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Discrete quantum geometry and intrinsic spin Hall effect

Jie-Xiang Yu ,1,2 Jiadong Zang,1 Roger K. Lake,3 Yi Zhang ,4 and Gen Yin 5,*

1Department of Physics and Astronomy, University of New Hampshire, Durham, New Hampshire 03824, USA
2Department of Physics, Center for Molecular Magnetic Quantum Materials and Quantum Theory Project,

University of Florida, Gainesville, Florida 32611, USA
3Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, USA

4International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
5Department of Physics, Georgetown University, Washington, D.C. 20057, USA

(Received 16 June 2021; revised 26 October 2021; accepted 26 October 2021; published 4 November 2021)

We show that the quantum geometry of the Fermi surface can be numerically described by a three-dimensional
discrete quantum manifold. This approach not only avoids singularities in the Fermi sea, but it also enables the
precise computation of the intrinsic Hall conductivity resolved in spin, as well as any other local properties of the
Fermi surface. The method assures numerical accuracy when the Fermi level is arbitrarily close to singularities,
and it remains robust when Kramers degeneracy is protected by symmetry. The approach is demonstrated by
calculating the anomalous Hall and spin Hall conductivities of a two-band lattice model of a Weyl semimetal
and a full-band ab initio model of zinc-blende GaAs.
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It has been well established that the intrinsic anomalous
(spin) Hall effect originates from the topological property of
the Fermi sea, and it can be evaluated through an integral of
the Berry curvature among the occupied states [1,2]. Such an
approach has been employed for first-principles calculations
in different ways [3–5]. A particularly convenient approach
is Wannier interpolation [6], where a dense mesh in k space
does not significantly increase the numerical complexity. One
difficulty of such an approach are the singularities caused by
band crossings. Such crossings, either accidental or protected
by symmetry, result in sharp peaks of the anomalous Hall con-
ductivity. This makes the numerical evaluation difficult, espe-
cially when the singularities are close to the Fermi surface,
which usually cannot be avoided in a scan of the Fermi level.

An alternative and natural perspective is to describe the
nonquantized part of the anomalous Hall effect as a geometric
property of the Fermi surface [7]. This approach formulates
the anomalous Hall conductivity as a surface integral of Berry
curvature weighted by the Fermi wave vector kF , which nat-
urally avoids singularities in the Fermi sea. The method has
been implemented for full-band models by decomposing the
integral on the Fermi surface into a sum of oriented Wilson
loops [8,9]: σxy ∼ ∑

n,i kz,iφn,i. Here, n is the band index, kz,i

is the z component of kF on the ith slice, and φn,i = ∮ i An · dl
is the gauge-invariant Berry phase looping through the ith
slice as schematically shown in Fig. 1(a). At the continuous
limit, An = i〈ψk

n |∇k|ψk
n 〉 is the Berry connection of the nth

band. Numerically, the closed loops are decomposed into
discrete Wilson links, such that φn,i = −Im[ln

∏
j〈 j| j + 1〉],

where 〈 j| j + 1〉 is the inner product between two neighboring
eigenstates associated with a segment of the loop. Although
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φn,i is defined on (−π, π ], which seems arbitrary, one can
enforce a smooth φn,i by carefully handling the branches
of the Berry phase, such that |φn,i − φn,i+1| � 2π . Thus the
Fermi-surface approach only contains an ambiguity with mul-
tiples of 2π compared to the Fermi-sea prescription, which
corresponds to the undetermined quantized part of the Hall
conductivity.

Although the aforementioned slice-based approach is
promising, it cannot capture the intrinsic spin Hall effect.
Obtained by the loop integral on each slice of the Fermi
surface, the Berry phase is formulated as a global property.
Namely, the spin-Hall conductivity can only be expressed as
σ (α)

xy ∼ ∑
n,i sα,ikz,iφn,i where sα,i is the uniform spin on slice

i. This becomes problematic when strong spin-orbit coupling
(SOC) occurs, where spins usually have a texture on the Fermi
surface, and therefore must be evaluated locally. Furthermore,
the slice-based approach requires the choice of kz perpendic-
ular to the x-y transport plane. Any rotation of the transport
plane requires re-establishing the slices and re-evaluating the
Berry phases {φi} for all slices. This is counterintuitive since
the Fermi surface should contain enough information to deter-
mine the intrinsic (spin) Hall conductivity for arbitrary current
directions.

