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The bulk electric polarization works as a nonlocal order parameter that characterizes topological quantum
matters. Motivated by a recent paper [H. Watanabe et al., Phys. Rev. B 103, 134430 (2021)], we discuss magnetic
analogs of the bulk polarization in one-dimensional quantum spin systems, that is, quantized magnetizations on
the edges of one-dimensional quantum spin systems. The edge magnetization shares the topological origin with
the fractional edge state of the topological odd-spin Haldane phases. Despite this topological origin, the edge
magnetization can also appear in topologically trivial quantum phases. We develop straightforward field theoret-
ical arguments that explain the characteristic properties of the edge magnetization. The field theory shows that a
U(1) spin-rotation symmetry and a site-centered or bond-centered inversion symmetry protect the quantization of
the edge magnetization. We proceed to discussions that quantum phases on nonzero magnetization plateaus can
also have the quantized edge magnetization that deviates from the magnetization density in bulk. We demonstrate
that the quantized edge magnetization distinguishes two quantum phases on a magnetization plateau separated
by a quantum critical point. The edge magnetization exhibits an abrupt stepwise change from zero to 1/2 at the
quantum critical point because the quantum phase transition occurs in the presence of the symmetries protecting
the quantization of the edge magnetization. We also show that the quantized edge magnetization can result from
the spontaneous ferrimagnetic order.
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I. INTRODUCTION

The electric polarization is a fundamental object of elec-
tromagnetism [1]. The polarization also receives attention to
its close connection with topological quantum matters. Even
though intrinsic to the bulk, the electric polarization manifests
itself as an accumulation of charges on the surface [2]. Surface
electric charges work as topological indices of topological
insulators and higher-order ones [3–6]. Importantly, we can
experimentally access the surface charge more easily than the
entanglement entropies and spectra [7,8] and other related
nonlocal order parameters [9–12].

Considering the fruitful relations between the surface
charges and topological quantum matters, we can expect that
it holds promise to consider a magnetic analog of the surface
electric charge. A leading candidate is a surface magnetization
because the magnetization is a conserved quantity associated
with a global U(1) symmetry similarly to the electric charge.
Recently, Watanabe et al. [13] found fractionally quantized
magnetizations, Mz = ±S/2d , accumulated on edges (d = 1)
or corners (d = 2, 3) of d-dimensional cubic-lattice Heisen-
berg antiferromagnetic (HAFM) models under a staggered
magnetic field. They showed that these fractional edge and
corner magnetizations qualify as the magnetic analog of the
bulk polarization.

We can expect that the edge or corner magnetization
will detect some topological properties of quantum magnets.
Reference [13] suggested that the edge magnetization Mz =
±1/2 in the spin-1 chain is “reminiscent of the S = 1/2

edge mode” of the spin-1 Haldane phase. On the other hand,
the edge magnetization also emerges in topologically trivial
phases such as the forced Néel phase of the spin-1/2 chain.

However, it is still puzzling what kind of topological prop-
erty the edge magnetization detects. The two spin chains
mentioned above seem to have different topological profiles.
The topological aspect of the edge magnetization as the
bulk polarization is nontrivial even in one-dimensional sys-
tems, which is worth further investigations, in particular, from
a field-theoretical point of view. One-dimensional quantum
theories will be useful to build two- or three-dimensional
quantum states with quantized corner magnetizations [13]
similarly to coupled-wire constructions of topological states
[14–17].

This paper develops a quantum field theory of the edge
magnetization as the magnetic analog of the bulk electric po-
larization. We make twofold claims. One is that the quantum
field theory clarifies that the symmetry-protected edge state of
the topological Haldane phase and the quantized edge magne-
tization of the topologically trivial phase have the same origin.
They originate from a zero mode of a nonlocal boson field
whose spatial gradient represents the magnetization density.
The other is that the edge magnetization also appears in quan-
tum spin systems in uniform magnetic fields. The staggered
magnetic field is not always necessary to induce the quantized
edge magnetization. The quantized edge magnetization can
be induced by spatially modulated exchange interactions and
even by spatially uniform interactions.
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We organize this paper to make it accessible to a broad
readership without going deeply into technical details of quan-
tum field theories, while details are given in Appendices to
make the paper self-contained. We first give a field-theoretical
interpretation of the quantized edge magnetization in the gen-
eral spin-S HAFM chains (Sec. II), where we see the physical
meaning of the Gaussian convolution introduced in Ref. [13].
Next, we apply the magnetic field to quantum spin systems.
Section III deals with a 1/2 magnetization plateau of the
spin ladder, where we arrive at a generalized definition of
the edge magnetization valid on the magnetization plateaus.
Sections IV and V also discuss edge magnetizations on the
magnetization plateaus, but their ground states are much more
nontrivial than that dealt with in Sec. III. We will see an
interesting topological quantum phase transition on the 1/2
magnetization plateau accompanied by an abrupt change of
the edge magnetizations and the total charge in Sec. IV.
Section V discusses the ferrimagnetic ground state with the
edge magnetization. We summarize the paper in Sec. VI.
Appendices describe details of quantum field theories. Note
that Appendices B and C contain novel results such as what
we call “semiclassical bosonization formulas.”

II. UNIFICATION OF TOPOLOGICAL EDGE STATE AND
EDGE MAGNETIZATION

A. Quantized edge magnetization in topologically trivial phase
of spin-1/2 chain

We start our discussions by field-theoretically interpreting
results of Ref. [13] for one-dimensional systems. The simplest
situation is the spin-1/2 HAFM chain with the staggered mag-
netic field. The Hamiltonian with the open boundary condition
(OBC) is given by

H = J
L−1∑
j=1

S j · S j+1 + hs

L∑
j=1

(−1) jSz
j, (1)

where S j is the spin-1/2 operator at the jth site and J > 0
is the antiferromagnetic exchange coupling and hs > 0 is the
staggered magnetic field. According to the Marshall-Lieb-
Mattis theorem [18,19], the ground state of the model (1)
satisfies

L∑
j=1

〈
Sz

j

〉 = 0. (2)

If we regard Sz
j as a charge, Eq. (2) gives a charge neutrality

condition. Precisely speaking, the neutrality condition (2) is
met only when L is even. We assume even L throughout this
paper.

The low-energy physics of this spin chain is described by
a quantum field theory of an interacting U(1) compactified
boson φ with a trigonometric potential, called the sine-Gordon
theory [20,21]:

Hs =
∫ L

0
dx

[
v

2πK
(∂μφ)2 + gs sin(2φ)

]
. (3)

Hereafter, we employ a unit system with h̄ = a0 = 1 (a0 is the
lattice spacing) for simplicity, but will call a0 back whenever
we need. The first term of Eq. (3) is the kinetic term, where

(∂μφ)2 = v−2(∂τφ)2 + (∂xφ)2 and x and τ are the space and
the imaginary time, respectively. This paper mainly uses the
imaginary-time formalism for later convenience. The cou-
pling of the sine potential is proportional to the staggered field,
gs ∝ hs. The parameter v denotes the velocity of the boson
field, φ [20]. For the spin-1/2 Heisenberg chain, v = πJ/2
[20]. The φ field is related to the spin operator S j as [20,21]

S j = M j + (−1) jN j, (4)

where the z component is given by

Mz
j = a0

π
∂xφ, Nz

j = a1 sin(2φ), (5)

with a constant a1 [22]. If hs = 0, the ground state of
the spin-1/2 HAFM chain (1) is the gapless Tomonaga-
Luttinger (TL) liquid state [20,21] governed by the kinetic
term, v(∂μφ)2/2πK . The sine potential, sin(2φ), favoring a
constant φ competes with the kinetic term favoring a constant
∂μφ. The staggered magnetic field hs yields the spin gap by
locking the φ field to a minimum of the sine potential,

φ̄ = −π

4
mod π. (6)

In one-dimensional quantum many-body systems, the bulk
polarization P is precisely given by the Resta’s formula
[23,24],

P = 1

2π
Im ln 〈U 〉 . (7)

Resta gave U = exp(i 2π
L

∑L
j=1 jn j ) with the one-particle den-

sity n j [23]. In quantum spin systems, Sz
j plays the role of n j

[13,20]. Hence, we here define U as

U = exp

(
i
2π

L

L∑
j=1

jSz
j

)
, (8)

in the model (1). The nonlocal operator (8) is deeply related to
the Lieb-Schultz-Mattis (LSM) theorem [25–28] that allows
for classification of gapless quantum phases [29–31]. The
ground state expectation value 〈U 〉 is called the polarization
amplitude and was previously studied in valence-bond-solid
phases [12] and in the TL-liquid phase [32–34].

The bosonization formula Mz
j = ∂xφ/π gives [34]

U = exp[2i(φ(L) − φ̄)], (9)

φ̄ = 1

L

∫ L

0
dx φ(x), (10)

where φ̄ is the zero mode of the φ boson [20]. φ̄ can also be
seen as the spatial average of φ. The representation (9) implies
that φ(L) at the right edge of the chain deviates from the av-
erage φ̄ when P �= 0. The field φ(x = 0) at the left edge also
deviates from φ̄ because the OBC on the spin chain imposes
the following boundary condition on φ(x) [35] (Appendix A):

φ(0) = φ(L) = 0 mod π. (11)

The lockings (11) of φ at the edges hold irrespective of the
locking (6) in the bulk. The boundary condition (11) holds
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FIG. 1. Schematic x dependence of φ(x) of sine-Gordon model
(3). The shaded areas depict the left and right edges, L and R.

even when the bulk is gapless. The boundary condition (11)
is automatically consistent with the charge neutrality because∑L

j=1 〈Sz
j〉 = 〈(φ(L) − φ(0))〉 /π = 0. Equation (11) also in-

dicates that φ̄ generally represents the locking position of φ

in the bulk. With the OBC, the polarization amplitude 〈U 〉 is
thus given by

〈U 〉 = 〈e−2iφ̄〉 ≈ e−2i〈φ̄〉. (12)

Note that the latter approximate equality holds when a rele-
vant interaction strongly locks φ in bulk to a constant. The
approximation becomes more accurate when the bulk excita-
tion gap due to the staggered field becomes larger. We thus
find that the bulk polarization (7) is given by the zero mode,

P ≈ − 1

π
〈φ̄〉 mod 1, (13)

since φ is real [see Eq. (5)].
The staggered magnetic field leads to the locking (6) of φ̄.

Hence, the bulk polarization P = 1/4 mod 1 follows. The
locking value φ(L) = 0 at the right edge x = L indeed devi-
ates from the bulk one (6).

We can relate the bulk polarization P and the edge magne-
tization introduced by Ref. [13] as follows. It is generally not
obvious how to clearly distinguish the bulk from the edge.
There is no clear border between the bulk and the edge.
However, when φ̄ �= 0 mod π , we can distinguish the bulk
and the edge by setting a sufficiently small cutoff ε > 0. Let
us define the bulk part, B, of the spin chain as a region where
φ(x) is locked to φ̄,

B = {x ∈ [0, L] | 0 � |φ(x) − φ̄| < ε mod π}. (14)

It is convenient to split B = Bl ∪ Br into two:

Bl = {x ∈ [0, L/2] | 0 � |φ(x) − φ̄| < ε mod π}, (15)

Br = {x ∈ (L/2, L] | 0 � |φ(x) − φ̄| < ε mod π}. (16)

The left edge L and the right edge R are then defined as

L = [0, L/2] \ Bl , (17)

R = (L/2, L] \ Br, (18)

where \ denotes the set difference. We can rewrite L = [0, x0)
and R = (L − x0, L] by using the smallest x0 ∈ B (the shaded
areas of Fig. 1). Then, the uniform part, Mz

j , of Sz
j on the left

edge L corresponds to −P because

∑
ja0∈L

〈
Mz

j

〉 =
∫

x∈L
dx

1

π
〈∂xφ(x)〉

= 1

π
〈[φ(x0) − φ(0)]〉

≈ −P + O(ε). (19)

Likewise, we obtain on the right edge,

∑
ja0∈R

〈
Mz

j

〉 =
∫

x∈R
dx

1

π
〈∂xφ(x)〉

= 1

π
〈[φ(L) − φ(L − x0)]〉

≈ P + O(ε). (20)

Hence, we find that Eqs. (19) and (20) equal to the quantized
edge magnetizations reported in Ref. [13].

To further support this claim, we recall the definition of
the edge magnetization by Watanabe et al. [13]. They first
convoluted a Gaussian function,

g(r) = 1√
2πλ2

exp

(
− r2

2λ2

)
, (21)

with λ > 0 to the magnetization 〈Sz
r〉:

mz(r) =
L∑

r′=1

g(r − r′)
〈
Sz

r′
〉
. (22)

Next, they defined the edge magnetizations on both edges by
using the convoluted magnetization (22).

Mz
left =

∫ L+1
2

−∞
dr mz(r), Mz

right =
∫ ∞

L+1
2

dr mz(r). (23)

The rapid oscillation (−1) j over the finite Gaussian win-
dow suppresses the staggered component Nz

j ’s contribution to
mz(r). We can rewrite Mz

left as

Mz
left =

∫ L

0
dr′ 1

π
〈∂r′φ(r′)〉

∫ L+1
2

−∞
dr g(r − r′). (24)

The integral about r approximately gives

∫ L+1
2

−∞
dr g(r − r′) ≈

⎧⎨
⎩

1 (for r′ � L+1
2 + λ)

0 (otherwise)
. (25)

Therefore Mz
left is reduced to

Mz
left ≈

∫ L+1
2 +λ

−∞
dr′ 1

π
〈∂r′φ(r′)〉

= 1

π

〈(
φ

(
L + 1

2
+ λ

)
− φ(0)

)〉

= 1

π
φ̄

≈ −P . (26)
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By applying a similar procedure to Mz
right, we obtain

Mz
left ≈

∑
ja0∈L

〈
Mz

j

〉 ≈ −P, (27)

Mz
right ≈

∑
ja0∈R

〈
Mz

j

〉 ≈ P . (28)

We can employ any other smooth normalized window func-
tion g(r) (e.g., Lorentzian). Regardless of the details or choice
of g(r), the convolution (22) with the finite window function
g(r) discards the staggered part of Sz

j . Equations (27) and (28)
become more accurate as the lowest excitation gap in the bulk
becomes larger. Indeed, Ref. [13] demonstrated that the edge
magnetizations Mz

left and Mz
right rapidly approach −P and +P

respectively as the bulk excitation gap grows.

