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Prethermalization, thermalization, and Fermi’s golden rule in quantum many-body systems
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We study the prethermalization and thermalization dynamics of local observables in weakly perturbed nonin-
tegrable systems, with Hamiltonians of the form Ĥ0 + gV̂ , where Ĥ0 is nonintegrable and gV̂ is a perturbation.
We explore the dynamics of far from equilibrium initial states in the thermodynamic limit using a numerical
linked cluster expansion (NLCE), and in finite systems with periodic boundaries using exact diagonalization. We
argue that generic observables exhibit a two-step relaxation process, with a fast prethermal dynamics followed
by a slow thermalizing one, only if the perturbation breaks a conserved quantity of Ĥ0 and if the value of the
conserved quantity in the initial state is O(1) different from the one after thermalization. We show that the
slow thermalizing dynamics is characterized by a rate ∝ g2, which can be accurately determined using a Fermi
golden rule (FGR) equation. We also show that during such a slow dynamics, observables can be described using
projected diagonal and Gibbs ensembles, and we contrast their accuracy.

DOI: 10.1103/PhysRevB.104.184302

I. INTRODUCTION

A far from equilibrium many-body initial state evolv-
ing under Hamiltonian dynamics, as relevant to describe
an isolated quantum system, is generally expected to relax
to thermal equilibrium (in the sense of observables being
described by traditional ensembles of statistical mechanics)
[1–3]. The advent of quantum simulations in low dimensions
with ultracold atoms [4] and trapped ions [5] has ushered
much of the progress in probing the realm of strongly interact-
ing quantum systems isolated from the environment [6–15].
A recurring theme in these experiments [8,9,12–14] is the
phenomenon of prethermalization and its stability to pertur-
bations [16–18].

Prethermalization is a paradigm in which a separation of
timescales occur in the relaxation dynamics. In its simplest
scenario, two distinct regimes can be identified in the relax-
ation process: a fast initial dynamics called prethermalization,
in which the system relaxes to an intermediate (prethermal)
state, followed by a slower relaxation to the true thermal
equilibrium (thermalization). These two steps in the dynamics
can occur if the system’s Hamiltonian has the form Ĥg =
Ĥ0 + gV̂ , where Ĥ0 is the so-called reference (or unperturbed)
Hamiltonian and gV̂ is a perturbation of strength g (g is
assumed to be small in a sense to be discussed later). The
initial fast evolution is governed by Ĥ0 and the prethermal
state is the equilibrium state of Ĥ0. The perturbation causes
the ensuing slow relaxation to the thermal equilibrium of Ĥg,
with a relaxation rate that is controlled by the perturbation
strength.

However, not every perturbation can lead to a two-step
relaxation process because one can split any Hamiltonian into
Ĥ0 and gV̂ terms in arbitrary ways, whereas the prethermal
and thermal relaxation regimes are qualitatively distinct. Thus

one expects Ĥ0 to have some special feature that uniquely
distinguishes it from Ĥg. A relatively well-understood setup
for prethermalization is when Ĥ0 is integrable and V̂ is an
integrability breaking perturbation, so that Ĥg is nonintegrable
[19–27]. In this case, due to the extensive set of conserved
quantities of Ĥ0, the prethermal state is not a thermal state,
but it is described by a generalized Gibbs ensemble (GGE)
[9,28–31]. The integrability breaking perturbation causes a
slow relaxation from the GGE to the thermal equilibrium of
Ĥg at a rate ∝ g2 [1,13,26,32,33].

A more general setup for prethermalization was discussed
in Ref. [34], where it was shown that prethermalization in
isolated quantum systems is generic provided the perturbation
breaks at least one local (but extensive) conservation law of Ĥ0

(Ĥ0 can hence be nonintegrable). Related results in the context
of open quantum systems were discussed in Refs. [35,36].
In this work, we substantiate the theoretical framework of
Ref. [34] with further results. We address the following
questions: (i) Can one observe a two-step relaxation process
for initial states and perturbations that do not change any
conserved quantity of Ĥ0? (ii) How do we calculate the relax-
ation rates of local observables in the thermodynamic limit?
(iii) How do finite-size effects affect the relaxation process?

We carry out our many-body calculations using the numeri-
cal linked cluster expansion (NLCE) for dynamics introduced
in Ref. [33], and exact diagonalization (ED) calculations on
finite lattices with periodic boundary conditions. The pre-
sentation is organized as follows. In Sec. II we discuss the
general setup for the dynamics and review earlier results
and expectations. In Sec. III we introduce the Hamiltonian
and observables studied, as well as the computational tech-
niques used. The results of our study are reported in Sec. IV,
while caveats of studying relaxation rates in finite systems are
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discussed in Sec. V. A summary of our results is presented in
Sec. VI.

II. SETUP

In this section, we describe the quantum quench protocol
and review the framework for prethermalization introduced in
Ref. [34].

A. Quenches, equilibration, and thermalization

We study unitary dynamics under a Hamiltonian of
the form

Ĥg = Ĥ0 + gV̂ , (1)

where Ĥ0 is the reference Hamiltonian and gV̂ is a pertur-
bation. The dynamics is initiated through a quantum quench
protocol, in which the initial state ρ̂I is in thermal equilibrium
with respect to an initial Hamiltonian ĤI . The idea is that
at time τ = 0 the Hamiltonian is suddenly changed from ĤI

to the time-independent final Hamiltonian Ĥg. The system is
isolated during the τ > 0 dynamics, so that the density matrix
evolves unitarily as

ρ̂(τ ) = e−iĤgτ ρ̂I eiĤgτ . (2)

We study the dynamics of few-body observables Ô, whose
expectation values can be written as

O(τ ) = Tr[Ôρ̂(τ )]. (3)

After sufficiently long time evolution, O(τ ) is expected to
equilibrate at its steady-state value given by the diagonal
ensemble (DE)

ODE = Tr[Ôρ̂DE], where ρ̂DE = lim
τ→∞

1

τ

∫ τ

0
ρ̂(τ ) dτ.

(4)

In the absence of extensive degeneracies in the energy spec-
trum of Ĥg, ρ̂DE can be written as [1,37]

ρ̂DE = Pg[ρ̂I ] =
∑

j

(〈
Eg

j

∣∣ρ̂I

∣∣Eg
j

〉)∣∣Eg
j

〉〈
Eg

j

∣∣, (5)

where {|Eg
j 〉} are the energy eigenkets of Ĥg.

To describe the expectation values of observables after
equilibration when Ĥg is nonintegrable, because of eigenstate
thermalization [1,37–39], the diagonal ensemble ρ̂DE can be
replaced with a Gibbs ensemble ρ̂GE,

OGE = Tr[Ôρ̂GE]. (6)

This can be done because one can show under very general
physically relevant assumptions that, as a result of eigenstate
thermalization, ODE = OGE for few-body or local operators
Ô [1]. We stress that ρ̂GE needs to be determined taking
into account the conserved quantities of Ĥg. In this work, we
consider a nonintegrable Ĥ0 with only one conserved quantity,
the number of particles N̂ .

For a perturbation that breaks particle-number conserva-
tion, the thermal state ρ̂GE is given by

ρ̂GE = e−Ĥg/T

Tr[e−Ĥg/T ]
, when [Ĥg, N̂] �= 0. (7)

The temperature T is the only parameter that needs to be
determined in ρ̂GE. To find T one uses the conservation of
energy under the unitary evolution dictated by Ĥg:

Tr[ρ̂GEĤg] = Tr[ρ̂I Ĥg]. (8)

If the perturbation does not break particle-number conser-
vation, then ρ̂GE has the form

ρ̂GE = e−(Ĥg+μN̂ )/T

Tr[e−(Ĥg+μN̂ )/T ]
, when [Ĥg, N̂] = 0. (9)

The parameters T and μ are determined in this case using the
conservation of energy (8) and of the number of particles

Tr[ρ̂GEN̂] = Tr[ρ̂I N̂]. (10)

B. Prethermalization and projected dynamics

Here we summarize the framework of prethermalization
and the assumptions involved, as introduced in Ref. [34]. The
main assumption is a “weak coupling” condition gτ0 � 1,
where τ0 is the timescale at which equilibration occurs under
the reference (unperturbed) dynamics dictated by Ĥ0. Since
we want to avoid having τ0 and the perturbed dynamics to
depend on the system size, something that would happen if
there is net transport of particles and/or energy between dif-
ferent parts of the system, we assume that the initial states and
the Hamiltonians are translationally invariant. Under the weak
coupling assumption, thermalization occurs at times τ � τ0.

