points of
(0,1,1) and (1,0,1). Thus, the spin state is cubic symmetric.
In the P2 phase, all the spins are collinearly aligned along
the field direction, and the SxSy components perpendicular
to the field only exhibit a short-range correlation. Actually,
any Bragg reflections cannot be found in the SxSy-component
spin structure factor FS⊥(q) shown in the center lower panel
of Fig. 7(e).

The high-field P3 phase is a canted state of the P2 phase.
As one can see from the real-space configuration shown in
Fig. 1(c), the ↑↑↑↓ chains are canted from the field direction
such that the cant directions of the up and down spins are
antiparallel to each other keeping the SxSy components to be
collinear. As a result, not only the Sz component, but also
the SxSy one constitutes ↑↑↑↓ chains running along all the
six tetrahedral bonds. Reflecting this ordering pattern, the
spin structure factor shown in the right panels of Fig. 7(e)
has the (1,1,0)-type Bragg peaks not only in the Sz sector
[FS‖(q)] but also in the SxSy sector [FS⊥(q)]. In contrast to
the P2 phase, the SxSy components exhibit the LRO in the P3
phase. Comparing the lower left and right panels of Fig. 7(e),
one notices that FS⊥(q)’s of the P1 and P3 phases look quite
similar to each other, but in the P3 phase, the Bragg peaks
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FIG. 7. MC results for the site-phonon model with b = b′ =
0.15. (a)–(c) Field dependence of m, P⊥1, and P⊥2 for (a) J ′/J = 1
and T/J = 0.06, (b) J ′/J = 0.6 and T/J = 0.04, and (c) J ′/J = 0.2
and T/J = 0.02. (d) Spin structure factor obtained in the high-field
P3′ phase at H/J = 3.4 and T/J = 0.02 for L = 8 in the strongly
breathing case of J ′/J = 0.2. (e) Spin structure factors obtained at
T/J = 0.04 in the weakly breathing case of J ′/J = 0.6. The left,
center, and right panels are, respectively, obtained in the low-field
P1 phase at H/J = 1.0, the middle-field P2 phase at H/J = 3.5,
and the high-field P3 phase at H/J = 4.3 for L = 8. In FS‖(q), the
high-intensity trivial peak at q = 0 indicated by the cross, which
corresponds to m2, has been removed.

show up at the wave vectors of (1,0,1) and (0,1,1) as well as
(1,1,0). Thus, the P3 phase is cubic symmetric. Although the
P3 phase is robust against the weak breathing bond alternation
of J ′/J = 0.6, it is modified into the P3′ phase in the strongly
breathing case of J ′/J = 0.2.

D. Ordered states favored on the breathing pyrochlore lattice

Among various magnetic LRO’s induced by the breathing
lattice structure, we first discuss the P3′ phase. As shown in
Figs. 7(c) and 7(d), the ordering properties of the high-field
P3′ phase are similar to those of the P3 phase: the (1,1,0)-type
magnetic Bragg peaks can be found in both FS‖(q) and FS⊥(q),
and the in-plane collinearity P⊥1 develops on entering the P3′
phase from the P2 phase. When we take a closer look at the
system-size dependence of P⊥1, however, P⊥1 in the P3′ phase
is suppressed with increasing the system size L, which is in
sharp contrast to the corresponding behavior in the P3 phase
[see the lower panels of Figs. 7(a) and 7(b)]. We note that in
the MC simulation, even when we take the spin configuration
of the P3 phase as the initial state, the system eventually goes
to a slightly disturbed state, and P⊥1 is suppressed to be a
smaller value than those in the P1 and P3 phases. Furthermore,
the energy of the system gradually becomes lower than that of
the P3 phase with increasing the system size L, although the
Bragg peak is still located at (1,1,0) up to the largest size of
L = 12. Thus, there is a possibility that in the P3′ phase, an
incommensurate order whose wave vector is close to (1,1,0)
might be realized in the thermodynamic limit of L → ∞.
Identifying the spin structure of the P3′ phase needs larger-L
analysis, but we will leave this issue for our future work.

The above P1, P2, P3, and P3′ phases are realized in all
the three cases of b = b′ = 0.10, 0.15, and 0.20 (see Fig. 6).
For the relatively strong SLC of b = b′ = 0.20, additional new
phases SP1, SP2, SP2′, SP3, and SP4 phases, are induced by
the breathing bond alternation. Below, we will discuss these
phases starting from the SP1 phase occurring just below the
saturation field in the weakly breathing case of J ′/J = 0.6
[see the center panel of Fig. 6(c)].

