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Limits of thermoelectric performance with a bounded transport distribution
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With the goal of maximizing the thermoelectric (TE) figure of merit ZT , Mahan and Sofo [Proc. Natl. Acad.
Sci. USA 93, 7436 (1996)] found that the optimal transport distribution (TD) is a δ function. Materials, however,
have TDs that appear to always be finite and nondiverging. Motivated by this observation, this study focuses on
deriving what is the optimal bounded TD, which is determined to be a boxcar function for ZT and a Heaviside
function for power factor. From these optimal TDs, upper limits on ZT and power factor are obtained; the
maximum ZT scales with �maxT/κl , where �max is the TD magnitude and κl is the lattice thermal conductivity.
These results help establish practical upper limits on the performance of TE materials and provide target TDs to
guide band and/or scattering engineering strategies.
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I. INTRODUCTION

Thermoelectric (TE) materials enable the interconversion
of electrical and thermal energy and are being explored for
applications in power generation and solid-state cooling. The
TE efficiency is closely related to the TE figure of merit
ZT = S2σT /(κe + κl ), where S is the Seebeck coefficient, σ

is the electrical conductivity, κe,l are the electronic and lattice
thermal conductivities, and T is the temperature [1]. As ZT
increases so does the TE efficiency, which, in principle, can
reach the upper limit Carnot efficiency as ZT approaches in-
finity. The TE properties related to electron transport, namely
σ , S, and κe, are determined by a central quantity known as the
transport distribution (TD), which is unique to each material
[2].

Many strategies to improve the electronic component of
TEs have been proposed and demonstrated [3], such as dis-
tortion of the electronic states [4], band convergence [5],
TEs with low κe [6], low-dimensional materials [7,8], TEs
with reduced and/or optimized scattering [9–11], semimetals
[12,13], narrow-gap semiconductors [14], and unusual band
shapes [15–19]. These approaches ultimately have the effect
of altering the TD with the goal of enhancing ZT and/or the
power factor PF = S2σ . It is then important to know what is
the best TD for TE performance. This was the focus of the
seminal work by Mahan and Sofo [2], which concluded that
the optimal ZT originates from a δ function TD of the form
�MS δ(x − x′′), where �MS is a constant, x = (E − μ)/kBT is
the normalized electron energy, μ is the chemical potential,
and x′′ = 2.40. This TD, by design, has an infinitely narrow
width that makes κe = 0 to enhance ZT , but gives a finite σ

and PF since it diverges to infinity when x = x′′.
Later, Fan et al. investigated different TD shapes and their

influence on the TE properties, including a Gaussian distri-
bution and boxcar function [20]. They determined that when
the integral of the TD is set to a constant the Mahan-Sofo δ
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function gives the highest ZT , and that for a bounded TD a
finite-width boxcar function gave the largest ZT , which was
further evidenced through a genetic algorithm search. Zhou
et al. explored the effect of bandwidth on ZT , using a tight-
binding model and comparing different scattering models and
the role of dimensionality [21], and found that a finite band-
width provides the optimal ZT . Moreover, Zhou et al. pointed
out that the TD remains finite as the bandwidth approaches
zero, resulting in a zero σ and ZT , and thus concluding that
the optimal ZT cannot arise from an extremely narrow band.
Jeong et al. further investigated the effect of different band
structures and scattering models, and concluded that a finite
bandwidth produces a higher ZT when κl is finite [22]. More
recently, other studies have continued to explore the best band
structures and scattering profiles to enable the optimal TE
performance [23–26].

Given that real materials cannot produce a diverging δ

function TD, as pointed out by Mahan and Sofo [2], and
that previous studies suggest a finite bandwidth is better, the
question that remains is as follows: What is the optimal TD
for thermoelectrics, when the TD is not permitted to diverge
(i.e., bounded)? This work focuses on answering this question
and establishing a practical upper limit on the TE figure of
merit ZT and PF .