In this paper, we show that the nonquantized part of the
intrinsic anomalous (spin) Hall conductivity can be fully cap-
tured by a three-dimensional (3D) discrete quantum manifold
of the Fermi surface. In such a manifold, Wilson links form
local loops, as shown in Fig. 1(b), and therefore the Hall
conductivity can be resolved in spin, as well as any other
local properties of the Fermi surface. Such an approach can
naturally handle singularities near the Fermi surface, and it
remains robust when Kramers degeneracy is protected by
symmetry. The approach is tested on a 2 × 2 tight-binding
model of Weyl semimetal and an ab-initio full-band model
of zinc-blende GaAs.
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FIG. 1. Illustration of different approaches to describe intrinsic
anomalous Hall effect as a geometric property of the Fermi surface.
(a) The slice-based approach. The Fermi surface (εF = 0) corre-
sponds to a cubic tight-binding model εk = −2t (cos kx + cos ky +
cos kz ), where t is the hopping between nearest neighbors. (b) The
new vertex-based method by establishing a three-dimensional dis-
crete manifold of the Fermi surface. (c) The local Berry phase
associated with each vertex given by the adjacent triangles. (d) The
flux of Berry curvature is over-counted by three times for �123.
(e) Manifold matching between vertices and edges on opposing
Brillouin-zone boundaries. The red and orange polygons correspond
to the ones shown in (b) near the boundaries.

At the limit of linear response, the nonequilibrium group
velocity driven by an applied electric field E contains two
parts: v = v0 + va, where v0 = 1

h̄∇kε is the regular group
velocity and va = e

h̄E × �n(k) is the anomalous velocity. At
zero temperature, the leading-order average of va is

〈va〉 = eE
ρ h̄

×
(

1

2π

)3 ∑
n

In (1)

where ρ is the carrier density and n is the band index. Thus

In =
∫

BZ
f0�ndv =

∫
BZ

f0(∇ × An)dv, (2)

where f0 is the equilibrium Fermi factor. At zero temperature,
using integration by parts,

In =
∑

α

n̂α ×
∫

BZB
( f0An)dsα +

∫
BZ

δ(ε − εF )∇ε × Andv

(3)
where the first integral goes over Brillouin-zone boundaries
(BZBs), and the second one is a volume integral within the
Brillouin zone (BZ). Eq. (3) is equivalent to the one by Hal-
dane [7]. Here, n̂α (α = 1, 2, . . . , 6) is the normal vector of
BZBs. For 3D crystals, one can choose a Brillouin zone with
three pairs of opposing BZBs. For each pair, n̂α = −n̂β , and
the first term in Eq. (3) vanishes. As a result,

In =
∫

FS
ds × An. (4)

The manifold defined on a continuous Fermi surface is
topologically equivalent to a discrete manifold as shown in
Fig. 1(b). Such a manifold can be obtained by the marching

tetrahedra method. Once an intersection is detected between
εF and a tetrahedron, the Fermi-surface piece must be an
oriented triangle, since the normal vector can be defined along
∇kεF . The orientation of each triangle distinguishes electron
and hole bands. The integration in Eq. (4) can thus be approx-
imated by summing through the surface pieces:

−→� = 1
2 (k2 − k1) × (k3 − k1) × A ≈ n̂ × Ads (5)

where n̂ is the normal vector, and the three vertices of the
triangle are labeled by 1,2,3, following some convention of
chirality with respect to n̂. With some algebra,

−→� = 1
2 (w12k3 + w23k1 + w31k2) (6)

= 1
2 k1(w12 + w23 + w31) + o(k1). (7)

Here,

wαβ = −Im[A · (kβ − kα )] = −Im(ln〈kα|kβ〉) (8)

is the Wilson link between two adjacent vertices, where |kα〉
and |kβ〉 are the corresponding eigenstates. The integral in
Eq. (4) can therefore be written as

In =
∑

i

−→� n,i = 1

6

∑
p

kn,pφn,p (9)

where i labels triangles and kn,p is the k-space position of
vertex p on in the nth shell of the Fermi surface. Here, φn,p

is the gauge-invariant local Berry phase

φn,p = −Im

(
ln

Np∏
j

〈 j, n| j + 1, n〉
)