Figure 8 shows the spin structure of the SP1 phase. One can
see from the real-space spin configuration shown in Fig. 8(a)
that the SP1 phase is the 16-sublattice state similarly to the
P1, P2, and P3 phases. In contrast to the P1, P2, and P3
phases where all the tetrahedra are equivalent to one another
taking the same spin configuration on each tetrahedron, the
SP1 phase consists of the two different types of small tetra-
hedra, 4-up and cant 2:2 tetrahedra. As one can see from
Figs. 8(a) and 8(b), the distribution of the 4-up and cant 2:2
tetrahedra within the cubic unit cell is tetragonal symmetric:
the 4-up tetrahedron pair and the cant 2:2 tetrahedron pair
are stacking along the z axis, leading to the alternating stack
of the 4-up and cant 2:2 layers in the whole system. The
tetragonal symmetry of this kind can clearly be seen in the
difference in the spin structure factors in the (h, k, 0), (h, 0, l ),
and (0, k, l ) planes. As readily seen from Fig. 8(c), among the
cubic-symmetric families of (1,0,0), (0,1,0), and (0,0,1), only
(0,0,1) is picked up in FS⊥(q) and such a situation is also the
case for the family of (0,1,1), (1,0,1), and (1,1,0). We note that
although in the case of Fig. 8, the z direction is special, any
of the x, y, and z directions can be the tetragonal axis, i.e., the
stacking direction of the alternating 4-up and cant 2:2 layers.
Actually, the stacking direction differs run to run in the MC
simulations.

In the strongly breathing case of J ′/J = 0.2, as shown
in the right panel of Fig. 6(c), the SP2 and SP2′ (SP3
and SP4) phases appear just below the 1

2 plateau (the
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FIG. 8. MC results obtained in the higher-field SP1 phase at
H/J = 6.0 for the site-phonon model with b = b′ = 0.20 and J ′/J =
0.6. (a) Spin snapshot at T/J = 0.001 and (b) the associated small-
tetrahedron distribution within the cubic unit cell. (c) Spin structure
factors FS‖(q) (upper panels) and FS⊥(q) (lower ones) in the (h, k, 0)
(left), (h, 0, l ) (center), and (0, k, l ) (right) planes obtained at T/J =
0.002 for L = 8. In FS‖(q), the high-intensity trivial peak at q = 0
indicated by the cross has been removed.

saturation field). Figure 9(a) shows the field dependence of
the magnetization m and the SxSy-plane collinearities P⊥1 and
P⊥2, where the SP2 phase is stabilized in the field range of
1.5 � H/J � 1.9. As one can see from a two-step jump in
the magnetization curve, the SP2 phase is separated by the
first-order transitions from the low-field P1 and middle-field
P2 phases. Figure 9(b) shows the spin structure factor in the
SP2 phase. FS‖(q) exhibits the Bragg peaks at ±( 2

3 , 2
3 , 0) and

±( 4
3 , 4

3 , 0) but not other cubic-symmetric points, so that the
state should be tetragonal. The SxSy components of spins, on
the other hand, are not long range ordered, as is suggested
from the absence of Bragg peaks in FS⊥(q) [see the lower
panels of Fig. 9(b)]. Together with the result that both P⊥1

and P⊥2 vanish in the SP2 phase [see Fig. 9(a)], it turns out
that the SxSy components of spins remain disordered. We note
that in the lower-temperature SP2′ phase, the perpendicular
components of spins are ordered into a state characterized by
the nonzero value of P⊥2, and associated ( 2

3 , 2
3 , 0)-type Bragg

peaks develop in FS⊥(q) with FS‖(q) being almost unchanged
from that in the SP2 phase.
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FIG. 9. (a) The field dependence of m (reddish symbols), P⊥1

(greenish ones), and P⊥2 (bluish ones) at T/J = 0.052 for the site-
phonon model with b = b′ = 0.20 in the strongly breathing case of
J ′/J = 0.2. The SP2 phase is realized in the field range of 1.5 �
H/J � 1.9. (b) Spin structure factor obtained at H/J = 1.8 and
T/J = 0.05 for L = 12, where the notations are the same as those
of Fig. 8(c).

The real-space structure of the SP2 phase is very com-
plicated; it consists of as many as 16 × 63 spins. In units
of tetrahedron, similarly to the SP1 phase, the SP2 phase is
composed of the two different kinds of small tetrahedra, the
cant 2:2 tetrahedra and the 3-up and 1-down ones, reflecting
the fact that this phase is intercalated between the P1 and P2
phases each consisting of the cant 2:2 tetrahedra and the 3-up
and 1-down ones, respectively. In the SP2 phase, these two
elements, i.e., the cant 2:2 tetrahedra and the 3-up and 1-down
ones, are arranged periodically over the whole system, form-
ing a tetragonal-symmetric pattern (for details, see Fig. 12 in
Appendix C).