II. THEORETICAL APPROACH

Assuming a uniform material under near-equilibrium con-
ditions, a solution of the linear Boltzmann transport equation
within the relaxation time approximation (RTA) defines the
following TE properties:

σ = e2I0, (1)

S = −
(

kB

e

)
I1

I0
, (2)

κe = k2
BT

(
I2 − I2

1

I0

)
, (3)
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FIG. 1. Discretized transport distribution {�i} and unitless Fermi
window functions W

(α)
(x) vs normalized energy x = (E − μ)/kBT .

where e > 0 is the electron charge magnitude [27,28]. Here,
κl is treated as a constant. The Iα are integrals defined as

Iα =
∫ ∞

−∞
�(x)W

(α)
(x) dx, (4)

where �(x) is the TD, W
(α)

(x) = xα[−df0/dx] is the unitless
Fermi window function of order α, and f0 is the Fermi-Dirac
distribution. Figure 1 shows W

(α)
(x) for α = 0, 1, 2. �(x) is

the only unknown function in Eqs. (1)–(4) and represents the
central quantity that determines the TE parameters. The TD is
expressed as [2,28]

�(E ) = 1

�

∑
k

v2
z (k) τ (k) δ(E − ε(k)), (5)

where � is the sample volume, k are the electron states
(includes band index and spin), ε(k) are the electron ener-
gies, vz(k) = (1/h̄)[∂ε/∂kz] is the velocity along the transport
direction (here taken as z), and τ (k) is the scattering time.
Equation (5) can also be written as �(E ) = (2/h)M(E )λ(E ),
where M(E ) is the distributions of modes and λ(E ) is the
mean-free path for backscattering [19]. The TD includes all
the detailed electronic properties that are unique to each ma-
terial.

We begin by expressing the TD as �(x) = ψ2(x) and solv-
ing for ψ (x), which guarantees that �(x) is positive. Next,
we discretize the normalized energy x → {xi} and the TD
�(x) → {�i} = {ψ2

i }, where i runs over all integers and a
uniform spacing 
x is assumed (see Fig. 1). Note that the

x → 0 limit will be taken later. In this case, the integral
Eq. (4) can be approximated as

Iα ≈ 
x
∞∑

i=−∞
ψ2

i W
(α)
i . (6)

The unknown function ψ (x) is now transformed into {ψi}, an
infinite number of unknown variables to be determined. The
optimal {ψi} that maximize ZT or PF can be found from the
stationary point conditions ∂ (ZT )/∂ψ j = 0 and ∂ (PF )/∂ψ j

= 0, where ψ j ∈ {ψi}. Before attempting to solve this prob-
lem, we introduce a constraint on the solution.

To ensure that the optimized TD is bounded, we impose
the condition R({�i} − �max) = 0, where R(y) is the ramp
function (equal to y when y � 0 and equal to zero when
y < 0). It is easy to verify that R({�i} − �max) = 0 is only
satisfied when �i � �max, where �max is some maximum
value. This constraint is introduced into the stationary point
conditions using Lagrange multipliers, which results in the
following functionals to optimize

LZT [{ψi}] = ZT [{ψi}] −
∑

i

λiR
(
ψ2

i − ψ2
max

)
, (7)

LPF [{ψi}] = PF [{ψi}] −
∑

i

νiR
(
ψ2

i − ψ2
max

)
, (8)

where λi and νi are the Lagrange multipliers (one for each ψi).
The solution comes from solving the stationary points of LZT

or LPF :

∂L[{ψi}]
∂ψ j

= 0. (9)

One equation is obtained for each of the ψ j in {ψi}, leading
to an infinite number of coupled equations. Fortunately, it is
possible to solve for the {ψi} by focusing on the generic form
of only one of these equations. In addition to Eq. (9), solutions
must also satisfy ∂LZT /∂λ j = 0 and ∂LPF /∂ν j = 0, which
simply enforces the condition that |ψ j | � |ψmax|.

III. RESULTS

A. Optimal transport distribution for power factor

Equations (8) and (9) are used to derive the optimal
bounded TD that maximizes the power factor. Using the prop-
erty ∂Iα/∂ψ j = 2
x ψ jW

(α)
j and that the derivative of a ramp

function is a Heaviside function [dR(y)/dy = �(y)], after
some manipulation, Eqs. (8) and (9) become

ψ j
{
2ekB
x S W

(1)
j + e2
x S2 W

(0)
j

+ ν j �
(
ψ2

j − ψ2
max

)} = 0. (10)

This equation looks the same for all ψ j . The energy-dependent
quantities in Eq. (10) carry a subscript j, corresponding to
their value at a particular x j . Upon inspection, Eq. (10) admits
two types of solutions: either ψ j = 0 or the factor in curly
brackets is zero (or both).

As an intermediate step, to show how the Lagrange mul-
tipliers relate to the optimal PF , we multiply Eq. (10) by ψ j

and sum over all j. Using the definitions for σ and S, we arrive
at

S2σ =
∑

j

ν j ψ
2
j �

(
ψ2

j − ψ2
max

)
. (11)

Since PF is always positive, along with all the quantities in
Eq. (11) except ν j , this informs us that S2σ is maximized with
the largest positive ν j values. This fact will become useful
in the next step. We note that the TE parameters appearing
in Eqs. (10) and (11) correspond to the optimal values that
maximize PF .