B. Topological edge state and quantized edge magnetization in
topological phase of spin-1 chain

The sine-Gordon argument also applies to the spin-1
HAFM chain. When the topological properties are concerned,
we may identify the spin-1 HAFM chain as a two-leg spin-
1/2 ladder with a weak ferromagnetic interchain interaction
[36–38],

Hladder = J
L−1∑
j=1

∑
n=1,2

S j,n · S j+1,n + J⊥
L∑

j=1

S j,1 · S j,2, (29)

where each leg labeled by n = 1, 2 is the spin-1/2 HAFM
chain and corresponds to the TL liquid of a boson φn. It
is numerically confirmed that the weak ferromagnetic rung
region (−J⊥/J 
 1) is adiabatically connected to the strong
rung limit −J⊥/J → −∞, that is, the spin-1 HAFM chain
[38].

The low-energy effective Hamiltonian is again the sine-
Gordon theory (3) of a boson, φ = φ1 + φ2 [39,40],

Hc =
∫ L

0
dx

[
v

2πK
(∂μφ)2 + gc cos(2φ)

]
. (30)

This time, the trigonometric potential appears even in the
absence of the staggered field. The coupling gc ∝ −J⊥ is pro-
portional to the ferromagnetic rung interaction, J⊥ < 0 [39].
If we impose the charge neutrality condition,

L∑
j=1

∑
n=1,2

〈
Sz

j,n

〉 = 0, (31)

on the φ field, we obtain the OBC,

φ(0) = φ(L) = 0 mod π, (32)

in analogy with the spin-1/2 chain.
The ferromagnetic rung interaction locks φ̄ = ±π/2

mod π , leading to P = ∓1/2 mod 1. On the other hand, the
antiferromagnetic coupling J⊥ > 0 (i.e., gc < 0) locks φ̄ = 0
mod π , leading to P = 0 mod 1. The bulk polarization P
thus distinguishes the topological Haldane phase for J⊥ < 0
and the topologically trivial (rung-singlet) phase for J⊥ > 0.

Similarly to the spin-1/2 chain with the staggered field,
the spin-1 HAFM chain is accompanied by the bulk po-
larization P = ∓1/2 that corresponds to the spin-1/2 edge
state of the symmetry-protected topological spin-1 Haldane

phase. Unlike the spin-1/2 chain, the edge state is degener-
ate, and the degeneracy is protected by a symmetry such as
a bond-centered inversion symmetry [7,8]. The sine-Gordon
theory (30) indicates that the ground state is doubly de-
generate, |GS±〉 = (|ψ+〉 ± |ψ−〉)/

√
2. Here, |ψ±〉 denote

bulk quantum states accompanied by edge magnetizations
(Mz

left, Mz
right ) = (∓1/2, ±1/2), respectively. In other words,

|ψ±〉 corresponds to a state with φ̄ = ∓π/2, respectively. We
regard their superpositions, |GS±〉, as the degenerate ground
states because |ψ±〉 are not eigenstates of a bond-centered
inversion Ib : S j → SL+1− j but |GS±〉 are. The bond-centered
inversion acts on φ1 and φ2 as

Ibφn(x)I−1
b = −φn(L − x) mod π. (33)

Accordingly, φ(x) = φ1(x) + φ2(x) transforms as

Ibφ(x)I−1
b = −φ(L − x) mod π. (34)

Since φ̄ represents the locking position of φ in the bulk,
Ib transforms φ̄ = π/2 to φ̄ = −π/2 mod π and vice
versa. Hence, it follows that Ib |ψ±〉 = |ψ∓〉 and Ib |GS±〉 =
± |GS±〉. Whereas |ψ±〉 is accompanied by the nonzero quan-
tized magnetization, |GS±〉 are not.

Note that we found twofold degeneracy, not the fourfold
one. The ground state in the spin-1 Haldane phase with the
OBC is fourfold degenerate because each end of the spin chain
hosts the fractionalized S = 1/2 spin. This difference in the
ground-state degeneracy originates from the charge neutrality
condition (31). Among the four ground states of the spin-1
HAFM chain with the OBC, two ground states live in the
charge-neutral sector (31) but the other two live out of it. The
sine-Gordon theory (30) formulated on the basis of the charge
neutrality condition (31) thus predicts the twofold degeneracy.
The sine-Gordon theory gives the other two ground states of
the spin-1 Haldane phase if we impose boundary conditions,
(φ(0), φ(L)) = (0, π ) or (φ(0), φ(L)) = (π, 0). The former
boundary condition gives (Mz

left, Mz
right ) = (1/2, 1/2) and the

latter gives (Mz
left, Mz

right ) = (−1/2,−1/2).
We derived the symmetry-protected topological edge state

in analogy with the edge magnetization of the spin-1/2 chain
with the staggered field. Both originate from the locking of the
nonlocal field φ in the bulk. The locking position φ̄ allows us
to distinguish the topological Haldane phase from the trivial
one.

To stand the nonzero edge magnetization, we need to lift
the ground-state degeneracy. An infinitesimal staggered mag-
netic field completely lifts the ground-state degeneracy. The
staggered field adds to the sine-Gordon Hamiltonian (30) the
following interaction,

hs

L∑
j=1

(−1) j
∑

n=1,2

Sz
j,n

≈ a1hs

∫
dx [sin(2φ1) + sin(2φ2)]

= 2a1hs

∫ L

0
dx sin(φ1 + φ2) cos(φ1 − φ2). (35)

Note that the ferromagnaetic rung interaction also locks the
antisymmetric mode, φ1 − φ2, to φ1 − φ2 = 0 mod π . The
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FIG. 2. Meron configuration of staggered moment, n(x j ) =
(−1) jS j , with skyrmion number +1/2.

locking of φ1 − φ2 simplifies the staggered-field interaction
at low energies:

hs

L∑
j=1

(−1) j
∑

n=1,2

Sz
j,n ∝ hs

∫ L

0
dx sin φ, (36)

which makes the two locking positions φ̄ = π/2 mod π and
φ̄ = −π/2 mod π nonequivalent and lift the degeneracy of
the spin-1/2 edge states. In other words, P = −1/2 and P =
1/2 are nonequivalent under the staggered field. Therefore,
while the quantized edge magnetization and the topologi-
cal edge state have the same topological origin, the former
becomes observable only after the edge-state degeneracy is
lifted.

We comment that there is an alternative derivation of
the edge magnetization in spin-1/2 ladders. If cos(2φ) has
a scaling dimension 1, the sine-Gordon theory (30) can be
refermionized and turned into a Majorana fermion theory [39].
For J⊥ < 0, these Majorana fermions are accompanied by
zero-energy modes that give the edge magnetization Mz

left =
±1/2 and Mright = ±1/2 [41–43].

C. Generalization to spin-S chains

Our project is further continued to the general spin-S
HAFM chains. There are two options to field theoretically
discuss the spin-S HAFM chains. One is to use 2S-leg spin-
1/2 ladders [36,44], and the other is to use an O(3) nonlinear
sigma model (NLσM) [45–47]. The latter is equivalent to the
sine-Gordon theory thanks to a duality [48] (Appendix B).
These dual theories are bridged by a topological excitation
called a meron (Fig. 2) [48,49], which is a half of a skyrmion
living in the two-dimensional Euclidean space-(imaginary)
time. The dual transformation from the O(3) NLσM to the
sine-Gordon theory is done in analogy with that for the two-
dimensional XY model [50,51].

Here, we summarize the results obtained from the O(3)
NLσM approach. We give technical details in Appendix B.
The S ∈ Z + 1/2 cases fall into the S = 1/2 case (3), where
the staggered magnetic field induces the edge magnetization
P = ±1/4. With hs = 0, the half-odd-spin-S HAFM chain
has either the gapless ground state or doubly degenerate
gapped ground state. The sine-Gordon theory as the dual
theory of the O(3) NLσM explains this impossibility of the
unique and gapped ground state under the translation and
spin-rotation symmetries. This argument is consistent with the
LSM theorem on the spin-S HAFM chain [25]. The staggered

magnetic field violates the one-site translation symmetry and
makes the ground state unique and gapped.

The S ∈ Z cases are described by the sine-Gordon the-
ory (30) with gc ∝ − cos(πS). The edge magnetization P =
±1/2 mod 1 emerges only when S ∈ 2Z + 1 [Eq. (B37)].
By contrast, P = 0 mod 1 follows from φ̄ = 0 mod π for
S ∈ 2Z. This even-odd feature of the integer-spin-S chain is
consistent with the topological triviality (nontriviality) of the
even-S (odd-S) Haldane phase [8,52].

D. Symmetry protection of quantization

The quantization of the edge magnetization is protected by
symmetries. Typical interactions that ruin the quantization are
U(1)-breaking interactions such as Jx

∑L
j=1 Sx

j S
x
j+1. We can

express this interaction in terms of the sine-Gordon theory
as ∝ Jx

∫ L
0 dx cos(2θ ), where θ is a canonical conjugate of

φ [20] that satisfies a commutation relation,

[φ(x), θ (y)] = iπ�step(x − y), (37)

where �step(z) is the Heaviside step function,

�step(z) =
⎧⎨
⎩

1 (z > 0)
1
2 (z = 0)
0 (z < 0)

. (38)

Equation (37) indicates that φ and θ are not locked at the same
time.

Our “semiclassical bosonization” formula of the spin de-
rived from the spin chain through the O(3) NLσM (Appendix
B 3 b) leads to (−1) jS+

j ≈ eiθ for the spin-S chain just like
the conventional one [20]. The global U(1) spin-rotation sym-
metry excludes cos(nθ ) and sin(nθ ) with n ∈ Z from the
Hamiltonian.

Fixing the locking position φ̄ is also necessary to protect
the quantization. If the effective Hamiltonian (3) for the spin-
1/2 chain admits an interaction gc cos(2φ), the Hamiltonian
is modified to

Hs =
∫ L

0
dx

[
v

2πK
(∂μφ)2 +

√
gs

2 + gc
2 sin(2φ + A)

]
,

(39)

with A = tan−1(gc/gs). The locking position gets shifted in
accordance with the shifted potential

√
gs

2 + gc
2 sin(2φ +

A). The bulk polarization P gradually changes with A [53].
Hence, we must forbid cos(2φ) from entering into the spin-
1/2 Hamiltonian (3) to keep P quantized. Likewise, we must
forbid sin(2φ) from the spin-1 Hamiltonian (30).

An inversion symmetry fixes the locking position of
φ. For the spin-1/2 chain, the site-centered inversion Is :
S j → SL− j acts on φ as Is : φ(x) → −φ(L − x) + π/2. This
operation on φ is deduced from behaviors of the stag-
gered magnetization (−1) jSz

j ∼ sin(2φ) and the dimerization
(−1) jS j · S j+1 ∼ cos(2φ). The site-centered inversion keeps
the former invariant but changes the sign of the latter. The
Is symmetry thus excludes cos(2φ) from the spin-1/2 chain
(3). For the spin-1 chain, Is instead acts on φ = φ1 + φ2

so that Is : φ(x) → −φ(L − x) + π because both φ1 and φ2

admit the π/2 shift under Is. The Is symmetry thus excludes
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TABLE I. Comparison of quantum phases with symmetry-
protected quantized edge magnetization P (fifth row) with odd-spin
Haldane phases (second row), an SPt phase (third row), and a trivial
phase (fourth row). We numerically and field-theoretically found
quantum phases accompanied by edge magnetizations on magneti-
zation plateaus m = 0 or m �= 0, which are referred to as quantized
P in the table. The odd-spin Haldane phase, a symmetry-protected
topological (SPT) phase, exhibit no edge magnetizations because a
protecting symmetry forbids it. The quantized-P phase as well as
the odd-spin Haldane phase are realized on a nonzero magnetization
plateau [64]. The SPt phase can exhibit the edge magnetization but
is not found yet on nonzero magnetization plateaus.

quantum phase edge magnetization? on plateau?

odd-spin Haldane (SPT) no yes [27,69]
induced Néel (SPt) yes not found yet
large-D (trivial) no yes [70,71]
quantized P yes yes

sin(2φ) from the spin-1 chain (30). Based on our semiclas-
sical bosonization formulas for the spin-S HAFM chains, we
reach the same conclusion that the U(1) spin-rotation and the
Is inversion symmetries protect the quantization of the edge
magnetizations in the spin-S HAFM chains.

The symmetry-protected edge magnetization gives an
interesting characterization of quantum phases in one-
dimensional quantum spin systems. Here, we point out that
the edge-magnetization-based characterization of quantum
phases is related to the concept of symmetry-protected triv-
ial (SPt) phases [54]. Though the precise relation between
these two concepts is not clear yet, they are related in-
deed. According to Ref. [54], the induced Néel state |N〉 =⊗

j |Sz
j = (−1) j〉 in a spin-1 chain is an SPt phase but

the large-D state |D〉 = ⊗
j |Sz

j = 0〉 is not. The former has
P = 1/2 mod 1 and the latter has P = 0 mod 1, since
〈N |U |N〉 = −1 and 〈D|U |D〉 = 1. Note that the spin-1/2
chain (1) has |N〉 as its ground state in the hs → +∞ limit.
We will summarize affinities and differences of our charac-
terization of quantum phases with the odd-spn Haldane phase
and the SPt phase later in Table I.

III. EDGE MAGNETIZATION ON
MAGNETIZATION PLATEAU

The edge-magnetization-based characterization of quan-
tum phases also works when the net magnetization is nonzero,∑

r 〈Sz
r〉 �= 0. Generally, the uniform magnetic field favors

spatially nonuniform φ accompanied by gapless spin exci-
tations [see Eq. (5)]. The uniform magnetic field hu indeed
reduces the Haldane gap of the spin-1 chain and induces the
quantum phase transition into a TL-liquid phase [20,40,55].
However, the uniform magnetic field can also induce a quan-
tum phase transition from the TL liquid phase into a spin gap
phase. An increase of the uniform magnetic field can yield
a spin gap state with a commensurate magnetization density,
called a magnetization plateau [27]. Magnetization plateaus
are supposed to appear when N0(S − m) is a rational number
[27], where N0 is the number of spins per unit cell and m is
the magnetization per site.