The SP3 and SP4 phases appearing just below the satura-
tion field are also tetrahedron-based orders. In these phases,
the fundamental element is the 4-up tetrahedron. The SP3 and
SP4 phases are characterized by different ordering patterns of
the 4-up tetrahedra both of which are noncubic (see Fig. 13 in
Appendix C).

Although the real-space structures of the SP2, SP2′, SP3,
and SP4 phases are rather complicated, the existence of
nonequivalent tetrahedra is the common feature of these
phases and the SP1 phase, all of which are induced by the
breathing bond alternation. By contrast, in the P1, P2, and
P3 phases appearing in both the uniform and breathing py-
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rochlore lattices, all the tetrahedra are equivalent, having the
same spin configuration. The key role of the breathing lattice
structure is the installation of the nonequivalent tetrahedra in
the system, leading to the tetrahedron-based magnetic orders.

VI. SUMMARY AND DISCUSSION

In this paper, we have theoretically investigated in-field
properties of the spin-lattice-coupled ordering in the breathing
pyrochlore antiferromagnets, based on the simplified models
taking account of the effect of local lattice distortions, the
so-called bond-phonon and site-phonon models. It is found by
means of MC simulations that the site-phonon model exhibits
a rich variety of magnetic LRO’s some of which are unique to
the breathing system, while the bond-phonon model does not
show any magnetic (dipolar) LRO regardless of whether the
system is breathing or not. In the site-phonon model with the
small SLC parameters of 0.10 � b = b′ � 0.20, the low-field,
middle-field, and high-field phases appearing in the uniform
pyrochlore lattice, which are, respectively, named the P1, P2,
and P3 phases in Fig. 6, are also realized on the breathing py-
rochlore lattice. Note that the magnetization curve shows the
1
2 plateau in the middle-field P2 phase. In addition to the three
phases, as a result of the combined effect of the breathing bond
alternation which introduces the nonequivalent tetrahedra in
the system and the intertetrahedron interactions characteris-
tic of the site-phonon model, tetrahedron-based new LRO’s
are induced just below the 1

2 plateau and the saturation field
(SP1, SP2, SP2′, SP3, and SP4 phases in Fig. 6). It is also
found from the ground-state analysis that in the much weaker
SLC regime where the 1

2 plateau is quite narrow, an inter-
mediate phase appears between the P1 and P2 phases. This
intermediate phase is the P4 or P5 phase whose local spin con-
figurations on each tetrahedron are the “cant 2:1:1” and “1-up,
1-down and V,” respectively (see Fig. 5 together with Fig. 11
in Appendix B).

In deriving the site-phonon effective spin Hamiltonian, the
following approximations have been made: the exchange in-
teraction is assumed to depend only on the distance between
the two spins although the situation in real materials would
be more complicated, and is expanded with respect to the site
displacement up to the first order, neglecting the higher-order
contributions [see Eqs. (1) and (2)]. Also, the elastic energy of
the lattice is assumed to be a local one depending only on each
site, although in reality neighboring displacements should be
correlated in the form of the dispersive phonon modes. Due
to the assumed local nature of the phonons, physics relevant
to the lattice such as the net lattice distortions, the volume
changes, and the phonon dispersions cannot be described in
the present model. Nevertheless, as will be discussed be-
low, the site-phonon model captures the essential feature
of the “spin” ordering physics of the spin-lattice-coupled
phenomena in the chromium oxides not only at zero field, but
also at finite fields.

In experiments on the uniform pyrochlore antiferromagnets
ACr2O4 (A = Hg, Cd, Zn, Mg), the 1

2 plateau has commonly
been observed and its spin structure suggested from the neu-
tron diffraction patterns for HgCr2O4 and CdCr2O4 [30,32]
is the same as that of the above P2 phase, i.e., the state
consisting of ↑↑↑↓ chains running along all the tetrahedral

bonds. We note that although the P2 phase was already pre-
dicted by Bergman et al. [23], its finite-temperature properties
are clarified in this paper. In addition to the P2 phase, the
existence of the P4 or P5 phase just below the 1

2 plateau is
consistent with the observation of an intermediate phase in
ZnCr2O4 [7–9] and MgCr2O4 [11]. The observed intermedi-
ate phase has been interpreted as the cant 2:1:1 state based
on the bond-phonon picture, but our result suggests that the
P5 phase shown in Fig. 11(b) is also a possible candidate
for this phase. At zero field, on the other hand, the P1 phase
does not seem to be reported in ACr2O4 [2,4,30,51] where
the spin-ordering patterns vary from material to material, in-
dicating that effects beyond the present simplified model such
as higher-order contributions in Eq. (2), dispersive phonon
modes, and other interactions should also be relevant. Indeed,
the additional DM interaction slightly modifies the P1 phase
and the modified state is consistent with the Neel state of
CdCr2O4 [52]. These results suggest that the zero-field and
in-field properties of the uniform pyrochlore antiferromagnets
ACr2O4 can be basically described by the site-phonon model
in spite of the simplification of the lattice distortions.