Next, we investigate the solutions of Eq. (10) for which
ψ j �= 0 that arise from setting the factor in curly brackets
to zero. First, any solution for which ψ j < ψmax can be
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FIG. 2. (a) Linear and quadratic functions of x given by the
left-hand side of Eqn. (12) and (20), respectively, and inverse unitless
Fermi window function of zeroth order. Optimal transport distribu-
tion for maximum (b) power factor and (c) TE figure of merit, where
x′ = 1.145 and x′

a,b are shown in Fig. 3(a).

eliminated since, according to Eq. (11), this would not con-
tribute to increasing PF . Second, we consider the case when
ψ j = ψmax. Equation (10) gives

−2ekB
x S x j − e2
x S2 = ν j/W
(0)
j . (12)

For simplicity, a negative Seebeck coefficient (S = −|S|) is
assumed, corresponding to an n-type TE (the equivalent case
of a positive S, p-type TE, is easily obtained later). The
energies x j that satisfy Eq. (12) indicate where ψ j = ψmax.
The left-hand side is a linear function with positive slope and
negative y intercept, and the right-hand side is a symmetric
function that grows exponentially for large |x j | � 1 [see
Fig. 2(a)]. Any x j can be a solution of Eq. (12) with the
appropriate, and unique, choice in Lagrange multiplier ν j .
However, as noted earlier, Eq. (11) informs us that PF is max-
imized with the largest positive ν j . Thus, the maximum PF is
obtained by only considering positive ν j , which correspond to
the x j for which the left-hand side of Eq. (12) is greater than
zero: x j > e|S|/2kB.

Letting 
x → 0, the optimal TD for power factor has the
shape of a Heaviside function:

�PF (x) = �max �(x − x′), (13)

where x′ = e|S|/2kB, as shown in Fig. 2(b). To determine
the values of both x′ and S, �PF (x) is used to evaluate
Eqs. (2) and (4), resulting in the formula S = (−kB/e)[x′ +∫ ∞

x′ f0(x) dx/ f0(x′)]. Substituting this expression for |S| into
the above condition for x′, one obtains

∫ ∞
x′ f0(x) dx =

x′ f0(x′), which has the solution x′ = 1.145 (obtained numer-
ically using binary search). This �PF results in the following

TE parameters:

σ/
(
�max k2

B

) = 3.25 × 107 [K2/V2], (14)

S = −197 × 10−6 [V/K], (15)

PF/
(
�max k2

B

) = 1.27 [unitless], (16)

κe/
(
�max k2

BT
) = 0.276 [unitless]. (17)

σ , PF , and κe all scale linearly with �max, which has units
of J−1 m−1 s−1 (for a 3D bulk TE). Note that these results are
independent of temperature and that this particular normaliza-
tion of the TE parameters is discussed later.

B. Optimal transport distribution for ZT

Next, we find the optimal TD that maximizes ZT . Starting
with Eqs. (7) and (9), one finds the following optimization
condition:

ψ j

{
k2

BT 
x
ZT

(κe + κl )
W

(2)
j + 2ekB
x

ZT (1 + ZT )

Sσ
W

(1)
j

+ e2
x
ZT (1 + ZT )

σ
W

(0)
j + λ j�

(
ψ2

j − ψ2
max

)} = 0.

(18)

The TE parameters appearing in Eq. (18) correspond to those
that maximize ZT . Once again, the optimization condition
allows for ψ j �= 0 only for the x j that make the factor in curly
brackets vanish.

Before solving Eq. (18), we multiply it by ψ j and sum over
j, which allows us to obtain the following equation relating
ZT to the Lagrange multipliers λ j :

ZT =
(κe + κl

κl

) ∑
j

λ j ψ
2
j �

(
ψ2

j − ψ2
max

)
. (19)

This expression indicates that ZT is maximized with the
largest positive λ j values.

