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The concept of free fermion topology has been generalized to d-dimensional phases that exhibit (d − n)-
dimensional boundary modes, such as zero-dimensional (0D) corner excitations. Motivated by recent extensions
of these ideas to magnetic systems, we consider 2D quantum paramagnets formed by interacting spin dimers with
dispersive triplet excitations. We propose two examples of such dimer models, where the spin-gapped bosonic
triplon excitations are shown to host bands with nontrivial higher-order topology. We demonstrate this using
real-space Bogoliubov–de Gennes calculations that reveal the existence of near-mid band gap corner triplon
modes as a signature of higher-order bulk topology. We provide an understanding of the higher-order topology
in these systems via computation of bulk topological invariants as well as the construction of edge theories
and study their phase transitions as we tune parameters in the model Hamiltonians. We also discuss possible
experimental approaches for detecting the emergent corner triplon modes.
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I. INTRODUCTION

Higher-order topological (HOT) systems have emerged as
the next step in understanding the rapidly growing family of
topological phases in condensed matter physics. As a natu-
ral generalization of conventional or first-order topology, an
nth-order topological system in d-dimensions hosts protected
gapless modes on any of its (d − n)-dimensional boundaries.
For instance, a three-dimensional (3D) HOT system exhibit-
ing second-order topology hosts protected hinge modes, while
one exhibiting third-order topology hosts protected corner
modes. Similarly, a 2D HOT system showing second-order
topology hosts localized corner modes. First discovered in
the context of electric-multipolar insulators [1] in fermionic
systems with quantized moments, the list of HOT systems was
quickly expanded to include chiral and helical HOT insula-
tors [2]. The core idea behind fermionic HOT insulators has
recently been generalized, either theoretically or experimen-
tally, to alternate platforms such as mechanical [3], electrical
[4], microwave [5], photonic [6], non-Hermitian [7], and su-
perconducting [8–14] systems.

In addition to these platforms, proposals to observe HOT
physics in quantum spin systems [15–17] and solvable spin
liquid models [18–20] have also been put forward. While
investigations of HOT phases in these spin systems have
mainly focused on ground-state physics, their generalization
to excited states is relatively less explored. A few recent
studies have tried to bridge this gap by proposing spin models
with magnetically ordered ground states. Although the ground
states are topologically trivial, the HOT phases in these mag-
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netic systems emerge as hinge [21,22] or corner [23–25]
magnon excitations. In this paper, we explore the opposite
regime; i.e., we study spin models without any magnetic order.
We demonstrate that even spin-gapped quantum paramagnets,
formed by coupled spin dimers, can host excitations that show
HOT physics.

Spin dimers arise naturally in Mott insulators where certain
adjacent pairs of sites are coupled by strong exchange inter-
actions, with weaker interdimer exchange couplings [26–36].
They can also arise in geometrically frustrated magnets which
may exhibit spontaneous dimerization and lattice symmetry
breaking via formation of valence bond crystals [37,38]. On a
single dimer with strong antiferromagnetic intradimer Heisen-
berg exchange, the ground state is a singlet, and the gapped
excited states form triplets with total spin S = 1. Weaker
interdimer couplings in the crystal induce hopping and pairing
terms for the triplet excitations. Such singlet quantum param-
agnets thus exhibit a spectrum of gapped and dispersive triplet
excitations called triplons.

With full spin-rotational symmetry, the triplons exhibit
three decoupled and degenerate bands, corresponding to
the three distinct spin states. However, in the presence of
spin-orbit coupling (SOC) or an applied magnetic field, the
different spin states get coupled and this band degeneracy
is broken. It has been shown that the resulting triplon bands
can exhibit nontrivial first order topology, with nonzero Chern
numbers and a significant thermal Hall effect [39,40]. In our
work, we show that such quantum paramagnets can also ex-
hibit HOT phases and triplon corner-mode excitations that
arise as near-mid band gap states in their triplet excitation
spectrum.

This paper is organized as follows: In Sec. II, we formally
define the two spin models which exhibit the HOT triplon
phases. In Sec. III, we develop the effective theory of triplon
excitations for the spin models. The emergent triplon phases
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FIG. 1. Models. (a) The lattice of spin dimers hosting the triplon-BBH model (tBBH), made up of a top (T) and a bottom (B) layer. The
unit cell is composed of four dimers numbered 1 to 4. (b) A top-down view of the lattice in (a); thin (thick) horizontal bonds have Jx

1 (Jx
2 )

Heisenberg interactions, and thin (thick) vertical bonds have interactions proportional to Jy
1 (Jy

2 ), respectively. The sign of the interactions on
the vertical bonds alternates as we move along the x direction. The dashed vertical lines have −Jy

1,2 and the solid vertical lines have +Jy
1,2

interactions. (c) The bilayer spin-dimer lattice used to realize a HOT phase in the tSOC model for triplons with spin-orbit coupling (SOC). The
model has a reduced unit cell (compared to (a)) consisting of two dimers numbered 1 and 2. (d) A top-down view of the lattice in (c); horizontal
bonds have the same configuration as in (b) with thin (thick) bonds having J1 (J2) Heisenberg interactions. The vertical bonds have DM (D) and
gamma (�) interactions that introduce SOC into the model, in addition to a small Heisenberg interaction J . The direction of DM and Gamma
interactions alternates along the x direction, with dashed lines having DM and Gamma interactions pointing along the −ẑ direction, and solid
lines in the +ẑ direction. Mirror axes described in Sec. V are shown in the top-down views in dotted and dashed-dotted lines.

for the models, including the HOT phases, are discussed in
Sec. IV, and the symmetries that protect the HOT phases are
discussed in Sec. V. We characterize the topological triplon
phases using topological invariants such as the Wannier-sector
polarizations in Sec. VI. Finally, we develop the effective edge
theory for the models in Sec. VII, allowing us to show that
the corner modes arise at the intersection between two edges.
We conclude in Sec. VIII with a summary of the work and
a discussion on possible experimental realization. Additional
details about various results are provided in the appendices,
and are referred to in the main text.

II. MODEL HAMILTONIANS

We consider an array of spin dimers described by the
Hamiltonian

ĤD = JD

∑
r

SrT · SrB, (1)

with JD > 0, where spins live on a bilayer square lattice. The
square-lattice sites are labeled by r, and T, B refer to “top”
and “bottom” spins on the bilayer which form the dimer at
r. The unique ground state of the Hamiltonian ĤD is a direct
product of interlayer dimer singlets at each site r. The lowest
energy excitations correspond to creating a triplet on any one
of the dimers with the spin gap energy JD. We next intro-
duce two distinct models of interdimer exchange interactions
and demonstrate that the resulting quantum paramagnets host
HOT triplon excitations.

A. Model I: the tBBH model

Our first model, an XXZ model of interdimer couplings,
is directly inspired by the BBH model of spinless fermions
[1]. Hence, we name this the tBBH model, for “triplon BBH
model”. To define the model, we group four dimers together
into a unit cell as shown in Figs. 1(a) and 1(b). The total spin

Hamiltonian is given by

Ĥ spin
tBBH = ĤD + ĤI , (2a)

ĤI =
∑

〈rr′〉,�
Jr,r′

[
ζr,r′

(
Sx

r�Sx
r′�+Sy

r�Sy
r′�

) + Sz
r�Sz

r′�

]
, (2b)

where � = T, B labels the layers. The interdimer exchange
Jr,r′ takes on values J1 and J2 for neighboring sites which are
in the same unit cell or in adjacent unit cells, respectively.
The coefficient ζr,r′ defines the sign of the XY exchange,
taking on values +1 (−1) on the solid (dashed) bonds as
shown in Fig. 1(b); as we show below, this sign choice leads
to the triplons sensing a π flux1 in each elementary square
plaquette. For this Hamiltonian, only two of the three triplons
(x, y) will form HOT bands, as we discuss later, while the z
triplon remains in a topologically trivial phase. The model
may be considered an example of Su-Schrieffer-Heeger (SSH)
[41] spin ladders running along x̂ which are coupled by frus-
trated interladder interactions; a recent experimental example
of such an SSH spin ladder is discussed in Ref. [42].

B. Model II: the tSOC model

To get higher-order topology to emerge in 2D fermionic
systems, it has been shown that we need at least four degrees
of freedom per unit cell [1]. Heuristically, the polarizations
defining the first-order topologies of two bands can then po-
tentially cancel with each other, allowing for the higher-order
quadrupole moment to emerge as the proper characterization
of the nontrivial band topology of this band pair. In our first
model, the different triplon flavors are decoupled, and the
relevant degrees of freedom arise from having four dimers in

1This is not a physical electromagnetic flux, but rather the phase
accumulated by the triplon wave function as the triplon hops around
a single plaquette.
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each unit cell. In our second model below, we instead include
SOC that mixes two of the three triplon flavors, which permits
a smaller unit cell consisting of two dimers. Therefore, we
refer to this model as the tSOC model, short for “triplons with
spin-orbit coupling.”

The model is constructed [see Figs. 1(c) and 1(d)] as an
array of 1D ladders along y, each ladder being described
by a model which hosts triplon bands with nontrivial first-
order topology as shown by Joshi and Schnyder [43]. In the
transverse (x) direction, the chains are coupled by alternating
Heisenberg couplings which realize an SSH spin model. The
Hamiltonian for the tSOC model is given by

Ĥ spin
tSOC = ĤD + ĤII , (3a)

ĤII =
∑

〈rr′〉,�
Jr,r′Sr� · Sr′� + D

∑
〈rr′〉y,�

ζr,r′
(
Sx

r�Sy
r+y� − Sy

r�Sx
r+y�

)

+�
∑

〈rr′〉y,�

ζr,r′
(
Sx

r�Sy
r+y� + Sy

r�Sx
r+y�

)
. (3b)

Along the x direction, Jr,r′ takes on two distinct values J1

and J2 for intra-unit-cell nearest-neighbor spins and inter-
unit-cell nearest neighbor spins, respectively [see Fig. 1(d)].
Along the y direction, Jr,r′ = J for nearest-neighbor spins.
The D and � terms represent additional off-diagonal
exchange interactions—the antisymmetric Dzyaloshinskii-
Moriya (DM) coupling D and its symmetric counterpart �.
As in the previous model, the coefficient ζr,r′ takes on values
+1 (−1) on the solid (dashed) bonds as shown in Fig. 1(d),
so that the DM and � interactions alternate in sign from one
y-direction ladder to the next.

III. TRIPLON EXCITATIONS

The models defined in Sec. II possess a trivial quantum
paramagnetic ground state when the interdimer exchanges are
much weaker than JD [Eq. (1)]. In order to describe the excita-
tions above the singlet ground state, we use the bond operator
formalism [44,45], which maps the triplets and singlet states
of each dimer to bosons as follows:

t†
x |0〉 = i(|↑↑〉 − |↓↓〉)/

√
2,

t†
y |0〉 = (|↑↑〉 + |↓↓〉)/

√
2,

t†
z |0〉 = −i(|↑↓〉 + |↓↑〉)/

√
2,

s†|0〉 = (|↑↓〉 − |↓↑〉)/
√

2.

(4)

Here we have labeled the three triplet flavors [46] as x, y, z.
The bosonic operators t†

α (with α ∈ {x, y, z}) create triplons
from the vacuum state |0〉, and s† does the same for a sin-
glet. Since each dimer has exactly one singlet or triplet, we
must impose the constraint s†s + ∑

α t†
αtα = 1, where s†s and

t†
αtα gives the number densities for singlets and α triplets

respectively. With this constraint, the spin operators on the
two sites at a dimer can be represented in terms of the bosons
as follows:

Sα
rT = 1

2 (+it†
rαsr − is†

rtrα − iεαβγ t†
rβtrγ ), (5a)

Sα
rB = 1

2 (−it†
rαsr + is†

rtrα − iεαβγ t†
rβtrγ ). (5b)

Deep in the paramagnetic phase, the singlet density is approxi-
mately 1. Throughout this paper we will work in this limit, and
therefore set s and s† to the c number 1 [44]. Furthermore, we
shall only keep terms that are bilinear in the triplon operators
t†
α and tα [39,43,44].