In the breathing pyrochlore antiferromagnets Li(Ga,
In)Cr4O8, the P1 phase (the tetragonal-symmetric spin struc-
ture consisting of the 2-up and 2-down tetrahedra) is realized
at zero field [14,15,26], so that the site-phonon model could
also be applied to this class of magnets. Accordingly, the 1

2
plateau observed in LiInCr4O8 [17,18] would point to the
realization of the P2 phase (the cubic-symmetric spin structure
consisting of the 3-up and 1-down tetrahedra). Notably, the
magnetization jump just below the 1

2 plateau in LiInCr4O8 is
drastic and amounts to ∼0.75 μB [18], which is comparable
to that in HgCr2O4 with the strongest SLC among the ACr2O4

family [7,11,53,58]. This indicates that LiInCr4O8 possesses
a relatively strong SLC. In our present theoretical work, we
have demonstrated that in the site-phonon model with the
relatively strong SLC of b = b′ = 0.20, the intermediate
phase (the SP2 or SP2′ phase) appears between the P1 and P2
phases in the strongly breathing case of J ′/J = 0.2, showing a
two-step magnetization jump [see Fig. 9(a)]. However, such a
feature is not observed in LiInCr4O8, indicating that b and/or
b′ may be smaller than 0.20 in this compound. On the other
hand, according to the recent first-principle calculations [59],
the breathing parameter J ′/J in LiInCr4O8, which was at
first estimated to be ∼0.1 based on the empirical relationship
between the NN Cr-Cr bond length and the exchange coupling
[12], is highly temperature dependent and becomes close to 1
at 20 K slightly above the transition temperature [59]. Thus, at
present, it is not clear whether the absence of the intermediate
phase in LiInCr4O8 is due to the SLC parameters b and b′ or
the breathing parameter J ′/J . Concerning the Ga compound,
both the empirical and the first-principle calculations show
that the ratio between J and J ′ is ∼0.6, but the latter predicts
that J is smaller than J ′ in contrast to the naive expecta-
tion [59]. We believe that future high-field measurements on
LiGaCr4O8 should provide fundamental information on the
system parameters.

In this work, we have assumed b = b′ for simplicity, but
different values of the SLC parameters b �= b′ may lead to
various types of tetrahedron-based LRO’s other than the SP1,
SP2, SP2′, SP3, and SP4 phases depending on the value
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FIG. 10. Field dependence of the magnetization m obtained in
(a) the bond-phonon model and (b) the site-phonon model with
b = b′ = 0.15 and J ′/J = 0.2. Reddish (bluish) symbols denote the
results obtained in the field-increase (field-decrease) process at a
fixed temperature, and gray and black ones are obtained by the
mixed-phase method.

of J ′/J . Although it might not be so easy to find where a
complicated real material is placed in the parameter space
of the site-phonon model, this work presenting the result for
the simplified case of b = b′ should help the understanding of
the spin-lattice-coupled orderings in the breathing pyrochlore
antiferromagnets.

Finally, we would like to comment on the validity of the
site-phonon model in other related systems. As pointed out in
Ref. [39], the present model (4) on the breathing pyrochlore
lattice can be extended to the case of antiferromagnetic J > 0
and ferromagnetic J ′ < 0. In this case, the cant 2:1:1 phase
appears in a relatively wide parameter region, which seems to
be relevant to the gradual magnetization increase prior to the
1
2 plateau observed in CuInCr4S8 [37,39]. Furthermore, the
site-phonon model on the triangular lattice can reproduce the
zero-field zigzag ground state and the in-field 1

5 -magnetization
plateau observed in the multiferroic compound CuFeO2 [24].
Hence, it would be intriguing to apply the site-phonon model
to other frustrated spin systems to search for novel spin-
lattice-coupled phenomena.
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APPENDIX A: MIXED-PHASE METHOD

When a first-order transition occurs between two phases,
it is sometimes difficult to identify the phase boundary in

H

P4 phase (a)