Returning to Eq. (18), we seek the solutions for which
ψ j �= 0. First, solutions for which ψ j < ψmax can be omitted
as Eq. (19) indicates they would not contribute to ZT . Second,
when ψ j = ψmax Eq. (18) becomes

− k2
BT 
x

ZT

(κe + κl )
x2

j − 2ekB
x
ZT (1 + ZT )

Sσ
x j

− e2
x
ZT (1 + ZT )

σ
= λ j

W
(0)
j

. (20)

A negative Seebeck coefficient is assumed S = −|S| for sim-
plicity; the positive S case is straightforwardly obtained later.
The x j that obey Eq. (20) tell us where ψ j = ψmax, with all
other ψ j equal to zero. The right-hand side of Eq. (20) is the
same as the one encountered in Eq. (12). The left-hand side
is a quadratic equation [shown Fig. 2(a)] with positive vertex,
positive local maximum, negative y intercept, and zeros (x′

a,b):

x′
a,b = e

kB

|S|
ZT

[1 + ZT ± √
1 + ZT ]. (21)

Given the appropriate choice in Lagrange multiplier λ j , all
x j can satisfy Eq. (20). However, from Eq. (19) we learned
that ZT is maximized with the largest positive λ j . Hence, we
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FIG. 3. (a) Edges of the boxcar TD, x′
a,b, and edge of the Heaviside TD, x′. (b) TE figure of merit ZT , (c) normalized power factor PF ,

(d) normalized electrical conductivity σ , (e) Seebeck coefficient |S|, and (f) normalized electronic thermal conductivity κe vs normalized lattice
thermal conductivity κl . Panels (b)–(f) show the results of the optimal boxcar and Heaviside TDs, along with the Mahan-Sofo limit [plotted vs
κl/(�MS k2

BT )].

obtain the optimal ZT by considering only x j solutions that
arise for positive λ j . This corresponds to the region where
the quadratic equation is positive, delimited by the zeros:
x′

a � x j � x′
b.

We conclude that, in the limit 
x → 0, the optimal TD for
ZT is a boxcar function:

�ZT (x) = �max [�(x − x′
a) − �(x − x′

b)], (22)

where x′
a,b are given by Eq. (21), as shown in Fig. 2(c). Manip-

ulating Eq. (21), one can arrive at the following expressions
for the optimal ZT and S:

ZT =
(

x′
a + x′

b

x′
a − x′

b

)2

− 1, S = 2kB

e

(
x′

ax′
b

x′
a + x′

b

)
. (23)

To determine x′
a,b, we start with an initial guess for x′

a,b and
calculate ZT and S using Eqs. (1)–(4), assuming a boxcar TD,
then insert these values into Eq. (21) to obtain updated x′

a,b.
This process is repeated until the absolute relative differences
in ZT and S calculated using Eqs. (1)–(4) versus Eq. (23)
reach below 10−10.

C. Thermoelectric properties of the optimal transport
distributions

When calculating ZT , it is convenient to redefine the TE
parameters. In order to create unitless quantities, starting from
the definition of ZT , we divide by �maxk2

BT in both the numer-

ator and denominator to arrive at

ZT = S2σ

(κe + κ l )
, (24)

where σ = σ/(�maxk2
B), κe = κe/(�maxk2

BT ), and κ l =
κl/(�maxk2

BT ). In this form σ , S, κe are independent of �max

and T , and PF = S2σ , κe and κ l are unitless. Moreover, the
effects of �max and T on ZT are conveniently captured by the
κ l term.

The calculated x′
a,b versus κ l = κl/(�maxk2

BT ) are pre-
sented in Fig. 3(a). The boxcar width, x′

b − x′
a, increases with

κ l . For small κ l , both x′
a,b approach a value of roughly 3.24.

For large κ l , x′
a tends toward x′ = 1.145 as x′

b increases rapidly,
thus retrieving the optimal Heaviside TD. Figures 3(b) and
3(c) show the figure of merit and power factor, for both the
optimal boxcar and Heaviside TDs. As expected, the boxcar
TD provides an upper limit on ZT , and the Heaviside TD
provides an upper limit on PF . The boxcar ZT increases with-
out limit when reducing κ l , with ZT � 1 requiring κ l � 1.
An important consequence of achieving a ZT greater than
roughly 10 is the strong reduction in PF compared to its upper
limit.