, (10)

where j goes through the vertices surrounding vertex p as
shown in Fig. 1(c). The extra factor of 1/3 in Eq. (9) comes
from over-counting the Berry phase as shown in Fig. 1(d). The
logarithm in Eq. (10) is defined on the branch of (−π, π ]
with an unknown multiple of 2π . Such ambiguity can be
naturally ruled out since the local Berry phase is close to
zero piecewise. The Hall conductivity can then be obtained
by σμν = e2

h̄ ( 1
2π

)3 ∑
n In · λ̂ for an arbitrary coordinate setup,

where μ, ν and λ represent x, y and z in cyclic order.
The summation in Eq. (9) holds true for both the vertices

inside the Brillouin zone and the ones on the BZBs. Defined
in the affine k space, the Fermi surface is periodic and the
surface edges on opposing BZBs are therefore connected. This
requires careful handling to ensure translational symmetry.
As shown in Fig. 1(e), each boundary vertex k must paired
with another vertex k′ on the opposing BZB, shifted by a
reciprocal lattice vector. As a result, a closed Wilson loop can
be formed for each boundary vertex by including the incoming
and outgoing edges on the BZB. Mismatching of boundary
vertices will result in topological defects of the discrete man-
ifold, making it nonhomeomorphic with the continuous limit.
Similar to the slice-based approach, Eq. (9) also leaves the
quantized part of Hall conductivity undetermined. This can
be seen by taking k → k + G for all vertices, where G is an
arbitrary reciprocal lattice point.

The approach defined by Eqs. (9) and (10) enables the eval-
uation of intrinsic spin-Hall effect for materials with strong
SOC. Since Eq. (9) sums through all vertices, each vertex
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FIG. 2. Intrinsic (spin) Hall effect in a lattice model of a Weyl
semimetal. (a) The band structure given by the model with ky = 0,
k0 = π

2 , tx = t , and m = 2t . (b) Fermi surface obtained as a 3D dis-
crete quantum manifold (εF = 0.45t). The vertices are colored by the
local Berry curvature. (c) The Fermi surface at εF = 1.05t , where the
shape represents the symmetry of the lattice. (d) The intrinsic anoma-
lous Hall conductivity computed using Eqs. (9) and (10). Here, σμν is
normalized to the Weyl-point conductivity σ0 = e2

/2h. (e) and (f) The
intrinsic spin-Hall conductivity tensor evaluated using Eq. (11). The
results are first converted to the corresponding electrical conductivity
and then normalized to σ0.

can be resolved in any local properties such as the electron
spin. As a result the intrinsic spin Hall conductivity can be
straightforwardly obtained using

〈vasα〉 = eE
ρ h̄

×
(

1

2π

)3 ∑
n

I(α)
n . (11)

Here, 〈vasα〉 is the expectation of the spin-velocity tensor,
where sα represents the Pauli matrices for electron spins
(α = x, y, z). For each band, the integral I(α)

n can be obtained
by summing through all vertices I(α)

n = 1
6

∑
p kn,pφn,p〈sα,p〉,

where n is the band index and 〈sα,p〉 is the spin expectation
on vertex p. The spin Hall conductivity is then written as
σ (α)

μν = ( 1
2π

)3 e
2

∑
n I(α)

n · λ̂.
The vertex-based Fermi-surface approach remains well-

defined when εF is arbitrarily close to point singularities of
Berry curvature, i.e., Weyl points. We demonstrate this using
a 2 × 2 tight-binding model of a Weyl semimetal:

H = sx[m(2 − cos ky − cos kz ) + 2tx(cos kx − cos k0)]

− 2tsy sin ky − 2tsz sin kz. (12)

The first term breaks time-reversal symmetry, resulting in two
Weyl points at (±k0, 0, 0)T as shown in Fig. 2(a). When εF is
close to the Weyl points, the Fermi surface contains approx-
imately two spheres, each wrapping a sink and a source of
the Berry curvature, respectively [Fig. 2(b)]. Away from the
Weyl points, the Fermi surface is shown in Fig. 2(c), where
the symmetry of the cubic lattice can be seen. Computed
from Eq. (9), anomalous Hall conductivities along different
directions are shown in Fig. 2(d). As expected [10], the Hall
conductivity is σ0 = e2

πh k0 = e2

2h when εF is aligned with the

Weyl points. From the perspective of the discrete manifold,
this can be understood by noticing kn,p ≈ (±π

2 , 0, 0)T , which
can be factored out when εF → 0. The summation in Eq. (9)
then becomes the total flux of the Berry curvature evaluated on
two spheres (φ± = ±2π ) weighted by constants ±k0, respec-
tively. Numerically, the spheres are resolved as two tetrahedra
at the limit of εF → 0. However, since these tetrahedra remain
homeomorphic with spheres, the numerical evaluation of the
Berry-curvature flux is only determined by the number of
sources or drains enclosed. This allows for precise numerical
results when εF is arbitrarily close to the Weyl points. Using
Eq. (11), one can obtain all the elements of the spin Hall
conductivity tensor σ (α)