H

P5 phase (b)

cant 2:1:1

1-up 1-down +V

FIG. 11. Real-space spin structures of (a) the P4 and (b) the P5
phases appearing between the low-field P1 and the middle-field P2
phase. The P4 and P5 phases consist of the “cant 2:1:1” and “1-up,
1-down, and V” tetrahedra, respectively. Red, yellow, and green
arrows represent spins pointing upward along the applied magnetic
field H , whereas blue ones represent spins pointing downward. The
in-plane components of the yellow or green spins at the two corners
of a small tetrahedron are parallel in (a), whereas antiparallel in (b).
In (b), although in-plane components of the same color spins are
collinearly aligned, those of the different color spins, i.e., yellow and
green ones, are not necessarily collinear (for details, see the text in
Appendix B).

the MC simulation because of a strong hysteresis. In such
a situation, the mixed-phase method [57] is useful. In the
mixed-phase method, one first prepares an initial state in
which the half of the system is occupied with a spin configu-
ration of one phase and the rest with a spin configuration of
the other competing phase, and then carries out MC sweeps,
tracing the state change. From the final state after the MC
sweeps, one can determine which phase is more stable at a
given temperature and a magnetic field.

In this work, we use the mixed-phase method near the
phase boundary between the low-field and the 1

2 -plateau
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FIG. 12. Spin structure of the SP2′ phase appearing in the site-phonon model with b = b′ = 0.20 in the strongly breathing case of J ′/J =
0.2. (a) The definition of the xy-plane (upper) and yz-plane (lower) layers of one-small-tetrahedron width. (b) Elementary spin configurations
on each tetrahedron (left) and their projections onto the xy plane (right), where in the right, the arrow and its color represent the SxSy and Sz

components of a spin, respectively, and the color of the box represents the averaged magnetization of each small tetrahedron mz
tetra. (c), (d) MC

snapshots taken at H/J = 1.8 and T/J = 0.01 in (c) the xy-plane layers and (d) the yz-plane layers, where the notations are the same as those
of (b). A pair of the cant 2:2 tetrahedra is enclosed by a solid black box, and a thin dashed square denotes the cubic unit cell projected onto the
two-dimensional plane.

phases. Figure 10 shows the magnetization curves obtained in
the field-increase and field-decrease processes at a fixed tem-
perature. In both the bond-phonon and site-phonon models, a
strong hysteresis can clearly be seen, suggestive of a strong
first-order transition. We apply the mixed-phase method in
this hysteresis region. Following Ref. [57], we perform rel-
atively short 5000–20 000 MC sweeps to obtain the final state
and determine the phase boundary between the low-field and
middle-field phases shown in the phase diagrams in Figs. 3
and 6.

Once the final state is obtained by using the mixed-phase
method, we calculate the thermal average of the various phys-
ical quantities in the same procedure as that explained in
Sec. III: we perform 106 MC sweeps for thermalization and
successive 106 MC sweeps for observations. The so-obtained
magnetization curves are indicated by the black symbols
in Fig. 10. Throughout this paper, we regard the thermal-
averaged value obtained in this way as the equilibrium value.

APPENDIX B: MAGNETIC STRUCTURES OF THE
P4 AND P5 PHASES

Figures 11(a) and 11(b) show the real-space structures of
the P4 and P5 phases, respectively. Local spin configurations

on each tetrahedron in the P4 and P5 phases are the cant
2:1:1 state [19,21] and the “1-up, 1-down, and V” state, re-
spectively. The difference between the two mainly consists
in the paired spins at the two corners of a small tetrahe-
dron (see yellow and green arrows in Fig. 11): the in-plane
components of the paired spins are parallel in the P4 phase,
whereas antiparallel constituting the “V” structure in the P5
phase. As mentioned in the main text, in the uniform and
weakly breathing cases of J ′/J = 1 and 0.6, the P4 phase is
degenerate with the P5 phase at T = 0, so that both can be the
ground state of the site-phonon Hamiltonian (4).

In the P5 phase, the in-plane components of the “V” spins
are collinearly aligned when they are connected by a bond,
but not when they are separated by the up or down spin. In
the case of Fig. 11(b), the yellow spins are connected by a
bond and, thus, their in-plane components are collinear. Such
a situation is also the case for the green spins. Concerning the
relative angle between the yellow and green spins separated by
the up (red) or down (blue) spins, it can be arbitrary although
the relative angle is chosen to be 0 for simplicity in Fig. 11(b).
Such a ground-state degeneracy with respect to the relative
angle occurs because of the following reason. Since the in-
tertetrahedron interaction in the site-phonon Hamiltonian (4)
takes the form of (Si · S j )(S j · Sk ), the in-plane components
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FIG. 13. MC snapshots of the averaged magnetization of each small tetrahedron mz
tetra obtained in (a) the SP4 phase at H/J = 3.7 and