FIG. 3. Site r dependence of the “charge” Cr of Eq. (44) with
N = 2 (filled balls) and δmz(r). The edge magnetizations on the left
and right edges are quantized as ±0.25000. We used parameters
J⊥ = 1, J‖ = 0.5, Js = 0.05, hu = 1.4, and 2L = 160. (Inset) Mag-
netization curve. The shaded area highlights the 1/2 magnetization
plateau.

A. Spin-1/2 ladder

Figure 3 shows numerical results about a spin-1/2 ladder
that exhibits a magnetization plateau. Its Hamiltonian is given
by

Hladder = J‖
L−1∑
j=1

∑
n=1,2

S j,n · S j+1,n − hu

L∑
j=1

∑
n=1,2

Sz
j,n

+
L∑

j=1

[J⊥ + (−1) jJs]S j,1 · S j,2, (40)

with J⊥ � J‖ > 0, J⊥ � Js > 0, and hs > 0. The first term
denotes the intrachain HAFM interaction, the second term
is the uniform Zeeman field, and the others are the uniform
(J⊥) and the staggered (Js) rung interactions. All the nu-
merical data in this paper are obtained from density-matrix
renormalization group calculations with the OBC [56], where
the bond dimension 100–1000 and the truncation error 10−8

at largest are kept. While the spin ladder with Js = 0 does
not exhibit the magnetization plateau, the staggered rung in-
teraction, Js

∑L
j=1(−1) jS j,1 · S j,2, induces the magnetization

plateau with M/Ms = 1/2, where Ms is the saturated value of
the magnetization (the inset of Fig. 3) [57].

B. Pseudospin picture

The ground state of the model (40) on the 1/2 plateau
has an intuitive pseudospin picture [20]. For J‖ = 0, the spin
ladder (40) is fractured into a set of isolated antiferromagnetic
dimers. Each dimer is described by a two-spin model

Hdimer = J⊥S1 · S2 − hu
(
Sz

1 + Sz
2

)
. (41)

If hu = 0, the ground state of the model (41) is the singlet
state, |s〉 = (| 1

2 , − 1
2 〉 − |− 1

2 , 1
2 〉)/

√
2, where |Sz

1, Sz
2〉 is the

simultaneous eigenstate of Sz
n for n = 1, 2. The dimer has

triply degenerate spin-1 excited states, |tσ 〉 with σ = 1, 0,−1.
The uniform magnetic field hu lifts the triple degeneracy
and eventually makes |s〉 and |t1〉 = | 1

2 , 1
2 〉 nearly degenerate,

where we may discard the other high-energy excited states and
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regard |s〉 and |t1〉 as the “down” and “up” states of an S = 1/2
pseudospin T j [58,59].

We can regard the spin ladder (40) as a weakly coupled
dimers for J‖/J⊥ 
 1 and, accordingly, as a pseudospin-1/2
chain. The perturbative expansion about J‖/J⊥ maps the spin-
1/2 ladder (40) into the single pseudospin-1/2 XXZ chain
with a staggered magnetic field,

Hladder ≈ J‖
L∑

j=1

(
T x

j T x
j+1 + T y

j T y
j+1 + 1

2 T z
j T z

j+1

)

−
L∑

j=1

(heff − (−1) jJs)T z
j , (42)

with heff = hu − J⊥ − J‖
2 . The effective uniform magnetic

field vanishes, heff = 0, for M/Ms = 1/2 if Js = 0 [59].
Nonzero Js opens the spin gap around heff ≈ 0. In other words,
the ground state is on the 1/2 magnetization plateau around
heff ≈ 0 for Js �= 0. Similarly to the authentic spin-1/2 chain,
the edge magnetization ±1/4 will appear in the pseudospin-
1/2 chain (Fig. 3).

C. General definition of edge magnetization
on magnetization plateaus

Let us formulate the edge magnetization on the magnetiza-
tion plateau based on a nonlocal operator U . A naive definition
of the operator U in the spin ladder will be

Unaive = exp

(
i
2π

L

L∑
j=1

j
N0∑

n=1

Sz
j,n

)
, (43)

where Sz
j,n is the z component of a spin S j,n in the unit cell

located at the position j. The unit cell contains N0 = 4 spins
for Js �= 0. The operator Unaive of Eq. (43) seems ambiguous
on the magnetization plateau because, if we regard Sz

j as a
charge, the charge neutrality condition (2) is violated on the
magnetization plateau. Suppose that the magnetization per
site m is fractional, namely, m = p/q with coprime positive
integers p and q. The naive operator (43) gives 〈Unaive〉 =
exp(2πmi(L + 1)). Since m is fractional, Unaive formally leads
to P �= 0. However, this P �= 0 cannot be deemed the edge
magnetization because it originates from the bulk uniform
magnetization. To make the edge magnetization well defined
on the nonzero magnetization plateau, we need to define an
appropriate charge that satisfies a charge neutrality condition.
In general, one-dimensional quantum spin systems on magne-
tization plateaus, we can adopt

U = exp

(
i
2π

L

L∑
j=1

jCj

)
, Cj =

N∑
n=1

(
Sz

j,n − m
)
, (44)

where Cj is the charge density for m �= 0. The naive choice of
N will be N = N0, the number of spins per unit cell. However,
N can be smaller than N0. Recall that we took N = 1 for the
spin-1/2 chain (1) despite N0 = 2. We take N = 2 for the spin
ladder (40) even for Js �= 0, where N0 = 4. The magnetization

plateau satisfies the charge neutrality,

L∑
j=1

〈Cj〉 = 0. (45)

We modify the definition of the edge magnetizations in accor-
dance with the definition of the charge Cj .

Mz
left =

∫ L+1
2

−∞
dr δmz(r), Mz

right =
∫ ∞

L+1
2

dr δmz(r), (46)

δmz(r) =
L∑

r′=1

g(r − r′) 〈Cr′ 〉 . (47)

For the spin ladder (40) on the 1/2 plateau, Eq. (44) gives

U = exp

(
i
2π

L

L∑
j=1

jT z
j

)
, (48)

dealing with the pseudospin-1/2 chain in analogy with the au-
thentic spin-1/2 chain. Figure 3 shows the spatial distribution
of 〈Cr〉 and δmz(r) for the spin-1/2 ladder (40) on the 1/2
magnetization plateau. The edge magnetizations (46) exhibit
the excellent quantization Mz

left = −Mz
right = 0.25000 despite

the small Js 
 J⊥. We used the Gaussian g(r) with λ = 3.
The Lorentzian g(r) = (ε/π )/(r2 + ε2) also exhibits the edge
magnetization but its quantization is less accurate. We also
confirmed that the quantization accuracy is insensitive to the
value of λ.

IV. CHARGE JUMP AT QUANTUM CRITICAL POINT

The spin-1/2 ladder (40) is the prototypical model that
exhibits the quantized edge magnetizations on the nonzero
magnetization plateau. In what follows, we consider a
thought-provoking model whose edge magnetization jumps
from zero to a nonzero value at a quantum critical point on
the plateau.

A. Four-site periodic spin-1 chain and its pseudospin picture

The model is a spin-1 HAFM chain with a four-site peri-
odic structure [Fig. 4(a)],

H4 = J

L−2
2∑

j=1

(S2 j−1 · S2 j + αS2 j · S2 j+1)

+ J4

L
2∑

j=1

(−1) jS2 j−1 · S2 j − hu

∑
j

Sz
j, (49)

where S j is the spin-1 operator at the jth site. 0 � α � 1 and
0 � J4 < J . The parameter α denotes the bond alternation for
α �= 1. The J4 interaction is the four-site periodic exchange
interaction. We can label S2 j−1 = Sr,1 and S2 j = Sr,2 for r =
1, 2, . . . , L/2. Here, we define the charge (44) as

Cr =
2∑

n=1

(
Sz

r,n − m
)
. (50)

The bond-alternating chain (49) shows magnetization
plateaus [Fig. 4(b)]. The 1/2 plateau for J4 = 0 was
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FIG. 4. (a) Spin-1 chain (49) with bond-inversion center.
(b) Magnetization curve for J4 = 0. (c) Site r dependence of δmz(r)
(d) J4 dependence of lowest-energy excitation gap (+ markers) and
edge magnetizations (47) (circles and triangles). The edge magneti-
zations are quantized as Mz

left = Mz
right = 0.499999999 for J4 > J4c ≈

0.295. We used parameters J = 1, α = 0.2, hu = 1.5. The system
size is L = 162 for (b) an (c) and 242 for (d).

experimentally observed [60]. We can see this 1/2 plateau as
a forced ferromagnetic phase of another S = 1/2 pseudospin,
T̃ j . For α = 0, the model (49) is reduced to isolated spin-1
dimers. Each dimer is described by the Hamiltonian (41).
This time, the spin quantum number of S1 and S2 are S = 1.
For hu = 0, each dimer has the spin-0 singlet ground state,
|s〉 = (|1,−1〉 + |−1, 1〉 − |0, 0〉)/

√
3. The magnetic field re-

duces the excitation energy of a spin-1 state |t1〉 = (|1, 0〉 −
|0, 1〉)/

√
2 and makes |s〉 and |t1〉 degenerate at M/Ms = 1/4.

Regarding |s〉 and |t1〉 as the “down” and “up” state of the S =
1/2 pseudospin T̃ j , we can rewrite the Hamiltonian (49) as

H4 ≈ Jα

3

∑
j

(
T̃ x

j T̃ x
j+1 + T̃ y

j T̃ y
j+1 + 3

4 T̃ z
j T̃ z

j+1

)

−
∑

j

(h′
eff − (−1) jJ4)T̃ z

j , (51)

within the first-order approximation about α [61]. The
J4 interaction turns into the staggered magnetic field,
which induces the 1/4 magnetization plateau around
h′

eff = 0. As h′
eff is increased from zero, the pseudospin

chain eventually reaches the forced ferromagnetic phase
of the pseudospin, that is, the 1/2 magnetization plateau
with 〈Sz

2 j−1〉 = 〈Sz
2 j〉 = (1 + 2 〈T̃ z

j 〉)/4 = 1/2. The 1/2
magnetization plateau thus exists even for J4 = 0 [62].

To understand the magnetization process for M/Ms >

1/2, we need to go beyond this pseudospin approximation.

For M/Ms > 1/2, a spin-2 state |q2〉 = |1, 1〉 of the spin-1
dimer enters into the ground state. The interdimer interac-
tions make |q2〉 dispersive. The magnetization process for
1/2 < M/Ms � 1 corresponds to a process that increases a
population of |q2〉 in the ground state.

B. Quantum phase transition on 1/2 magnetization plateau

The effective staggered magnetic field J4(−1) j T̃ z
j would

seem to drag the ground state away from the 1/2 plateau
since the forced Néel state

⊗L/2
j=1 |T̃ z

j = (−1) j+1/2〉 in ac-
cordance with the effective staggered-field interaction has
M/Ms = 1/4. However, the J4 interaction induces a quantum
phase transition without dragging the ground state away from
the 1/2 plateau. Figure 4(c) shows the J4 dependence of Mz

left
and Mz

right. We chose L = 162 to keep the bond-centered inver-
sion symmetry, Ib : S j → SL+1− j under the OBC. The model
(49) is Ib-invariant only when L = 2 mod 4.1 The U(1) spin-
rotation and Ib symmetries protect the quantization of the
edge magnetization, as we see later. The Is cannot protect
the quantization of the edge magnetization. The spatial depen-
dence δmz(r) gradually changes as J4 is increased [Fig. 4(c)].
Nevertheless, the edge magnetizations shows a jump from
zero to 1/2 at J4 = J4c ≈ 0.295J [Fig. 4(d)] since the above
symmetries forbid the continuous change [Eq. (D9)].

An effective field theory gives a straightforward way to
understand the charge jump. It was previously shown that the
effective field theory on the magnetization plateau becomes
the sine-Gordon theory for S − m ∈ Z [63,64]. This sine-
Gordon theory itself is inapplicable to the current situation of
our interest with S − m = 1/2. However, we can modify the
argument of Refs. [63,64] to fit into our situation (Appendix C
3 c). We can resolve the issue of the fractional S − m by prop-
erly counting topological sectors. The previously considered
case with S − m ∈ Z involves the single topological sector.
Our case with S − m ∈ Z + 1/2 involves two topological sec-
tors. This topological difference governs the behavior of the
effective field theory.

Let us first discuss the effective field theory in the bulk by
imposing the periodic boundary condition, S j+L = S j , on the
spin chain (49). When α − 1 = J4 = 0, the spin chain (49)
is the uniform spin-1 HAFM chain. When S − m = 1/2, the
spin-1 chain is described by an effective field theory with the
following Hamiltonian [see Eq. (C50)]:

Heff ≈ v

2πK

∫
dx (∂μφ)2

− 2ζ 2 cos[2π (S − m)]
∫

dx cos(4φ), (52)

where ζ is a fugacity of a vortex [63,64]. When the cos(4φ) in-
teraction is relevant, the spin-1 chain shows the magnetization
plateau by spontaneously breaking the one-site translation

1The chain length L must be even to guarantee the charge neutrality,
as we mentioned in Sec. II A. The model (49) has the bond-centered
inversion symmetry, Ib : S j → SL+1− j for L = 2 mod 4 but does
not have the site-centered inversion symmetry, Is : S j → SL− j . By
contrast, the same model has the Is symmetry but does not have the
Ib symmetry for L = 0 mod 4.
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symmetry, T1 : S j → S j+1. When the cos(4φ) interaction is
irrelevant, the spin-1 chain has the gapless TL-liquid ground
state for S − m = 1/2. While it is hard to judge which is the
case only from the effective field theory, we know numerically
that the gapless scenario is the case [65]. Hence, we may drop
the cos(4φ) term from the Hamiltonian (52).