Another condition needed for one to be able to observe
a two-step relaxation process is that the initial value of the
conserved quantity per site, in our case nI = Tr[N̂ ρ̂I ]/L (L
is the number of lattice sites), should be sufficiently different
from its equilibrated value, nDE = Tr[N̂ ρ̂DE]/L, namely, that
|nI − nDE| ∼ O(1) > O(g). This ensures that the prethermal
and thermal results for the observable are separated beyond
O(g) corrections. This condition was not explicitly stated in
Ref. [34], and we will justify it with numerical results in
Sec. IV A.

Now let us specify what we mean, in the two-step relax-
ation process, by fast prethermalization followed by a slow
thermalization.

(i) Fast prethermal dynamics at τ � τ0: O(τ ) resembles the
reference dynamics and relaxes to a prethermal value. This
value is determined by the DE of Ĥ0, which is P0[ρ̂I ] [Eq. (5)],
with O(g) corrections.

(ii) Slow thermalization at τ � τ0: O(τ ) relaxes slowly
to the true equilibrium value ODE [Eq. (4)]. The slow re-
laxation proceeds via intermediate equilibrium states of Ĥ0.
These intermediate equilibrium states are projected diagonal
ensembles (P-DEs) of Ĥ0, ρ̂P-DE(τ ). They are obtained acting
with the projector P0 on ρ̂(τ ),

ρ̂P-DE(τ ) = P0[ρ̂(τ )]

=
∑

i

(〈
E0

i

∣∣ρ̂(τ )
∣∣E0

i

〉)∣∣E0
i

〉〈
E0

i

∣∣, (11)
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where {|E0
i 〉} are the simultaneous eigenkets of Ĥ0 and N̂ .

ρ̂P-DE(τ ) defines the projected dynamics for the observable Ô:

OP-DE(τ ) = Tr{Ôρ̂P-DE(τ )}. (12)

By construction, the exact dynamics and the projected dynam-
ics are identical for the conserved quantities of the reference
Hamiltonian, namely, for N̂ and Ĥ0. For other observables Ô,
an O(g) discrepancy is expected between O(τ ) and OP-DE(τ )
for τ � τ0. The initial value OP-DE(τ = 0) is that of the
prethermal state.

In the thermodynamic limit when Ĥ0 is nonintegrable,
because of eigenstate thermalization, the expectation values
of observables can be computed replacing P-DE by a Gibbs
ensemble (P-GE):

OP-GE(τ ) = Tr[Ôρ̂P-GE(τ )], (13)

where ρ̂P-GE(τ ) is given by

ρ̂P-GE(τ ) = e−[Ĥ0+μ(τ )N̂]/T (τ )

Tr
{
e−[Ĥ0+μ(τ )N̂]/T (τ )

} , (14)

with T (τ ) and μ(τ ) determined by the instantaneous values
of the conserved quantities of Ĥ0:

Tr[ρ̂P-GE(τ )Ĥ0] = Tr[ρ̂(τ )Ĥ0], (15)

Tr[ρ̂P-GE(τ )N̂] = Tr[ρ̂(τ )N̂]. (16)

The dynamics of the P-GE is thus dictated by the evolution
of the broken conserved quantities (per site) of Ĥ0, namely,
n(τ ) = Tr[ρ̂(τ )N̂]/L and e0(τ ) = Tr[ρ̂(τ )Ĥ0]/L. Their dy-
namics is described by an autonomous equation based on
Fermi’s golden rule (FGR). For n(τ ), this is given by

dn

dτ
= 2πg2

L

∑
i, j

δ
(
E0

j − E0
i

)(〈
E0

j

∣∣N̂∣∣E0
j

〉 − 〈
E0

i

∣∣N̂∣∣E0
i

〉)

× ∣∣〈E0
j

∣∣V̂ ∣∣E0
i

〉∣∣2
P0

i (τ ) + O(g3), (17)

where {|E0
i 〉} are the simultaneous eigenkets of Ĥ0 and N̂ ,

and P0
i (τ ) are the diagonal matrix elements of the P-DE at τ .

P0
i (τ ) can equivalently be replaced with the diagonal matrix

elements of the P-GE, 〈E0
i |ρ̂P-GE(τ )|E0

i 〉, which in turn are
determined by n(τ ) and e0(τ ). In Sec. IV C we refine this FGR
expression to obtain a relaxation rate.

The reference energy e0(τ ) is approximately constant as
Ĥ0 and Ĥg differ only by the perturbation term, and Ĥg is an
exact conserved quantity in the dynamics. If energy is not
conserved, such as when V̂ is time dependent, a similar au-
tonomous equation can describe the evolution of e0(τ ). In the
context of periodically driven perturbations, the FGR-based
equation was used to compute heating rates in Ref. [40].

(iii) Thermal equilibrium at τ → ∞: After sufficiently
long time, the system attains its final equilibrium state
under Ĥg, predicted by the DE [Eq. (5)]. Since we con-
sider a nonintegrable Ĥg, ρ̂DE can be replaced by ρ̂GE [in
Eq. (7)] to compute the expectation values of observables after
equilibration.

The projected dynamics OP-DE(τ ) [Eq. (11)] also
attains an equilibrium steady state value OP-DE =

limτ→∞ τ−1
∫ τ

0 OP-DE(τ ) dτ given by

OP-DE = Tr{ÔP0[ρ̂DE]}, (18)

where the density matrix P0[ρ̂DE] describes the equilibrium
state of the projected dynamics (P-DE).

With nonintegrable Ĥ0, OP-DE can be replaced with the
thermal value OP-GE given by

OP-GE = Tr
[
ρ̂P-GEÔ

]
, (19)

where ρ̂P-GE is the Gibbs ensemble describing this thermal
equilibrium (P-GE). ρ̂P-GE is given by Eq. (14) but with
T̄ and μ̄ instead of T (τ ) and μ(τ ), respectively, determined
by the equations

Tr[ρ̂P-GEĤ0] = Tr[ρ̂GEĤ0], (20)

Tr[ρ̂P-GEN̂] = Tr[ρ̂GEN̂], (21)

where ρ̂GE is the true thermal state of Ĥg [Eq. (7)].

III. HAMILTONIAN, OBSERVABLES, AND
COMPUTATIONAL TECHNIQUES

In this section we introduce the model Hamiltonian, the
observables of interest, and the numerical techniques used in
our calculations.

A. Hamiltonians and observables

We study the dynamics of strongly interacting hard-core
bosons in a translationally invariant one-dimensional lattice
with L sites. Let b̂†

i (b̂i ) be the creation (annihilation) operator
of a hard-core boson at site i. They satisfy bosonic commuta-
tion relations with the hard-core constraint: b̂2

i = (b̂†
i )2 = 0.

Our reference Hamiltonian is

Ĥ0 =
∑

i

[−t
(
b̂†

i b̂i+1 + H.c.
) − t ′(b̂†

i b̂i+2 + H.c.
)

+V

(
n̂i − 1

2

)(
n̂i+1 − 1

2

)
+ V ′

(
n̂i − 1

2

)(
n̂i+2 − 1

2

)]
,

(22)

where n̂i = b̂†
i b̂i, t (t ′) is the nearest (next-nearest)-neighbor

hopping and V (V ′) is the nearest (next nearest)-neighbor in-
teraction strength. We always consider t �= 0 and V �= 0, and
fix t ′ = V ′ = 0.7, so that Ĥ0 is nonintegrable [41]. The total
number of particles, N̂ = ∑

i b̂†
i b̂i, is the only local conserved

quantity of this Hamiltonian, [Ĥ0, N̂] = 0. We consider two
perturbations of Ĥ0, which we denote as g1V̂1 and gNV̂N .

