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Structural entropy and spatial decay of quasimodes in Vogel spirals

M. Prado ,1 F. Sgrignuoli ,2 Y. Chen ,2 L. Dal Negro,2,3,4,* and F. A. Pinheiro1,†

1Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
2Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, Massachusetts 02215, USA

3Division of Material Science and Engineering, Boston University, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, USA
4Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

(Received 7 June 2021; revised 11 October 2021; accepted 10 November 2021; published 29 November 2021)

We investigate the spatial decay and temporal localization properties of quasimodes (i.e., scattering reso-
nances) of two-dimensional Vogel spirals, composed of deterministic, aperiodic arrays of electric dipoles. By
determining the structural entropy and localization maps of Vogel spirals using the Green’s matrix method, we
show that three distinctive decay types of quasimodes coexist in Vogel spirals: exponential, power law, and
Gaussian. While the exponential and the power-law decays typically occur in disordered media and multifractal
systems, respectively, the Gaussian decay is demonstrated to characterize, on average, the most localized
quasimodes of Vogel spirals, both spatially (smallest participation ratios) and temporally (longest lifetimes).
These decay forms are demonstrated by a no-fitting analysis of the localization maps, independently corroborated
by calculating the electric field in real space, which also provides a direct evidence of the algebraic spatial
decay of critical quasimodes. Altogether our findings unveil a rich spectrum of both long-lived and spatially
localized quasimodes that coexist in Vogel spirals and can be of direct relevance to novel optical functionalities
for applications to light sources and sensing devices.
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I. INTRODUCTION

The successful design of photonic nanostructures crucially
depends on the efficient characterization of the electro-
magnetic modes they can support. On one hand, ordered
optical metamaterials with periodically arranged units of sub-
wavelength dimensions have been demonstrated to exhibit
unusual optical functionalities, with many applications [1].
On the other hand, disordered optical media exhibit fascinat-
ing analogies between quantum and classical transport wave
phenomena, such as Anderson localization [2,3], with appli-
cations such as random lasers [4]. However, disordered optical
structures lack the reproducible and predictable behavior that
is necessary for designing many advanced optical devices.

Deterministic aperiodic systems, artificial optical media
with a tunable degree of aperiodic structural order gener-
ated by deterministic mathematical rules, have emerged as an
alternative material platform for designing photonic devices
[5–15]. Indeed, these structures present unique optical proper-
ties that do not occur in either periodic or disordered systems,
such as fractal transmission spectra and anomalous trans-
port properties, which include multifractality of light [13],
subdiffusive transport [14], and light localization [16]. As a
result of their unique functionalities, deterministic aperiodic
systems have been employed in many applications such as
lasing [17], optical sensing [5,6,18], photodetection [19], and
optical imaging [20].
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Among several candidates of deterministic aperiodic opti-
cal systems, the robust platform of Vogel spiral arrays stands
out for its versatility and the possibility to tailor its structural
order between short-range correlated amorphous systems and
uncorrelated random ones [19,21–25]. Vogel spirals are de-
terministic structures with Fourier spectra characterized by
diffuse circular rings and do not have well-defined Bragg
peaks, in contrast to photonic crystals and quasicrystals [12].
The positions of particles in Vogel spiral arrays are gener-
ated in polar coordinates according to rn = a0

√
n, θn = nα,

where n = 1, 2, . . . is an integer, a0 is the scaling factor de-
termining particle separation, and α is the divergence angle
[10,16,21,22,26]. This angle specifies the constant aperture
between successive point scatterers in the array. Since α is
irrational, Vogel spiral point patterns lack both translational
and rotational symmetry. Any irrational number (ξ ) can be
used to produce the divergence angle (α◦, in degrees) ac-
cording to the relationship α◦ = 360◦ − frac(ξ ) · 360◦ where
frac(ξ ) denotes the fractional part of ξ . The value of ξ defines
the four types of structures considered here, which exhibit
different degrees of structural order: ξ = (1 + √

5)/2 (golden
mean), ξ = (2 + √

8)/2, ξ = π , and ξ = (5 + √
29)/2, for

the golden angle (GA), τ , π , and μ spirals, respectively [12].
Vogel spirals support distinctive optical resonances, with a
broad range of lifetimes and spatial profiles, such as criti-
cal modes, which are expected to show algebraic, power-law
envelope decay and multifractal field intensity oscillations
[7,27–30]. Localized quasimodes also occur in Vogel spirals,
leading to a light localization transition [16].