When κ l � 1, both the boxcar and the Heaviside TDs give
near identical ZT . In this regime, where κ l � κe (see Fig. 3(f)
and the Supplemental Material [29]), ZT is maximized by
adopting the largest possible power factor. Figure 3(c) shows
that PF approaches its maximum value, which explains why
the boxcar TD asymptotically approaches the Heaviside TD
as κ l → ∞.
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When κ l 
 1, the ZT originating from the boxcar TD splits
from that of the Heaviside TD. With the latter, the constant κe

dominates over κ l , resulting in a ZT that saturates to a value
of ≈4.6. With the former, κe decreases to allow ZT to grow, at
the expense of a lower power factor. One finds that κe → κ l /2
as κ l decreases (see the Supplemental Material [29]). Since κe

is directly related to the variance of the transport distribution
[2], decreasing κe requires decreasing the boxcar width, as
seen in Fig. 3(a). This also lowers σ and PF . The Seebeck
coefficient, however, increases as the boxcar narrows because
x′

a rises, thus increasing the average energy of current flow.
While σ , κe, and PF vanish as κ l → 0, and ZT might be ex-
pected to go to zero [21], ZT increases without limit since the
Lorenz number κe/(σT ) tends to zero (see the Supplemental
Material [29]).

The results shown have been for the case of a negative S
(n-type TE); the positive S case (p-type TE) is obtained by ap-
plying a reflection operation about x = 0 on the optimal TDs,
�(x) → �(−x). The data presented in Fig. 3 are available in
the Supplemental Material [29].

IV. DISCUSSION

For comparison, the results of the Mahan-Sofo limit [2] are
shown in Figs. 3(b)–3(f). While the boxcar TD yields higher
ZT for large κ l due to its PF , and the Mahan-Sofo limit gives
higher ZT for small κ l due to its zero κe, such a comparison
assumes �max = �MS which may not be meaningful. If the
prefactors are chosen such that σ is made to agree, the ZT s
are nearly the same (see the Supplemental Material [29]).

As discussed above, the key parameter controlling the max-
imum ZT is κ l = κl/(�maxk2

BT ). For a given κ l , the upper
limit ZT corresponds to the largest ZT , or TE efficiency, that
is possible with a bounded transport distribution. To increase
ZT one must lower κ l , which is achieved by decreasing κl ,
increasing �max, or increasing T . Since σ ∝ �max, this is
effectively a statement of the “phonon-glass, electron-crystal”
concept [30]. There are several successful strategies to re-
duce κl that have been demonstrated, including alloying [31],
nanostructuring [32,33], high anharmonicity [34], among oth-
ers. Large �max is possible in materials that possess a large
distribution of modes, high velocities, and low electron scat-
tering. We note that 1/κ l is closely related to the generalized b
factor [35]. For a typical temperature dependency of κl ∝ 1/T
(phonon-phonon scattering [36]) and �max ∝ 1/T (electron-
phonon scattering [37]), one would expect κ l to scale as 1/T .

What is a typical value of κ l for an established good
TE? From its definition, κ l = κl/(�maxk2

BT ), it is clear that
κ l depends on both phonon and electron transport proper-
ties, since it is proportional to κl and inversely proportional
to �max. Most bulk TEs tend to have relatively smooth
transport distributions that increase with energy away from
the band edge; however, �max can be estimated by us-
ing the TD value at roughly 10kBT from the band edge
(beyond which the TD is suppressed exponentially by the
W

(α)
). For SnSe, a TE with ZT ≈ 2.8 [38], we esti-

mate �max ∼ 2 × 1044 J−1 m−1 s−1 from Refs. [39,40]. With
a room-temperature κl ≈ 0.7 Wm−1 K−1 [34], we obtain
a value of κ l ∼ 0.06, which has an upper limit ZT of
roughly 9 with an associated PF ≈ 280 μWcm−1 K−2. For

Bi2Te3, a TE with ZT below 1 [41], we estimate �max ∼
5 × 1043 J−1 m−1 s−1 [42], which coupled with a room-
temperature κl ≈ 1.5 Wm−1 K−1 [43] gives κ l ∼ 0.5. In this
case, the upper limit ZT is approximately 2 with a PF ≈
110 μWcm−1 K−2. These upper limit values indicate what
could be possible with SnSe or Bi2Te3 if their transport
distributions had the optimal shape, without any change to
their �max.

Why is a boxcar or Heaviside shape optimal for ZT and
PF? �(x) is related to a material’s capacity to conduct elec-
trons at an energy x = (E − μ)/kBT , while W

(0)
(x) accounts

for how the states are occupied (specifically, the nonequilib-
rium component of the electron distribution). As a result, σ

grows when the product of �(x) and W
(0)

(x) is large. |S|,
however, increases when �(x) overlaps more with either the
positive or negative side of W