Our first perturbed Hamiltonian has the form Ĥg1 = Ĥ0 +
g1V̂1, where

g1V̂1 = g1

∑
i

[
b̂i + 1

2

(
b̂ib̂i+1

) + H.c.

]
. (23)

We note that Ĥg1 is not particle-number conserving, because
[V̂1, N̂] �= 0, but it is particle-hole symmetric.
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Our second perturbed Hamiltonian has the form ĤgN =
Ĥ0 + gNV̂N , where

gNV̂N = gN

∑
i

[
1

2

(
b̂†

i n̂i+1b̂i+2

) + H.c.

]
. (24)

This perturbed Hamiltonian is particle-number conserving,
because [V̂N , N̂] = 0, but it is not particle-hole symmetric, be-
cause V̂N breaks that symmetry of Ĥ0. In what follows we use
Ĥg = Ĥ0 + gV̂ as a common notation for Ĥg1 = Ĥ0 + g1V̂1

and ĤgN = Ĥ0 + gNV̂N . We only make a distinction between
the two Hamiltonians when needed.

The prequench Hamiltonian ĤI , which determines the ini-
tial state ρ̂I , is also described by Eq. (22) but with different
coupling parameters tI and VI . This ensures that [ĤI , Ĥ0] �= 0
so that ρ̂I has nontrivial reference dynamics. ρ̂I is in thermal
equilibrium with respect to ĤI at a temperature TI and a
chemical potential μI :

ρ̂I = e−(ĤI +μI N̂ )/TI

Tr[e−(ĤI +μI N̂ )/TI ]
. (25)

μI allows us to control the site occupation of the initial state,
n(τ = 0) = Tr[N̂ ρ̂I ]/L. Due to the particle-hole symmetry of
ĤI , μI = 0 corresponds to half filling.

Parameters for the numerical calculations: We take Ĥ0

[Eq. (22)] to have t = V = 1, so that both nearest- and
next-nearest-neighbor terms make Ĥ0 nonintegrable. For the
pre-quench Hamiltonian ĤI , we take tI = 0.5 and VI = 1.5 so
that the quench is not small and the system is far from equi-
librium at time τ = 0. The numerical results are generic and
not sensitive to the choice of these coupling parameters. For
the initial state ρ̂I [Eq. (25)], we take TI = 10. We consider
the initial chemical potential μI = 0 to study quenches at half
filling, and μI = 1.5 to study quenches away from half filling
(so that the initial site occupation is nI = 0.47).

Observables: We study the dynamics of two extensive ob-
servables:

(i) The total number of particles N̂ , whose expectation
value per site (the site occupation) has been denoted as n. N̂ is
the only local conserved quantity of Ĥ0.

(ii) The nearest-neighbor density correlator

Û =
∑

i

(
n̂i − 1

2

)(
n̂i+1 − 1

2

)
, (26)

whose expectation value per site is denoted as u. This is
an experimentally accessible local observable that exhibits
nontrivial dynamics under both Ĥ0 and Ĥg. The dynamics of
other local observables such as the nearest-neighbor one-body
correlator (

∑
i b̂†

i b̂i+1 + H.c.) are qualitatively similar to that
of u(τ ).

B. Computational approaches

1. Numerical linked cluster expansion (NLCE)

We use a numerical linked cluster expansion (NLCE) to
calculate the expectation value of extensive observables Ô per
site, 〈Ô〉/L, in the thermodynamic limit [42]. NLCE allows
one to compute 〈Ô〉/L as a sum over contributions from all

connected clusters c that can be embedded on the lattice:

〈Ô〉/L =
∑

c

M(c) × WO(c), (27)

where WO(c) is the weight of cluster c, and M(c) is the number
of ways per site to embed the cluster c in the lattice. WO(c)
is computed for each cluster c using the inclusion-exclusion
principle:

WO(c) = 〈Ô〉c −
∑
s⊂c

WO(s), (28)

where 〈Ô〉c is the expectation value of Ô in cluster c and s ⊂ c
denotes all connected subclusters of c. For the smallest cluster
c0, WO(c0) = 〈Ô〉c0 .

For each cluster c, 〈Ô〉c = Tr[ρ̂cÔ], where ρ̂c is the rel-
evant density matrix in the cluster. The appropriate cluster
Hamiltonians Ĥc that define ρ̂c are modified from their defini-
tion in the thermodynamic limit to fit the sites and bonds in the
cluster. For example, the initial state, ρ̂c

I is given by Eq. (25)
with the Hamiltonian ĤI → Ĥc

I for the cluster. Similarly,
ρ̂c(τ ) [Eq. (2)], ρ̂c

DE [Eq. (5)], ρ̂c
GE [Eqs. (7) and (9)], ρ̂c

P-DE(τ )
[Eq. (11)] and ρ̂c

P-GE(τ ) [Eq. (14)] are evaluated using the
cluster modified Hamiltonians Ĥg → Ĥc

g and Ĥ0 → Ĥc
0 . 〈Ô〉c

is calculated numerically using full exact diagonalization.
Since our model has nearest- and next-nearest-neighbor

bonds, one has the freedom to choose different building blocks
to construct the clusters in NLCE [43]. We use the maximally
connected expansion [44], in which each cluster c is made of
contiguous sites with all possible bonds present in the cluster
modified Hamiltonians. The maximally connected expansion
is ideal for dynamics [33], as well as for diagonal and grand
canonical ensemble calculations, in our one-dimensional lat-
tices [43,44].

The order of the NLCE is set by the number of sites of
the largest cluster used in the expansion. We compute the
NLCE up to the 19th order for quenches that conserve N̂ , after
exploiting reflection symmetry in the particle number sectors
(the dimension of the largest sector is 46 252). For quenches
that break particle conservation, we exploit particle-hole and
reflection symmetry to compute the NLCE up to the 18th
order (the largest sector dimension is 65 792).

2. Exact diagonalization (ED)

For the quenches that break particle-number conservation,
we also study dynamics in finite lattices with L sites and
periodic boundary conditions (PBC) solved using ED. The
largest chain we solve has L = 19 sites (whose largest sector
dimension is 13 797).

We also use ED to compute the FGR rate in Eq. (32) [see
Sec. IV C and Appendix. D]. Evaluating Eq. (32) does not
involve dynamics and requires only the diagonalization of
Ĥ0, which conserves N̂ . We evaluate Eq. (32) in chains with
L = 22 sites (whose largest sector dimension is 32 065).

IV. RESULTS

A. Perturbations and initial states

In Ref. [34], we studied prethermalization and thermaliza-
tion in the context of perturbations that break a conserved
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FIG. 1. Dynamics of the nearest-neighbor correlation u(τ )
[Eq. (26)] after a quench under three scenarios (see text). (a) The
perturbation gNV̂N conserves the particle number. The initial site
occupation is nI = 0.47 [set with μI = 1.5 and TI = 10 in Eq. (25)].
(b) The perturbation g1V̂1 breaks particle-number conservation. nI =
1/2 (μI = 0), and TI = 10. (c) (main panel and inset) The same per-
turbation g1V̂1 as in (b) and the same initial state as in (a) (nI = 0.47).
All main panels show u(τ ) evaluated at the highest two orders of
the NLCE: 19th order (NLCE-19) and 18th order (NLCE-18) for
N̂-commuting Hamiltonians [all values of gN in (a) and g1 = 0 in
(b) and (c)], and 18th order and 17th order (NLCE-17) in all others.
The inset in (c) shows u(τ ) in a finite chain with L = 19 sites and
periodic boundary conditions (PBC) solved using ED. All panels
show the final equilibrium values given by the DE (shown for the
highest order of the NLCE in the main panels, and L = 19 sites
in the inset) and GE prediction (in the main panels, evaluated to
machine precision with NLCE). Also shown in (c) are the projected
dynamics (P-DE) results for g1 > 0, obtained using the 18th-order
NLCE (main panel) and L = 19 sites with ED (inset).

quantity, and initial states for which the expectation value
of the conserved quantity was different from the value after
equilibration. Whether this two-step relaxation process occurs
for perturbations or initial states that do not change the value
of the conserved quantity is the question that we address next.