The T1 symmetry is translated into Eq. (C36), namely,

φ(x) → φ(x) + π

2
, (53)

θ (x) → θ (x) + π, (54)

in the field theory language, which excludes cos(2φ) and
sin(2φ) from the Hamiltonian. The absence of cos(2φ) and
sin(2φ) is due to the destructive interference between the two
topological sectors. The bond alternation α �= 1 and the J4

interaction break the T1 symmetry and unbalance the interfer-
ence between the topological sectors. The model (49) on the
1/2 plateau is mapped to the sine-Gordon theory,

H4 =
∫ L

0
dx

[
v

2πK
(∂μφ)2 + (g2(J4) − g2c) cos(2φ)

]
, (55)

with g2(J4) ∝ (J4)2/J and g2c ∝ (1 − α)J . The J4 interac-
tion of Eq. (49) is taken into account perturbatively. The
J4 interaction gives rise to cos(2φ) in a second-order per-
turbation process (Appendix D) because the J4 interaction
has the four-site periodicity. The cosine interaction cos(2φ)
is the most relevant interaction with the two-site periodicity
in accordance with the antiferromagnetic fluctuations. The
second-order perturbation expansion is required to produce
the two-site periodic interaction from the four-site one. Note
that sin(2φ) is still forbidden because of the Ib symmetry,
φ(x) → −φ(L − x) mod 2π [Eq. (C45)].

Next, we impose the OBC on the spin chain (49). The T1

symmetry is lost, but the Ib symmetry survives in the OBC.
The effective Hamiltonian (55) thus holds with the OBC as
well as the periodic one. When J4 = 0, the sine-Gordon theory
(55) with g2c > 0 locks φ̄ = 0 (i.e. P = 0). J4 �= 0 makes
g2(J4) > 0. An increase of J4 > 0 drags the system into the
quantum critical point J4 = J4c, where g2(J4) = g2c holds. For
J4 > J4c, the sine-Gordon theory (55) with g2(J4) − g2c < 0
locks φ̄ = π/2 (i.e., P = 1/2).

C. Topological transition on magnetization plateau

Numerical results show that the quantum phase transition
at J4 = J4c is likely to be a quantum critical one with the gap
closing [Figs. 4(d) and 5(a)]. In the quantum critical regime,
the entanglement entropy shows the logarithmic scaling [66]
[Fig. 5(b)],

SEE(x) = as + c

6
ln

[
L

π
sin

(
πx

L

)]
, (56)

with a constant as and the central charge c. The central charge
characterizes the conformal field theory that corresponds to
the quantum critical point. The numerical estimation c ≈ 0.94
is consistent with c = 1 of the effective field theory (55) with
g2(J4) = g2c. The gap is thus highly likely to be closed at
the transition point g2(J4) = g2c. Even if the phase transition
should be weakly first-order, our field theory (55) still holds
by taking into account a less relevant interaction, cos(4φ),

FIG. 5. (a) J4 dependence of lowest-energy excitation gap for
hu/J = 1.5, α = 0.2, and L = 122 (circles) and L = 242 (+ mark-
ers). (b) Numerically calculated entanglement entropy for hu/J =
1.5, α = 0.2, and L = 242 (circles) and the fitting function (56) with
(as, c) = (0.52, 0.94). The central charge c ≈ 1 is consistent with the
sine-Gordon theory (55).

which is dropped in Eq. (55) [see Eq. (D8)]. If the first-order
transition scenario comes true, the J4 interaction must affect
the scaling dimension of the cos(4φ) interaction to make it
relevant.

Despite the ground state’s quantum critical behavior, the
edge magnetization shows the abrupt change, reflecting its
topological nature. The quantization of the edge magneti-
zation is an exact property of the spin chain (49). The Ib

symmetry of the Hamiltonian imposes that

〈U 〉 = 〈
IbUI−1

b

〉 = 〈U †〉 . (57)

It follows that Im ln 〈U 〉 = − Im ln 〈U 〉 mod 2π . Namely,
the Ib imposes

P = 0, or 1
2 mod 1. (58)

This is consistent with the numerical results. P = 0 holds for
J4 < J4c and P = 1/2 for J4 > J4c.

Our quantum field theory (55) also supports the fact that
the U(1) spin-rotation and the Ib symmetries protect the quan-
tization of the edge magnetization. According to Eqs. (C45),
the Ib symmetry forbids sin(nφ) with n ∈ Z from entering
into the effective Hamiltonian. Besides, the U(1) spin-rotation
symmetry forbids cos(nθ ) and sin(nθ ). Therefore the quanti-
zation of the edge magnetization of the spin-1 chain (49) on
the 1/2 plateau is protected by the U(1) spin-rotation and the
Ib symmetry.

Precisely speaking, the ground state for J4 > J4c vio-
lates the charge neutrality condition (45) because of Mz

left =
Mz

right = 1/2 [Figs. 4(c) and 4(d)].
∑L

j=1 〈Cj〉 = 1 holds for

J4 > J4c whereas
∑L

j=1 〈Cj〉 = 0 for J4 < J4c. Nevertheless,
the ground state remains on the 1/2 plateau for J4 > J4c in the
thermodynamic limit since M

Ms
= 1

2 (1 + 1
L ) → 1

2 .
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Thus far, we have developed the effective field theory
to understand the topological quantum phase transition of
the spin-1 chain (49) on the 1/2 magnetization plateau.
We employed the effective field theory approach because
the pseudospin approximation seemed powerless. Still, the
weakly-coupled dimer picture at |α| 
 1 gives us some intu-
ition to understand the abrupt charge jump at J4 = J4c. When
J4 = α = 0, the ground state is the product state of |t1〉. The
J4 interaction weakens antiferromagnetic intradimer coupling,
J − J4, and invites the spin-2 state, |q2〉, to join the low-energy
physics. Let us compare the energies of two product states
|t1〉1 |t1〉2 · · · |t1〉L/2 and |t1〉1 |t1〉2 · · · |q2〉r1

· · · |t1〉L/2, where
we replace |t1〉r1

by |q2〉r1
for one dimer at r1. Let E and E ′

be eigenenergies of the former and latter states for α = 0. The
latter becomes the ground state when their energy difference
�E := E ′ − E ,

�E = 2(J − J4) − hu (59)

becomes negative, that is, when J4 > J4d with

J4d = 2J − hu

2
. (60)

For α = 0, the first-order transition occurs at J4 = J4d because
every |t1〉 is replaced by |q2〉 as J4 passes J4d . For α �= 0,
the interdimer exchange interaction minimizes the number of
|q2〉 to minimize the energy cost due to the antiferromagnetic
Jα interaction. The number of |q2〉 is zero for J4 < J4d and
will be one for J4 > J4d . For the parameter set of Fig. 4,
we obtain J4d = 0.25, close enough to J4c ≈ 0.295 where the
topological transition actually occurs. When one of |t1〉 is re-
placed by the spin-2 |q2〉, the spin-2 object will be delocalized
to minimize the energy cost arising from the antiferromag-
netic exchange interactions. If |q2〉 carrying the charge one is
shunted off to the edges, it is fractionalized to two 1/2 charges
to keep the exact Ib symmetry. We thus end up with the edge
magnetizations Mz

left = Mz
right = 1/2.

V. EDGE MAGNETIZATION OF FERRIMAGNETS

The edge magnetizations hitherto considered are triggered
by spatially nonuniform interactions. Even if the edge mag-
netization has a topological origin such as the spin-1 Haldane
phase of the uniform spin-1 HAFM chain, the staggered mag-
netic field is necessary to make the edge magnetization visible
by lifting the degeneracy of the edge state. In this sense, we
thus far needed spatially nonuniform interactions to trigger the
edge magnetization by breaking the inversion symmetry that
protects the edge-state degeneracy.

Here, we discuss a contrasting case that the uniform mag-
netic field triggers the edge magnetization by lifting the
ground-state degeneracy. We deal with a spin-1/2 HAFM
model on a union-jack strip [Fig. 6(a)] [67,68],

HUJ = J1

L∑
j=1

3∑
n=1

S j,n · S j+1,n + J1

L∑
j=1

S j,2 · (S j,1 + S j,3)

+ J2

L−1∑
j=2

S j,2 · (S j−1,1 + S j−1,3 + S j+1,1 + S j+1,3),

(61)

FIG. 6. (a) Union-jack strip. (b) Site r dependence of 〈Cj〉 and
δmz(r) with N = 3 and m = 1/6. The edge magnetizations are quan-
tized as Mz

right = −Mz
left = 0.5000000. We used J1 = 1, J4 = 4, hu =

0.1, and 3L = 240.

where S j,n is the spin-1/2 operator. The first term denotes
the intrachain interaction, the second term denotes the rung
interaction, and the last one denotes the interchain diagonal
interactions.

For large enough J2/J1 > 0, this frustrated three-leg spin
ladder exhibits a spontaneous magnetization plateau with
|M|/Ms = 1/3 by spontaneously breaking the SU(2) spin-
rotation symmetry [67]. The spontaneous ferromagnetic order
is accompanied by an antiferromagnetic order thanks to the
lattice structure. Namely, the ground state has the spontaneous
long-range commensurate ferrimagnetic order. The ferrimag-
netic order leads to P �= 0, as we show below. However,
similarly to the spin-1 Haldane phase, the edge magnetization
is concealed by a Z2 symmetry, for example, a π rotation
symmetry (Sx

j,n, Sy
j,n, Sz

j,n) → (Sx
j,n,−Sy

j,n,−Sz
j,n) around the x

axis.
Different from the spin-1 Haldane phase, an infinitesimal

uniform magnetic field completely lifts the ground-state de-
generacy by choosing one of the spontaneous ferrimagnetic
states. In the presence of the weak uniform magnetic field, the
effective field theory of the union-jack strip on the 1/3 plateau
has the following Hamiltonian (Appendix E),

HUJ =
∫ L

0
dx

[
v

2πK
(∂μφ)2 + ζ cos(2φ)

]
. (62)

The φ field is related to the charge as Cj = ∑3
n=1 Sz

j,n =
∂xφ/π . The cosine interaction locks φ to φ̄ = ±π/2 and gives
P = ∓1/2. Tracing the hitherto developed argument, we can
confirm that the U(1) and Is symmetries protect the quantiza-
tion of the edge magnetization P = 1/2. Our 3L = 240-site
calculation shows the fine quantization Mz

right = −Mz
left =

0.50000000. Note that not Ib but Is protects the quantization
in contrast to the spin-1 chain (49) on the 1/2 plateau. This
symmetry difference ultimately comes from the difference in
number of spin ladders’ legs.2

2The effect of the number of legs on the inversion symmetries
is well exemplified by the N-leg spin-1/2 ladder at m = 0 [44].
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In the absence of the uniform magnetic field, the magne-
tization plateau with m = 1/3 and m = −1/3 are degenerate,
where the edge magnetizations are concealed by the ground-
state degeneracy. The uniform magnetic field chooses, for
example, the m = 1/3 state and makes the ground state unique
and gapped. Then, nothing conceals the edge magnetization
any longer [Fig. 6(b)].

VI. CONCLUSION AND OUTLOOK

We discussed the edge magnetization as the magnetic
analog of the surface electric charge by using the low-
energy effective field theory and the numerical density-matrix
renormalization group method. Low-energy physics of one-
dimensional quantum spin systems with or without the
magnetization per site is described by the same effective field
theory, the sine-Gordon theory.

The sine-Gordon theory is the strongly interacting field
theory of the U(1) boson field φ. We showed that the edge
magnetization as the surface electric charge is the zero mode
of φ [Eq. (13)]. The quantization of the zero mode is pro-
tected by the U(1) spin-rotation and inversion symmetries.
The inversion symmetry can be either the site-centered or
bond-centered one, depending on the carrier of the charge
[Eq. (44)] and the number of spin chains.

We characterized quantum phases of one-dimensional
quantum spin systems based on the edge magnetization and
the symmetry protection of its quantization. We found some
affinities and differences of this characterization with the
odd-spin Haldane phase (a symmetry-protected topological
phase) and the SPt phase as summarized in Table I. The edge
magnetization turned out to give us an interesting viewpoint of
the classification of quantum phases. Moreover, in principle,
the edge magnetization is an observable quantity and will be
relevant to experimental studies.

Our field-theoretical results on one-dimensional quantum
spin systems will be useful as building blocks to construct
magnetic analog of corner magnetizations in two- or three-
dimensional quantum spin systems [13] in the spirit of the
coupled-wire construction [14–17].
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The one-site translation along the leg leads to φ(x) → φ(x) + πN
2 .

The φ field is a uniform summation of the φn field on nth leg for
n = 1, 2, . . . , N . Since each φn admits the π/2 shift by T1, their
summation φ = φ1 + φ2 + · · · + φN admits the πN/2 shift. Since
Ib = T1Is, the N dependence of T1 affects the field-theoretical repre-
sentation of Is and Ib. One can find a similar effect in effective field
theories on the magnetization plateaus dealt with in this paper.