Despite the relevance and applicability of Vogel spirals in
optics of aperiodic media, the full characterization of temporal
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localization and spatial decay of their electromagnetic modes
has never been achieved so far. In the present work we address
this important issue using an alternative approach to probe the
spatial decay of the quasimodes (i.e., scattering resonances),
based on the so-called localization maps [31]. Localization
maps are based on the relation between the structural en-
tropy and the participation ratio of modes, which allows for a
general (independent of the system size and geometry) and no-
fitting method to characterize the spatial decay of eigenstates
of an arbitrary lattice, regardless of its dimensionality [31].
This method has been successfully applied to characterize
localization in quantum systems [32], metal-insulator transi-
tions [33,34], and electronic wave functions in quasiperiodic
lattices [35]. By means of localization maps of quasimodes of
Vogel spirals in two dimensions, which have been calculated
using the Green’s matrix method [12,36–41], we identify three
distinctive forms of spatial decay: Gaussian, power law, and
exponential, which so far has been usually associated with
disordered, Anderson localized systems. These types of de-
cays are confirmed by independent calculations of the electric
field in real space. By correlating the spatial decay of the
quasimodes with their spectral overlap, which is measured by
computing the ratio between its decay rate to the mean level
spacing, we conclude that in Vogel spirals the most localized
quasimodes, both temporally (i.e., modes with longest life-
times) and spatially (i.e., modes with smallest participation
ratios), exhibit Gaussian decay on average.

II. METHODOLOGY

Planar Vogel spiral arrays in which light scattering and
propagation are confined to two dimensions may be actually
realized in a number of systems such as arrays of dielectric
nanocylinders [42], planar arrangements of scatterers in mi-
crowave cavities (e.g., [43]), photonic crystals (e.g., [44]),
and laser-cooled atoms in optical cavities [41]. In Sec. II A
we present the Green’s matrix method in two dimensions,
which is a general approach that is used to model electro-
magnetic propagation problems. In Sec. II B we specifically
consider light propagation in deterministic Vogel spiral arrays
composed of dielectric cylinders within the framework of the
generalized Mie theory, i.e., 2D-GMT [45]. Using these two
approaches, the Green’s matrix method and 2D-GMT, one
can independently determine the electromagnetic quasimodes
of the system under study. Then, one can investigate their
spatial decay using the localization map method, which will
be presented in Sec. II C. Localization map analysis using
both methods will be presented, discussed, and compared in
Sec. III.

A. Green’s matrix method in two-dimensional arrays

The Green’s matrix method allows one to determine the
scattering resonances of an arbitrary system of N point scat-
terers [36,37,40,46,47]. Within this model, information about
the scattering resonances of the system can be extracted from
the spectrum of the Green’s matrix. Multiple scattering is
treated exactly and the only approximation is to consider the
scatterers as electric point dipoles. In two dimensions the

Green’s matrix reads [41,46]

Gi j = iδi j + i(1 − δi j )H0(k0|ri − r j |), (1)

where its off-diagonal elements describe wave propagation in
free space between two point dipoles. In Eq. (1), the sym-
bol δi j is the Kronecker delta function, H0(k0|ri − r j |) is the
zero-order Hankel function of the first kind, k0 the wavevector
of light, and ri the position of the ith scatterer in the array.
The Green’s matrix model in two dimensions describes the
electromagnetic propagation and scattering properties of infi-
nite arrays of dielectric cylinders when excited by transverse
magnetic (TM)-polarized waves [41,46,48]. Even though the
two-dimensional (2D) model defined by matrix (1) does not
take into account the vector nature of light [14,16,24,47],
it still provides useful information on light localization in
2D disordered media [46] and transparency in high-density
hyperuniform materials [48], correctly describes the coupling
between one or several two-level atoms in a structured reser-
voir [49,50], and allows the design of aperiodic arrays for the
efficient generation of multifrequency two-photon processes
[15].

To investigate the temporal localization and spatial decay
of the electromagnetic quasimodes of Vogel spirals, we have
numerically diagonalized the N × N Green’s matrix, Eq. (1).
The real and imaginary parts of its complex eigenvalues
�n (n ∈ 1, 2, . . . , N) correspond to the relative frequencies
(ω0 − ωn)/
0 and widths 
n/
0 of the scattering resonances,
respectively [46,51]. Here, 
0 and ω0 are the resonant width
and the resonant frequency of a single electric dipole. The
eigenvectors ψn are their scattering resonances.