In Fig. 1 we show results for u(τ ) [Eq. (26)] under three
different scenarios. In Fig. 1(a) the system evolves under a
particle-number-conserving Hamiltonian, ĤgN = Ĥ0 + gNV̂N

[Eq. (24)]. In Fig. 1(b) the system evolves under Ĥg1 = Ĥ0 +
g1V̂1 [Eq. (23)], which breaks particle-number conservation,
but the initial state is at half filling. Due to the particle-hole
symmetry of Ĥg1 , the system remains at half filling and the
expectation value of the broken conserved quantity does not
evolve in time. In Fig. 1(c) the system evolves under Ĥg1 =
Ĥ0 + g1V̂1 [Eq. (23)] as in Fig. 1(b), but the initial state is
away from half filling. After equilibration under the dynamics
dictated by Ĥg1 , the system must be at half filling due to the
particle-hole symmetry of Ĥg1 . Thus the expectation value of
the broken conserved quantity evolves in time.

The main panels in Fig. 1 show u(τ ) in the thermodynamic
limit as obtained using the NLCE. The fact that curves for the
last two orders of the NLCE overlap indicate that convergence
errors are small during the dynamics. The equilibrium values
predicted by the diagonal ensemble (DE) are evaluated in
the highest order of the NLCE, and are shown as horizontal
dashed lines. The thermal equilibrium values predicted by
the grand canonical ensemble (GE) are also evaluated using
the NLCE, and are shown as horizontal solid lines. The GE
results converge exponentially faster than the DE ones, and
attain machine precision already at much lower orders of the
NLCE [43,44]. To obtain the exact value in the GE within ma-
chine precision, a 15th-order NLCE is sufficient as the relative
convergence errors become <10−12. The agreement between
the DE and GE results in the main panels in Figs. 1(a)–1(c)
show that the system attains thermal equilibrium in the three
scenarios considered, as expected for nonintegrable systems
[44]. The small discrepancy between the DE and GE results is
a consequence of the relatively slower convergence of the DE
calculations. In Appendix A, we show that the DE estimate
for Û converges towards the GE result with increasing orders
of the NLCE.

One can see in Figs. 1(a) and 1(b) that u(τ ) relaxes to the
thermal equilibrium result in a single step. On the other hand,
Fig. 1(c) shows the characteristic two-step relaxation process
of prethermalization and thermalization. For g1 = 0.06 and
0.12, the prethermal dynamics dominates at τ � 5, and it
is followed by a slow relaxation to the thermal equilibrium
results. The dynamics in the slow relaxation regime is closely
described by the projected dynamics [P-DE; see Eq. (12)].
The (small) discrepancy between the actual dynamics and the
projected one at late times is quadratic in g1, and its relative
magnitude is �10−3 (see Appendix B and Ref. [34]).

The three scenarios considered in Fig. 1 helps us
sharpen the conditions needed to observe a two-step re-
laxation process. Having in mind that the energy of the
perturbed Hamiltonian differs from the energy of the reference
Hamiltonian only by an O(g) correction, one can see that if
the perturbation conserves N̂ [the case in Fig. 1(a)] then the
“prethermal” and the thermal equilibrium states also differ
only by an O(g) correction. Hence, no two-step relaxation
process will be seen.

Breaking a conservation law can make a big difference
between the prethermal and thermal results even if the per-
turbation is small. To understand this, let us focus on the
case in which the particle-number conservation is broken. In
that case, the thermal equilibrium result is described by ρ̂GE
in Eq. (7), which ensures maximal entropy at fixed energy
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FIG. 2. Thermal equilibrium (GE) value of the nearest-neighbor
density correlation (uGE), after evolution under the three scenarios
considered in Fig. 1: gNV̂N with nI = 0.47 (μI = 1.5), g1V̂1 with nI =
1/2 (μI = 0), and g1V̂1 with nI = 0.47 (μI = 1.5). All the results for
uGE reported in this figure were obtained with the 15th-order NLCE
and are converged to machine precision accuracy.

without any constraint on N̂ , while the prethermal result is
given by ρ̂GE in Eq. (9), which ensures maximal entropy at
fixed energy and fixed particle number. Even if the energy
of the perturbed Hamiltonian differs from the energy of the
reference Hamiltonian only by an O(g) correction, the two
ensembles are different if nI = Tr[N̂ ρ̂I ]/L is different from
nGE(g) = Tr[N̂ ρ̂GE]/L. Namely, observables in the prethermal
state will generally be O(1) different from those in thermal
equilibrium if the site occupations have an O(1) difference.
Then the slow (because g is small) dynamics driven by the
perturbation will bring the system from the prethermal equi-
librium to the thermal one [Fig. 1(c)]. However, if the initial
state has nI = nGE(g), as is the case in Fig. 1(b) where nI =
nGE(g) = 0.5, then the difference between the prethermal and
the thermal ensembles is only O(g), and the dynamics will
exhibit a single-step relaxation like the one observed when
particle-number conservation is not broken [Fig. 1(a)].

In Fig. 2 we show the expectation value of Û after thermal-
ization, uGE = Tr[Û ρ̂GE]/L, as a function of the perturbation
strength for the three cases considered in Fig. 1. Only the red
dashed line in Fig. 2, corresponding to the GE of the dynamics
studied in Fig. 1(c), shows an O(1) difference between the
prethermal (g1 = 0) and the thermal (g1 > 0) equilibrium
results in Fig. 2. This was the dynamics that exhibited two-
step relaxation. On the other hand, the two cases that show
only a single-step relaxation have O(g) differences between
the predictions of the prethermal and the thermal equilibrium
ensembles.

While the previous discussion pertained to the thermody-
namic limit, the two-step relaxation picture can also be seen
in the dynamics of a finite-size system. In the inset in Fig. 1(c)
we show the relaxation of u(τ ) under Ĥg1 (also when the
initial state is away from half filling), in a finite chain with
19 sites and periodic boundary conditions. Those results were
obtained using exact diagonalization (ED). u(τ ) for the 19-site
chain looks qualitatively similar to the thermodynamic limit
result, with an early fast prethermal dynamics followed by a
slow relaxation to the DE of the finite-size system. The slow
relaxation regime follows the projected dynamics given by the

P-DE of the finite chain. That said, as we discuss in Sec. V,
finite-size effects can lead to misleading conclusions about
the dependence of the relaxation rates on the strength of the
perturbation so care should be taken when studying finite-size
systems.

Another point to be highlighted about the results reported
in Fig. 1 is that they make apparent the need to sharpen anal-
yses reported in recent papers that explored prethermalization
and thermalization in the context of random matrix theory
and typicality [45–49]. In those works prethermalization was
argued to be generic in systems with perturbed dynamics, with
no explicit conditions on the nature of the perturbations.