In deriving the effective triplon Hamiltonians below to
describe the spin-gapped excitations, we relabel the sites r :=
(R, a) where R denotes unit cell and a stands for the sublattice
index. For the tBBH model (model I), the sublattice index
a ∈ {1, 2, 3, 4}, while for the tSOC model (model II), a ∈
{1, 2}. For compactness of notation, we define two-component
Nambu spinors φ

†
R,aα = [t†

R,aαtR,aα]. For both models, the z
triplon remains decoupled with topologically trivial bands.
We will henceforth focus only on those sectors which exhibit
nontrivial topology; with this understanding, the triplon label
α will be used to denote only α ∈ {x, y}.

(a) Model I (tBBH model). In the first model, the differ-
ent triplet flavor states α are decoupled at quadratic order
due to the absence of SOC and Zeeman fields. We con-
struct the eight-component bosonic Nambu vector �

†
Rα =

[φ†
R,1αφ

†
R,2αφ

†
R,3αφ

†
R,4α]. The real-space triplon Hamiltonian,

obtained by expressing the spin operators in Eq. (2) using the
relations in Eq. (5), is then given by

ĤtBBH = 1

2

∑
R,δ,α

�
†
R+δα

M
δ
�Rα, (6a)

with the coupling matrices

M0 = JDσ0η0τ0+
(J1

2
σ1η0− J1

2
σ2η2

)
(τ0−τ1),

M+x̂ = M†
−x̂ = J2

4
(σ1η0 − iσ2η3)(τ0−τ1),

M+ŷ = M†
−ŷ = −J2

4
iσ2(η1 − iη2)(τ0−τ1). (6b)

Here, σi, ηi, and τi correspond to sets of Pauli matrices
with Kronecker product implied between them. Specifi-
cally, τi acts in Nambu (particle-hole) space, while σi and
ηi act in the space of sublattices a ∈ {1, 2, 3, 4}. In terms
of the (σ3, η3) eigenvalues, the sublattices a = (1, 2, 3, 4)
correspond respectively to (++,+−,−+,−−). Fourier
transforming this yields the momentum-space Hamiltonian
ĤtBBH = 1

2

∑
kα �

†
kαH tBBH

k �kα ,2 where H tBBH
k is an 8 × 8 ma-

trix independent of α, given by

H tBBH
k = JDσ0η0τ0+

(J1

2
σ1η0− J1

2
σ2η2

)
(τ0−τ1)

+ J2

2
(cos kxσ1η0−sin kxσ2η3)(τ0−τ1)

− J2

2
σ2(cos kyη2 + sin kyη1)(τ0−τ1). (7)

(b) Model II (tSOC model). In the second model, SOC cou-
ples the x and y triplon sectors. We define the eight-component

2The redundancy intrinsic to the Nambu formalism is eliminated
by choosing coefficient matrices to be particle-hole symmetric. In
momentum space, this constraint takes the form Hk = τ1H∗

−kτ1.
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bosonic Nambu vector �
†
R = [φ†

R,1x φ
†
R,1y φ

†
R,2x φ

†
R,2y], in

terms of which the triplon Hamiltonian is given by

ĤtSOC = 1

2

∑
R,δ

�
†
R+δ

M
δ
�R, (8a)

with the coupling matrices given by

M0 = JDσ0η0τ0 + J1

2
σ1η0(τ0−τ1),

M+x̂ =M†
−x̂ = J2

4
(σ1 + iσ2)η0(τ0−τ1),

M+ŷ =M†
−ŷ = Jσ0η0 + σ3(�η1+iDη2)

2
(τ0−τ1). (8b)

While τi Pauli matrices again act in Nambu (particle-hole)
space, here the σi and ηi Pauli matrices respectively act on the
sublattice index a ∈ (1, 2) and triplon flavor index α ∈ (x, y).
Thus the two triplon flavors here take on the role of the two
additional sublattices in model I. Fourier transforming leads
to the 8 × 8 Bloch Hamiltonian:

H tSOC
k = JDσ0η0τ0 + J1

2
σ1η0(τ0−τ1)

+ J2

2
(coskxσ1+sinkxσ2)η0(τ0−τ1)

+ ((Jσ0η0+�σ3η1)cosky+D sinkyσ3η2)(τ0−τ1).
(9)

(c) Diagonalization. Triplon Hamiltonians like ĤtBBH and
ĤtSOC are in general bosonic Bogoliubov–de Gennes (BdG)
Hamiltonians [44]. We briefly review the process for solving
such Hamiltonians: writing Ĥ = 1

2

∑
k �

†
kHk�k, Ĥ is diag-

onalized via a paraunitary Bogoliubov transformation �k =
Tk�k, where the matrices Tk satisfy T †

k τ3Tk = τ3, where τ3,
short for 1n ⊗ τ3, is the third Pauli matrix in Nambu space
[47–50]. Provided Hk is positive definite, such a transforma-
tion Tk exists, and the eigenvectors of τ3Hk can be chosen
to construct the columns of Tk. The BdG structure of the
Hamiltonian guarantees that half the eigenvalues of τ3Hk are
positive (particle like) and the other half is negative (holelike).
The positive eigenvalues give the energies for the bosonic
modes at a given momentum k. The diagonalization procedure
for a position-space BdG Hamiltonian can also be performed
in a similar fashion.

IV. HOT PHASE AND TOPOLOGICAL TRANSITION

A characteristic feature of a 2D HOT phase is the existence
of topological corner modes. To check for these corner modes,
we solve the triplon real-space Hamiltonians in Eq. (6) and
Eq. (8) on a finite geometry with open boundary conditions
(OBC) in the x and y directions.

For the first model, given by ĤtBBH [Eq. (6)], we fix pa-
rameters J1/JD = 0.02 and J2/JD = 0.2 and plot the energy
spectrum for the tx triplons in Fig. 2(a). It shows an energy
band gap with four modes near the middle of the band gap
(E/JD ≈ 1.0), right about where we would expect to find the
corner-mode energies. We use the term “near” to specify the
location of these energies, as we find the spectrum is not sym-
metric about E/JD = 1.0 for a finite value of JD. However,

the spectrum becomes symmetric asymptotically as JD → ∞,
and the energies corresponding to these four modes shift to
exactly the middle of the band gap. To verify that these are
corner modes, we plot the real-space triplon density averaged
over all four of these modes and overlay it over our finite
lattice geometry; see Fig. 2(c). Indeed, we see that the den-
sity peaks at the corners, confirming the existence of corner
modes. In addition to the corner modes, we find edge modes
whose energies lie inside the band gap but are not pinned to
the energy E ≈ JD inside the band gap [see Fig. 2(a)];3 such
states also exist in the fermionic BBH model [1]. We show the
density profile of one of these edge modes in the bottom inset
of Fig. 2(a).

To check for corner modes in the second model, we
use parameter values J1/JD = 0.1, J2/JD = 0.2, D/JD = 0.2,
�/JD = 0.22, and J/JD = 0.01 in ĤtSOC [Eq. (8)]. We plot the
energy spectrum in Fig. 2(b) and once again find four modes
pinned near the center of the band gap at E/JD ≈ 1.0. Like
before, a plot of the real-space triplon density profile averaged
over the four near-midgap states [Fig. 2(d)] shows that they
reside at the corners and decay rapidly into the bulk, verifying
that they are indeed corner modes. Also similar to the first
model, we find edge modes with energies considerably away
from the middle of (but inside) the band gap for the second
model. The density profile for a typical edge mode is given in
Fig. 2(b) bottom inset.

Band structures. The band structures for the two models
[Eqs. (7) and (9)] are shown in Figs. 2(e) and 2(f), with
respective parameter values discussed in the caption. In each
model, the particlelike bosonic modes are made up of four
bands (see the last paragraph of Sec. III). In the first model,
the lowest two energy bands, i.e., bands (1,2), are degenerate,
and so are bands (3,4); see Fig. 2(e). The bulk band gap
occurs between band pair (1,2) and band pair (3,4). The corner
modes [see Fig. 2(a)] appear at an energy E near the middle of
this band gap with E ≈ JD, where the intradimer Heisenberg
exchange JD is the dominant energy scale. The bands for the
second model are plotted in Fig. 2(f), and have the same type
of degeneracies as the first model. Other features are also
qualitatively similar to the first model, e.g., the bulk band
gap appearing between bands 2 and 3. Further details and
explicit expressions for the band dispersions are discussed in
Appendix A.

A. Phase diagrams

Having established the presence of corner modes for a set
of parameter values, we now explore the full phase diagram
for the two models. In particular, we look for ways to drive
transitions from the HOT triplon phase to other phases with
trivial (or possibly first order) topology.

1. Model I: tBBH model

In the fermionic BBH model, the complete phase diagram
for the topological phases is accessed by allowing the hop-

3In fact, the edge mode energies can be pushed into the bulk
spectrum by tuning the parameters appropriately without destroying
the corner modes.
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FIG. 2. Corner modes and Band dispersions. (a) Energy spectrum for the tBBH model with open boundary conditions (OBC), showing
four corner modes (top inset) and edge modes inside the bulk band gap (shaded region). The corner modes are pinned to the near-midgap
energy E/JD ≈ 1. The triplon density for a typical edge mode is given in the bottom-right inset. (b) Energy spectrum for the tSOC model in
the HOT phase, with OBC, showing corner modes and edge modes like in (a). (c) and (d) give the average triplon density profiles over all four
corner modes of the tBBH and tSOC models, respectively. The triplon excitations are localized at the corners of the lattice [see Figs. 1(b) and
1(d)]. (e) and (f) show the band dispersions (orthographically projected onto the ky = 0 plane), and the bulk band gap, for the triplon modes
in the tBBH and tSOC models, respectively. The parameter values used for plotting the dispersions in (e) and (f) are Jx

1 /JD = Jy
1 /JD = 0.04,

Jx
2 /JD = Jy

2 /JD = 0.1 and J1/JD = 0.06, J2/JD = 0.1, J/JD = 0.03, �/JD = 0.11, D/JD = 0.1, respectively. The triplon dispersion for both
the models comprises four Bloch bands, out of which bands 1 (lines) and 2 (◦) form a degenerate pair and bands 3 (lines) and 4 (�) form
another.

ping amplitudes on the 2D square lattice to be anisotropic; in
other words, the amplitudes along the x direction are tuned
independently from those along the y direction. Since our
first model closely resembles the fermionic BBH model, we
introduce a similar anisotropy into the tBBH model by making
the Heisenberg exchange interactions along the horizontal (x
direction) bonds independent from those along vertical (y
direction) ones; see Fig. 1(b). This entails that the triplon
Hamiltonian in Eq. (7) is redefined as

H tBBH
k

redef.= JDσ0η0τ0+
(

Jx
1

2
σ1η0− Jy

1

2
σ2η2

)
(τ0−τ1)

+ Jx
2

2
(cos kxσ1η0−sin kxσ2η3)(τ0−τ1)

− Jy
2

2
σ2(cos kyη2 + sin kyη1)(τ0−τ1), (10)

where Jx
1,2 and Jy

1,2 represent the strengths of interactions on
the x and y bonds, respectively. Continuing with the analogy
between the tBBH and fermionic BBH models, we expect
to drive a transition from the HOT phase to other phases by
tuning the ratios Jx

1 /Jx
2 and Jy

1/Jy
2 . Setting Jx

2 /JD = Jy
2/JD =

0.2 in H tBBH
k [Eq. (10)], we construct the phase diagram in

Fig. 3(a) by separately tuning Jx
1 /JD and Jy

1/JD from 0.0 to 0.4.
The HOT triplon phase occurs in the region with both Jx

1 < Jx
2

and Jy
1 < Jy

2 . At any point in this region of parameter space,
the system hosts stable corner modes. If either Jx

1 /Jx
2 or Jy

1/Jy
2

are made greater than 1.0, the HOT phase is destroyed and the
corner modes disappear. Notably, the phase boundary of the
transition from a HOT to a non-HOT phase, indicated by the
dashed lines Jx,y