μν , as shown in Figs. 2(e)–2(g). This
suggests that sx has a spin Hall effect when transporting in
the y-z plane. Such spin Hall effect is only allowed when εF

is shifted away from the Weyl points.
The idea of a discrete quantum manifold can be di-

rectly applied for ab initio models. Here we demonstrate
such application on the full-band model of zinc-blende
GaAs. The model is obtained using a spin-polarized first-
principles calculation with the projector augmented wave
pseudopotential [11] implemented in Vienna ab initio sim-
ulation package (VASP) [12,13]. The primitive unit cell of
the face-centered cubic lattice contains one Ga atom and
one As atom. The corresponding Brillouin zone is sampled
with a -centered 7 × 7 × 7 grid and an energy cutoff of
500 eV is applied for the plane-wave expansion. The gen-
eralized gradient approximation (GGA) is applied using the
Perdew-Burke-Ernzerhof (PBE) form [14] as the exchange-
correlation functional to obtain the Kohn-Sham eigenstates.
A partially self-consistent GW approximation [15–17] is em-
ployed to obtain the quasiparticle energies from the fixed
eigenstates. Spin-orbit coupling is included. To construct the
tight-binding Hamiltonian in a Wannier-function (WF) basis,
we performed a unitary transformation [6] implemented in
WANNIER90 [18]. Time-reversal and other symmetries of the
tight-binding model are enforced by using the package TB
models [19]. The tight-binding Hamiltonian has the same
exact energies as those obtained from VASP in the energy win-
dow from the lowest eigenvalues to 3.5 eV above the Fermi
energy.

The band structure of zinc-blende GaAs is shown in
Fig. 3(a), where the valence band splits into heavy-hole,
light-hole and split-off bands due to SOC. Each band con-
tains a twofold Kramers degeneracy. The Fermi surfaces at
εF = εV − 0.02 eV are shown in Figs. 3(b)–3(e), with the
vertices colored by the kz-weighted Berry curvature evaluated
as φpkp,z/δsp ≈ (� · dŝ)kz. Here, δsp is the total area of the
triangles surrounding vertex p, whereas dŝ is the normal direc-
tion of the Fermi surface at the continuous limit. As expected,
the Hall conductivities given by the Kramers pairs have op-
posite signs and exactly cancel each other. However, since the
Kramers pairs have opposite spins as shown in Figs. 3(f)–3(i),
the spin Hall conductivity should be finite. This is consis-
tent with previous results [20–22]. Here, the spins of the
Kramers pairs are reoriented by diagonalizing γz = I ⊗ sz

within the degenerate subspace. The updated eigenstates are
then sorted based on the eigenvalues of γz [23]. Such operation
is necessary because arbitrary superpositions within Kramers
degeneracy result in arbitrary spin directions, and the spin
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FIG. 3. (a) The band structure of GaAs along high-symmetry
points. Both the heavy hole (red) and the light hole (blue) bands are
twofold degenerate. [(b)–(e)] The 3D discrete quantum manifold of
the Fermi surface at ε = εV − 0.02 eV. (b) and (c) correspond to the
heavy hole band, whereas (d) and (e) correspond to the light hole
band. [(f)–(i)] The electron spin sz illustrated on the Fermi surfaces
corresponding to (b)–(e), respectively.

Hall effect is thus ill-defined. In experiments, the choice of the
spin direction is determined by the measurement setup. With
the spins properly oriented for the Kramers pairs, the (spin)
Hall conductivities at different positions of εF are illustrated
in Fig. 4(a). As εF shifts deeper into the valence band, kF

increases for all Fermi surfaces, therefore the magnitude of
σ (z)