B. Projected dynamics

Having identified two essential conditions to observe a
two-step relaxation dynamics (under perturbation g1V̂1 and
an initial state with nI �= 1/2), we focus next on the slow
thermalization regime described by the projected dynamics
of Û . In the thermodynamic limit, the projected dynamics
can be described equivalently with a P-DE [Eq. (11)] or a
P-GE [Eq. (14)]. The final equilibrium value of the projected
dynamics can be evaluated equivalently with P-DE defined
in Eq. (18) or its thermal counterpart P-GE [Eq. (19)]. In
Ref. [34] the projected dynamics were computed only using
the diagonal ensemble (P-DE). In Fig. 3 we show results for
the projected dynamics in both the DE and the GE evaluated
within the last two orders (17 and 18) of the NLCE, and in the
two largest chains (18 and 19 sites) with periodic boundary
conditions solved using ED.

Let us first focus on the inset in Fig. 3, which shows
results for P-GE evaluated using NLCE and ED. To eval-
uate P-GE at the lth-order NLCE (L sites with ED), the
dynamics of the reference energy e0(τ ) = Tr[ρ̂(τ )Ĥ0]/L and
particle number n(τ ) = Tr[ρ̂(τ )N̂]/L are evaluated using the
lth-order NLCE (L sites with ED). From e0(τ ) and n(τ ),
the temperature T (τ ) and chemical potential μ(τ ) that define
ρ̂P-GE(τ ) are determined by numerically solving Eqs. (15) and
(16) at each τ . The two equations are solved to an accuracy
of relative errors � 10−11. With ρ̂P-GE(τ ) thus obtained, the
P-GE of Û is evaluated to machine precision with NLCE.
With all other calculations converged to machine precision,
the only source of error in the P-GE calculations stems from
the convergence errors (finite-size errors) in obtaining e0(τ )
and n(τ ) in the dynamics with the lth-order NLCE (L sites
with ED). The inset in Fig. 3 shows that the errors in the
P-GE dynamics of Û are apparent only at long times (τ � 20).
At earlier times, the relative error between the 18th-order
NLCE and the L = 19 sites’ ED calculation is less than 10−7

for τ < 2, 10−5 for τ < 3 and 10−3 for τ � 10. Thus the
P-GE at short times is accurately estimated both using NLCE
and ED.

In the main panel in Fig. 3, we show the projected dynam-
ics of Û given by the P-DE, evaluated within the 17th- and
18th-order NLCE, L = 18 and 19 sites using ED, as well as
the P-GE result from the 18th-order NLCE (the same curve
shown in the inset). The results in the main panel in Fig. 3
show that the P-DE results from the ED calculations exhibit
much larger deviations from the P-GE results at short times
than the P-DE results from the NLCE calculations (we remind
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FIG. 3. Projected dynamics of u(τ ) following the quench ĤI →
Ĥg1 , with g1 = 0.06. The initial state has μI = 1.5 (nI = 0.47). The
main panel shows the projected DE (P-DE) results evaluated with
NLCE to 17th order (NLCE-17) and 18th order (NLCE-18), and
ED in chains with 18 sites (ED-18) and 19 sites (ED-19) and pe-
riodic boundary conditions. The equilibrium value of the projected
DE (P-DE) [Eq. (18)] is evaluated with NLCE-18 and shown as
a horizontal dotted line. The inset shows the projected GE (P-GE)
results obtained using NLCE-17 and NLCE-18 (the P-GE results
for NLCE-18 are also shown in main panel), as well as ED-18 and
ED-19. The thermal equilibrium result of the projected dynamics
(P-GE) [Eq. (19)] are shown in the main panel and the inset as a
horizontal dashed line (computed within machine precision using the
15th-order NLCE).

the reader that the P-GE results at short times exhibit negligi-
ble convergence errors, as shown in the inset). With increasing
L, the P-DE results approach the ones of the P-GE, albeit
slowly. With increasing the order of the NLCE, the already
closer NLCE results for the P-DE at short times approach
rapidly the ones of the P-GE.

The thermal equilibrium result of the projected dynam-
ics P-GE (expected to be reached at long times), is given
by Eq. (19) where T̄ and μ̄ are obtained numerically using
Eqs. (20) and (21). For the expectation value of Û in P-GE,
ūP-GE, no step in the calculation involves dynamics and all
the density matrices are Gibbs ensembles, which means that
one can use the NLCE to calculate ūP-GE exactly to machine
precision. The result is shown in the main panel and the
inset in Fig. 3 as a dashed horizontal line marked P-GE. The
equilibrium value of the P-DE predicted by P-DE [Eq. (18)]
for Û , ūP-DE evaluated with NLCE is shown in the main panel
as a dotted horizontal line. The discrepancy between ūP-DE and
ūP-GE is due to the convergence errors of the former. Like other
DE predictions, these errors decrease with increasing the order
of the NLCE (see Appendix A).

From the above analysis, we conclude that the slow re-
laxation regime of observables in the thermodynamic limit is
most accurately described by the P-GE at short times, and by
P-GE at τ → ∞. The P-DE results evaluated with NLCE are
close and approach rapidly the P-GE results at short times.
On the other hand, the P-DE results obtained using ED in a
periodic chain with L sites exhibit large deviations from the

P-GE results at short times, and approach the P-GE results
slowly with increasing L.

C. Relaxation rates in the thermodynamic limit

Here we analyze the slow thermalization of Û and N̂ for
the quench ĤI → Ĥg1 in which the initial state has μI = 1.5
(nI = 0.47). This slow relaxation regime is described by the
projected dynamics. We showed in the previous section that,
in the thermodynamic limit, the projected dynamics and its
long-time equilibrium are described most accurately by the
P-GE [Eq. (13)] and P-GE [Eq. (19)], respectively, evaluated
with NLCE.

In Fig. 4(a) we show that the relaxation dynamics of Û
predicted by the P-GE is well described by an exponential
for g1 � 0.12. We show results for the normalized distance
to thermalization:

δl [u(τ )] =
∣∣∣∣ul

P-GE(τ ) − ūP-GE

ūP-GE

∣∣∣∣, (29)

where ul
P-GE(τ ) is the prediction of the P-GE at time τ

evaluated at the lth-order NLCE, and ūP-GE is the thermal
equilibrium value of the projected dynamics evaluated to ma-
chine precision.

Similarly, the broken conserved quantity N̂ relaxes ex-
ponentially as shown in Fig. 4(b), with its distance to
thermalization δl [n(τ )] given by

δl [n(τ )] =
∣∣∣∣nl (τ ) − nGE

nGE

∣∣∣∣, (30)

where nl (τ ) is the particle number at τ evaluated at the lth-
order NLCE and nGE = 1/2 is the equilibrium site occupation.
For both δl [u(τ )] and δl [n(τ )], the last two orders of the NLCE
are well converged at short times and fit well to an exponential
(from which we extract the relaxation rate). To fit the exponen-
tial, we select a time window 3 � τ � 16 that excludes long
times at which the convergence is not as good, and early times
at which transient prethermal dynamics is present. The rates
thus extracted for 0.03 � g1 � 0.12 are shown in Fig. 4(c).