1 = Jx,y
2 in Fig. 3(a), does not coincide with

a closing of the bulk band gap! This unique feature of HOT
phases underlines that they are truly distinct from conven-
tional first-order topological phases. In the phase diagram of
Fig. 3(a), the bulk band gap [Fig. 2(e)], given by the formula

�bulk = E (min)
+ − E (max)

−

=
2JD

√(∣∣Jx
1

∣∣ − ∣∣Jx
2

∣∣)2 + (∣∣Jy
1

∣∣ − ∣∣Jy
2

∣∣)2

E (min)
+ + E (max)

−
, (11)

closes only at a single point when Jx
1 /Jx

2 = Jy
1/Jy

2 = 1 [see
Fig. 3(a)]. In Eq. (11), E (min)

+ and E (max)
− (where E (min)

+ �
E (max)

− > 0) are the maximum and minimum values for the
bands 1,2 and 3,4, respectively—explicit expressions are pro-
vided in Appendix A. Though the HOT phase boundaries are
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FIG. 3. Phase diagrams. (a) The phases of the BBH model for triplons (tBBH); the HOT-triplon phase appears when Jx,y
1 < Jx,y

2 . The
Wannier band gap (see Sec. VI), shown with a color-density plot, closes along the dashed lines Jx

1 = Jx
2 , Jy

1 = Jy
2 . The bulk band gap closes only

at the intersection point of the lines. The Wannier-sector polarizations p = (px, py ) are quantized to either 0 or 1/2 (see Sec. VI). (b) Gapless
(top inset) and gapped (bottom inset) Wannier bands νx

j (k) appearing in phases close to the horizontal-transition line (�) and inside the HOT
region (�) in (a), respectively. (c) Phases of the second model with SOC triplons (tSOC) in a staggered field hs. The phases are in one-to-one
correspondence with the tBBH model in (a); the staggered-field strength hs acts like Jy

1 from (a). (d) Phase diagram for the tSOC model in a
homogeneous field h; a HOT phase is found when h < hc1 and J1 < J2. The Wannier-sector polarizations p are quantized for h < hc1. The bulk
band gap (shown with a color-density plot) closes when hc1 � h � hc2, and the system cannot harbor protected near-midgap modes. Beyond
h > hc2, the system is gapped but does not have any corner modes. In (c) and (d), the parameter values D/JD = �/JD = 0.1 are used.

not marked by a closing of the bulk band gap, they do coincide
with band gap closings in the edge theories of the model—this
is further discussed in Sec. VI together with the topological
invariants for our models.

2. Model II: tSOC model

Moving on to constructing a phase diagram for our second
model, the tuning parameters at our disposal to drive a transi-
tion are J1, J2, D, and �. We set J , the Heisenberg exchange
on vertical bonds, to zero for the present discussion. Since the
interactions along the x direction are the same as in the first
model, we once again choose the ratio J1/J2 as one of the
parameters. Interestingly, tuning the strengths of D or � (as
long as D, � � JD) does not destroy the HOT-triplon phase!
We have checked that the corner modes persist as long as both
D, � are not equal to zero. Therefore, we must introduce addi-
tional terms in the Hamiltonian [Eq. (3)] to drive a transition.
We explore two such avenues: (a) by applying a staggered
Zeeman field

Ĥ spin
stag-B = −hs

∑
R,a=1,2,l

(−1)aSz
R,a,l (12)

of strength hs, or (b) by applying a homogeneous Zeeman field

Ĥ spin
hom-B = −h

∑
R,a=1,2,l

Sz
R,a,l , (13)

controlled by the strength h. In the staggered field configu-
ration, the Zeeman field at dimers 1 and 2 of the unit cell
respectively points in the −ẑ and +ẑ directions, while for the
homogeneous configuration it points everywhere in the +ẑ di-
rection [see Fig. 1(d)]. The corresponding spin Hamiltonian in
each case takes the form Ĥ spin

tSOC + Ĥstag-B and Ĥ spin
tSOC + Ĥhom-B,

respectively; the triplon Hamiltonians are discussed in Ap-
pendix A. We discuss the phase diagrams for the staggered
and homogeneous field configurations separately.

(a) Staggered field. We begin with the staggered field,
since the associated phase diagram will turn out to be anal-
ogous to that of the tBBH model. To investigate the phase
diagram, we set D/JD = �/JD = 0.1 and tune hs/JD (the
staggered-field strength) from 0.0 to 0.2. Like for the first
model, we tune J1/JD from 0.0 to 0.4 with J2/JD = 0.2. We
show the resulting phases in Fig. 3(b). Indeed, we find that the
HOT phase transitions to a different topological state when
hs becomes greater than a critical value h(c)

s ≈ D. Also, like in
the first model, the HOT-phase disappears when J1 > J2. Both
these transitions are in general not marked by a bulk band gap
(Fig. 2(f)) closing except at the point J1 = J2 and

hs = h(c)
s :=

√
J2

D + 2DJD −
√

J2
D − 2DJD

2
; (14)

see Fig. 3(b); see also Appendix A for the derivation of
Eq. (14).

(b) Homogeneous field. Keeping all other parameters un-
changed, we set hs = 0 and tune h/JD from 0.0 to 2.0. The
resulting phase diagram, shown in Fig. 3(c), is more complex
than those encountered so far. There are now two critical field
strengths hc1 and hc2, given by

hc1(J1) = (√
J2

D + JD f−(J1) −
√

J2
D − JD f−(J1)

)/
2,

hc2(J1) = (√
J2

D + JD f+(J1) −
√

J2
D − JD f+(J1)

)/
2,

f−(J1) =
√

4D2 + (|J1| − |J2|)2,

f+(J1) =
√

4D2 + (|J1| + |J2|)2,

(15)

that separate the various phases; see Appendix A for deriva-
tions. The HOT triplon phase persists as long as h < hc1 and
J1 < J2. Similar to the previous cases, the system transitions
from a HOT phase to one with no corner modes when J1

is tuned past J2, with the bulk band gap remaining open

184403-6



HIGHER-ORDER TOPOLOGY AND CORNER TRIPLON … PHYSICAL REVIEW B 104, 184403 (2021)

in the process. However, for hc1 < h < hc2, the bulk band
gap is absent, thereby precluding the existence of protected
near-midgap states of any order (edge states or corner states).
Beyond h > hc2, the bulk band gap reopens but the HOT phase
is not recovered for any values of J1 and J2.

The phases encountered in the above phase diagrams, es-
pecially those without robust corner modes, can be further
characterized using topological invariants. We develop this
characterization in more detail in Sec. VI on topological in-
variants.

V. SYMMETRIES

Usually, a set of noncommuting symmetries protect the
HOT phases hosting corner modes [1]. For example, in the
two-dimensional fermionic BBH model, there exists a pair of
mirrorlike symmetries Mx (reflection about the y axis) and
My (reflection about the x axis) that anticommute [1]. As
we shall demonstrate below, like in the BBH model, usual
(commuting) mirror symmetries preclude the existence of an
HOT phase in the spin-dimer models we consider, whereas
noncommuting mirror symmetries allow for HOT. We now
discuss analogues of these noncommuting mirrorlike symme-
tries for our two models below.

A. Model I: tBBH model

For the first model, we find that the canonical mirror oper-
ation Mx, i.e., reflection about a line parallel to the y axis and
passing through the center of a unit cell [Fig. 1(b)], is not a
symmetry by itself. Therefore, following the mirror reflection,
we perform the operation C̃z

2, a π spin rotation about the z axis
acting only on the spins of dimers 1 and 3 [Fig. 1(b)], making
them transform as⎡

⎣Sx
R,(1,3),�

Sy
R,(1,3),�

Sz
R,(1,3),�

⎤
⎦Mx→

⎡
⎣ Sx

R′,(3,1),�

−Sy
R′,(3,1),�

−Sz
R′,(3,1),�

⎤
⎦ C̃z

2→
⎡
⎣−Sx

R′,(3,1),�

Sy
R′,(3,1),�

−Sz
R′,(3,1),�

⎤
⎦, (16a)

while the spins in dimers 2 and 4 transform as⎡
⎣Sx

R,(2,4),�

Sy
R,(2,4),�

Sz
R,(2,4),�

⎤
⎦ Mx→

⎡
⎣ Sx

R′,(4,2),�

−Sy
R′,(4,2),�

−Sz
R′,(4,2),�

⎤
⎦, (16b)

where R = ixx̂ + iyŷ and R′ = Mx(R) = −ixx̂ + iyŷ is the
mirror image of R under Mx. The layer index � takes the val-
ues T or B for spins in the top or bottom layers, respectively.
In Appendix C, we show that the composite transformation
C̃z

2 ◦ Mx is a symmetry of the Hamiltonian. As an example,
we focus on the transformation of a term with ferromagnetic
interactions in Eq. (3), such as

H (x,y)
R := J1S(x,y)

R,1,�
S(x,y)

R,4,�
− J1S(x,y)

R,2,�
S(x,y)

R,3,�
, (17)

which transforms as

H (x,y)
R

Mx→ J1S(x,y)
R′,3,�

S(x,y)
R′,2,�

− J1S(x,y)
R′,4,�

S(x,y)
R′,1,�

C̃z
2→ −J1S(x,y)

R′,3,�S(x,y)
R′,2,� + J1S(x,y)

R′,4,�S(x,y)
R′,1,�

= H (x,y)
R′ .

(18)

We see from above, since H (x,y)
R

C̃z
2◦Mx→ H (x,y)

R′ , where R′ is a
primitive lattice vector, the sum

∑
R H (x,y)

R remains invariant

under the transformation. Similarly, the sum of the rest of the
Heisenberg interaction terms in Eq. (2) also remains invariant,
see Appendix C for further details. This establishes C̃z

2 ◦ Mx as
a one of the mirrorlike symmetries for our first model.

Searching for the second symmetry, we find that the usual-
mirror reflection My, about a line parallel to the x axis and
bisecting a unit cell, leaves the spin Hamiltonian in Eq. (2)
invariant. Under this symmetry operation, the spins transform
as ⎡

⎣Sx
R,(2,3),�

Sy
R,(2,3),�

Sz
R,(2,3),�

⎤
⎦ My→

⎡
⎣−Sx

R′,(3,2),�

Sy
R′,(3,2),�

−Sz
R′,(3,2),�

⎤
⎦, (19a)

⎡
⎣Sx

R,(1,4),�

Sy
R,(1,4),�

Sz
R,(1,4),�

⎤
⎦ My→

⎡
⎣−Sx

R′,(4,1),�

Sy
R′,(4,1),�

−Sz
R′,(4,1),�

⎤
⎦, (19b)

where R′ = My(R) = ixx̂ − iyŷ. We provide further details
on the invariance of the terms in Eq. (2) under My in
Appendix C.

The two symmetries C̃z
2 ◦ Mx and My that we found above

do not mix the triplon flavors, but admit different repre-
sentations in the three decoupled triplon flavor sectors. As
previously stated, we shall focus on the tx and ty sectors since
these are the sectors that contribute to the HOT triplon phase.
In the tx sector, the matrix representations M(x)

x and M(x)
y for

the symmetries that transform the bosonic Nambu vector �R,x
in Eq. (6) are

C̃z
2 ◦ Mx ≡ M(x)

x = −σ1η3τ0,

My ≡ M(x)
y = −σ1η1τ0,

(20a)

whereas for the ty sector, the matrix representations M(y)
x and

M(y)
y operate as

C̃z
2 ◦ Mx ≡ M(y)

x = σ1η3τ0,

My ≡ M(y)
y = σ1η1τ0,

(20b)

on �R,y. In both cases, the Bloch Hamiltonians for
model I in Eqs. (7) and (10) respectively satisfy H tBBH

k =
M(β )

α

†
H tBBH

Mαk M(β )
α , where α, β ∈ {x, y}, leaving the full

Hamiltonian invariant. Using the representations for the sym-
metry operations in Eq. (20), we find {M(α)

x ,M(α)
y } = 0,

where α ∈ {x, y}, making the noncommuting property of the
symmetries manifest, and hence fulfilling one of the main
requirements for obtaining a HOT phase.