APPENDIX A: OPEN BOUNDARY CONDITION IN SPIN
CHAINS

The open boundary condition (OBC) on the quantum spin-
1/2 chain is formulated in a fermion language [35]. The spin-
1/2 operator S j is written as [20]

Sz
j = ψ

†
j ψ j − 1

2
, (A1)

S+
j = ψ

†
j exp

(
i

j−1∑
k=1

ψ
†
k ψk

)
, (A2)

where ψ j is an annihilation operator of a spinless fermion. The
spinless fermion ψ (x) = ψ j/

√
a0 is split into right-moving

ψR(x) and left-moving ψL(x) parts: ψ (x) = e−ikF xψL(x) +
eikF xψR(x) with x = ja0 and the Fermi wave number kF =
π/2a0 [20]. We impose the OBC at x = 0 on the spinless
fermion by requiring the following conditions [35],

ψ (0) = ψ (L) = 0. (A3)

Note that chiral fermion operators, ψL and ψR cancel each
other so that Eq. (A3) holds. This boundary condition is fur-
ther translated into that for φ(x) and θ (x) via the following
bosonization formula [20]:

ψR(x) ∼ e−i(θ−φ), ψL(x) ∼ e−i(θ+φ). (A4)

Two boson fields φ(x) and θ (x) satisfy the commutation rela-
tion

[φ(x), θ (y)] = iπ�step(y − x), (A5)

where �step(z) is the step function,

�step(z) =
⎧⎨
⎩

1 (z > 0)
1/2 (z = 0)
0 (z < 0)

. (A6)

This bosonization formula leads to, for instance, (−1) jSz
j ≈

a1 sin(2φ) + · · · because Sz
j = ψ

†
j ψ j − 1

2 ,

ψ†(x)ψ (x) = ψ
†
R(x)ψR(x) + ψ

†
L (x)ψL(x)

+ (−1) j[ψ†
R(x)ψL(x) + ψ

†
L (x)ψR(x)], (A7)

and

ψ
†
R(x)ψL(x) + ψ

†
L (x)ψR(x)

∼ e−2iφ(x)+[φ(x),θ (x)] + e2iφ(x)−[φ(x),θ (x)]

= 2 sin(2φ). (A8)

The boundary condition, ψ (0) = 0, on the left edge leads
to [35]

1 − e2iφ(0) = 0, (A9)

namely,

φ(0) = 0 mod π. (A10)

On the other edge, we obtain

1 − e2ikF Le2iφ(L) = 0. (A11)
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Since L/a0 must be an even integer to meet the charge-
neutrality condition, we find

φ(L) = 0 mod π. (A12)

This boundary condition φ(0) = φ(L) = 0 mod π is consis-
tent with the charge neutrality condition,

L∑
j=1

Sz
j = 1

π
[φ(L) − φ(0)] = 0. (A13)

The OBC on the spin chain is interpreted as the Dirichlet
boundary condition on φ(x) at x = 0, L. Equations (A10) and
(A12) leads to

∂tφ(x)|x=0,L = 0. (A14)

The φ’s canonical conjugate, θ , then satisfies the Neumann
boundary condition [72]:

∂xθ (x)|x=0,L = 0. (A15)

APPENDIX B: SEMICLASSICAL BOSONIZATION AT
ZERO MAGNETIC FIELDS

This section describes a derivation of the sine-Gordon
theories for the spin-S chain from the O(3) nonlinear sigma
model (NLσM). Here, we deal with zero-field cases.

1. Classical Hamiltonian of nonlinear sigma model

We start with the mapping of the spin operator S j to slowly
varying fields n(x j ) and L(x j ) [46]:

S j = S�(x j ), (B1)

�(x j ) = (−1) jn(x j )

√
1 −

(
a0L(x j )

S

)2

+ a0

S
L(x j ), (B2)

where S is the spin quantum number, x j = ja0 is the spa-
tial coordinate, and �(x j ) is the three-component unit vector
with |�(x j )|2 = 1. Two quantum fields n(x) and L(x) satisfy
|n(x)|2 = 1 and n(x) · L(x) = 0 for every x so that |�(x)|2 =
1. To respect the SU(2) commutation relation [Sa

j , Sb
k ] =

iεabcδ j,kSc
j , the following commutation relations are required

[46]:

[La(x), Lb(x)] = iεabcLc(x)δ(x − y), (B3)

[La(x), nb(x)] = iεabcnc(x)δ(x − y), (B4)

[na(x), nb(x)] = 0, (B5)

where εabc is the complete antisymmetric tensor with εxyz = 1
and δi, j is the Kronecker’s delta.

Let us consider the partition function Z of the spin-S
Heisenberg antiferromagnetic spin chain,

H = J
∑

j

S j · S j+1. (B6)

Note that our arguments also applies to N-leg spin-S ladders
and other related one-dimensional systems [45,73–76]. For

simplicity, we take the simplest example (B6) here. Perform-
ing the Taylor expansion on the exchange interaction S j · S j+1

up to the O(a0
2) terms, we obtain

∑
j

S j · S j+1 ≈
∫

dx

a0

(
S2a0

2

2
(∂xn)2 + 2a0

2L2

)
+ const.

(B7)

The effective Hamiltonian is given by

Hcl =
∫

dx

(
gv

2
L2 + v

2g
(∂xn)2

)
, (B8)

with g = 2/S and v = 2JSa0. Equation (B8) represents the
classical Hamiltonian in the path integral formalism. In other
words, the Berry phase is yet to be included. We can express
the uniform component L(x j ) of the spin operator S j in terms
of the staggered one, n(x j ). The Heisenberg equation of mo-
tion ∂t n = i[Hcl, n] tells us that ∂t n = gvL × n. This relation
immediately leads to

L = 1

gv
n × ∂t n. (B9)

2. Berry phase

The partition function Z of the spin chain (B6) is written as

Z =
∫

D�δ(|�|2 − 1)e−S , (B10)

S = SBP + Scl, (B11)

in the path-integral formalism, where S is the total action
and Scl = ∫ β

0 dτ Hcl is the classical action. β = 1/kBT is the
inverse temperature, eventually set to β → +∞. The other
part SBP of the action is the Berry phase [46,47]:

SBP = −iS
∑

j

ω[�(x j, τ )], (B12)

ω[�(x j, τ )] =
∫ β

0
dτ (1 − cos γ (x j, τ ))∂τ θ (x j, τ ), (B13)

where γ (x, τ ) and θ (x, τ ) are the polar and azimuthal angles,
respectively:

�(x, τ ) =
⎛
⎝sin γ (x, τ ) cos θ (x, τ )

sin γ (x, τ ) sin θ (x, τ )
cos γ (x, τ )

⎞
⎠. (B14)

We employed this notation for the angles to make contact with
the conventional notation of the Abelian bosonization [20] in
Sec. B 3 b.

The Berry phase (B12) gives rise to the well-publicized
theta term that determines the ground state’s fate in quantum
spin chains [45,77,78]. Note that the classical ground state
of the model (B6) is the Néel ordered state. We can regard
(−1) jn in Eq. (B2) as the classical configuration,

�(x j ) = (−1) jn(x j ), (B15)

and a0L/S0 as its quantum fluctuations. Let us evaluate the
Berry phase (B12) for the classical configuration (B15). The
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Berry phase then becomes

SBP = −iS
∑

j

(−1) jω[n(x j, τ )]

= −iS
∑

j′
{ω[n(x2 j′ , τ )] − ω[n(x2 j′−1, τ )]}

= −iS
∫ β

0
dτ

∫
dx

2

δω[n(x), τ ]

δn(x, τ )
· ∂xn(x, τ ). (B16)

The functional derivative δω[n]/δn has a simple representa-
tion [47],

δω[n]

δn
= n × ∂τ n. (B17)

Then, the Berry phase turns into the theta term,

SBP = i�
∫

dτdx

4π
n · ∂τ n × ∂xn, (B18)

with � = 2πS. Inclusion of the quantum fluctuation a0L/S
has no impact on the value of the Berry phase (B18) since the
local modifications of � keep the topological term such as the
Berry phase intact.

3. Dual transformation to sine-Gordon theory

It is well known that the O(3) NLσM at zero magnetic
fields can be mapped to the sine-Gordon model [48]. Here, we
derive the dual transformation at the operator level. That is, we
relate the boson fields of the sine-Gordon theory to the sigma
field n of the O(3) NLσM, and ultimately to the original spin.
We call this bosonization formula a “semiclassical” bosoniza-
tion since the O(3) NLσM is a semiclassical field theory.
Interestingly, the resultant “bosonization” formulas resemble
the well-known Abelian bosonization formulas of quantum
spins [20], as we show later.

To bridge the O(3) NLσM and the sine-Gordon model,
we add a local interaction, D(nz )2 with D > 0, to the clas-
sical Hamiltonian (B8). This term is akin to the single-ion
anisotropy term D

∑
j (S

z
j )

2 and the easy-plane exchange
anisotropy −D

∑
j Sz

jS
z
j+1. The introduction of the easy-plane

anisotropy to the spin chain (B6) does not immediately induce
any quantum phase transition regardless of the spin quantum
number [20,52,79].

a. Action of dual quantum field theory

The low-energy excitations of the O(3) NLσM carry the
topological number,

Qm = 1

4π

∫
dτdx n · ∂τ n × ∂xn. (B19)

The topological number (B19) is called the skyrmion number.
The magnetic skyrmion carries Qm ∈ Z. The skyrmion can
be split into two merons (Fig. 2) [48,49], which plays the
essential role in what follows.

The meron with Qm = ±1/2 resembles a vortex with the
vorticity ±1. The meron avoids the energy cost due to the
anisotropy by mostly lying down on the xy plane. Unlike
the vortex with the singular point at its center, the meron
avoids the singularity by pointing toward the z axis in a finite

FIG. 7. A vortex with ν = 1 resting a bond connecting two points
x j and x j+1 is shown. The space-time is discretized to the rectangular
lattice. The vorticity is defined on a rectangular plaquette indicated
by a gray circle with an arrow. The θ field changes by π along the ver-
tical line with arrows. The vorticity on the plaquette is ν = [θ (x, τ +
δτ ) − θ (x, τ ) − θ (x + δx, τ + δτ ) + θ (x + δx, τ + δτ )]/2π = 1.

space-time area. Let us call this area the core. The core size is
a decreasing function of D.

The meron’s topological charge (B19) is characterized by
the two integers, (σ, ν), where σ = ±1 is the sign of nz at the
center of the meron’s core and ν ∈ Z is the vorticity density.
In what follows, we discretize the (1 + 1)-dimensional space-
time as the rectangular lattice with the lattice spacings δτ

and δx in the τ and x directions, respectively (Fig. 7). If we
take δτ and δx much larger than the core size of the meron,
the meron on the discretized space-time behaves just like the
vortex except for the topological term. The topological charge
(B19) recalls the orientation σ = ±1 of nz at the core center of
the meron. When the system has Nm merons with (σn, νn) for
n = 1, 2, . . . , Nm, the net topological charge (B19) is written
as [80]

Qm =
Nm∑
n=1

1

2
σnνn. (B20)

The vorticity density is defined as

νn = δτδx

2π
(∂τ ∂x − ∂x∂τ )θ (x, τ ). (B21)

The net vorticity over the system, Qv, is given by

Qv =
∑

n

νn = 1

2π

∫
dτdx (∂τ ∂x − ∂x∂τ )θ (x, τ ). (B22)

We are now ready to derive a dual field theory of the
O(3) NLσM. The meron has a characteristic length scale �c

corresponding to the core size. If the correlation length, �, of
merons is much longer than �c, the merons can be effectively
regarded as vortices at the length scale ��. We can assume
� � �c without loss of generality thanks to D. Larger D/v

shrinks the core size �c and expands the correlation length
� simultaneously. Accordingly, we can construct the low-
energy effective field theory of meron similarly to that for
the vortex [50,51]. Following the standard argument of the
dual transformation of the two-dimensional XY model to the
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sine-Gordon theory [50,51], we rewrite the action S and the
partition function Z as

S = 1

2g

∫
dτdx (∂μθ )2 − (ln ζ )

Nm∑
n=0

ν2
n + i

�

2

Nm∑
n=0

σnνn,

(B23)

Z =
∞∑

Nm=0

∫
Dθ exp(−S ), (B24)

where (∂μθ )2 = (∂xθ )2 + (∂τ θ )2 and ζ is a fugacity of the
meron [48]. Nm = 0, 1, 2, . . . is the total number of merons.
We set ν0 = σ0 = 0 for Nm = 0. Note that the velocity v is
set to unity for simplicity. We can resurrect v whenever we
want. The second term of Eq. (B23) represents the energy
cost to create the meron with (σn, νn), which is introduced
here based on physical considerations [51]. The energy cost is
independent of σn = ±1 thanks to the global Z2 symmetry un-
der nz → −nz. The easy-plane anisotropy D(nz )2 is encoded
in the fugacity ζ .

Let us introduce an auxiliary field Jμ for μ = τ, x through
the Hubbard-Stratonivich transformation [64].

Z =
∑
Nm

∫
DθDJτDJx exp

(
− 1

2πK

∫
dτdx Jμ

2

+ i

π

∫
dτdx Jμ∂μθ + (ln ζ )

∑
n

ν2
n − i

�

2

∑
n

σnνn

)
,

(B25)

with K being

K = π

g
. (B26)

Here, we split θ into a regular part θr and a vortex part θv: θ =
θr + θv. These two parts are distinguished by the vorticity,

(∂τ ∂x − ∂x∂τ )θr (x, τ ) = 0,

(∂τ ∂x − ∂x∂τ )θv(x, τ ) �= 0. (B27)

Integrating θr field in Eq. (B25), we obtain the delta function∫ ∏
τ,x

Dθr (x, τ ) exp

(
− i

π
(∂μJμ)θr

)
∝

∏
τ,x

δ(∂μJμ).

(B28)

On the other hand, completing the square with respect to Jμ,
we find that the following relation holds along a path with the
largest contribution to the path integral:

Jμ = iK∂μθv, (B29)

for μ = τ, x. Hereafter, we denote θv as θ for simplicity ex-
cept when we stress the difference of θv and θ .