(c) the SP3 phase at H/J = 3.5 for the site-phonon model with b = b′ = 0.20 and J ′/J = 0.2, where a small square and its color represent a
small tetrahedron and its mz

tetra, respectively. In contrast to Figs. 12(c) and 12(d), each panel of (a) and (c) represents the distribution of mz
tetra

within adjacent two layers defined in Fig. 12(a), so that the cubic unit cell projected onto the two-dimensional plane, which is indicated by a
dotted-line square, contains 4 small tetrahedra. (b), (d) Schematically drawn three-dimensional views of the distributions of the cubic unit cells
associated with (a) and (c), where red, orange, green, sky blue, and white boxes represent the cubic unit cells containing four, three, two, one,
and zero 4-up tetrahedra, respectively. In (d), ordering patterns of the cubes indicated by a cross differ run to run (for details, see the text in
Appendix C).

of Si and Sk do not come into play when S j is aligned along
the field direction. Thus, when the “V” spins are separated by
the up or down spin, their in-plane components perpendicular
to the field are not necessarily collinear.

At finite temperatures, it is found by means of MC simu-
lations that among the degenerate P4 and P5 phases, the P5
phase is selected by the thermal fluctuation. This suggests
that the entropy in the P5 phase is higher than that in the
P4 phase, which is probably because the P5 phase possesses
the ground-state degeneracy with respect to the relative angle
between the in-plane components of the separated “V” spins.
In relation to this, the specific heat C becomes lower than 1
in the low-temperature P5 phase, which is in sharp contrast to
the conventional behavior typical to classical Heisenberg spin
systems C → 1 (T → 0). Such an unconventional behavior
should be relevant to the ground-state degeneracy, but we will
leave a further analysis of this issue for our future work.

APPENDIX C: MAGNETIC STRUCTURES OF THE SP2,
SP2′, SP3, AND SP4 PHASES

1. SP2 and SP2′ phases

As we will explain below, the real-space structures of the
higher-temperature SP2 and lower-temperature SP2′ phases
are essentially the same, so that, here, we will mainly fo-

cus on the lower-temperature SP2′ phase. Figures 12(c) and
12(d) show the layer-resolved spin configuration of the SP2′
phase, where an arrow and its color represent the SxSy and
Sz components of a spin and a colored square represents a
small tetrahedron projected onto the two-dimensional plane.
The color of the square denotes the magnetization of each
tetrahedron defined by mz

tetra = (Sz
1 + Sz

2 + Sz
3 + Sz

4)/4 with
four spins at the corners of the tetrahedron S1, S2, S3, and S4.
The fundamental elements of the SP2′ phase are the cant 2:2
tetrahedra and the 3-up and 1-down ones shown in Fig. 12(b).
In the SP2′ phase, a pair of the cant 2:2 tetrahedra, whose
representative examples are enclosed by thick-line boxes in
Figs. 12(c) and 12(d), is a building block and the blocks are
periodically embedded in the background of the 3-up and
1-down tetrahedra. On the layers extending in the xy plane
shown in Fig. 12(c), the cant 2:2 block are stacked right above
along the [110] direction, whereas on the yz-plane layers
shown in Fig. 12(d), the blocks are stacked zigzag along
the [011] direction. The block arrangement pattern on the
zx-plane layers is the same as the latter, so that it is not shown
in Fig. 12. As one can see from Fig. 12(c), the xy-plane layers
are stacked along the z axis, sliding them with their in-plane
block patterns being all the same, and such a situation is also
the case for the yz-plane layers stacking along the x axis [see
Fig. 12(d)].
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Since on the layers perpendicular to the x and y axes,
the same zigzag ordering pattern is realized but not on the
layers perpendicular to the z axis, the spin structure should be
tetragonal symmetric with respect to the z axis.

So far, we have discussed the SP2′ phase. Now, we address
the real-space structure of the higher-temperature SP2 phase.
As mentioned in the main text, the SxSy components of spins
are ordered in the SP2′ phase, while not in the SP2 phase. On
the other hand, the spin structure factor for the Sz component
FS‖(q) in the SP2 phase is almost unchanged from that in the
SP2′ phase. As FS‖(q)’s in the SP2 and SP2′ phases are almost
unchanged, the real-space structure discussed above based on
the distributions of mz

tetra is common to these two phases,
although the structure is less distinct in the higher-temperature
SP2 phase because of the thermal noise.