B. Calculation of electromagnetic quasimodes in real space

To evaluate the electromagnetic quasimodes supported by
the Vogel spirals, we used an efficient algorithm based on
the rigorous solution of the 2D scattering problem in the
framework of the generalized Mie theory, i.e., 2D-GMT [45].
Within this approach, the electromagnetic field is expanded
in terms of Bessel-Fourier multipolar basis functions in the
coordinate system centered at the origin of each individual
cylinder. Using Graf’s addition theorem for Bessel functions
and imposing the field continuity conditions at the boundary
of each cylinder, we can obtain the polarization-dependent
Mie coefficients by solving the linear system [52]

Tb = a0 (2)

with a0 = an�/J�(k0Rn) and b = bn�/J�(k0Rn), where an� and
bn� are the source and scattering Mie coefficients of the nth
cylinder. Moreover, k0 is the plane-wave incident wavenumber
and Rn denotes the radius of the nth cylinder. The function
J�(xn) is the cylindrical Bessel function of the first kind of
order � and xn = k0Rn denotes the size parameter of the nth
cylinder. The matrix T describes the material and the geomet-
rical properties of the scattering medium and it is defined as
[53]

T��′
nn′ = δnn′δ��′ − (1 − δnn′ )ei(�′−�)φnn′ H�−�′ (k0rnn′ )

× sn�

J�′ (k0Rn′ )

J�(k0Rn)
, (3)
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where H�−�′ (k0rnn′ ) is the Hankel function of the first kind
of order � − �′, rnn′ is the center-to-center distance between
the cylinders identified by the indices n and n′, the function
φnn′ is the angular position of the n′ cylinder in the reference
frame of the cylinder n, and the parameter sn� is equal to
−[J ′

�(k0Rn) − 
n�J�(koRn)]/[H ′
�(k0Rn) − 
n�H�(k0Rn)]. Here,

the prime superscript indicates differentiation with respect
to the argument, 
n� = [ξnknJ ′

�(knRn)]/k0J�(knRn), while kn

indicates the wavenumber inside the nth nanocylinder and
ξn is a parameter that depends on the polarization of the
incident light. Specifically, in the transverse magnetic case
ξn = μ0/μn, while ξn = ε0/εn when a transverse electric in-
cident field is considered. The symbols μ0 and μn (ε0 and
εn) are, respectively, the vacuum and the nanocylinders’ per-
meability (permittivity). The computational effort required to
solve matrix equation (2) is proportional to the number of
cylinders, their separation distances, and the maximum multi-
polar order at which the infinite series were truncated. The
T -matrix expression reported in Eq. (3) ensures numerical
stability, even when a large number of multipolar orders is
required. In the present work, the T matrix was calculated
by truncating the multipolar expansion order to �max = 1
(i.e., the field summation runs from −�max to �max, yielding
2�max + 1 = 3 multipolar orders). This truncation ensures the
validity of the dipole approximations as further discussed in
Sec. III. Notice that Eq. (3) is a matrix composed of N × N
blocks, where N is the total number of scattering elements.
Each block has a dimension of (2lmax + 1) × (2lmax + 1).
More mathematical details on the utilized method can be
found in Refs. [45,52,54], while information regarding its
applications to nanophotonics can be found, for example, in
Refs. [5–11,18,53,55–57].

Calculating the resonant electromagnetic quasimodes
requires solving the homogeneous equation Tb = 0
[15,45,52,55,56]. Specifically, we have to find the complex k̃
values for which the relation det[T(k̃)] = 0 is satisfied [52].
The complex eigenvalue k̃ has a direct physical interpretation;
namely, its real part is related to the wavenumber of the mode,
while its imaginary part is proportional to its spectral width

 = 2c|Im[k̃]| (c is the speed of light). Modes with imaginary
parts closer to zero are the ones with the longest lifetimes
and hence correspond to the highest quality factors, which is
defined as Q = Re[k̃]/2|Im[k̃]| [52,58].

C. Structural entropy and localization maps

Localization maps have been introduced in Ref. [31] to
probe the spatial decay and extent of eigenfunctions in dis-
ordered media. The latter property is quantified by the mode
spatial extent (MSE), also known as the participation ratio
[59,60]. The MSE of the nth (normalized) quasimode ψn is
defined as

MSEn =
[∑N

i=1 |ψn(i)|2]2

∑N
i=1 |ψn(i)|4 , (4)

where N is the total number of sites of the system. The filling
factor qn = MSEn/N defines a quantity independent of the
system size.