The condition, ∂μJμ = 0, imposed by the delta function
δ(∂μJμ) is automatically met if we write the Jμ field as

Jμ = εμν∂νφ, (B30)

where εμν is the two-dimensional complete anatisymmet-
ric tensor with ετx = 1. The field φ introduced so is dual
to Kθ in a sense that they satisfy the Cauchy-Riemann

relation,

K

v
∂tθ = ∂xφ, (B31)

−K∂xθ = 1

v
∂tφ. (B32)

The φ field is coupled to the vorticity density through the
following term of the action (B25):

i

π

∫
dτdx Jμ∂μθ = − i

π

∫
dτdx εμνφ∂ν∂μθ. (B33)

We derived the right hand side by integrating φ by parts. If we
discretize the space-time to a rectangular lattice (Fig. 7), we
can further rewrite it as

exp

(
i

π

∫
dτdx Jμ∂μθ

)
=

∏
τ,x

exp(2iφνn). (B34)

We obtain the following expression of the partition function:

Z =
∑
Nm

∫
Dφ

∏
τ,x

exp

(
− 1

2πK
(∂μφ)2 + 2iφνn

+ (ln ζ )ν2
n − i

�

2
σnνn

)
. (B35)

Let us keep the Nm = 0, 1 contributions only.
Since the larger νn requires larger energy cost to create the

meron, we limit ourselves to νn = 0 or νn = ±1 for Nm = 1.
Then the partition function is approximated as

Z ≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

×
[

1 + ζ (e2iφ + e−2iφ )(e−i �
2 + ei �

2 )

]

≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2+4ζ cos(�/2) cos(2φ)

)

=
∫

Dφ exp(−Sdual ), (B36)

with the dual action,

Sdual = v

2πK

∫
dτdx (∂μφ)2

− 4ζ cos

(
�

2

)∫
dτdx cos(2φ). (B37)

Since � = 2πS, the dual action (B37) is consistent with the
existence of the symmetric gapped quantum phase for S ∈ Z.
Besides, the sine-Gordon theory (B37) shows that the Haldane
phases for odd S and even S belong to different phases. The
odd-spin Haldane phase is the symmetry-protected topolog-
ical phase whereas the even-spin one is topologically trivial
[8].

When S ∈ Z + 1/2, the coupling constant vanishes,
cos(�/2) = cos(πS) = 0. The merons with odd vorticities
are then forbidden. Instead, the merons with even vorticities
should be taken into account. The largest contribution comes
from a pair of merons with ν1 = ν2 = ±1 Including these
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merons, we are led to

Sdual = v

2πK

∫
dτdx (∂μφ)2 − 4ζ 2 cos �

∫
dτdx cos(4φ),

(B38)

for S ∈ Z + 1/2. When the ground state described by the sine-
Gordon model (B38) is gapped, the ground state is doubly
degenerate due to the spontaneous breaking of the φ → φ +
π/2 symmetry. As we see below, this symmetry is the one-site
translation symmetry of the spin chain.

b. Operator relations between spin and dual boson

To represent spin chain’s symmetries in terms of the dual
boson field, φ, we need a translation dictionary from the spin
to the boson. Let us recall that the sine-Gordon theories (B37)
and (B38) are derived from the NLσM. Since we already
have the translation rules (B1) and (B2) from the spin to the
sigma field n, we only need to establish the translation from
the sigma field to the φ boson. If we completely ignore the
quantum fluctuations, we find �(x j ) = (−1) jn(x j ). With the
polar coordinate,

n(x, τ ) =
⎛
⎝sin γ (x, τ ) cos θ (x, τ )

sin γ (x, τ ) sin θ (x, τ )
cos γ (x, τ )

⎞
⎠. (B39)

Note that we are focused on the physics at the length scale
much longer than the core size. Almost everywhere is thus
outside the meron’s core. The polar angle is fixed to γ = π/2
outside the core. At the classical level, we have nx = cos θ and
ny = sin θ but the others, nz, Lx, Ly, and Lz, are zero. The latter
quantities become nonzero when the quantum fluctuation is
taken into account.

Previously, we found an equation (B9) to relate L to n. For
the z component,

a0Lz = a0

gv
(n × ∂t n)z

= a0K

πv
∂tθ. (B40)

Using the Cauchy-Riemann relation (B32), we obtain

a0Lz = a0

π
∂xφ. (B41)

The equal-time commutation relation, [Lz(x), na(y)] =
iεzabnb(x)δ(x − y) is then rephrased as [∂xφ(x), eiθ (y)] =
πeiθ (x)δ(x − y), which implies

[∂xφ(x), θ (y)] = π iδ(x − y), (B42)

or equivalently,

[φ(x), ∂yθ (y)] = π iδ(x − y). (B43)

These commutation relations are exactly identical to the
canonical one for the U(1) compact boson field of the TL
liquid [20] and also equivalent to Eq. (A5).

Next, we look into nz. This quantity is coupled to
the staggered magnetic field through the Zeeman energy,
−hs

∑
j (−1) jSz

j = −(Shs/a0)
∫

dx nz(x). The staggered field
makes merons with σ = ± nonequivalent. In other words, hs

makes the fugacity dependent on σn: ζσn . We can include the
staggered field into the action (B23) as follows.

S = 1

2g

∫
dτdx (∂μθ )2 −

Nm∑
n=0

(ln ζσn )ν2
n

+ i
�

2

Nm∑
n=0

σnνn. (B44)

Repeating the dual transformation, we obtain

Z ≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

× [1 + ζ+e2φie−i �
2 + ζ−e2φiei �

2

+ ζ+e−2φiei �
2 + ζ−e2φie−i �

2 ]

=
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

×
[

1 + 2ζ+ cos

(
2φ − �

2

)
+ 2ζ− cos

(
2φ + �

2

)]

≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

×
[

1 + 2(ζ+ + ζ−) cos

(
�

2

)
cos(2φ)

+ 2(ζ+ − ζ−) sin

(
�

2

)
sin(2φ)

]
. (B45)

Here, we expand the right hand side about hs. The expansion
of the fugacities ζ± = ζ ± cζ hs with a constant cζ leads to

Z ≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

×
[

1 + 4ζ cos

(
�

2

)
cos(2φ)

+ 4cζ hs sin

(
�

2

)
sin(2φ)

]

≈
∫

Dφ exp(−Sdual ). (B46)

The dual action is thus given by

Sdual = 1

2πK
(∂μφ)2 − 4ζ cos(�/2) cos(2φ)

+ a1hs sin(�/2) sin(2φ), (B47)

with a constant a1. The last term implies

nz = a1 sin(�/2) sin(2φ). (B48)

Finally, we rewrite Lx and Ly.

Lx = 1

gv
(ny∂t n

z − nz∂t n
x )

= a1

gv
sin(�/2){sin θ (∂tφ) cos(2φ)

− sin(2φ)(∂tθ ) cos θ}, (B49)
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Ly = 1

gv
(nz∂t n

x − nx∂t n
z )

= − a1

gv
sin(�/2){− sin(2φ)(∂tθ ) sin θ

− 2 cos θ (∂tφ) cos(2φ)}. (B50)

The operator-product expansion of the φ field [81],

∂tφ(x + a0) cos(2φ(x)) = 1

ia0
sin(2φ(x)) + · · · , (B51)

and a similar expansion for θ lead to

Lx = −ib1 sin(�/2) sin θ sin(2φ), (B52)

Ly = ib1 sin(�/2) cos θ sin(2φ), (B53)

with a constant b1 ∈ R.
We could finally translate the spin operator into the φ and

θ terms.

Sz
j = a0

π
∂xφ + (−1) ja1 sin(πS) sin(2φ), (B54)

S+
j = eiθ [(−1) j + b1 sin(πS) sin(2φ)]. (B55)

The dimer order parameter (−1) jS j · S j+1 is bosonized as

(−1) jS j · S j+1 = d cos(2φ) + · · · (B56)

with a nonuniversal constant d ∈ R [82–85]. This bosoniza-
tion formula follows from operator product expansions such
as

(−1) jSz
jS

z
j+1 ≈ 2a0a1

π
∂xφ sin(2φ(x + a0)) + · · ·

∼ cos(2φ(x)) + · · · . (B57)

Surprisingly, Eqs. (B54), (B55), and (B56) are identical
to the standard bosonizaton formulas [20] for S = 1/2. We
call Eqs. (B54) and (B55) semiclassical bosonization formu-
las. The relations (B54) and (B55) imply that φ and θ for
S ∈ Z + 1/2 are compactified as

φ ∼ φ + π, θ ∼ θ + 2π. (B58)

Note that the staggered component of Eq. (B54) vanishes
when S ∈ Z. The staggered component is not absent but
represented as sin φ for S ∈ Z. This S dependence of the
bosonization formulas is related to the LSM theorem [25,30].
For S ∈ Z + 1/2, the anisotropy D(nz )2 ∝ − cos(4φ) does
not induce the unique gapped ground state. If cos(4φ) is
relevant and makes the ground state gapped, the ground state
breaks the one-site translation symmetry, φ → φ + π

2 , spon-
taneously, as we see soon later. For S ∈ Z, by contrast, D(nz )2

with large enough D > 0 makes the unique gapped ground
state, which is the large-D state,

⊗
j |Sz

j = 0〉. The effective
Hamiltonian (B37) implies that D(nz )2 ∝ −D cos(2φ). Here,
the minus sign comes from the fact that the large-D phase is
topologically trivial. We can deduce

nz ∝ sin φ, (S ∈ Z), (B59)

for S ∈ Z. Equation (B59) is consistent with the S dependence
of the one-site translation symmetry. According to Eq. (B54),

the one-site translation T1 : S j → S j+1 can be rephrased as

T1 : φ(x) → φ(x) + π

2
mod π, (B60)

for S ∈ Z + 1/2. On the other hand, T1 should act on φ for
S ∈ Z as

T1 : φ(x) → φ(x) + π mod π, (B61)

for S ∈ Z because the effective field theory (55) is T1-invariant
and also because the integer-spin HAFM chain can be seen as
a two-leg HAFM ladder of the half-odd-integer spin [44]. For
S ∈ Z, the two boson fields φ and θ will be compactified as

φ ∼ φ + π, θ ∼ θ + 2π. (B62)

This compactification of φ is consistent with the de-
duced relation (B59). However, unfortunately, no microscopic
derivations of Eq. (B59) are yet available.

In the main text, we discuss the symmetry protection of the
quantization of the edge magnetization. In the spin-S chains,
the protecting symmetries are the U(1) spin-rotation symme-
try and the site-centered inversion symmetry. The rotation
around the z axis by an angle ϕ is obviously translated into

φ(x) → φ(x), θ (x) → θ (x) + ϕ. (B63)

The site-centered inversion symmetry is

φ(x) → −φ(L − x) + πS, θ (x) → θ (L − x). (B64)

The symmetries (B63) and (B64) forbid cos θ , sin θ , and
cos(2φ) for the S ∈ Z + 1/2 case (3) and forbids cos θ , sin θ ,
and sin(2φ) for the S ∈ Z case (30).

APPENDIX C: SEMICLASSICAL BOSONIZATION ON
MAGNETIZATION PLATEAUS

1. Classical Hamiltonian of nonlinear sigma model

Our starting point for m > 0 is also the relation (B2). For
m = 0, we first considered the classical Néel configuration
and took the quantum fluctuation into account later. On the
magnetization plateau with m > 0, instead, the classical con-
figuration is the transverse Néel state with the longitudinal
uniform magnetization:

�(x j, τ ) =
⎛
⎝(−1) jnx(x j, τ )

√
1 − (m/S)2

(−1) jny(x j, τ )
√

1 − (m/S)2

m/S

⎞
⎠

=
⎛
⎝(−1) j sin γ0 cos θ (x j, τ )

(−1) j sin γ0 sin θ (x j, τ )
cos γ0

⎞
⎠, (C1)

where cos γ0 = m/S is fixed to a constant.
In Sec. B, the staggered part (−1) jn(x j ) of �(x j ) is the

classical configuration and the uniform part (a0/S)L(x j ) is
the quantum fluctuation. In this section, we regard Eq. (C1)
as the classical configuration and the other part of �(x j, τ ),⎛

⎝ (a0/S)Lx

(a0/S)Ly

(−1) jnz(x j, τ )
√

1 − (m/S)2

⎞
⎠, (C2)

as the quantum fluctuation.
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Similarly to Sec. B, we also consider the spin-S HAFM
chain,

H = J
∑

j

S j · S j+1 − hu

∑
j

Sz
j . (C3)

The classical Hamiltonian, Hcl, in the path integral formalism
is almost identical to Eq. (B8):

Hcl =
∫

dx

a0

(
JS2a0

2

2
(∂xn)2 + 2Ja0

2L2

− hu(a0Lz + a0
2∂xLz )

)
+ const.

=
∫

dx

(
v

2g
(∂xn)2 + gv

2
L2 − huLz

)
+ const. (C4)

The Heisenberg equation of motion for n relates L and ∂t n:

L = 1

gv
n × (∂t n + hu × n), (C5)

with hu = (0 0 hu)T . The uniform magnetic field hu is fixed so
that a0hu/gv = m.

2. Berry phase

At first glance, the classical Hamiltonian Hcl does not
make much difference from that for m = 0. By contrast, the
Berry phase is completely different. The value of the Berry

phase is insensitive to the local modifications of �(x j, τ )
thanks to its topological nature. Accordingly, the Berry phase
is governed by the classical configuration in the semiclassical
approach.

In what follows, we rewrite the Berry phase of the classi-
cal configuration (C1). Note that the following argument just
repeats those of Refs. [64,86]. Still, it is worth repeating here
because we are to derive the Berry phase later in similar but
more extended situations.

First, we note that the Berry phase for the classical con-
figuration (C1) of �(x j ) is identical to that for another
configuration �̃(x j, τ ), that is,

�̃(x j, τ ) =
⎛
⎝sin γ0 cos θ (x j, τ )

sin γ0 sin θ (x j, τ )
cos γ0

⎞
⎠, (C6)

except for a certain constant. More precisely [63],

−iS
∑

j

ω[�(x j, τ )] = −iS
∑

j

ω[�̃(x j, τ )]+iπ
∑

j

(S − m).

(C7)

Since the second term on the right-hand side is merely a
constant, we can identify these two Berry phases.

Next, following Ref. [64], we rewrite the Berry phase for
�̃ as follows:

SBP = −iS
L∑

j=1

ω[�̃(x j, τ )]

= −iS
L/2∑
j′=1

ω[�̃(x2 j′ , τ )] − iS
L/2∑
j′=1

(
2(1 − cos γ0)

∫ β

0
dτ ∂τ θ (x2 j′−1, τ ) − ω[�̃(x2 j′−1, τ )]

)

= −iS
L∑

j=1

(−1) jω[�̃(x j, τ )] − 2i(S − m)
L/2∑
j′=1

∫ β

0
dτ ∂τ θ (x2 j′−1, τ )

= iπ (S − m)Qv − i(S − m)
∫ L

0

dx

a0

∫ β

0
dτ ∂τ θ (x, τ ). (C8)

In the last line, we used the one-site translation symme-
try. Qv = ∑

n νn represents the net vorticity on the two-
dimensional space-time, (B22). We arrived at the following
form of the Berry phase.