2. SP3 and SP4 phases

Figure 13 shows the real-space distributions of mz
tetra in

the SP3 and SP4 phases, where a dotted-line box represents
a cubic unit cell projected onto the two-dimensional plane.
Similarly to the SP1 phase shown in Fig. 8, the distribution
of the 4-up small tetrahedra which correspond to red squares
with mz

tetra = 1 in Fig. 13 is characteristic. In the SP4 phase
shown in Fig. 13(a), there exist four types of cubic unit
cells, each containing zero, one, three, and four 4-up small
tetrahedra, and these cubes are arranged periodically. The
three-dimensional view of the cube arrangement is schemat-
ically shown in Fig. 13(b). The state is threefold symmetric

with respect to the [111] direction, but not for other related
directions such as [111], so that the SP4 phase is noncubic. In
the same manner, one can classify the ordering pattern in the
SP3 phase. As shown in Figs. 13(c) and 13(d), the SP3 phase
consists of all the five types of the cubic unit cells, and they
are built up in such a way that some of them constitute the
basis structure of the ordering pattern and others a nonbasis
part whose ordering pattern is not uniquely determined. In
Fig. 13(d), the former (latter) correspond to boxes without
(with) a cross. Since in Fig. 13(d) the basis structure is three-
fold symmetric with respect to the [111] direction but not for
other related directions, the state is noncubic. Concerning the
nonbasis part, two types of the ordering patterns are obtained
in the MC simulations: in one case, a cubic unit cell containing
two 4-up tetrahedra [a green box in Fig. 13(d)] is located in the
layer with the cubic unit cell containing three 4-up tetrahedra
[the top layer containing an orange box in Fig. 13(d)], whereas
in the other case, it is located in the layer without the one
[the bottom layer without an orange box in Fig. 13(d)]. In
both cases, the basis structure remains unchanged. We note
that these results are obtained for L = 3 which is the smallest
size for the SP3 phases. Cube arrangement patterns for the
larger sizes of L = 6 and 12 look rather complicated but they
follow the above ordering rule part by part, which is probably
due to the existence of the two types of the nonbasis ordering
patterns. By contrast, in the SP4 phase, the cube arrangement
pattern presented in Figs. 13(a) and 13(b) is uniquely deter-
mined, so that its periodic structure can be obtained in the
larger-size systems.

[1] S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff II, and S.-W.
Cheong, Phys. Rev. Lett. 84, 3718 (2000).

[2] J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda, T. J.
Sato, H. Takagi, K.-P. Hong, and S. Park, Phys. Rev. Lett. 95,
247204 (2005).

[3] H. Ueda, H. Mitamura, T. Goto, and Y. Ueda, Phys. Rev. B 73,
094415 (2006).

[4] L. Ortega-San-Martin, A. J. Williams, C. D. Gordon, S.
Klemme, and J. P. Attfield, J. Phys.: Condens. Matter 20,
104238 (2008).

[5] E. Kojima, A. Miyata, S. Miyabe, S. Takeyama, H. Ueda, and
Y. Ueda, Phys. Rev. B 77, 212408 (2008).

[6] A. Miyata, S. Takeyama, and H. Ueda, Phys. Rev. B 87, 214424
(2013).

[7] A. Miyata, H. Ueda, Y. Ueda, Y. Motome, N. Shannon,
K. Penc, and S. Takeyama, J. Phys. Soc. Jpn. 80, 074709
(2011).

[8] A. Miyata, H. Ueda, Y. Ueda, H. Sawabe, and S. Takeyama,
Phys. Rev. Lett. 107, 207203 (2011).

[9] A. Miyata, H. Ueda, Y. Ueda, Y. Motome, N. Shannon, K. Penc,
and S. Takeyama, J. Phys. Soc. Jpn. 81, 114701 (2012).

[10] D. Nakamura, A. Miyata, Y. Aida, H. Ueda, and S. Takeyama,
J. Phys. Soc. Jpn. 83, 113703 (2014).

[11] A. Miyata, H. Ueda, and S. Takeyama, J. Phys. Soc. Jpn. 83,
063702 (2014).

[12] Y. Okamoto, G. J. Nilsen, J. P. Attfield, and Z. Hiroi, Phys. Rev.
Lett. 110, 097203 (2013).

[13] Y. Tanaka, M. Yoshida, M. Takigawa, Y. Okamoto, and Z. Hiroi,
Phys. Rev. Lett. 113, 227204 (2014).

[14] G. J. Nilsen, Y. Okamoto, T. Masuda, J. Rodriguez-Carvajal,
H. Mutka, T. Hansen, and Z. Hiroi, Phys. Rev. B 91, 174435
(2015).

[15] R. Saha, F. Fauth, M. Avdeev, P. Kayser, B. J. Kennedy, and A.
Sundaresan, Phys. Rev. B 94, 064420 (2016).

[16] S. Lee, S.-H. Do, W.-J. Lee, Y. S. Choi, M. Lee, E. S. Choi,
A. P. Reyes, P. L. Kuhns, A. Ozarowski, and K.-Y. Choi, Phys.
Rev. B 93, 174402 (2016).