B. Model II: tSOC model

To discuss the symmetries of our second model, we define
the DM and � interactions terms from Eq. (3) at the lattice
position (R, a) as

DR,a =
∑

l

(−1)aD
(
Sy

R,a,�Sx
R+ŷ,a,� − Sx

R,a,�Sy
R+ŷ,a,�

)
,

�R,a =
∑

l

(−1)a�
(
Sy

R,a,�
Sx

R+ŷ,a,� + Sx
R,a,�Sy

R+ŷ,a,�

)
,

(21)

respectively. A mirror reflection (Mx) about a line parallel
to the y axis and passing through the center of a unit cell
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transforms the spin operators as⎡
⎣Sx

R,(1,2),�

Sy
R,(1,2),�

Sz
R,(1,2),�

⎤
⎦ Mx−→

⎡
⎣ Sx

R′,(2,1),�

−Sy
R′,(2,1),�

−Sz
R′,(2,1),�

⎤
⎦, (22)

where R′ = Mx(R), or more explicitly R = ixx̂ + iyŷ and
R′ = −ixx̂ + iyŷ. Therefore, under Mx, the DM terms DR,a

transforms according to DR,1
Mx→ DR′,2 and DR,2

Mx→ DR′,1—
that is, up to a primitive lattice translation, the DM term
for dimer 1 maps to the term for dimer 2, and vice-versa.
Since R′ is a primitive lattice vector, the sum

∑
R,a DR,a over

lattice vectors remains invariant; the same goes for the sum
of Gamma interactions

∑
R,a �R,a. The other terms in Eq. (3)

can be shown to remain invariant as well (see Appendix C
for details), implying that Mx is indeed a symmetry of the
Hamiltonian in Eq. (3).

The second symmetry for the model is constructed by com-
posing two operations: a mirror reflection My about the x axis
passing between two unit cells followed by a π/2 global spin
rotation Cz

4 about the ẑ direction. The spin operators transform
as ⎡

⎣Sx
R,a,�

Sy
R,a,�

Sz
R,a,�

⎤
⎦ My→

⎡
⎣−Sx

R′,a,�

Sy
R′,a,�

−Sz
R′,a,�

⎤
⎦ Cz

4→
⎡
⎣ Sy

R′,a,�

Sx
R′,a,�

−Sz
R′,a,�

⎤
⎦, (23)

where R′ = My(R) = ixx̂ − iyŷ. As a result, the DM and �

terms transform according to DR1,a → DR2,a and �R1,a →
�R2,a, where R1 = ixx̂ + iyŷ and R2 = ixx̂ − (iy+1)ŷ. Since
R2 is a primitive lattice vector, the sums

∑
R,a DR,a and∑

R,a �R,a are invariant under Cz
4 ◦ My. Similarly, the Heisen-

berg terms in Eq. (3) can be shown to remain invariant as well
(see Appendix C), thereby establishing Cz

4 ◦ My as another
mirrorlike symmetry for our second model.

The noncommuting nature of the two symmetries Mx and
Cz

4 ◦ My can be verified by writing their representations in the
subspace of triplons contributing to the HOT phase, i.e., the
x and y triplons. In this subspace, apart from changing R →
Mα (R), the symmetries are represented by matrices

Mx ≡ Mx = σ1η3τ0, (24a)

Cz
4 ◦ My ≡ My = σ0η1τ0, (24b)

which act on the column vector �R [see Eq. (8)] and constrain
the Bloch Hamiltonian H tSOC

k as H tSOC
k = M†

αH tSOC
Mαk Mα ,

where α ∈ {x, y}. The matrices Mx and My satisfy
{Mx,My} = 0 and hence, as expected, do not commute.

In the presence of a Zeeman field, one or both of the
symmetries break depending on whether a staggered field hs

[Eq. (12)] or homogeneous field h [Eq. (13)] is applied. For
the staggered field case, Mx (or Mx) is preserved, while Cz

4 ◦
My (My) is broken. The latter gets replaced by T ◦ Cz

4 ◦ My,
i.e., Cz

4 ◦ My followed by a time-reversal operation T , as the
new symmetry. When a homogeneous field is applied, the
new symmetry T ◦ Cz

4 ◦ My also works as the replacement for
the broken Cz

4 ◦ My symmetry. However this time, in addition
to Cz

4 ◦ My, the symmetry Mx also breaks and is replaced by
T ◦ Mx. The matrix representations for the new symmetries
in the relevant triplon sectors are obtained by left-multiplying
the complex-conjugation operator K with the matrices Mx,

My in Eq. (24). The modified representations still continue to
anti-commute, see Appendix C for details.

VI. TOPOLOGICAL INVARIANTS

It has been shown [1,51] that we can characterize the 1D
edge of a 2D fermionic HOT phase using standard first-order
topological invariants such as polarization [52]. In turn, the
bulk of the HOT phase can then be characterized using the in-
variants of their effective edge theories. The idea of using edge
polarization as a topological invariant has been generalized
to bosonic systems in the context of magnons [22,25]. Here,
we apply this framework to the triplon systems introduced in
Sec. III; however, we remark here that the term polarization is
used to refer to the topological invariant, and not to a physical
polarization of the system. It has been demonstrated [1,51]
that the topological nature of the edge polarizations can be
characterized using Wannier Hamiltonians (a bulk property)
without introducing physical edges in the model. We can
obtain the Wannier Hamiltonians by constructing Wilson loop
operators Wα

k that traverse the first Brillouin zone (BZ) once
along either the α = x or y directions starting from a base
momentum k. Defining the overlap matrix

Fαk = [Fαk]m,n := 〈um,k+�k|�|un,k〉 (25)

for each momentum k, the loop operator Wα
k is conveniently

expressed as an ordered matrix product of the overlap matrices

Wα
k =Fα,k+Nα�k · · · Fα,k+�kFαk (26)

following the loop. Here, � := 1n ⊗ τ3 is the symplectic iden-
tity, |un,k〉 are the eight-component particlelike Bloch vectors
obtained by solving the Bloch Hamiltonians of Eq. (9) and 10,
Nα=x,y are the number of unit cells along the x or y directions
and �k = 2πα̂/Nα . The band indices m and n label the rows
and columns of the matrix Fαk and run over a subset of bands
in the system which we choose to be bands 1 and 2 for each
our models [see Figs. 2(e) and 2(f)]. This choice of bands is
guided by the analogy with the fermionic BBH model, for
which bands 1 and 2 would be the filled bands. We mention
here that, unlike in the fermion version, Fαk is defined in terms
of an inner product with matrix �;4 a similar definition has
been used in the context of magnons—another bosonic BdG
system—in Ref. [22].

The Wannier Hamiltonians HWα (k), one for each direction
x and y, are defined by the loop operators via

exp(2π i HWα (k)) := Wα
k . (27)

The Wannier Hamiltonian for the direction α is adiabatically
connected (topologically equivalent) to the physical Hamil-
tonian for the edge perpendicular to α [1,53], allowing us
to use it to characterize the edge theories. The eigenvalues
of HWα (k) give the Wannier bands να

j (k) ( j = 1, 2), which
are defined modulo 1, whereas the eigenvectors |να

j (k)〉 can
be used to obtain [1,53] the Wannier band subspace spanned
by the states |wα

j (k)〉 in the original eight-component Nambu

4The paraunitarity condition implies that the (particlelike) eigen-
states at a given k are orthonormal with respect to this inner product
with metric �.

184403-8



HIGHER-ORDER TOPOLOGY AND CORNER TRIPLON … PHYSICAL REVIEW B 104, 184403 (2021)

basis. Here, we have used the same notation for denoting Wan-
nier bands, subspaces, etc. as in Ref. [1]. The bands να

j (k),
constructed from Wilson loops along the direction α, depend
only on the momentum component perpendicular to α; e.g.,
νx

j (kx, ky) depends on ky only. Since the matrices Fαk in each
of our models are constructed using Bloch bands 1 and 2, the
number of Wannier bands at any given k is two.

A useful feature of the Wannier bands is that they are
gapped inside a HOT phase and become gapless when the
underlying system transitions to a different topological phase.
The gap closing of the Wannier bands is not necessarily ac-
companied with the closing of the bulk band gap. As a result,
the associated states |wα

j (k)〉 can carry topological inavriants
of their own. For the class of 2D HOT phases that we con-
sider in this paper, this topological invariant was shown to
be the polarization of the Wannier bands, or Wannier-sector
polarization [1]. To elaborate on this further, we focus on
the Wannier Hamiltonian HWx for the Wilson loops along
the x direction. If we define the overlap amplitude F pol

j,k =
〈wα

j (k + �k)|�|wα
j (k)〉 (where �k = (0, 2π/Ny)), we can

construct yet another set of Wilson loops,

W̃ j
y,kx

= F pol
j,k+Ny�k · · · F pol

j,k, (28)

one for each Wannier band j ∈ {1, 2}, that run along the y di-
rection. This time, however, the loops are formulated using the
Wannier band basis |wα

j (k)〉 instead of the Bloch states |un,k〉
[see Eq. (25)] and the overlap amplitudes F pol

j,k are scalars
instead of matrices. Following the convention in Ref. [1], we
call these new loops nested Wilson loops. Since the F pol

j,k are
scalars, the product W̃ j

y,kx
only depends on kx. The polarization

for the states |wx
j (k)〉 can be written in terms of the nested

Wilson loops as follows:

p
(νx

j )
y = − i

2πNx

∑
kx

log W̃ j
y,kx

. (29)

The Wannier-sector polarization p
(νx

j )
y , defined modulo 1, char-

acterizes the topology on the x edge. A value of p
(νx

j )
y = 0

indicates that the edge has a trivial topology, while p
(νx

j )
y = 1/2

implies a nontrivial edge topology. Similar to the fermionic

BBH model, the quantization of p
(νx

j )
y is a result of the con-

straints imposed on the polarization due to the mirrorlike
symmetries we introduced in Sec. V. The symmetries also
constrain the polarizations of the two Wannier bands, j ∈
{1, 2}, to be equal, i.e., p

(νx
1 )

y = p
(νx

2 )
y mod 1. Therefore, we

refer to the Wannier-sector polarizations p
(νx

1,2 )
y collectively

as py. We have verified numerically that these constraints
hold. In contrast to the fermionic case, our definition of the
Wannier-sector polarization, given in Eq. (28), uses the sym-
plectic identity � instead of the usual matrix identity. Similar
definitions for computing polarizations of Bloch bands [54]
and of Wannier bands [25] in bosonic BdG systems can be
found in existing literature.

Following the same set of steps, we can define the Wannier-
sector polarization px starting from the Wannier Hamiltonian
HWy (k) to characterize the y-edge topology. The polarization
px will also satisfy the same symmetry constraints as py,
and will take values 0 or 1/2 modulo 1. Therefore, we can

use the pair of Wannier-sector polarizations p = (px, py) to
further classify the HOT triplon phases that appear in the
phase-diagrams (Fig. 3) of our models.