SBP = iπ (S − m)Qv + SLSM, (C9)

SLSM = −i(S − m)
∫ L

0

dx

a0

∫ β

0
dτ ∂τ θ (x, τ ). (C10)

As Ref. [64] mentioned, the term (C10) is related to the
LSM theorem [25]. Let us denote the ground state on
the magnetization plateau as |ψ0〉. The ground state has a
configuration, {θ (x, τ )}{x,τ }∈R2 , of the θ field. Here, we con-
sider another state, |ψ1〉, with a slowly shifted configuration

{θ ′(x, τ )}{x,τ }∈R2 , related to θ (x, τ ) through

θ ′(x, τ ) = θ (x, τ ) − 2πa0

βL
τ. (C11)

The θ ′ field respects the periodic boundary condition only in
the L → +∞ limit since θ ′(x, τ + β ) = θ ′(x, τ ) − 2πa0/L.
Nevertheless, it is useful to consider the shifted field θ ′ be-
cause it works as a variational configuration of the genuine
low-energy state.

The analytical continuation τ → it clarifies the physical
meaning of the shift (C11). The shift i(2πa0/βL)t of θ is an
insertion of a gauge field A = (A0, A1) with

A0 = 0, (C12)

A1 = 2πa0

βL
t, (C13)
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in the real time t [28]. The gauge field is gradually increased
from the time t = 0 to t = β, that is, A1(t = 0) = 0 and
A1(t = β ) = 2πa0/L. The latter corresponds to the unit flux
insertion [34]. The gauge field is adiabatically inserted in the
β → +∞ limit.

The state |ψ1〉 has a vanishing excitation energy in the ther-
modynamic limit at zero temperature because the difference
of the classical energies,

Hcl[θ
′] − Hcl[θ ] = −2vK

βL

∫ L

0
dx ∂xθ (x, τ )

+ L

a0

vK

2π

(
2πa0

βL

)2

, (C14)

is vanishing in the limit of L → +∞.
However, the shift (C11) affects the LSM term.

SLSM = −i(S − m)
∫ L

0

dx

a0

∫ β

0
dτ ∂τ θ

′(x, τ )

= −i(S − m)
∫ L

0

dx

a0

∫ β

0
dτ ∂τ θ (x j, τ ) + 2π i(S − m).

(C15)

If S − m �∈ Z, the two states, |ψ0〉 and |ψ1〉, belong to dif-
ferent topological sectors. When S − m = p/q for coprime
integers p and q, there are q orthogonal low-energy states,
|ψ0〉 , |ψ1〉 , . . . , |ψq−1〉. The low-energy state |ψn〉 for n > 0
has the configuration,

θ ′(x, τ ) = θ (x, τ ) − 2πa0

βL
nτ. (C16)

Therefore, when S − m ∈ Z + p/q, the partition function at
zero temperature is given by

Z ≈
q−1∑
n=0

〈ψn|e−βH|ψn〉 . (C17)

3. Dual transformation to sine-Gordon theory

a. When S − m ∈ Z

Here, we consider the simplest case of S − m ∈ Z. The
m �= 0 case starts from the classical configuration (C1). Un-
like the m = 0 case, the topological excitation is the vortex
rather than the meron. Note that the path integral is defined
under the (imaginary-)temporal boundary condition:

θ (τ + β, x) = θ (τ, x) mod 2π. (C18)

The LSM term (C10) does not interfere with the boundary
condition (C18) for S − m ∈ Z and is thus negligible. For
S − m ∈ Z, the dual field theory is derived as follows. The
classical configuration,

nx =
√

1 − (m/S)2 cos θ (x, τ ), (C19)

ny =
√

1 − (m/S)2 sin θ (x, τ ), (C20)

a0Lz = m, (C21)

leads to the following action:

S = v[1 − (m/S)2]

2g

∫
dτdx (∂μθ )2 − (ln ζ )

Nv∑
n=0

ν2
n

− iπ (S − m)
Nv∑

n=0

νn

= vK

2π

∫
dτdx (∂μθ )2 − (ln ζ )

Nv∑
n=0

ν2
n

− iπ (S − m)
Nv∑

n=0

νn, (C22)

with the Luttinger parameter,

K = π

g
[1 − (m/S)2]. (C23)

Nv = 0, 1, 2, . . . is the number of vortices. The Hubbard-
Stratonovich transformation turns the partition function into

Z =
∑
Nv

∫
DθDJτDJx exp

(
− 1

2πK

∫
dτdx Jμ

2

+ i

π

∫
dτdx Jμ∂μθ + (ln ζ )

Nv∑
n=0

ν2
n + SBP

)

=
∞∑

Nv=0

∫
Dφ e−SLSM

∏
τ,x

exp

(
− 1

2πK
(∂μφ)2 + 2iφνn

+ (ln ζ )ν2
n + π i(S − m)νn

)
. (C24)

Collecting the Nv = 0, 1 terms, we obtain the following rep-
resentation of the partition function:

Z ≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

×
[

1 + ζ (ei[π (S−m)+2φ] + H.c.)

]

=
∫

Dφ
∏
τ,x

exp(−Sdual ), (C25)

with the dual action

Sdual = v

2πK

∫
dτdx (∂μφ)2

− 2ζ

∫
dτdx cos[π (S − m) + 2φ]

= v

2πK

∫
dτdx (∂μφ)2

− 2ζ cos[π (S − m)]
∫

dτdx cos(2φ). (C26)

Though the dual action is qualitatively the same as Eq. (B54),
they have two quantitative differences. The first difference is
the coupling constant of the cosine interaction, where � =

184401-18



QUANTIZED EDGE MAGNETIZATIONS AND THEIR … PHYSICAL REVIEW B 104, 184401 (2021)

2πS is replaced by 2π (S − m). The other is the Luttinger
parameter (C23).

Let us compile the translation dictionary from the spin to
the boson. We again start with Lz, which admits the following
quantum fluctuation:

a0Lz = m + a0

gv
(n × ∂t n)z

= m + a0K

πv
∂tθ

= m + a0

π
∂xφ. (C27)

Previously, we saw that the sine-Gordon theory at m = 0
admits the staggered magnetic field hs as the imbalance of
the fugacities of merons. This time, however, the staggered
field hardly affects the fugacities of vortices, because the
vortices have no longitudinal nz component classically. In-
stead, the staggered magnetic field is introduced to the action
of the vortex through m. The staggered field modifies m to
m + (−1) jδm. The staggered field doubles the unit-cell size
of the spin-S HAFM chain. The unit cell contains two sites,

x2 j′−1 and x2 j′ . The staggered magnetic field modifies the
classical configuration to

�(x2 j′−1, τ ) =
⎛
⎝−

√
1 − [(m − δm)/S]2 cos θ1(x2 j′−1, τ )

−
√

1 − [(m − δm)/S]2 sin θ1(x2 j′−1, τ )
(m − δm)/S

⎞
⎠,

(C28)

�(x2 j′ , τ ) =
⎛
⎝

√
1 − [(m + δm)/S]2 cos θ2(x2 j′ , τ )√
1 − [(m + δm)/S]2 sin θ2(x2 j′ , τ )

(m + δm)/S

⎞
⎠.

(C29)

Doubling the unit-cell size also doubles the number of fields.
Note that θ1 + θ2 is related to the global U(1) spin-rotation
symmetry but θ1 − θ2 is unrelated to any global symmetry.
Under such circumstance, the antisymmetric field, θ1 − θ2,
acquires the larger excitation gap than the symmetric field,
θ1 + θ2, does [27]. Integrating out the high-energy antisym-
metric field imposes a constraint,

θ1(x, τ ) = θ2(x, τ ) = θ (x, τ ) mod 2π. (C30)

This relation allows us to calculate the Berry phase in analogy
with Eq. (C8). Namely, the staggered magnetization leads to
the Berry phase:

SBP = −iS
L/2∑
j′=1

ω[�(x2 j′ , τ )] − iS
L/2∑
j′=1

[
2

(
1 − m + δm

S

) ∫ β

0
dτ ∂τ θ1(x2 j′−1, τ ) − ω[�(x2 j′−1, τ )]

]

= −iS
L∑

j=1

(−1) jω[�(x j, τ )] − 2i(S − m − δm)
L/2∑
j′=1

∫ β

0
dτ ∂τ θ (x2 j′−1, τ )

= π i(S − m − δm)Qv − i(S − m)
∫ L

0

dx

a0

∫ β

0
dτ ∂τ θ (x, τ ). (C31)

The constant shift S − m → S − m − δm of the coefficient of
Qv affects the dual action as follows:

Sdual = v

2πK

∫
dτdx (∂μφ)2

− 2ζ

∫
dτdx cos[π (S − m − δm) − 2φ]

≈ v

2πK

∫
dτdx (∂μφ)2

− 2ζ

∫
dτdx cos[π (S − m)] cos(2φ)

+ 2ζ δm
∫

dτdx cos[π (S − m)] sin(2φ). (C32)

The last term implies that nz is given by

nz ∝ (−1) j cos[π (S − m)] sin(2φ). (C33)

Lx, Ly are obtained similarly to Eqs. (B52) and (B53). In short,
we obtain

Sz
j = m + a0

π
∂xφ + (−1) ja1 cos[π (S − m)] sin(2φ), (C34)

S+
j = eiθ [(−1) j + b1 cos[π (S − m)] sin(2φ)], (C35)

with nonuniversal constants, a1, b1 ∈ R. The semiclassical
bosonization formulas (C34) and (C35) are identical to the
m = 0 ones (B54) and (B55) by replacing sin(πS) with
cos[π (S − m)]. The bosonization formulas (C34) and (C35)
indicate that the one-site translation T1 : S j → S j+1 and the
site-centered inversion Is : S j → SL− j act on φ and θ as

T1 : φ(x, τ ) → φ(x, τ ) + π

2
, (C36)

T1 : θ (x, τ ) → θ (x, τ ) + π, (C37)

and

Is : φ(x, τ ) → −φ(L − x, τ ) + π

2
, (C38)

Is : θ (x, τ ) → θ (L − x, τ ) + π. (C39)

Since the bond-centered inversion Ib = T1Is keeps the spin-
rotation symmetries and inverts φ(x, τ ) → −φ(L − x, τ ), the
dimer order parameter (−1) jS j · S j+1 is again bosonized as

(−1) jS j · S j+1 = d cos(2φ) + · · · . (C40)
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b. When S − m ∈ Z + p/q

When S − m has a decimal part, we need to include the
LSM-twisted states [Eq. (C17)]. If we include the vortices
with ν = ±1 only, the partition function would become

Z ≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

×
q−1∑
n=0

[1 + ei 2πn
q ζ (ei[π (S−m)−2φ] + e−i[π (S−m)−2φ] )]

=
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)
, (C41)

because
∑q

n=0 ei(2πn/q) = 0. The LSM term thus forbids the
single-vortex excitation with ν = ±1. Likewise, it forbids
those with ν �= 0 mod q. Therefore vortices can be excited
only when νn ∈ qZ. The dual action is then given by

Sdual = v

2πK

∫
dτdx (∂μφ)2

− 2ζ

∫
dτdx cos[πq(S − m) − 2qφ]

= v

2πK

∫
dτdx (∂μφ)2

− 2ζ cos[πq(S − m)]
∫

dτdx cos(2qφ). (C42)

This field theory is perfectly consistent with the one discussed
by Oshikawa, Yamanaka, and Affleck [27].

c. When S − m ∈ Z + 1/2

In the main text, the semiclassical bosonization formulas
are required for the S − m ∈ Z + 1/2 case. In what follows,
we limit ourselves to the S − m ∈ Z + 1/2 case.

To derive the semiclassical bosonization formulas, we need
to investigate the response of the dual field theory to the exter-
nal staggered magnetic field. There is a low-energy state, |ψ ′

0〉,
that lives in a different topological sector from the ground
state |ψ0〉 for δm = 0. Previously, we defined |ψ ′

0〉 = |ψ1〉 by
twisting the θ field [Eq. (C11)]. When Qv = ±1 and S − m ∈
Z + 1/2, we can instead employ another, more convenient,
example of a low-energy state |ψ ′

0〉, that is,

|ψ ′
0〉 = Ib |ψ0〉 . (C43)

The bond-centered inversion flips the sign of the vorticity
density,

Ib : νn → −νn. (C44)

Figure 7 gives a schematic understanding of the relation
(C44).

The 2iφνn term of Eq. (C24) is invariant under Ib because
this term is originally iJμ∂μθv/π = −K (∂μθv)2/π , which is
apparently Ib-invariant. To compensate this sign and make
this term Ib-invariant, the φ field must transform as

Ib : φ(x) → −φ(L − x) mod 2π. (C45)

The relation (C44) results in an interesting fact that |ψ0〉 and
|ψ ′

0〉 belong to different topological sectors because

IbSBPI−1
b = −iS

L∑
j=1

(−1) jω[�̃(xL+1− j, τ )]

− 2i(S − m)
L/2∑
j′=1

∫ β

0
dτ ∂τ θ (xL+1−(2 j′−1), τ )

= iS
L∑

j=1

(−1) jω[�̃(x j, τ )]

− 2i(S − m)
L/2∑
j′=1

∫ β

0
dτ ∂τ θ (x2 j′ , τ )

= SBP − 2π i(S − m)Qv. (C46)

If Qv = 1 and S − m ∈ Z + 1/2, the following relation holds

IbSBPI−1
b − SBP = π i mod 2π i. (C47)

The two states |ψ0〉 and Ib |ψ0〉 are thus orthogonal low-
energy states, equally contributing to the partition function,

Z = 〈ψ0|e−βH|ψ0〉 + 〈ψ ′
0|e−βH|ψ ′

0〉
= 〈ψ0|e−βH|ψ0〉 + 〈ψ0|I−1

b e−βHIb|ψ0〉 . (C48)

When collecting the Nv = 0, 1 terms, we find

Z ≈
∫

Dφ
∏
τ,x

exp

(
− v

2πK
(∂μφ)2

)

× [1 + ζ (ei[π (S−m)−2φ] + H.c.)