[17] Y. Okamoto, D. Nakamura, A. Miyake, S. Takeyama, M.
Tokunaga, A. Matsuo, K. Kindo, and Z. Hiroi, Phys. Rev. B
95, 134438 (2017).

[18] M. Gen, D. Nakamura, Y. Okamoto, and S. Takeyama, J. Magn.
Magn. Mater. 473, 387 (2019).

[19] K. Penc, N. Shannon, and H. Shiba, Phys. Rev. Lett. 93, 197203
(2004).

[20] Y. Motome, K. Penc, and N. Shannon, J. Magn. Magn. Mater.
300, 57 (2006).

[21] N. Shannon, K. Penc, and Y. Motome, Phys. Rev. B 81, 184409
(2010).

[22] C. Jia, J. H. Nam, J. S. Kim, and J. H. Han, Phys. Rev. B 71,
212406 (2005).

[23] D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents, Phys.
Rev. B 74, 134409 (2006).

[24] F. Wang and A. Vishwanath, Phys. Rev. Lett. 100, 077201
(2008).

184411-16

https://doi.org/10.1103/PhysRevLett.84.3718
https://doi.org/10.1103/PhysRevLett.95.247204
https://doi.org/10.1103/PhysRevB.73.094415
https://doi.org/10.1088/0953-8984/20/10/104238
https://doi.org/10.1103/PhysRevB.77.212408
https://doi.org/10.1103/PhysRevB.87.214424
https://doi.org/10.1143/JPSJ.80.074709
https://doi.org/10.1103/PhysRevLett.107.207203
https://doi.org/10.1143/JPSJ.81.114701
https://doi.org/10.7566/JPSJ.83.113703
https://doi.org/10.7566/JPSJ.83.063702
https://doi.org/10.1103/PhysRevLett.110.097203
https://doi.org/10.1103/PhysRevLett.113.227204
https://doi.org/10.1103/PhysRevB.91.174435
https://doi.org/10.1103/PhysRevB.94.064420
https://doi.org/10.1103/PhysRevB.93.174402
https://doi.org/10.1103/PhysRevB.95.134438
https://doi.org/10.1016/j.jmmm.2018.10.088
https://doi.org/10.1103/PhysRevLett.93.197203
https://doi.org/10.1016/j.jmmm.2005.10.032
https://doi.org/10.1103/PhysRevB.81.184409
https://doi.org/10.1103/PhysRevB.71.212406
https://doi.org/10.1103/PhysRevB.74.134409
https://doi.org/10.1103/PhysRevLett.100.077201


EFFECTS OF SPIN-LATTICE COUPLING AND A … PHYSICAL REVIEW B 104, 184411 (2021)

[25] K. Aoyama and H. Kawamura, Phys. Rev. Lett. 116, 257201
(2016).

[26] K. Aoyama and H. Kawamura, Phys. Rev. B 99, 144406 (2019).
[27] J. N. Reimers, Phys. Rev. B 45, 7287 (1992).
[28] R. Moessner and J. T. Chalker, Phys. Rev. Lett. 80, 2929 (1998).
[29] R. Moessner and J. T. Chalker, Phys. Rev. B 58, 12049 (1998).
[30] M. Matsuda, H. Ueda, A. Kikkawa, Y. Tanaka, K. Katsumata,

Y. Narumi, T. Inami, Y. Ueda, and S.-H. Lee, Nat. Phys. 3, 397
(2007).

[31] T. Inami, K. Ohwada, M. Tsubota, Y. Murata, Y. H. Matsuda,
H. Nojiri, H. Ueda, and Y. Murakami, J. Phys.: Conf. Ser. 51,
502 (2006).

[32] M. Matsuda, K. Ohoyama, S. Yoshii, H. Nojiri, P. Frings, F.
Duc, B. Vignolle, G. L. J. A. Rikken, L.-P. Regnault, S.-H. Lee,
H. Ueda, and Y. Ueda, Phys. Rev. Lett. 104, 047201 (2010).

[33] R. Saha, R. Dhanya, C. Bellin, K. Béneut, A. Bhattacharyya, A.
Shukla, C. Narayana, E. Suard, J. Rodríguez-Carvajal, and A.
Sundaresan, Phys. Rev. B 96, 214439 (2017).

[34] Y. Okamoto, G. J. Nilsen, T. Nakazono, and Z. Hiroi, J. Phys.
Soc. Jpn. 84, 043707 (2015).

[35] D. Wang, C. Tan, K. Huang, and L. Shu, Chin. Phys. Lett. 33,
127501 (2016).
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