(1)
(x) (see Fig. 1). This is be-

cause the Seebeck coefficient is proportional to the average
energy of electron flow relative to the chemical potential,
which benefits from having conduction occur purely (and far)
above or below μ. The discontinuous edge of the optimal
Heaviside TD allows both σ and |S| to be enhanced, thus max-
imizing the power factor, compared to a more slowly varying
function. For ZT to be maximized, one must also seek to
decrease κe, without drastically reducing the power factor. As
discussed by Mahan and Sofo [2] the electronic thermal con-
ductivity is proportional to the variance of �(x)W

(0)
(x); using

Eqs. (1)–(4) one can show that κe/σ = (k2
BT/e2)[〈x2〉 − 〈x〉2],

as well as S = −(kB/e)〈x〉. The finite width of the boxcar
TD has a lower variance, and thus lower κe, compared to the
Heaviside TD, but retains the sharp edges that lead to high
power factor. When these sharp features are smoothed out, ZT
and PF can be significantly degraded (see the Supplemental
Material [29]).

While the optimal TDs derived in this study are very dif-
ferent from the δ function TD obtained by Mahan and Sofo,
they are derived following the same underlying principles.
The best TD is one that maximizes the absolute average
of the distribution �(x)W

(0)
(x) (largest |S|) and minimizes

its variance (lowest κe) for a given conductivity. For a TD
with unrestricted magnitude, the best case corresponds to a
δ function, for which κe → 0 while σ and S remain finite.
For a bounded TD, the best case is a boxcar function with
a finite width, in order for σ to be nonzero, which results
in a nonzero κe that is as small as needed to maximize ZT .
The optimization principles in this work and that of Mahan
and Sofo are fundamentally the same, with the difference
in the solutions originating from the constraint imposed on
the TD.

The findings from this work indicate there are two main
strategies for approaching the TE limits: (1) Increase the
magnitude of the TD, �max, which can be achieved by increas-
ing the distribution of modes and/or the mean-free path for
backscattering. This point is somewhat obvious, as it states
that a more conductive TE is better. (2) Find or design TE
materials with the optimal boxcar or Heaviside shape, the
edges of which may need to be tuned according to the par-
ticular value of κl/(�maxk2

BT ). The optimal TDs can serve as
targets when exploring the potential of novel TE materials or
band engineering strategies. Establishing what are the optimal
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bounded TDs, and their associated TE limits, addresses one
part of the broader challenge of developing the best TEs.
The other (bigger) part to this challenge is determining what
specific band structures and scattering profiles achieve the
TE upper limits, and which materials display such properties.
The derived optimal TDs are applicable to uniform TEs under
near-equilibrium conditions that can be described by the RTA.
This includes TEs of different dimensionality (3D, 2D, or
1D), as well as transport regimes from diffusive to ballis-
tic. One-dimensional semiconductor nanowires can display a
Heaviside or boxcar TD, when assuming a constant mean-free
path or ballistic transport [7,8,21,22]. In particular, a boxcar
TD could be achieved in systems described by a 1D nearest
neighbor tight-binding model [21,22,44] including, for exam-
ple, a line of quantum dots or an atomic chain wherein the
isolated energy levels are broadened due to intersite coupling.
Two-dimensional ring-shaped band semiconductors have also
shown discontinuous TDs similar to a Heaviside function
[15,17–19]. Obtaining a 3D bulk TE with the ideal TD shape
would be beneficial to avoid the issue of packing fraction [8].

The results of this study provide a theoretical explana-
tion to earlier numerical work, based on a genetic algorithm
search, that found a boxcar function to be the optimal bounded
TD for ZT [20]. Moreover, this work establishes the precise
location of the rising and falling edges of the boxcar func-
tion under all conditions, which are controlled by the factor
κl/(�maxk2

BT ). Lastly, we note the similarity of the optimal

TDs in this work to the optimal transmission function derived
for quantum TEs [44], which is also a boxcar function.

V. CONCLUSION

The optimal bounded (by some finite value �max) TDs
that maximize the TE figure of merit and power factor were
derived and determined to be a boxcar and Heaviside function,
respectively. These optimal TDs provide theoretical upper
limits on ZT and PF . While PF has a maximum value de-
termined by �max, the optimal ZT increases without limit
as the key quantity κl/(�maxk2

BT ) decreases. To achieve the
maximum ZT the edges of the boxcar TD must be located at
specific energies. These results suggest two main approaches
to enhance TE performance, aside from lowering κl , which
involve identifying or designing materials with TDs that have
large magnitude �max (requiring a large distribution of modes,
high-velocity states, and low scattering) and that possess the
ideal boxcar or Heaviside shape (controlled by the dispersion
shape, scattering profile, and dimensionality).
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