The other parameter needed for characterizing the spatial
decay of the nth quasimode is the structural entropy Sstrn ,

FIG. 1. Structural entropy Sstr as a function of the filling factor
q for all the eigenvectors of the Green’s matrix (1) for Vogel spiral
arrays with 5000 point electric dipoles and optical density ρλ2 = 0.1.
(a) GA spiral, (b) τ spiral, (c) μ spiral, and (d) π spiral, which
are depicted in the insets. The localization maps are color coded
according to the log10 values of gn. The black lines correspond to the
reference curves: Gaussian, f (r) = exp(−r2) (solid line); exponen-
tial, f (r) = exp(−r) (dashed line); and power law, f (r) = (1 + r)−3

(dotted line) in two dimensions.

which is defined as [31]

Sstrn = −
N∑

i=1

|ψn(i)|2 ln |ψn(i)|2 − ln MSEn. (5)

Graphs of Sstrn as a function of qn, the so-called localization
maps, allow one to predict the existence of modes with arbi-
trary types of spatial decay. There exists a nontrivial relation
between these two quantities for a prescribed envelope func-
tion f (r) that describes the decay of the quasimode, with r
being the distance to the maximum of intensity [31]. In the
localization map, modes with the same type of spatial decay
should lie around the same reference curve, which can be
analytically or numerically calculated. Therefore, this consti-
tutes a systematic method of probing the average decay of
quasimodes that do not rely on fitting the spatial profile of
the electric field of every single mode.

In order to access information on temporal localization of
each quasimode one should determine gn, defined in [61] as

gn = 
n

�ω
= Im�n

Re�n − Re�n−1
, (6)

where · · · denotes a band average in the vicinity of ωn and
the eigenvalues are ordered such that Re�n > Re�n−1. gn is
essentially the inverse lifetime of the quasimode normalized
by the mean level spacing.

III. RESULTS AND DISCUSSIONS

In Fig. 1 the localization maps for four types of Vogel
spirals (golden angle, τ , μ, and π ) are shown, where the
structural entropy Sstr [Eq. (5)] is calculated as a function of
the filling factor q [Eq. (4)] for optical density ρλ2 = 0.1,
with ρ the number density of dipoles and λ the wavelength.
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FIG. 2. Structural entropy Sstr as a function of the filling factor
q for all the eigenvectors of the Green’s matrix (1) for Vogel spiral
arrays with 5000 point electric dipoles and optical density ρλ2 = 30.
(a) GA spiral, (b) τ spiral, (c) μ spiral, and (d) π spiral. The lo-
calization maps are color coded according to the log10 values of gn.
The black lines correspond to the reference curves: Gaussian, f (r) =
exp(−r2) (solid line); exponential, f (r) = exp(−r) (long-dashed
line); and power law, [ f (r) = (1 + r)−2 (dotted line), f (r) = (1 +
r)−3 (dashed line), f (r) = (1 + r)−4 (short-dashed line), f (r) =
(1 + r)−5 (dash-dotted line)] in two dimensions.

We have verified that all localization maps are within the
allowed domain of values 0 < q � 1 and 0 � Sstr � − ln(q)
[31]. The color code indicates the value of gn of each quasi-
mode, Eq. (6). Figure 1 reveals that the quasimodes’ lifetimes
are sufficiently low so that gn > 1 for all investigated Vogel
spirals. In disordered systems, gn is the Thouless conduc-
tance of each quasimode, and for gn > 1 quasimodes strongly
overlap spectrally and Anderson localization does not occur
[61]. The fact that gn > 1 for the quasimodes of deterministic
Vogel spirals suggests that localization within the array plane
does not occur for this low optical density ρλ2 = 0.1, so that
waves rapidly leak through the system boundaries. From the
localization maps it is not possible to identify a clear spatial
decay of quasimodes, which are mostly extended and strongly
overlapping in space.

This scenario is completely modified when one increases
the optical density, as shown in Fig. 2 where the localiza-
tion maps for Vogel spirals are calculated for ρλ2 = 30. In
this case, the localization maps for the four Vogel spirals
indicate the coexistence of three different types of spatially
decaying quasimodes: Gaussian, power law, and exponential.
Indeed, localization maps in Fig. 2 show that there exist
many quasimodes that are well described by the no-fitted,
reference curves for Gaussian, f (r) = exp(−r2), exponential,
f (r) = exp(−r), and power law, f (r) = (1 + r)−β , where
β = 2, 3, 4, 5. These functions characterize the decay shape
of the envelope of the quasimodes [31]. In this work, we show
that exponentially localized modes may also exist in deter-
ministic Vogel spirals, in much the same way they occur in
disordered systems. However, in contrast to the uncorrelated
case, these modes do not typically correspond to the ones
with the longest lifetimes, i.e., the most temporally localized.
Rather we find that, for Vogel spirals, on average, quasimodes