(a) Model I (tBBH model). Numerically computing the
Wannier-sector polarizations for the first model, we find the
HOT-triplon phase in Fig. 3(a), obtained when Jx

1 < Jx
2 and

Jy
1 < Jy

2 , has p = (1/2, 1/2), implying that both the y-edge
and x-edge polarizations are quantized to 1/2. In the HOT
phase, the Wannier bands να

j=1,2(k) for both the α ∈ {x, y}
directions are gapped. We show the two gapped bands νx

j (k),
calculated from Wilson loops running along the x direction,
in Fig. 3(b) bottom inset. Transitions to other phases occur
when either the x- or y-direction Wannier-band gap closes
modulo 1. For example, when Jy

1 → Jy
2 , the gap between

the bands νx
j (k), j ∈ {1, 2}, begins to close, as seen from

Fig. 3(b) top inset. Hence, the line Jy
1 = Jy

2 is a phase boundary
[see dashed horizontal line in Fig. 3(a)]. Similarly, the line
Jx

1 = Jx
2 (represented by a dashed vertical line) forms another

phase boundary, along which the gap between the Wannier
bands ν

y
j (k)( j = 1, 2) closes. The Wannier-sector polariza-

tions of the resulting additional phases are p = (0, 1/2) when
Jy

1 > Jy
2 and Jx

1 < Jx
2 , p = (1/2, 0) when Jy

1 < Jy
2 and Jx

1 >

Jx
2 , and p = (0, 0) when both Jx,y

1 > Jx,y
2 . Therefore, the

phases of Fig. 3(a) are classified as Z2 × Z2, exactly like the
fermion BBH model. The dependence of the minimum of the
two Wannier-band gaps, min{(νx

j=1 − νx
j=2) mod 1, (νy

j=1 −
ν

y
j=2) mod 1}, on Jx

1 , Jy
1 is shown as a density plot in the same

figure.
(b) Model II (tSOC model). For our second model, where

the HOT phase of SOC triplons is destroyed by applying
either a staggered or a homogeneous Zeeman field, we find
two different topological classifications. The Wannier-sector
polarizations p for the phases in Fig. 3(c), obtained when
a staggered Zeeman field hs is applied, are in one-to-one
correspondence with the phase diagram [Fig. 3(a)] for our
first model. The only difference is that the role of Jy

1 in the
first model is now fulfilled by the staggered field strength hs,
and Jx

1,2 are relabelled as J1,2, respectively; the line hs = h(c)
s

[Eq. (14)] now marking one of the phase boundaries [see
dashed-horizontal line in Fig. 3(c)]. Therefore, the topolog-
ical phases for the staggered-field case are again classified
as Z2 × Z2. Moving on to the phase diagram for the homo-
geneous field in Fig. 3(d), we find that we can classify the
phases using the Wannier-sector polarization p only when
h < hc1. The HOT phase that occurs when J1 < J2 and h <

hc1 has polarizations p = (1/2, 1/2). Like the previous cases,
the transition to a phase with p = (0, 1/2) takes place via
a Wannier-band gap closing along the vertical line segment
J1 = J2 [dashed line Fig. 3(d)]. When hc1 � h � hc2, the bulk
is gapless and therefore the system cannot host in-gap states.
Beyond h > hc2, although the bulk becomes gapped once
again, it is hard to determine from numerics whether the
Wannier bands are truly gapped. Consequently, the numerical
calculation of the Wannier sector polarizations also becomes
challenging. Nonetheless, in this region of parameter space,
real-space numerics do not reveal any protected edge states or
corner states. This may indicate that the construction of the
Wannier Hamiltonian using only two Bloch bands 1, 2 may
no longer be adequate and must be generalized to include all
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four bands 1 to 4 to explore this region of the phase diagram;
this will be explored in future work.

Before we end this section, we mention that the Wannier-
sector polarizations can be calculated without involving the
� matrix if we work in the limit of large dimer strength JD.
In this limit, cross amplitudes between the particlelike and
holelike sectors in the BdG Hamiltonians [Eqs. (10) and (9)]
get suppressed as O(1/JD) and we can work with the Hamil-
tonian projected on to the particle sector (such a projection
is discussed in Sec. VIIB and Appendix B2a). The projected
Hamiltonian is Hermitian and can be diagonalized using uni-
tary matrices instead of paraunitary ones. Since the nontrivial
topology arises in the excited triplon sector of our models, the
projected Hamiltonian, for each model, is topologically equiv-
alent and adiabatically connected to the original unprojected
Hamiltonian. Hence, both the Hamiltonians share the same
topological invariants for the triplon sector. The eigenstates of
the projected Hamiltonian are orthonormal with respect to the
standard inner product, and therefore the original fermionic
definitions for Wilson loops, etc., can be used to calculate the
Wannier-sector polarizations. We have numerically verified
that this gives the same answer as the previous analysis.

VII. EDGE THEORY AND SHARED CORNER MODES

The corner modes of a HOT phase show additional features
compared to edge modes at the junction of a 1D trivial and a
first-order topological system. In particular, the HOT-corner
modes are shared by the topological edge theories that inter-
sect at the corner. This shared nature of a corner mode can
be verified by finding the effective continuum theories of the
intersecting edges, e.g., right (x = 0) and top (y = 0) edges
[see Figs. 1(b) and 1(d)], and then introducing corners into
the resulting 1D theories. Hence, the corner can be considered
as the edge of a 1D edge theory. Since the edge theory of a
2D HOT phase is described by first-order topology, the corner
mode can be recovered following a Jackiw-Rebbi-type [1,55]
approach and tuning a masslike term across zero at some point
along the spatial direction. We now describe finding a shared
corner mode for each of our two models in more detail.

A. Model I: tBBH model

We work with the anisotropic version of the model again
[see Eq. (10)] in which the couplings Jx

1,2 along the x̂ direction
are in general distinct from the couplings Jy

1,2 along ŷ. Doing
so allows us to isolate the edge Hamiltonian for the x = 0 edge
from the y = 0 edge and vice versa. We obtain the continuum
Hamiltonian,

τ3H tBBH
cont = JDσ0η0τ3 + (mxσ1η0 + vx(−i∂x )σ2η3

− myσ2η2 + vy(−i∂y)σ2η1)(τ3−iτ2), (30)

by expanding the Bloch Hamiltonian in Eq. (10) around the
band gap-closing momentum k0, which for positive Jx,y

1,2 is
k0 = (π, π ) (see Appendix A), and then taking the contin-
uum limit by transforming qx → −i∂x and qy → −i∂y, where
q = (qx, qy) is a small deviation from k0. The masslike terms
mx and my in Eq. (30) are related to the original couplings
as mx = (Jx

1 − Jx
2 )/2 and my = (Jy

1 − Jy
2 )/2, while the coeffi-

cients vx and vy are given by vx = Jx
2 /2, vy = Jy

2/2. Assuming

positive vx and vy, when the mass term mx(my) < 0, the phase
on the y = 0 (x = 0) edge is topological, while mx(my) > 0
makes the phase trivial. Setting mx(my) = 0 produces a gap-
less phase on the y = 0 (x = 0) edge. Therefore, we obtain the
Hamiltonian of the y = 0 (top) edge,

τ3H tBBH
top = JDσ0τ3 + (mxσ1 + vx(−i∂x )σ2)(τ3 − iτ2), (31)

by introducing a domain wall my(x, y) = tanh(y) along the top
edge, and solving for modes that disperse along the x direction
but decay exponentially in the y direction, see Appendix B for
details. The exact function chosen to model domain walls like
my(x, y) is not critical to our analysis; any function f (y) in-
terpolating between my < 0 (topological) and my > 0 (trivial)
with a single zero crossing is a valid choice. The corner mode
for τ3H tBBH

top can now be obtained by inserting yet another
domain wall mx(x) = tanh(x) and looking for a single trapped
mode. This process (see Appendix B) gives

ψtop-right =
[

1
0

](σ )

⊗
[

1
0

](η)

⊗
[

1
0

](τ )

(32)

as the corner mode living on the top-right corner that has the
near-mid-band gap energy E = JD. To find the corner mode
supported by the right (x = 0) edge, we reverse the order in
which we introduce the domain walls. To be more specific,
we first get the continuum Hamiltonian τ3H tBBH

right for the right
edge by inserting the domain wall mx(x, y) = tanh(x), this
time running along the right edge. We then introduce the
second domain wall my(y) = tanh(y) in the 1D Hamiltonian
τ3H tBBH

right and find, yet again, a single trapped mode ψright-top at
the near-mid-band gap energy E = JD, see Appendix B for the
explicit calculation. Comparing ψtop-right with ψright-top we find
that they are identical, thus confirming that the corner mode
is shared between the top and right edges.

B. Model II: tSOC model

We now turn to the corner mode in the tSOC model: we
wish to show that it too is shared between the edge theories.
As suggested by the similarity between the phase diagram of
the tSOC model in the presence of a staggered field [Fig. 3(b)]
and that of the tBBH model [Fig. 3(a)], the staggered-field
strength hs can serve as a tuning parameter for introducing
edges into the tSOC model—specifically, hs plays a role anal-
ogous to that of Jy

1 in the tBBH model. With this in mind, we
develop an analysis similar to the one in Sec. VII A, starting
from the Bloch Hamiltonian

H tSOC
hs

(k) = H tSOC
k − hsσ3η2τ3, (33)

where H tSOC
k was defined in Eq. (9). The band structure for

H tSOC
hs

(k) in the HOT phase typically looks like Fig. 2(f)
even in the presence of a staggered field, i.e., bands 1 and
2 are degenerate and separated by a bulk band gap (for
D, � �= 0) from bands 3 and 4 which are also degenerate.
The bulk band gap closes at the gap-closing momentum k0 =
(π, π/2) when J1 = J2 and hs = h(c)

s [see Eq. (14) as well
as Appendix A], and critical staggered field h(c)

s ≈ D when
|D| � JD. The continuum Hamiltonian in the neighborhood
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of k0 is

τ3H tSOC
cont = JDσ0η0τ3

+
(
J1−J2

2
σ1− J2

2
(−i∂x )σ2

)
η0(τ3−iτ2)

− σ3η2(hsτ0 − D(τ3−iτ2))

− �(−i∂y)σ3η1(τ3−iτ2), (34)

where we have assumed J = 0 for simplicity. We have
checked that the outcome of the calculation does not depend
on J provided |J| < |�|; see Appendix B for details.

Identifying mass terms in Eq. (34) analogous to the ones
in Eq. (30) is straightforward if we work in the large-JD limit.
This is justified because the dominant energy scale JD sets the
size of the gap between the singlet ground state and triplon
excitations, meaning the model is asymptotically connected
to the JD → ∞ limit. Consequently, the finite-JD model is
topologically equivalent to the leading-order Hamiltonian in
the large-JD limit. The latter Hamiltonian is obtained by pro-
jecting the finite-JD Hamiltonian onto the particlelike sector of
the BdG space—in effect performing a first-order Schrieffer-
Wolff transformation (Refs. [56–58], also see Appendix B)
onto the positive eigenstates of JDσ0η0τ3. The effective (Her-
mitian) Hamiltonian describing the positive-energy bands is
then

H̃ tSOC
cont = JDσ0η0 + (mxσ1 − vx(−i∂x )σ2

)
η0

− σ3
(
myη2 + vy(−i∂y)η1), (35)

where mx = (J1 − J2)/2, my = hs − D, vx = J2/2, and vy =
�. Since the critical field h(c)

s approaches D in the large-JD

limit, the mass term my indeed marks the topological transi-
tion that for finite JD happens at hs = h(c)

s , represented by the
horizontal dashed line in Fig. 3(c).

We find the top-edge Hamiltonian H̃ tSOC
top following the

same steps as for the tBBH model: we first introduce a domain
wall my(x, y) = tanh y along the top edge at y = 0, and then
write down the effective Hamiltonian

H̃ tSOC
top = JDσ0 + mxσ1 − vx(−i∂x )σ2 (36)

for states that are exponentially confined to this top edge. As
we did for the tBBH model, we get to the corner mode for the
current model by introducing another domain wall mx(x) =
tanh x, leading to the mode

ψtop-right =
[

0
1

](σ )

⊗
[

0
1

](η)

⊗
[

1
0

](τ )

(37)

localized at the top-right corner and having the midgap energy
E = JD.

Proceeding in reverse order, i.e., starting by introducing
a right edge in the form of mx(x, y) = tanh x, leads to the
1D edge Hamiltonian H̃ tSOC

right . An edge (or corner) is then in-
troduced in this edge Hamiltonian by setting my(y) = tanh y,
leading to the corner mode ψright-top = ψtop-right. Once again,
this shows the corner mode is shared between the top- and
right-edge theories.

VIII. SUMMARY AND OUTLOOK

We have shown in this paper that dimerized quantum para-
magnets can host triplon modes which exhibit higher-order
topology and corner states at mid-band gap energies. The
2D models proposed and studied here are spin variants of
previously explored fermionic Hamiltonians or obtained by
a staggered stacking of 1D dimer Hamiltonians which have
been shown to exhibit first-order topology. We have provided
numerical support for corner modes and the phase diagram of
such HOT triplon phases and their transitions. In addition, we
have provided analytical results on their symmetry protection
and edge theories, and constructed their topological invariants.
Our theoretical work thus opens up a new direction in the
study of dimerized quantum magnets.