xy also increases.
Although spins are required to properly orient for the

spin Hall effect, such a requirement is not necessary for the
anomalous Hall effect. Without diagonalizing the spin, the
degenerate eigenstates are randomly ordered. Here we show
that the order does not affect the anomalous Hall conduc-
tivity evaluated by the discrete quantum manifold. Due to
Kramers degeneracy, each piece of the Fermi surface contains
two coincident triangles in k space. We label these trian-
gles �123 and �456 as shown in Fig. 4(b). Here, (|1〉, |4〉),
(|2〉, |5〉) and (|3〉, |6〉) correspond to three Kramers pairs.
These pairs must be protected by an antiunitary transforma-
tion K, such that |1〉 = |K4〉, |2〉 = |K5〉, and |3〉 = |K6〉. As
a result, 〈1|2〉 = 〈K4|K5〉 = 〈4|5〉∗, hence w12 = −w45. Such
relation holds for all coinciding edges of the two triangles, and
therefore φ123 = w12 + w23 + w31 = −(w45 + w56 + w64) =
−φ456. Without losing generality, we swap |3〉 and |6〉, such
that the two triangles become �126 and �345, as illustrated
in Fig. 4(c). Thus 〈2|6〉 = 〈K5|6〉 = 〈5|K6〉∗ = 〈5|3〉∗, such
that w26 = −w53. Similarly, w61 = −w34, and hence φ126 =
−φ345. Note that in general, φ123 = φ126 and φ456 = φ345.
However, since φ123 + φ456 = φ126 + φ345 = 0, the anoma-
lous Hall conductivity is strictly suppressed. This can be seen
from Figs. 4(d) and 4(e) where the local Berry phases are
illustrated by the vertex colors. Although the Berry phases for
each branch of the degenerate bands are assigned randomly,
their contributions to the anomalous Hall conductivity add to
zero, as shown by the red line in Fig. 4(a).

The Fermi-surface approach has better numerical accuracy
compared to the Fermi-sea approach, especially when εF is
close to the singularities. We demonstrate this by setting

FIG. 4. (a) The anomalous Hall conductivity (dark) and the
intrinsic spin Hall conductivity (blue) near the valence band top
of zinc-blende GaAs. The red line denotes the Hall conductivity
without orienting the spins of degenerate states. (b) Two coinci-
dent triangles due to Kramers degeneracy. The illustration is shifted
for demonstration. (c) Swapping one Kramers pair in the triangle.
(d-e) The discrete heavy-hole Fermi surface at εF = εV − 0.02 eV
without orienting the degenerate spins. The vertex color illustrates
the local Berry phases φp. (f) Comparison between the Fermi-sea
and the Fermi-surface results. The inset shows the Fermi-surface
at εF = 0.5t . (g) The convergence of numerical results after mesh
refinements. The Insets compare the zeroth and the sixth refinement
for the heavy-hole band of GaAs.

k0 = 0 in Eq. (12) such that the two Weyl points merge at 

point, and the Hall conductivity should be zero when εF = 0.
For simplicity the k values are based on the lattice constant
of 1Å. Using the Fermi-sea approach, the anomalous Hall
conductivity is given by σyz = e2

h̄ ( 1
2π

)3
∫
ε<εF

�x,ndv, where

�x,n = −2Im
∑

m =n
〈nk|∂ky H |mk〉〈mk|∂kz H |nk〉

(εn,k−εm,k )2+η2 . Here, a finite η has
to be included in the denominator to avoid singularity. Using
a 32 × 32 × 32 mesh, the Fermi-sea results are compared to
the Fermi-surface one in Fig. 4(f). When εF is away from the
merged Weyl point, both approaches obtain similar results.
However, σyz encounters a singularity at εF = 0, and varies
significantly with η. This is not an issue for the Fermi-surface
approach, where σyz smoothly reduces to 0. Another advan-
tage of the Fermi-surface approach is a better scalability.
Since it only involves vertices near εF , the time complexity
scales as O(n2), where n is the linear mesh density. On the
contrary, the Fermi-sea approach scales as O(n3), since the
mesh needs to resolve a 3D volume. To demonstrate the nu-
merical stability of the Fermi-surface approach we compare
the (spin) Hall conductivities of GaAs at different levels of
surface-mesh refinement [Fig. 4(g)]. For simplicity the Fermi
surface is uniformly refined, where the number of triangles
doubles after each refinement.

The method introduced in this paper has been focusing
on bulk materials only. In principle, such approach is also
suitable for 2D materials, since one can introduce a third
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parameter λz, such that H (kx, ky, λz ) is periodic in all three
dimensions [24,25]. The intrinsic (spin) Hall conductivity will
then be obtained “per thickness,” treating the new parameter
as the kz dependency similar to the case of a bulk. Although
the Fermi surfaces demonstrated in this letter are only re-
solved in spin, the method can, in principle, resolve the Hall
conductivity in any local properties of the Fermi surface such
as the angular momentum. New types of Hall effects can thus

be straightforwardly evaluated, suggesting the rich physics to
further explore.
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