A well defined, time-independent, relaxation rate of N̂
can be obtained using the drift dn/dτ given by the FGR
formula [Eq. (17)] when n(τ ) is sufficiently close to nGE.
This eventually occurs at long times for any nI �= nGE. In the
case of nonintegrable Ĥ0 and the perturbation g1V̂1 [Eq. (23)],
we can simplify Eq. (17) using the P-GE, and obtain the
τ independent relaxation rate (see Appendix C). The FGR
equation involves two separate contributions from the pertur-
bation: V̂1 = V̂η=1 + V̂η=2, where V̂η connects the eigenkets of
Ĥ0 that differ by η particles. In a block diagonalized symmetry
sector s of both Ĥ0 and N̂ , let F s

N,η(E0) be the coarse-grained

value of the squared matrix elements of V̂η given by

F s
N,η(E0) = Avg�E

(∣∣〈EN+η
j

∣∣V̂η

∣∣EN
i

〉∣∣2
)
, (31)

where |EN
i 〉 and |EN+η

j 〉 are the eigenkets of Ĥ0 with energies
within a small window (E0 − �E/2, E0 + �E/2) and parti-
cle number N and N + η, respectively. The FGR rate � for this
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FIG. 4. Slow relaxation dynamics of u(τ ) and n(τ ) as described by projected-dynamics calculations following a quench ĤI → Ĥg1 in the
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both panels exponential relaxation is captured by the distance to thermalization δl [u(τ )] [Eq. (29)] and δl [n(τ )] [Eq. (30)], respectively. The
results in (a) and (b) are evaluated within the 18th (NLCE-18) and l = 17th (NLCE-17) orders of the NLCE, for three perturbation strengths,
g1 = 0.03, 0.06, and 0.12. The solid lines are exponential fits to the NLCE-18 results in the time interval 3 � τ � 16. (c) The relaxation rates
obtained from exponential fits to δl [u(τ )] [Rate(u)] and δl [n(τ )] [Rate(n)] with NLCE-18 and NLCE-17 in the P-GE, as well as the Rate(u)
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system, when L � 1, is given by � = �(η=1) + �(η=2) with

�η = 2πη2g2
1

Tr[N̂2e−β̄Ĥ0 ]

∑
s

L−η∑
N=0

∫
dE0 e−β̄E0

× F s
N,η(E0)Ds

N+η(E0)Ds
N (E0), (32)

where β̄−1 = T̄ is the temperature of the P-GE [Eq. (20)] in
the limit of g1 → 0, Ds

N (E0) is the density of states of Ĥ0 at
energy E0, particle number N , in sector s, and F s

N,η(E0) is
defined in Eq. (31). For � in Eq. (32) to be well defined in
the thermodynamic limit F s

N,η(E0) needs to be ∝ [Ds
N (E0)]−1,

where we used that Ds
N+η(E0)  Ds

N (E0) in large systems.
This is expected to be the case both in nonintegrable and in
integrable-interacting systems for local operators that con-
nect different sectors of a Hamiltonian [50]. We note that
Eq. (32) has similarities with the heating rate formula derived
in Ref. [40] for periodically driven perturbations.

We calculate � evaluating Eq. (32) numerically for a fi-
nite system with periodic boundary conditions using ED (see
Appendix D). Since this calculation does not involve dynam-
ics and requires only the diagonalization of Ĥ0, which con-
serves N̂ , we are able to compute the rates using a larger peri-
odic chain (with 22 sites). In Fig. 4(c) we show that the rates
of N̂ [Rate(n)] extracted from exponential fits like the ones
shown in Fig. 4(b) are in excellent agreement with � evaluated
using Eq. (32).

On the other hand, the rates of Û [Rate(u)] estimated
from fits of the P-GE results [as in Fig. 4(a)] are twice as
large. This factor of 2 can be understood by noticing that in
the P-GE dictated by the evolution of n(τ ), the particle-hole
symmetry of Û implies that [ul

P-GE(τ ) − ūP-GE] ∝ [n(τ ) −
0.5)2 + O(|n(τ ) − 0.5|4], when n(τ ) is close to 0.5 [so that

an expansion in powers of n(τ ) − 0.5 is meaningful]. Thus
δl [n(τ )] ∝ exp(−�τ ) results in δl [u(τ )] ∝ exp(−2�τ ). The
Rate(u) and 2 × Rate(n) estimated from exponential fits to
the P-GE dynamics evaluated using 17 and 18 orders of the
NLCE, and 2� evaluated with FGR in chains with L = 20 and
L = 22 sites show excellent agreement with each other, with
small discrepancies developing at larger g1 ∼ 0.12 (where
FGR becomes less accurate).

In Fig. 4(c) we also show the thermalization rates for Û
obtained using fits to the P-DE dynamics, uP-DE(τ ), evaluated
at the 18th-order NLCE. Those rates are computed using
exponential fits to the equivalent of Eq. (29) in the P-DE,
involving uP-DE(τ ) and the equilibrium value ūP-DE [Eq. (18)].
The P-DE rates are in good agreement with those obtained in
the other calculations, as expected given the results in Fig. 3.

V. RELAXATION RATES IN FINITE SYSTEMS

In this section, we discuss what happens when one uses
finite-system calculations to study relaxation rates during dy-
namics at even smaller values of the perturbation strength than
the ones considered in Fig. 4. Since the relaxation dynamics
is very slow in that regime, one needs long times to be able to
fit exponentials and extract relaxation rates. This is something
that can always be done using exact diagonalization in finite
systems. On the other hand, because of the lack of conver-
gence of NLCE calculations at long times, this is a regime
that cannot be studied using NLCEs,

We study the P-DE dynamics of Û and N̂ for the same
quench discussed in Sec. IV C, but explore much smaller
perturbations g1 ∈ (0.001, 0.12). As shown in the inset in
Fig. 1(c), the P-DE dynamics in finite systems closely fol-
lows the exact dynamics, but it can be significantly different
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from the P-GE dynamics (see Fig. 3). The differences are ex-
pected to increase in finite systems for smaller perturbations,
because the assumption of thermalization at each time during
the slow relaxation (to a new thermal equilibrium determined
by the instantaneous site occupation) is less justified. Hence,
in this section we do not assume thermalization and use the
P-DE [Eq. (12)] to describe dynamics and P-DE [Eq. (18)] to
describe the final equilibrium state of the P-DE.

In Fig. 5(a) we show how the expectation value of Û
equilibrates in finite systems for different values of g. There
we plot the distance to equilibrium

δL[u(τ )] =
∣∣∣∣uL

P-DE(τ ) − ūL
P-DE

ūL
P-DE

∣∣∣∣, (33)

where uL
P-DE(τ ) is the expectation value in the P-DE at time

τ , and ūL
P-DE is the equilibrated result predicted by P-DE,

for a chain with L sites. Similarly, in Fig. 5(b) we show the
equilibration dynamics of N̂ as characterized by the distance
to equilibrium

δL[n(τ )] =
∣∣∣∣nL(τ ) − nDE

nDE

∣∣∣∣, (34)

where nL(τ ) is the particle number (per site) at τ , and
the equilibrium site occupation nDE = 1/2 (because of the
particle-hole symmetry of Ĥg1 ).

Figures 5(a) and 5(b) show that both δL[u(τ )] and δL[n(τ )]
exhibit exponential regimes, for a chain with L = 19 sites,
as those identified in Figs. 4(a) and 4(b) in the NLCE cal-
culations for the thermodynamic limit. A fit to δL[u(τ )] and
δL[n(τ )] in the time window 3 � τ � 20 agrees well with an
exponential. The relaxation rates thus obtained from exponen-

tial fits for Û [Rate(u)] and N̂ [Rate(n)] for various positive
and negative values of g1 and chains with three different sizes
L, along with the FGR rate � from Fig. 4 for L = 22, are
shown in Fig. 5(c).

In Fig. 5(c) the results for Rate(u) exhibit a surprising
(and potentially misleading) finite size effect. The Rate(u)
for |g1| < 0.01 deviates significantly away from the expected
FGR prediction of 2�, and scales almost linearly with |g1|.
The latter behavior is different from the signature (g1)2 scaling
of the FGR prediction. Increasing L brings the Rate(u) slowly
towards 2� by pushing the spurious scaling regime to smaller
values of |g1|. Currently, we do not understand why such a
linear scaling regime emerges in the Rate(u) at small |g1|
in finite-system calculations. A recent study exploring how
integrability and Anderson localization are broken in finite
systems showed that a highly nontrivial regime precedes the
onset of quantum chaos [51]. We expect similar nontrivial
finite-size effects when breaking only one conservation law.
Another point to be noted about the results for the Rate(u) in
Fig. 5(c) is that, as expected because of finite-size effects, the
deviations from the FGR predictions are larger than those seen
in the NLCE calculations in Fig. 4 for 0.03 � g1 � 0.12.