The wealth of quantum dimer magnets which have been
explored over the years [26–36] makes it is very likely that
model Hamiltonians of the type we have studied can be real-
ized in experiments. Identifying specific materials candidates
is a natural next step worth investigating. A possible guiding
principle to narrow down the search for suitable candidate
systems would be to look for materials with noncommuting
mirror symmetries like those discussed in Sec. V, rather than
usual mirror symmetries.

Another important open question, not substantially ad-
dressed in previous research on HOT phases in magnetic
systems, is one of detecting the near-midgap energy corner
modes. One possible route to probing such localized nonzero-
energy spin excitations might be to excite them selectively via
terahertz radiation [59,60], which can access typical magnetic
exchange energy scales, and look for mid-band gap energy
terahertz absorption that scales with the number of corners
in the sample. Another approach would be to look at site
resolved spin-spin correlations using spin-Hall noise spec-
troscopy [61]. Further, it might be possible to employ recent
advances in atomically resolved electron spin resonance mea-
surements to probe the spatial localization of the excitations
[62], or recently developed scanning techniques [63–66] that
can use nitrogen-vacancy centers in diamond to measure local
magnetic moments and extract dynamical information via spin
noise. In this context, the rare earth dimer systems [36] could
prove useful owing to the reduced exchange energy scales in
these systems, which makes them amenable to such experi-
mental techniques.
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APPENDIX A: BAND STRUCTURES

In this section, we elaborate on the main features of the
triplon band dispersions for our two models that we refer to in
the main text.
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1. Model I: tBBH model

The (doubly degenerate) eigenvalues of τ3H tBBH
k [from

Eq. (10)] are −Ek,+, −Ek,+, −Ek,−, −Ek,−, Ek,−, Ek,−, Ek,+,
and Ek,+, where

E2
k,± = J2

D ± JD(Jx
1

2 + 2Jx
1 Jx

2 cos kx + Jx
2

2

+ Jy
1

2 + 2Jy
1 Jy

2 cos ky + Jy
2

2)1/2. (A1)

The minimum of Ek,+ and maximum of Ek,− are respectively

E (min)
+ =

√
J2

D + JD

√(∣∣Jx
1

∣∣ − ∣∣Jx
2

∣∣)2 + (∣∣Jy
1

∣∣ − ∣∣Jy
2

∣∣)2
,

E (max)
− =

√
J2

D − JD

√(∣∣Jx
1

∣∣ − ∣∣Jx
2

∣∣)2 + (∣∣Jy
1

∣∣ − ∣∣Jy
2

∣∣)2
,

(A2)

showing that the bulk band gap between E− and E+ given in
Eq. (11) closes iff |Jx

1 | = |Jx
2 | and |Jy

1 | = |Jy
2 |. Furthermore,

the closing occurs at momentum k0 = (k0x, k0y), where

k0x =
{
π if Jx

1 = Jx
2

0 if Jx
1 = −Jx

2

, (A3a)

k0y =
{
π if Jy

1 = Jy
2

0 if Jy
1 = −Jy

2

. (A3b)

2. Model II: tSOC model

In the absence of a Zeeman field, the (doubly degenerate)
eigenvalues of τ3H tSOC

k are −Ek,+, −Ek,+, −Ek,−, −Ek,−,
Ek,−, Ek,−, Ek,+, and Ek,+, where

E2
k,± = J2

D + 2JDJ cos ky

± JD(2D2(1 − cos(2ky)) + 2�2
(
1 + cos(2ky))

+ J2
1 + 2J1J2 cos ky + J2

2

)1/2
. (A4)

There exists a full band gap betwen Ek,− and Ek,+ unless
|J1| = |J2| and at least one of D and � is zero. In our work, we
assume D and � are both nonzero, keeping the bands gapped
at zero field even if J1 = J2. Furthermore, nonzero D and �

is necessary to realize the HOT phase in this model. This is
consistent with the findings in Ref. [43], albeit in the context
of first-order topology.

In the presence of a staggered Zeeman field [see Eq. (12)],
the triplon Bloch Hamiltonian is given by

H tSOC
hs

(k) = H tSOC
k − hsσ3η2τ3, (A5a)

while for a uniform field configuration [see Eq. (13)], we have

H tSOC
h (k) = H tSOC

k − hσ0η2τ3, (A5b)

where H tSOC
k was defined in Eq. (9). The Hamiltonian

H tSOC
hs

(k) for the staggered field was already reported in
Eq. (33).

For both field configurations, the model does not admit a
closed-form dispersion relation except at certain momenta.
We now discuss the details of these band dispersions and
critical field strengths in the presence of staggered and ho-
mogeneous Zeeman fields individually.

a. Staggered Zeeman field

In the presence of a staggered Zeeman field hs, numerical
investigations show that the eight bands of τ3H tSOC

hs
(k) [see

Eq. (33)] remain doubly degenerate. The investigations also
show that band touchings occur iff |J1| = |J2| and |hs| =
|h(c)

s |, where h(c)
s := (

√
J2

D + 2JDD −
√

J2
D − 2JDD)/2 ≈ D

for |D| � JD. The band touchings occur at k0 = (k0x, k0y),
where

k0x =
{
π if J1 = J2

0 if J1 = −J2
, (A6a)

k0y =
{

π
2 if hs = h(c)

s

−π
2 if hs = −h(c)

s

. (A6b)

Analytical values for the crossings can be found from the
closed-form expressions for the eigenvalues of τ3H tSOC

hs
(k) for

|J1| = |J2| at the above momenta.

b. Homogeneous Zeeman field

In the presence of a homogeneous Zeeman field h, the
twofold degeneracy of the bands is broken. Numerical diag-
onalization of Eq. (A5b) shows that band touchings occur
only along the ky = ±π/2 lines. In terms of f (kx ) :=√

4D2 + J2
1 + 2J1J2 cos kx + J2

2 , the (particlelike) eigenvalues
along ky = ±π/2 are

E1(kx,±π/2) =
√

J2
D − JD f (kx ) − h, (A7a)

E2(kx,±π/2) =
√

J2
D − JD f (kx ) + h, (A7b)

E3(kx,±π/2) =
√

J2
D + JD f (kx ) − h, (A7c)

E4(kx,±π/2) =
√

J2
D + JD f (kx ) + h. (A7d)

With the degeneracy lifted, the near-midgap states now occur
within the band gap between E2 and E3.

Note that the maximum and minimum values reached by
f (kx ) are respectively f+ and f−, where

f+ =
√

4D2 + (|J1| + |J2|
)2

, (A8a)

f− =
√

4D2 + (|J1| − |J2|
)2

. (A8b)

Using f± we define the two critical field values:

hc1 :=
√

J2
D + JD f− −

√
J2

D − JD f−

2
, (A9a)

hc2 :=
√

J2
D + JD f+ −

√
J2

D − JD f+

2
. (A9b)

It is now straightforward to see that there is a band gap
between E2 and E3 for |h| < hc1 and again for |h| > hc2. In
the remaining regions (i.e. hc1 � |h| � hc2), the middle bands
touch with linear crossing points, except for the critical values
themselves, at which the crossings are linear in one momen-
tum direction and quadratic in the other.
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FIG. 4. Schematic representation of the mass terms mx , my, as
functions of position that are used to isolate the corner mode shared
by the top and right-edge Hamiltonians.

APPENDIX B: DERIVATION OF EFFECTIVE EDGE
HAMILTONIANS FOR TRIPLONS

In this Appendix, we provide more details on the deriva-
tion of the effective edge theories and shared corner modes
presented in Sec. VII. For each model, the effective edge
Hamiltonians are obtained from the continuum theories taken
about their respective bulk-band gap-closing momenta. We
discuss these details for the two models individually.

1. Model I: tBBH model

a. Effective edge theories

Starting from the continuum Hamiltonian about k0 =
(π, π ) [Eq. (30)], we isolate the “top” edge by introducing
a domain wall my(y) (see Fig. 4) and seek edge states along
the wall using a Jackiw-Rebbi ansatz,

ψqx (x, y) = e−γtop
∫ y

0 dỹ my (ỹ)eixqx ψtop(qx ), (B1)

where qx is the momentum along the edge and ψtop(qx ) is
an eight-component vector independent of my(y), to be de-
termined below. In the main text, we chose my(y) = tanh y
for simplicity; however, the choice of my is not unique. In
principle, any smooth function my(y) interpolating between
my < 0 (topological) and my > 0 (trivial) with a single zero
crossing is an equally valid choice for a domain wall. Since
ψqx (x, y) is meant to be an eigenvector of τ3H tBBH

cont , it must
satisfy

τ3H tBBH
cont ψqx (x, y) = Eqx ψqx (x, y), (B2)

where the eigenvalue Eqx gives the dispersion for the edge
modes. If Eq. (B2) is to have a nontrivial solution such that
ψtop(qx ) is unique regardless of the choice of my(y), ψtop(qx )
must be an element of ker(σ2(η2 − iγtopvyη1)(τ3 − iτ2)). Non-
trivial (normalizable) solutions of this sort exist only for
γtop = 1/vy [see Eq. (30) for vy] and are of the form

ψtop(qx ) = χ (σ )
qx

⊗
[

1
0

](η)

⊗ χ (τ )
qx

, (B3)

where χ (σ )
qx

and χ (τ )
qx

are arbitrary two-component vectors.
With this choice, the effective Hamiltonian for the top edge
is

τ3H tBBH
top = JDσ0τ3 + (mxσ1 + vxqxσ2)(τ3 − iτ2), (B4)

where vx was defined below Eq. (30). We reported the above
Hamiltonian for the top edge in Eq. (31) of the main text.

Alternatively, we can introduce a “right” edge with a do-
main wall mx(x) (see Fig. 4). Using a Jackiw-Rebbi ansatz

ψqy (x, y) = e−γright
∫ x

0 dx̃ mx (x̃)eiyqyψright(qy), (B5)

we seek eigenvectors of τ3H tBBH
cont :

τ3H tBBH
cont ψqy (x, y) = Eqyψqy (x, y), (B6)

where the eigenvalues Eqy give the dispersion for the top-edge
modes. Again, for the ansatz to yield a solution regardless of
the details of mx(x), ψright(qy) must be part of ker((σ1η0 +
iγrightvxσ2η3)(τ3 − iτ2)). Solutions arise only if γright = 1/vx.
Though the space of solutions is of the same dimension as in
Eq. (B3), ψright(qy) does not factor in the same way. Instead,
solutions are of the form

ψright(qy) = (c1(qy)v1 + c2(qy)v2) ⊗ χ (τ )
qy

, (B7a)

where c1(qy) and c2(qy) are arbitrary qy-dependent coeffi-
cients, χ (τ )

qy
is an arbitrary two-component vector and

v1 :=
[

1
0

](σ )

⊗
[

1
0

](η)

, v2 :=
[

0
1

](σ )

⊗
[

0
1

](η)

. (B7b)

The effective Hamiltonian for the right edge, now written
in the basis of (v1, v2) with Pauli matrices σ̃α , is

τ3H tBBH
right = JDσ̃0τ3 + (myσ̃1 + vyqyσ̃2)(τ3 − iτ2). (B8)

b. Shared corner modes

The corner mode for the top edge can now be obtained by
inserting yet another domain wall in mx(x) at x = 0 in the
Hamiltonian τ3H tBBH

top and looking for a single trapped mode.
Specifically, we look for eigenstates of the form

ψtop(x) = e−γtop-right
∫ x

0 dx̃ mx (x̃)ψtop-right, (B9a)

ψtop-right = χ (σ ) ⊗
[

1
0

](η)

⊗ χ (τ ). (B9b)

For the solution to exist regardless of the details of mx(x), it
should be part of ker(σ1 + iγtop-rightvxσ2)(τ3 − iτ2). Further-
more, nontrivial solutions are of the form

ψtop-right =
[

1
0

](σ )

⊗
[

1
0

](η)

⊗ χ (τ ) (B10)

and exist only if γtop-right = 1/vx. Two such solutions are
obtained, and are related by particle-hole conjugation. The
positive-energy solution is

ψtop-right =
[

1
0

](σ )

⊗
[

1
0

](η)

⊗
[

1
0

](τ )

(B11)

and appears at the near-midgap energy E = JD
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On the other hand, the corner mode for the right edge is
found by introducing a domain wall my(y) in the Hamiltonian
τ3H tBBH

right . We use the ansatz

ψ̃right(y) = e−γright-top
∫ y

0 dỹ my (ỹ)ψ̃right-top, (B12a)

ψ̃right-top = χ (η̃) ⊗ χ (τ ), (B12b)

where the tildes on the state vectors indicate that they are
expressed in the basis of (v1, v2) used in Eq. (B8). A robust
solution must be part of ker(σ̃1 + iγright-topvyσ̃2)(τ3 + iτ2), and
only exists if γright-top = 1/vy. The positive-energy solution, at
E = JD, is

ψ̃right-top =
[

1
0

](σ̃ )

⊗
[

1
0

](τ )

, (B13)

or in the original representation,

ψright-top =
[

1
0

](σ )

⊗
[

1
0

](η)

⊗
[

1
0

](τ )

. (B14)

Hence, this verifies the claim made in the main text:
ψtop-right = ψright-top, showing the top-edge and right-edge
Hamiltonians share the same corner mode, as expected for a
2D HOT phase.