− ζ (ei[π (S−m)−2φ] + H.c.)]

=
∫

Dφ
∏
τ,x

exp

(
− v

2πK
(∂μφ)2

)
. (C49)

The Nv = 2 term needs to be included to the action in order
to generate the most relevant interaction. The dual action thus
becomes

Sdual = v

2πK

∫
dτdx (∂μφ)2

− 2ζ 2 cos[2π (S − m)]
∫

dτdx cos(4φ). (C50)

If the ground state of the spin-1 HAFM chain for S − m = 1/2
is gapped, it must be doubly degenerate by spontaneously
breaking the φ → φ + π

2 symmetry. The φ → φ + π
2 sym-

metry is highly likely to be the one-site translation symmetry.
If so, the site-centered inversion symmetry Is = IbT1 acts on
φ(x, τ ) as

Is : φ(x) → −φ(L − x) + π

2
mod 2π. (C51)

Like Ib, the site-centered inversion Is = IbT1 flips the sign of
νn → −νn because T1 keeps νn. An extra phase arises from the
coupling 2iφνn in Eq. (C24). In fact,

Is(2iφνn)I−1
s = 2iφνn + π iνn, (C52)

184401-20



QUANTIZED EDGE MAGNETIZATIONS AND THEIR … PHYSICAL REVIEW B 104, 184401 (2021)

contains the phase π i for νn = ±1. Thus the state Is |ψ0〉 also
belongs to the different topological sector from that |ψ0〉 lives
in. Just like we did for Ib, we can confirm that the νn = ±1
contributions to the dual action Sdual are canceled between the
two low-energy states, |ψ0〉 and Is |ψ0〉.

Let us apply the staggered magnetic field, hs
∑

j (−1) jSz
j ,

to the spin-S HAFM chain. The staggered magnetic field
keeps the Is symmetry but breaks the Ib symmetry. The Berry
phase (C31) modified by the staggered magnetic field leads to

Z ≈
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

× [1 + ζ (ei[π (S−m−δm)+2φ] + H.c.)

+ eπ iζei[−π (S−m−δm)+2φ] + H.c.)]

=
∫

Dφ
∏
τ,x

exp

(
− 1

2πK
(∂μφ)2

)

× [1 − 4ζ sin[π (S − m − δm)] sin(2φ)]. (C53)

We thus obtain the dual action

Sdual = v

2πK

∫
dτdx (∂μφ)2

+ 4πζδm
∫

dτdx cos[π (S − m)] sin(2φ). (C54)

This dual action implies the following representation of the
staggered magnetization,

nz ∝ cos[π (S − m)] sin(2φ), (C55)

leading to the following semiclassical bosonization formu-
las (C34) and (C35). The bond alternation (−1) jS j · S j+1 is
bosonized as

(−1)S j · S j+1 = d cos(2φ) + · · · . (C56)

APPENDIX D: J4 INTERACTION

In the main text, we deal with an interaction,

V4 = J4

L/2∑
j=1

(−1) jS2 j−1 · S2 j

= −J4

L−1∑
j=1

sin

(
π j

2

)
S j · S j+1. (D1)

Let us include V4 into the low-energy effective field theory of
the spin-1 chain perturbatively. Here, the full Hamiltonian is

H4 = H0 + V4, (D2)

H0 = J
L/2∑
j′=1

(S2 j′−1 · S2 j′ + αS2 j′ · S2 j′+1). (D3)

This perturbative expansion can be systematically performed
[87]. Let P be a projection operator to the low-energy sub-
space of the unperturbed model H0. Acting on the unperturbed
ground state, the interaction (D1) generates an excitation with
q = π/2a0, which is almost at the top of the single-band ex-
citation band, that is, PV4P = 0. Hence, the interaction (D1)

does not affect the ground state and low-energy physics up
to the first-order of the perturbative expansion. The leading
contribution comes from the second-order perturbation,

PV4
1

E0 − H0
QV4P, (D4)

where Q = 1 − P. The second-order perturbation gives rise to
various interaction. The most relevant one is the biquadratic
interaction,

− λ4

L∑
j=1

sin2

(
π j

2

)
(S j · S j+1)2

= −λ4

2

L∑
j=1

{1 − (−1) j}(S j · S j+1)2 (D5)

with λ4 ∝ J4
2/J is a positive constant.

Using the semiclassical bosonization formulas for S −
m = 1/2 (Appendix C 3 c), we obtain

L∑
j=1

(S j · S j+1)2 = du

∫ L

0
dx cos2(2φ) + · · ·

= du

2

∫ L

0
dx cos(4φ) + · · · (D6)

with du ∝ d2 > 0. On the other hand, the staggered part con-
tains sin(2φ),

L∑
j=1

(−1) j (S j · S j+1)2 = ds

∫ L

0
dx cos(2φ) + · · · , (D7)

with a constant ds = m2d . The constant d relates the dimer-
ization with φ: (−1) jS j · S j+1 = d cos(2φ) + · · · [83,84]. We
can set the constant d > 0 without loss of generality. The
effective Hamiltonian of the spin-1 chain (49) of the main text
on the 1/2 plateau is

H4 = v

2πK

∫ L

0
dx (∂μφ)2 + (g2(J4) − g2c)

∫ L

0
dx cos(2φ)

+ g4(J4)
∫ L

0
dx cos(4φ), (D8)

with g2c ∝ J (1 − α), g2(J4) = λ4ds/2 > 0, and g4(J4) =
−λ4du/2 < 0. This field theory is called the double sine-
Gordon theory. Note that exp(±2iφ) are the most relevant
vertex operators in accordance with the compactification rela-
tion, φ ∼ φ + π for S − m ∈ Z. When g2(J4) − g2c �= 0, the
cos(4φ) interaction is negligible since it is less relevant than
cos(2φ) even if cos(4φ) is relevant. The sign of g2(J4) − g2c

determines the ground state and the edge magnetization. The
φ field is locked to φ̄ = 0 (i.e. P = 0) for g2(J4) − g2c < 0
and to φ̄ = ±π/2 (i.e. P = ±1/2) for g2(J4) − g2c > 0. The
quantum phase transition at g2(J4) − g2c = 0 is the second
order if cos(4φ) is irrelevant and otherwise the first order.

The quantum phase transition is likely to be the second
order from the J4 dependence of the excitation gap [Fig. 5(a)].
The quantum critical behavior is also supported by the site-
dependent entanglement entropy [Fig. 5(b)]. If cos(4φ) is
irrelevant, the central charge at g2(J4) − g2c = 0 is exactly
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FIG. 8. Comparison of edge magnetizations Mz
right and Mz

left for
L = 242 (circles and triangles) and for L = 240 (squares and pen-
tagons). The other parameters are fixed to hu/J = 1.5 and α = 0.2.
The former case has the Ib symmetry and the latter has not. The
inversion symmetry quantizes the edge magnetizations except in the
vicinity of the quantum critical point J4/J = 0.295. Without the in-
version symmetry, the edge magnetization shows continuous changes
even away from the quantum critical point.

c = 1. We fitted the numerical data by Eq. (56) by regarding
as and c of Eq. (56) as fitting parameters [Fig. 5(b)]. We
obtained (as, c) = (0.52, 0.94), consistent with the quantum
field theory (D8) with irrelevant cos(4φ).

Despite the quantum critical behaviors of the excitation
gap and the entanglement entropy, the order parameters show
discontinuous behaviors because of the inversion symmetry.
Figure 8 shows the edge magnetizations with and without the
Ib symmetry. The Ib symmetry imposes a strong constraint on
the edge magnetization as the bulk polarization. Recall that U
is given by Eq. (44). The exact Ib symmetry of the model (49)
leads to

〈U 〉 = 〈IbUI−1
b 〉

=
〈

exp

(
i
2π

L

L∑
j=1

jCL+1− j

)〉

=
〈

exp

(
i
2π

L

L∑
j=1

(L + 1 − j)Cj

)〉

= 〈U †〉 exp

(
2π i

(
1 + 1

L

) L∑
j=1

〈
Cz

j

〉 )
. (D9)

The charge neutrality condition,
∑L

j=1 〈Cj〉 = 0, leads to
〈U 〉 = 〈U †〉. Accordingly, if 〈U 〉 �= 0,

P = 1

2π
Im ln 〈U 〉 = 0 or

1

2
mod 1. (D10)

The condition 〈U 〉 �= 0 is equivalent to the locking of φ.
〈U 〉 = 0 holds at the quantum critical point where the φ field
is gapless, where the edge polarization is ill-defined.

In the absence of the Ib symmetry, the edge magnetization
is not necessarily quantized. Indeed, Fig. 8 shows that Mz

left
depends on J4 continuously except for the quantum critical
point J4 = J4c. By contrast, the other edge Mz

right is well quan-
tized. This asymmetric behavior of the quantization can be

FIG. 9. J4 dependence of polarization amplitude 〈U 〉 (circles)
and total charge

∑L
j=1 〈Cj〉 (triangles) for hu/J = 1.5, α = 0.2 with

system size (a) L = 242 and (b) L = 240. (a) When the Ib symmetry
is present, the polarization amplitude and the total charge show
abrupt changes at J4/J ≈ 0.295 thanks to the Ib symmetry. (b) On
the other hand, when the Ib symmetry is absent, the total charge
changes continuously though the accuracy of the numerical data
is extremely lowered in the vicinity of the quantum critical point
J4/J ≈ 0.295. Note that apart from 〈U 〉 and the total charge, the
other thermodynamic quantities behave similarly regardless of the
presence of the absence of the Ib symmetry.

understood as the modification of the boundary condition. The
spin chain (49) has the exact Ib symmetry with the OBC
for L = 2 mod 4. By adding two sites to one edge of the
chain, say, the left edge, we can make L = 0 mod 4 and
violate the Ib symmetry. We can expect that such addition
of sites hardly modifies the bulk Hamiltonian and generate a
symmetry-breaking potential localized at the left edge of the
chain. The most relevant interaction is the staggered magnetic
field, hB sin(2φ(0, τ )). This boundary staggered field alters
the boundary condition on the left edge from φ(x = 0) = 0
to

φ(x = 0, τ ) = �, (D11)

with a constant �. This modification of the boundary condi-
tion explains the continuous change of the edge magnetization
(Fig. 8) in the absence of the Ib symmetry.

The edge magnetization as the bulk polarization (D10)
works as an order parameter to distinguish the φ̄ = 0 phase
(P = 0) and the φ̄ = π/2 phase (P = 1/2 mod 1). Like-
wise, the polarization amplitude 〈U 〉 can also be regarded
as the order parameter. Figure 9 shows the J4 dependence
of the polarization amplitude 〈U 〉 and the total charge,∑L

j=1 〈Cj〉. The abrupt jump of the order parameter (D10)
is due to the Ib symmetry. The polarization amplitude 〈U 〉
also jumps unlike the bond-alternating spin-S chains at zero
magnetic fields [12], though the polarization amplitude is not
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necessarily quantized as 〈U 〉 = ±1. If the excitation gap
closes at the transition point, the polarization amplitude will
change continuously and cross zero at the transition point.
Therefore the observed jump of Fig. 9 implies that the quan-
tum critical regime is too narrow to observe such a continuous
change of 〈U 〉.

The total charge can also be seen as an order parameter to
distinguish the two phases of concern [Fig. 9(a)]. The charge
neutrality is weakly broken for J4 > J4c. Nevertheless, since
the discrepancy of the charge is precisely one, the quantum
phase remains on the 1/2 magnetization plateau in the L →
+∞ limit, M/Ms = 1

2 + 1
L → 1

2 .
The J4 dependence of the total charge becomes continuous

in the absence of the Ib symmetry [Fig. 9(b)]. Besides, the
total charge tends to −1 in the J4/J limit. The sign change
compared to the Ib-symmetric case remains obscure at this
stage. Except for this continuous decrease of the total charge,
the numerical results and the field-theoretical analyses are
consistent.

APPENDIX E: UNION-JACK STRIP

The effective field theory (62) of the union-jack strip

HUJ = J1

L∑
j=1

3∑
n=1

S j,n · S j+1,n + J1

L∑
j=1

S j,2 · (S j,1 + S j,3)

+ J2

L−1∑
j=2

S j,2 · (S j−1,1 + S j−1,3 + S j+1,1 + S j+1,3)

− hu

L∑
j=1

3∑
n=1

Sz
j,n, (E1)

on the 1/3 plateau is derived similarly to that in Appendix C.
The infinitesimal uniform magnetic field hu > 0 is imposed
to break the Sz → −Sz symmetry. We consider the classical

configuration,

�n(x j, τ ) =
⎛
⎝(−1) j+n

√
1 − (m/S)2 cos θn(x j, τ )

(−1) j+n
√

1 − (m/S)2 sin θn(x j, τ )
m/S

⎞
⎠, (E2)

for each leg. The index n = 1, 2, 3 denotes the nth leg. The
interleg interaction leads to

θ1(x, τ ) = θ2(x, τ ) = θ3(x, τ ), (E3)

modulo 2π in the ground state. The Berry phase is thus given
by

SBP = 3π i(S − m)Qv − 3i(S − m)
∫ L

0

dx

a0

∫ β

0
dτ ∂τ θ (x, τ ),

(E4)

where θ = (θ1 + θ2 + θ3)/3. Since 3(S − m) = 1 for the spin-
1/2 union-jack strip on the 1/3 plateau, the dual theory is
derived similarly to Appendix C 3 a.

Sdual = v

2πK

∫
dτdx (∂μφ)2

− 2ζ cos[3π (S − m)]
∫

dτdx cos(2φ), (E5)

with φ = φ1 + φ2 + φ3. In this formulation, the long-range
antiferromagnetic order results from the locking of φ. The
semiclassical bosonization formulas on the 1/3 plateau differ
from Eqs. (C34) and (C35) because the staggered magnetic
field,

hs

L∑
j=1

3∑
n=1

(−1) j+nSz
j,n, (E6)

keeps all the symmetries of the model (E1). This symmetry
implies the bosonization formula,

(−1) j+nSz
j,n ∝ cos(2φ). (E7)
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