Contrary to the results for the Rate(u), the results for the
Rate(n) in Fig. 5(c) do not show significant finite-size effects,
and agree well with the FGR rate � for all values of g1 and
L considered. This can be understood by noticing that nL(τ ),
being the conserved quantity of Ĥ0, has the same value in the
P-DE (by definition) and the P-GE (by construction) as for
the actual dynamics under Ĥg1 . Since the actual dynamics at
short times has small finite-size effects (because of locality
at short times the system does not “know” its extent), then
nL(τ ) at short times agrees well with its value in the ther-
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modynamic limit. At long times, both in finite systems and
in the thermodynamic limit, nDE = 1/2 for all values of g1

because this is set by the particle-hole symmetry. Hence, the
thermodynamic limit behavior of δL[n(τ )] at short times is
properly captured by the exact diagonalization calculations
and so are the values of Rate(n) obtained from the (short-)time
evolution fits.

VI. SUMMARY

We used numerical simulations to carry out an in-dept anal-
ysis on the framework of prethermalization and thermalization
introduced in Ref. [34]. We considered far-from-equilibrium
initial states evolving under Hamiltonians of the form Ĥ0 +
gV̂ , where Ĥ0 is nonintegrable and has one extensive con-
served quantity (the total number of particles). We studied
the dynamics of local observables in the thermodynamic limit
using a NLCE, and in finite chains with periodic boundary
conditions using ED.

By exploring three distinct scenarios with different per-
turbations and initial states, we showed that in order for a
two-step relaxation process to occur in the dynamics of local
observables (other than the conserved quantity), not only does
the perturbation gV̂ have to break the extensive conserved
quantity of Ĥ0, but also the initial-state expectation value of
the conserved quantity per site needs to be O(1) different
from the final equilibrium one. Observables (other than the
conserved quantity) then evolve with a fast prethermal dy-
namics at short times followed by a slow relaxation to thermal
equilibrium at long times. The slow relaxation regime is char-
acterized by intermediate equilibrium states of Ĥ0, which in
the thermodynamic limit can be equivalently described using
the projected DE (P-DE) or the projected GE (P-GE).

We argued that the thermodynamic limit results for the
slow thermalization regime are most accurately described nu-
merically using NLCE calculations for the P-GE. Using such
calculations we showed that the slow thermalization regime
is exponential, with a rate that can be accurately predicted
using Fermi’s golden rule [Eq. (32)]. We also showed that
the NLCE results for the rates obtained using the P-DE are in
good agreement with the P-GE and Fermi’s golden rule ones.

On the other hand, in a finite system and for quantities
that are not conserved in the reference dynamics, such as the
expectation value of the nearest-neighbor density correlator,
we showed that the P-DE calculations exhibit large finite-size
effects. Strikingly, for very small perturbations, finite-size
effects result in rates that are linear in the absolute value of
the perturbation strength, at odds with Fermi’s golden rule
prediction. Increasing the system size pushes this linear scal-
ing regime to smaller values of the perturbation so that it
disappears in the thermodynamic limit.
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APPENDIX A: CONVERGENCE OF THE DE AND GE
CALCULATIONS WITH NLCE

Here we discuss the convergence of the NLCE calcula-
tions for the expectation value of Û after thermalization, as
described by the DE [Eq. (4)] and GE [Eq. (6)], as well as
the corresponding predictions of the projected dynamics of Û
described by the P-DE [Eq. (18)] and P-GE [Eq. (19)].

In Fig. 6 we show results that exemplify how the NLCE
calculations converge, with increasing the NLCE order l ,
for the expectation value of Û in the GE (ul

GE) and in the
P-GE (ūl

P-GE). The errors are quantified by the relative dif-
ferences

�GE(l ) =
∣∣∣∣ul

GE − u15
GE

u15
GE

∣∣∣∣, �P-GE(l ) =
∣∣∣∣ ūl

P-GE − ū15
P-GE

ū15
P-GE

∣∣∣∣, (A1)

where l = 15 is the highest order computed for the GE and for
the P-GE. Figures 6(a) and 6(b) show �GE(l ) for the quenches
ĤI → ĤgN and ĤI → Ĥg1 , respectively, while Fig. 6(c) shows
�P-GE(l ) for the latter quench. In all the cases, the errors de-
crease exponentially with increasing l , and the relative errors
between the 14th- and the 15th-order NLCE are � 10−12. This
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FIG. 6. Convergence of the NLCE calculations for the expecta-
tion value of Û in the GE following the quenches: (a) ĤI → ĤgN

and (b) ĤI → Ĥg1 . (c) Convergence of the P-GE predictions for
the quench ĤI → Ĥg1 [same quench as in (b)]. The initial state has
TI = 10 and μI = 1.5 (nI = 0.47). The convergence error at the lth
order is quantified by the relative deviation from the highest order
(l = 15) NLCE estimate, given by �GE(l ) for the GE and �P-GE(l )
for the P-GE; see Eq. (A1).
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FIG. 7. Convergence of the NLCE calculations for the expecta-
tion value of Û in the DE following the quenches: (a) ĤI → ĤgN

and (b) ĤI → Ĥg1 . (c) Convergence of the P-DE predictions for
the quench ĤI → Ĥg1 [same quench as in (b)]. The initial state has
TI = 10 and μI = 1.5 (nI = 0.47). The convergence error at the lth
order is quantified by the relative deviation from the thermal equilib-
rium values, given by �DE(l ) for the DE and �P-DE(l ) for the P-DE;
see Eq. (A2).

is generic for NLCE calculations within the grand canonical
ensemble at finite (not too low) temperature [52]. The temper-
ature (and chemical potential when N̂ is conserved) of the GE
and P-GE are set by the initial state and they are computed
(within a grand canonical ensemble) so that the relative errors
are � 10−12. Given those errors, we can consider the GE and
P-GE results exact to machine precision.

With “exact” thermal equilibrium results given by u15
GE and

ū15
P-GE, we can study how the DE and the P-DE converge

with increasing the order of the NLCE. We assume that the
converged DE calculation agrees with the exact GE one, and
quantify the convergence errors using the relative deviations

�DE(l ) =
∣∣∣∣ul

DE − u15
GE

u15
GE

∣∣∣∣, �P-DE(l ) =
∣∣∣∣ ūl

P-DE − ū15
P-GE

ū15
P-GE

∣∣∣∣, (A2)

where ul
DE and ūl

P-DE are the lth-order NLCE results for
the expectation value of Û in DE and P-DE, respectively.
Figure 7(a) shows �DE(l ) for the quench ĤI → ĤgN , while
Figs. 7(b) and 7(c) show �DE(l ) and �P-DE(l ), respectively,
for the quench ĤI → Ĥg1 . One can see that ul

DE and ūl
P-DE

converge towards the thermal equilibrium predictions as l
increases (as expected). However, the rate of convergence is

slower compared to the thermal equilibrium counterparts in
Fig. 6. This is why we push the NLCE calculations for the
DE (and also for the dynamics) to the highest orders that
can be computed (we evaluate 19 NLCE orders for quenches
conserving N̂ and 18 NLCE orders in others).

Note that in Fig. 7(a) (for the quench that does not support
the prethermalization scenario) all values of gN � 0 show
similar convergence of the DE results towards the GE ones.
On the other hand, in Figs. 7(b) and 7(c) (for the quench
that supports prethermalization and thermalization), the con-
vergence worsens as one lowers the value of g1. Because of
this, the NLCE for g1 = 0 [see Fig. 7(a)] is better converged
than the one for g1 = 0.03. This is similar to the behavior
of the NLCE for the DE near an integrable point [44]. It
shows that the NLCE requires larger clusters to be able to
achieve convergence for the DE when g1 → 0 which, in the
thermodynamic limit, is O(1) different from the prethermal
result predicted by the DE (the result for g1 = 0).