2. Model II: tSOC model

Owing to its similarity with the tBBH model, the tSOC
model in the presence of a staggered Zeeman field hs can be
used to demonstrate the existence of corner states shared be-
tween the edge theories. We now elaborate on the discussion
from the main text.

a. Effective edge theories

For concreteness, we assume J2 > 0 and D > 0 and study
the gap closing that occurs when J1 = J2 and hs = h(c)

s , at
momentum k0 = (π, π/2). The linearized Hamiltonian in the
neighborhood of this point is

τ3H tSOC
cont = JDσ0η0τ3 − J (−i∂y)σ0η0(τ3 − iτ2)

+
(

J1 − J2

2
σ1 − J2

2
(−i∂x )σ2

)
η0(τ3 − iτ2)

− σ3η2(hsτ0 − D(τ3 − iτ2))

− �(−i∂y)σ3η1(τ3 − iτ2). (B15)

This equation, with J = 0, was reported in the main text in
Eq. (34). As explained in the main text, we can analyze the
model in the large-JD limit; this way, mass terms analogous to
those of Eq. (30) are easily found. In this limit, we can obtain
an effective (Hermitian) Hamiltonian for the positive-energy
states using a first-order Schrieffer-Wolff transformation:
the unperturbed Hamiltonian is JDσ0η0τ3, and the subspace
of interest is made up of the four particlelike states of
the unperturbed Hamiltonian, with the associated projector
P = σ0η0(τ0 + τ3)/2. The first-order effective Hamiltonian in
O(1/JD) becomes asymptotically exact in the large-JD limit,
and is simply obtained by the projection the full Hamiltonian
τ3H tSOC

cont onto the subspace of interest:

P
(
τ3H tSOC

cont

)
P = H̃ tSOC

cont P, (B16a)

where

H̃ tSOC
cont = (JD − J (−i∂y))σ0η0

+
(

J1 − J2

2
σ1 − J2

2
(−i∂x )σ2

)
η0

− σ3

(
(hs − D)η2 + �(−i∂y)η1

)
. (B16b)

In this limit, hc → D, so the mass term is manifest: my = hs −
D. We also let mx = (J1 − J2)/2, vx = J2/2, and vy = �, so

H̃ tSOC
cont = (JD − J (−i∂y))σ0η0

+ (mxσ1 − vx(−i∂x )σ2)η0

− σ3(myη2 + vy(−i∂y)η1). (B17)

The effect of a nonzero J is to tilt the dispersion along
the ky direction. The outcome of the present calculation is
qualitatively the same as long as the Dirac crossing is not
inverted (i.e., as long as |J| < |vy| = |�|), so we let J = 0 for
simplicity.

We create a domain wall along the top edge (y = 0 line)
using a Jackiw-Rebbi ansatz:

ψqx (x, y) = e−γtop
∫ y

0 dỹ my (ỹ)eixqx ψtop(qx ). (B18)

Independently of the details of my(y), the state ψqx (x, y) must
be an eigenstate of H̃ tSOC

cont , meaning

H̃ tSOC
cont ψqx (x, y) = Eqx ψqx (x, y). (B19)

Hence, ψtop(qx ) must be part of ker(σ3(η2 + iγtopvyη1)). So-
lutions only arise if γtop = 1/vy, and are of the form

ψtop(qx ) = χ (σ )
qx

⊗
[

0
1

](η)

, (B20)

where χ (σ )
qx

is an arbitrary two-component vector. The effec-
tive top-edge Hamiltonian is then

H̃ tSOC
top = JDσ0 + mxσ1 − vx(−i∂x )σ2. (B21)

We next create a domain wall along the right edge (x = 0
line) using the following Jackiw-Rebbi ansatz:

ψqy (x, y) = e−γright
∫ x

0 dx̃ mx (x̃)eiyqyψright(qy), (B22)

H̃ tSOC
cont ψqy (x, y) = Eqyψqy (x, y). (B23)

Nontrivial solutions arise only if γright = 1/vx and are such
that ψright(qy) ∈ ker((σ1 − iσ2)η0), meaning

ψright(qy) =
[

0
1

](σ )

⊗ χ (η)
qy

. (B24)

This implies the effective Hamiltonian for the right edge is

H̃ tSOC
right = JDη0 + myη2 + vy(−i∂y)η1. (B25)

b. Shared corner modes

We now verify the existence of shared corner modes by
introducing domain walls in the edge Hamiltonians H̃ tSOC

top and
H̃ tSOC

right .
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To find the corner mode originating from the top-edge Hamil-
tonian, we use the ansatz

ψtop(x) = e−γtop-right
∫ x

0 dx̃ mx (x̃)ψtop-right, (B26a)

ψtop-right = χ (σ ) ⊗
[

0
1

](η)

. (B26b)

Such a solution exists if γtop-right = 1/vx and is part of
ker(σ1 − iσ2), leading to the following solution at energy
E = JD:

ψtop-right =
[

0
1

](σ )

⊗
[

0
1

](η)

. (B27)

The corner mode originating from the right-edge Hamiltonian
is found using the ansatz

ψright(y) = e−γright-top
∫ y

0 dỹ my (ỹ)ψright-top, (B28a)

ψright-top =
[

0
1

](σ )

⊗ χ (η). (B28b)

A solution arises if γright-top = 1/vy and is part of ker(η2 +
iη1). Specifically,

ψright-top =
[

0
1

](σ )

⊗
[

0
1

](η)

, (B29)

at energy E = JD.

Comparing ψtop-right with ψright-top we find that they are
identical, thus confirming that the corner mode is shared be-
tween the top and right edges.

APPENDIX C: INVARIANCE UNDER MIRRORLIKE
SYMMETRIES

In this section, we obtain the symmetry-allowed spin in-
teractions for the two models above. We approach this by
considering the symmetry-allowed forms of the tensors J r,r′

for all possible bilinear spin interactions S�
r J

r,r′
Sr′ between

sites r and r′. In both cases, we assume the only interaction
between bottom and top layers is the strong antiferromagnetic
exchange JD within each dimer. Hence, we may drop the
layer index and treat each layer individually for the symmetry
analysis.

1. Model I: tBBH model

A priori, there are eight bilinear spin interactions to con-
sider, four of which are intra-unit-cell and four, inter-unit-cell.
We write the transformations in terms of the matrices Rx =
diag(1,−1,−1) and Ry = diag(−1, 1,−1). For notational
brevity, we define M̃x := C̃z

2 ◦ Mx. We discuss the symmetry
transformations of the interaction tensors on the horizontal
and vertical bonds below.

a. Intracell bonds

Horizontal bonds. The intracell interaction tensors J 3,1
intra [connecting dimers 3 and 1 in Fig. 1(a) and 1(b)] and J 2,4

intra
(connecting dimers 2 and 4) transform as follows under the symmetries:

S�
R,3J

3,1
intraSR,1

M̃x→ S�
R′,1R�

y J
3,1
intraRySR′,3 = S�

R′,3R�
y J

3,1
intra

�
RySR′,1; (C1a)

S�
R,2J

2,4
intraSR,4

M̃x→ S�
R′,4R�

x J
2,4
intraRxSR′,2 = S�

R′,2R�
x J

2,4
intra

�
RxSR′,4; (C1b)

S�
R,3J

3,1
intraSR,1 + S�

R,2J
2,4
intraSR,4

My→ S�
R′′,2R�

y J
3,1
intraRySR′′,4 + S�

R′′,3R�
y J

2,4
intraRySR′′,1. (C1c)

Hence, the symmetries constrain these exchange tensors as follows:

J 3,1
intra

M̃x= R�
y J

3,1
intra

�
Ry; (C2a)

J 2,4
intra

M̃x= R�
x J

2,4
intra

�
Rx; (C2b)

J 3,1
intra

My= R�
y J

2,4
intraRy; J 2,4

intra

My= R�
y J

3,1
intraRy. (C2c)

This leads to the following explicit structure for the tensors:

J 3,1
intra=

⎡
⎣ a11 a12

−a12 a22

a33

⎤
⎦, J 2,4

intra =
⎡
⎣a11 −a12

a12 a22

a33

⎤
⎦. (C3)

In our model, we have a12 = 0 and a11 = a22 = a33 = Jx
1 , which is compatible with the symmetry constraints.

Vertical bonds. The intracell interaction tensors J 2,3
intra [connecting dimers 2 and 3 in Fig. 1(b)] and J 4,1

intra (connecting dimers
4 and 1) transform as follows:

S�
R,2J

2,3
intraSR,3

My→ S�
R′,3R�

y J
2,3
intraRySR′,2 = S�

R′,2R�
y J

2,3
intra

�
RySR′,3; (C4a)

S�
R,4J

4,1
intraSR,1

My→ S�
R′,1R�

y J
4,1
intraRySR′,4 = S�

R′,4R�
y J

4,1
intra

�
RySR′,1; (C4b)

S�
R,2J

2,3
intraSR,3 + S�

R,4J
4,1
intraSR,1

M̃x→ S�
R′′,4R�

x J
2,3
intraRySR′′,1 + S�

R′′,2R�
x J

4,1
intraRySR′′,3. (C4c)

184403-15



HALDAR, MASSARELLI, AND PARAMEKANTI PHYSICAL REVIEW B 104, 184403 (2021)

Hence, the symmetry constraints on these tensors are

J 2,3
intra

My= R�
y J

2,3
intra

�
Ry; (C5a)

J 4,1
intra

My= R�
y J

4,1
intra

�
Ry; (C5b)

J 2,3
intra

M̃x= R�
x J

4,1
intraRy; J 4,1

intra
M̃x= R�

x J
2,3
intraRy, (C5c)

and their explicit structure is

J 2,3
intra =

⎡
⎣−b11 b12

−b12 −b22

b33

⎤
⎦, J 4,1

intra =
⎡
⎣ b11 b12

−b12 b22

b33

⎤
⎦. (C6)

In our model, we have b12 = 0 and b11 = b22 = b33 = Jy
1 , making it compatible with the symmetry constraints.

b. Intercell bonds

The symmetry constraints for the tensors on the intercell bonds can also be derived using the previous analysis. At the end of
the analysis, we find that the horizontal intercell tensors J 1,3

inter and J 4,2
inter have the same form [Eq. (C3)] as the horizontal intracell

tensors J 3,1
intra and J 2,4

intra, respectively. Likewise, the vertical intercell tensors J 1,4
inter and J 3,2

inter have the same structure [Eq. (C6)] as
the tensors J 4,1

intra and J 2,3
intra, respectively. Specifically,

J 1,3
inter =

⎡
⎣ c11 c12

−c12 c22

c33

⎤
⎦, J 4,2

inter =
⎡
⎣c11 −c12

c12 c22

c33

⎤
⎦, (C7)

J 3,2
inter =

⎡
⎣−d11 d12

−d12 −d22

d33

⎤
⎦, J 1,4

inter =
⎡
⎣ d11 d12

−d12 d22

d33

⎤
⎦. (C8)

For the present model, we have c12 = 0, c11 = c22 = c33 = Jx
2 , d12 = 0, and d11 = d22 = d33 = Jy

2 , making the model compatible
with the symmetry constraints for the intercell bonds as well.