APPENDIX B: DIFFERENCE BETWEEN THE GE AND
P-GE PREDICTIONS

For the quench that leads to a two-step relaxation dynamics
(ĤI → Ĥg1 with nI = 0.47), Fig. 1(c) shows that the dynamics
of the expectation value of Û [u(τ )] after prethermalization
is closely followed by the projected dynamics [uP-DE(τ )].
However, a small O(g) discrepancy is expected to exist in
general between the two [34]. That difference is most ac-
curately captured by the difference between the long-time
thermal equilibrium results (uGE − ūP-GE). We compute the
latter exactly (within machine precision) using the 15th-order
NLCE. Figure 8 shows (uGE − ūP-GE) plotted vs g1, as well as
a power-law fit that makes apparent that the leading order cor-
rection is ∝ (g1)2. The vanishing of the (g1)1 correction term
was explained in Ref [34] to be a result of the perturbation V̂1

having no terms that conserve N̂ .
Comparing Figs. 2 and 8, one can see that the relative

magnitude of the correction terms is small (�10−3) for the
values of g1 considered in this work. This is why we can
accurately describe the slow relaxation regime of Û using the
projected dynamics.
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FIG. 8. Difference between the expectation value of Û at long
times of the dynamics (uGE) and at long times of the projected
dynamics (ūP-GE), for the quench ĤI → Ĥg1 with 0.03 � g1 � 0.12,
and nI = 0.47. The results for uGE and ūP-GE are computed to machine
precision using the 15th-order NLCE (NLCE-15). A power-law fit
αgβ

1 (dashed line) shows that (uGE − ūP-GE) ∝ g2
1.
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APPENDIX C: RELAXATION RATES FROM FGR

Starting from the drift equation (17), here we derive the
relaxation rate given in Eq. (32). After block diagonalizing
into symmetry sectors s of Ĥ0 and N̂ , the FGR drift equation
for ṅ(τ ) ≡ dn/dτ can be written as

ṅ(τ ) = 2πg2
1

L

∑
s

∑
i, j∈s

δ
(
E0

j − E0
i

)
(Nj − Ni )

× ∣∣〈ENj

j

∣∣V̂ ∣∣ENi
i

〉∣∣2
P0

i (τ ), (C1)

where |ENi
i 〉 (|ENj

j 〉) are simultaneous eigenkets of Ĥ0 and N̂
within the sector s (associated in our case to space symme-
tries), with energy E0

i (E0
j ), and particle number Ni (Nj ). Since

Ĥ0 is nonintegrable, P0
i (τ ) can be replaced by the diagonal

matrix elements of ρ̂
P-GE

(τ ) [Eq. (14)] given by

P0
i (τ ) = e−β(τ )[E0

i +μ(τ )Ni]/Z (τ ), (C2)

where β(τ ) = [T (τ )]−1 and Z (τ ) is the partition function of
the P-GE.

The perturbation V̂ can be split as V̂ = ∑
η V̂η, where V̂η

changes the particle number by ±η, e.g., η = 1 and 2 for V̂1

[Eq. (23)]. The different V̂η contribute independently to ṅ(τ )
to give ṅ(τ ) = ∑

η ṅη(τ ), where

ṅη(τ ) = 2πg2
1η

Z (τ )L

∑
s

∑
i, j∈s

δ(E0
j − E0

i )e−β(τ )[E0
i +μ(τ )Ni]

× (|〈ENi+η
j |V̂η|ENi

i 〉|2 − |〈ENi−η
j |V̂η|ENi

i 〉|2).
Let us assume that the squared magnitude of the matrix

elements of V̂η has no fine-tuned structure within the sector s,
so that we can define a meaningful coarse-grained

F s
N,η(E0) = Avg�E

(|〈EN+η
j |V̂η|EN

i 〉|2), (C3)

where �E is a small energy window and E0
i , E0

j ∈ (E0 −
�E/2, E0 + �E/2). Using F s

N,η(E0), we can replace sums
over eigenstates in Eq. (C3) with integrals over the energy to
obtain

ṅη(τ ) = 2πg2
1η

Z (τ )L

∑
s

L−η∑
N=0

∫
dE0Ds

N+η(E0)Ds
N (E0)e−β(τ )E0

× (
e−β(τ )μ(τ )N − e−β(τ )μ(τ )[N+η]

)
F s

N,η(E0), (C4)

where Ds
N (E0) is the density of states of Ĥ0 at energy E0,

particle number N , in sector s.
Let us define a rate �(τ ) = ∑

η �η(τ ) as

�η(τ ) = − ṅη(τ )

n(τ ) − nGE
, (C5)

where nGE is the final equilibrium value of the site occupation.
After sufficiently long time, when |n(τ ) − nGE| � 1, one has
that μ(τ ) � 1, and there is a well defined τ -independent rate
�η as shown below.

Since the energy with respect to Ĥ0 is approximately con-
stant, when μ(τ ) is sufficiently small (which is the case
when τ → ∞), β(τ ) is also approximately constant: β(τ ) =
β̄ + O(g1), where β̄−1 = T̄ is the temperature of the P-GE

[Eq. (20)] in the limit g1 → 0. Then, to leading order in μ(τ ),
n(τ ) − nGE is given by

n(τ ) − nGE ≈ − β̄μ(τ )Tr[N̂2e−β̄Ĥ0 ]

Tr[e−β̄Ĥ0 ]L
. (C6)

Expanding Eq. (C4) to leading order in μ(τ ) gives

ṅη(τ ) = − 2πg2
1η

2β̄μ(τ )

Tr[e−β̄Ĥ0 ]L

∑
s

L−η∑
N=0

∫
dE0e−β̄E0

× Ds
N+η(E0)Ds

N (E0)F s
N,η(E0). (C7)

Substituting Eqs. (C6) and (C7) in Eq. (C5) gives the
τ -independent rate �η in Eq. (32).

APPENDIX D: NUMERICAL EVALUATION
OF � [EQ. (32)]

We evaluate Eq. (32) numerically using exact diagonaliza-
tion of chains with L sites and periodic boundary conditions.
We use an energy window �E to carry out a coarse graining,
by binning the spectrum of Ĥ0 in each N and s sector. Each
bin α, with energy Eα , includes all eigenkets |EN

i 〉 with ener-
gies E0

i ∈ (Eα − �E/2, Eα + �E/2) in the N and s sectors.
The density of states at energy Eα is computed as Ds

N (Eα ) =
mα/�E , where mα is the number of energy eigenstates in bin
α. The coarse-grained function F s

N,η(Eα ) [Eq. (C4)] at Eα is
evaluated with the energies E0

i and E0
j in the bin α for the

N and s sector. β̄ in Eq. (32) is the inverse temperature of
P-GE [Eq. (20)]. For g1 = 0.03, T̄ ≈ 14, which is a good
approximation for the limit g1 → 0.

In Fig. 9 we show �/g2
1 evaluated for different values of

�E and L. For �E/L � 10−2 in chains with an even number
of sites (L = 22 and L = 20), we identify a robust regime in
which � is nearly independent of the choice of �E and finite-
size effects are small. For chains with an odd number of sites
(L = 21 and 19), we find that there is a stronger dependence
of �E and stronger finite-size effects. Nevertheless, with
increasing L, the results in those chains approach the ones
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FIG. 9. FGR rate � estimated evaluating Eq. (32) numerically
using ED for different coarse graining energy windows �E and
system sizes L. The results for � exhibit a robust regime, nearly inde-
pendent of the choice of �E and system size, below �E/L = 10−2

(vertical dotted line) for L = 22 and 20. For L = 22, averaging over
�E/L = {0.001, 0.002, . . . 0.006, 0.008, 0.01} (eight values) gives
�/g2

1 ≈ 3.73 ± 0.02, which is the value reported in the main text.
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obtained in even chains. For the FGR results reported in the
main text (Figs. 4 and 5), we estimate �/g2

1 with L = 22, av-
eraged over �E/L = {0.001, 0.002, . . . , 0.006, 0.008, 0.01}
(eight values) giving �/g2

1 ≈ 3.73 ± 0.02.
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