2. Model II: tSOC model

In the tSOC model, we consider four bilinear spin interactions, two of which are horizontal and two, vertical. To describe the
transformations, we define the matrices

Rx =
⎡
⎣1

−1
−1

⎤
⎦, R̃y =

⎡
⎣0 1

1 0
−1

⎤
⎦. (C9)

a. Horizontal bonds

The interaction tensors J 1,2
intra (between SR,1 and SR,2; see Figs. 1(c) and 1(d)] and J 2,1

inter (between SR,2 and SR+x̂,1) transform
as follows under the symmetries:

S�
R,1J

1,2
intraSR,2

Mx→ S�
R′,2R�

x J
1,2
intraRxSR′,1 = S�

R′,1R�
x J

1,2
intra

�
RxSR′,2, (C10a)

S�
R,1J

1,2
intraSR,2

M̃y→ S�
R′′,1R̃�

y J
1,2
intraR̃ySR′′,2; (C10b)

S�
R,2J

2,1
interSR+x̂,1

Mx→ S�
R′,1R�

x J
2,1
interSR′−x̂,2 = S�

R′,2R�
x J

2,1
inter

�
SR′+x̂,1, (C10c)

S�
R,2J

2,1
interSR+x̂,1

M̃y→ S�
R′′,2R̃�

y J
2,1
interR̃ySR′′+x̂,1, (C10d)

constraining these exchange tensors as follows:

J 1,2
intra

Mx= R�
x J

1,2
intra

�
Rx, J 1,2

intra

M̃y= R̃�
y J

1,2
intraR̃y; (C11a)

J 2,1
inter

Mx= R�
x J

2,1
inter

�
Rx, J 2,1

inter

M̃y= R̃�
y J

2,1
interR̃y. (C11b)

The explicit form of the interaction tensors is

J 1,2
intra = diag(a11, a11, a33), J 2,1

inter = diag(b11, b11, b33). (C12)

In our model, a11 = a33 = J1 and b11 = b33 = J2, making it exactly compatible with the symmetry conditions.
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b. Vertical bonds

The interaction terms J 1,1
inter [between SR,1 and SR+ŷ,1; see Figs. 1(c) and 1(d)] and J 2,2

inter (between SR,2 and SR+ŷ,2) transform
as follows under the symmetries.

S�
R,1J

1,1
interSR+ŷ,1

M̃y→ S�
R′′,1R̃�

y J
1,1
interR̃ySR′′−ŷ,1 = S�

R′′−ŷ,1R̃�
y J

1,1
inter

�
R̃ySR′′,1 = S�

R′′,1R̃�
y J

1,1
inter

�
R̃ySR′′+ŷ,1;

(C13a)

S�
R,2J

2,2
interSR+ŷ,2

M̃y→ S�
R′′,2R̃�

y J
2,2
interR̃ySR′′−ŷ,2 = S�

R′′−ŷ,2R̃�
y J

2,2
inter

�
R̃ySR′′,2 = S�

R′′,2R̃�
y J

2,2
inter

�
R̃ySR′′+ŷ,2;

(C13b)

S�
R,1J

1,1
interSR+ŷ,1 + S�

R,2J
2,2
interSR+ŷ,2

Mx→ S�
R′,2R�

x J
1,1
interRxSR′+ŷ,2 + S�

R′,1R�
x J

2,2
interRxSR′+ŷ,1. (C13c)

The exchange tensors must obey the following symmetry constraints.

J 1,1
inter

Mx= R�
x J

2,2
interRx, ; J 2,2

inter
Mx= R�

x J
1,1
interRx; (C14a)

J 1,1
inter

M̃y= R̃�
y J

1,1
inter

�
R̃y; (C14b)

J 2,2
inter

M̃y= R̃�
y J

2,2
inter

�
R̃y. (C14c)

These constraints yield the following explicit form for the interaction tensors.

J 1,1
inter =

⎡
⎣ c11 −c12

−c21 c11

c33

⎤
⎦, J 2,2

inter =
⎡
⎣c11 c12

c21 c11

c33

⎤
⎦. (C15)

In our model, c11 = c33 = J , c12 = � + D, and c21 = � − D, making it exactly compatible with the symmetries.

c. Zeeman field

As stated in the main text, the symmetries Mx and M̃y do
not allow a Zeeman field. However, as we shall see, certain
Zeeman fields are allowed if one or both symmetry oper-
ations are modified to include time reversal. Note that the
other interactions in the spin Hamiltonian are invariant under
time reversal because they are all bilinear in spins with real
coefficients.

We consider a general (translation-invariant) Zeeman
coupling term,

∑
a∈{1,2} B�

a SR,a, where Ba = [Bx
a, By

a, Bz
a]�.

Under the operation M̃y, the Zeeman term transforms as

B�
a SR,a

M̃y→ B�
a R̃ySR′′,a, (C16)

leading to the constraint Ba
M̃y= R̃�

y Ba. This constraint implies
that Ba must be an eigenvector of R̃�

y with eigenvalue 1.
The only such eigenvector is [1, 1, 0]�, meaning Bx

a = By
a and

Bz
a = 0 for a ∈ {1, 2}.

On the other hand, under Mx, the transformation proceeds
as

B�
1 SR,1 + B�

2 SR,2
Mx→ B�

1 RxSR′,2+B�
2 RxSR′,1, (C17)

giving rise to the constraint B1
Mx= R�

x B2, B2
Mx= R�

x B1. Explic-
itly, this implies (Bx

1, By
1, Bz

1) = (Bx
2,−By

2,−Bz
2).

Under the modified operation T ◦ M̃y, the Zeeman terms
transform as

B�
a SR,a

T ◦M̃y→ −B�
a R̃ySR′′,a, (C18)

leading to the constraint Ba
T ◦M̃y= −R̃�

y Ba. Since the eigenvec-
tors of R̃�

y with eigenvalue −1 are [1,−1, 0]� and [0, 0, 1]�,
this constraint forces Bx

a = −By
a and leaves Bz

a unconstrained,
where a ∈ {1, 2}.

Finally, the spins transform as follows under T ◦ Mx:

B�
1 SR,1 + B�

2 SR,2
T ◦Mx→ −B�

1 RxSR′,2 − B�
2 RxSR′,1, (C19)

This gives rise to the constraint B1
Mx= −R�

x B2, B2
Mx= −R�

x B1,
and implies (Bx

1, By
1, Bz

1) = (−Bx
2, By

2, Bz
2)

The symmetry-allowed Zeeman terms for the different
combination of symmetries are summarized in Table I, and
verify the assertions made in the main text.

3. Implementation on triplons

Any symmetry of the spin Hamiltonian that maps one
dimer to another has a representation in the triplon Hamil-
tonian.

(a) Unitary transformations. If a symmetry g transforms
spins such that

Sα
i,�

g→
∑

β

TαβSβ

i′,�′ (C20)

for some SO(3) matrix T , its transformation on the triplon
operators is

ti,α →
{ ∑

β Tαβti′,β if� = �′

−∑
β Tαβti′,β if� �= �′ . (C21)

TABLE I. Symmetry constraints on Zeeman field.

M̃y T ◦ M̃y

Mx B1 = B2 = 0 B1 = −B2 = hsẑ
T ◦ Mx B1 = B2 = 0 B1 = +B2 = h ẑ
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For the symmetries discussed in Sec. C 1 and C 2, the � = �′
case in the above equation applies. Using this prescription and
the transformations for the spins, it is straightforward to find
the representations given in Eqs. (20) and (24).

(b) Antiunitary transformations. Given the definition of
Eq. (5), the real-space triplon operators trα are invariant under
time reversal T ; hence, the action of time reversal on a real-
space triplon Hamiltonian [e.g., Eqs. (6) and (8)] is simply
to complex-conjugate the coefficients [46]. From this, we see
that the implementation of an antiunitary symmetry transfor-
mation T ◦ g, where g is a unitary transformation, is the same
as that of g but with an additional (left-multiplied) complex
conjugation K . For example, the transformations T ◦ Mx and
T ◦ M̃y = T ◦ Cz

4 ◦ My of the tSOC model have the following
implementations:

T ◦ Mx ≡ Kσ1η3τ0, (C22a)

T ◦ M̃y ≡ Kσ0η1τ0, (C22b)

cf. Eq. (24).
Apart from Zeeman terms, the coefficients in real-space

triplon Hamiltonians [e.g., Eqs. (6) and (8)] are purely real, so
the representation of T ◦ g, with its additional complex conju-
gation K , has precisely the same effect as the representation of
g. This is a manifestation of the fact that symmetries symme-
tries g and T ◦ g are equivalent for bilinear spin interactions.

In the analysis of the tSOC model above, we found that
the staggered Zeeman field configuration is compatible with
symmetries Mx and T ◦ M̃y, while the uniform field configura-
tion is compatible with T ◦ Mx and T ◦ M̃y. In the associated
real-space triplon Hamiltonian, the Zeeman coupling enters in
the intra-unit-cell coupling matrix M0 of Eq. (8) in the form
of an additional term −hsσ3η2τ3 (staggered field) or −hσ0η2τ3

(uniform field). Using to the representations of Eqs. (24) and
(C22), it is easy to see that the Zeeman terms remain invariant
in the following way. For the staggered field and the symme-
tries Mx and T ◦ M̃y, we have

(σ1η3τ0)−1(−hsσ3η2τ3)(σ1η3τ0)=−hsσ3η2τ3,

(Kσ0η1τ0)−1(−hsσ3η2τ3)(Kσ0η1τ0)=−hsσ3η2τ3,
(C23)

while for the uniform field and the symmetries T ◦ Mx and
T ◦ M̃y,

(Kσ1η3τ0)−1(−hσ0η2τ3)(Kσ1η3τ0) = −hσ0η2τ3,

(Kσ0η1τ0)−1(−hσ0η2τ3)(Kσ0η1τ0) = −hσ0η2τ3.
(C24)

Since the remaining terms in the real-space triplon Hamil-
tonian (resulting from the bilinear spin interactions) remain
invariant by the previously stated argument, the overall
real-space triplon Hamiltonians with staggered and uniform
Zeeman fields are invariant with respect to Mx, T ◦ M̃y and
T ◦ Mx, T ◦ M̃y, respectively.

Finally, as claimed in the main text, we see that the rep-
resentations of the symmetries Mx and T ◦ M̃y appropriate to
the staggered field do indeed anticommute:{

σ1η3τ0, Kσ0η1τ0
} = 0. (C25)

FIG. 5. Spectrum for a single disorder realization (left) and
disorder-averaged total corner-mode density (right) for disorder of
the form described in the main text, and for three different disorder
strengths (w/JD = 0.3, w/JD = 0.4, w/JD = 0.5). The corner modes
become delocalized once the disorder is strong enough to close the
band gap. The mean parameter values for the interdimer Heisenberg
interactions are Jx

1 = Jy
1 = 0.02JD, Jx

2 = Jy
2 = 0.2JD.

Using this prescription and the transformations for the spins, it
is straightforward to find the representations given in Eqs. (20)
and (24).

APPENDIX D: EFFECT OF EXCHANGE DISORDER ON
THE CORNER MODES

We have investigated the robustness of the corner modes
against various types of disorder in finite-size samples. We
find that weak disorder that preserves the symmetries on
average do not destroy the corner modes. Specifically, we
introduce disorder of strength w by uniformly sampling the
Heisenberg interactions on each interdimer bond from the
interval [J − w/2, J + w/2], where J ∈ {Jx

1,2, Jy
1,2}. Indeed,

Fig. 5 illustrates that increasing disorder in the tBBH model
increases the penetration depth of the corner states into the
bulk (see first and second rows of Fig. 5), but only when the
disorder is strong enough to close the band gap do the corner
modes become delocalized (see third row of Fig. 5). A similar
analysis on the tSOC model yielded analogous results.
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