that exhibit Gaussian decay are not only the most temporally
localized (for which gn < 1) but also the most spatially lo-
calized, corresponding to the smallest values of q (smallest
MSEs). Localization maps also demonstrate that quasimodes
with power-law decay do exist in Vogel spirals, with different
degrees of spatial extent, i.e., corresponding to a broad range
of values of q. These modes, also known as critical modes, are
long-lived and extended modes that exhibit local fluctuations
and spatial oscillations over multiple length scales [13,27–29].
The power-law decaying quasimodes are expected to occur
in aperiodic photonic media [12,62], but a direct evidence of
their existence in Vogel spirals has not been demonstrated so
far. Altogether, the analysis of localization maps reveals that
Vogel spirals exhibit a rich variety of localized quasimodes,
with distinct spatial decays and different degrees of temporal
localization.

To establish a direct link with our previous results based on
the Green’s matrix method, we have selected the nanocylin-
der size, material, and averaged interparticle separation by
evaluating the Purcell factor P(rp; ω) = ρ(rp; ω)/ρ0(ω) with
two complementary methods. Here, ρ(rp; ω) and ρ0(ω) =
ω/2πc2 are the local density of optical states (LDOS) and
the free-space local density of states, respectively. We have
compared the P(rp; ω) of 500 dielectric identical nanocylin-
ders of relative permittivity ε = 10.5 embedded in air [15]
to the Purcell enhancement of an assembly of 500 point
electric dipoles characterized by the electric polarizability
α(ω) = −4
0c2/[ω0(ω2 − ω2

0 + i
0ω
2/ω0)] [48]. While in

the 2D-GMT the LDOS calculation requires solving the linear
system (2) with the input coefficients a0 describing a line
source and then evaluating the total field at the position of the
excitation rp [15], in the Green’s matrix method the LDOS
can be computed by solving the self-consistent equation

Ei = μ0ω
2G(ri, rp; ω)p + ω2

c2
α(ω)

∑

i �= j

G(ri, r j ; ω)Ej, (7)

where ri is the position of the scatterer i and G(r, rp; ω) is
the Green’s function (1) [49]. Equation (7) allows one to
evaluate the scattered field at rp when the system is illu-
minated by a source dipole p = 1/μ0ω

2 located at rp and
oriented along the ẑ direction. Once the exciting field at rp

is known, the Purcell spectrum P(rp; ω) in the dipole approx-
imation (DA) can be evaluated through the formula 4(1/4 +
Im[E (rp, ω)])/ω2μ0 p, where Im[E (rp, ω)] is the imaginary
part of the scattered field at the position of the excitation
[15,45].

In Fig. 3(a) we show the Purcell spectra of a golden angle
Vogel spiral obtained by using both the 2D-GMT method (red
dots) and by solving Eq. (7) (blue line). In particular, our find-
ings show that ω0 = 3.67 × 1015 s−1 and 
0 = 9 × 1015 s−1

correspond to arrays of dielectric nanocylinder (ε = 10.5) of
almost 30-nm radius with an averaged interparticle separation
d1 equal to 200 nm. This choice of material, particle size, and
averaged interparticle separation guarantees the validity of the
electric DA within the 2D-GMT framework. By employing
the method of Sec. II B, we have evaluated the resonant modes
corresponding to the different Purcell enhancement peaks of
Fig. 3(a). Specifically, we have evaluated the TM-polarized
(i.e., the ẑ component of the electric field) resonant modes by
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FIG. 3. (a) Purcell spectrum of a golden-angle Vogel spiral as
a function of the averaged interparticle separation d1 normalized to
the incident wavelength λ calculated with the 2D-GMT (red dots)
and by solving Eq. (7) (blue line). (b) The structural entropy Sstr as a
function of the filling factor q for all the optical modes corresponding
to the different Purcell enhancement peaks of panel (a). Three repre-
sentative mode profiles (exponential, Gaussian, and power law) are
reported in the left panels of (c)–(e), respectively. The right panels
show instead how these modes decay in space by performing an
azimuthal average operation. Here, r is equal to

√
x2 + y2.

generating two-dimensional maps of det[T(k̃)] with a very
large spectral resolution around the narrow Purcell factor
peaks, shown in Fig. 3(a). We have used a resolution of
�Re(k̃) equal to 1.3 × 10−3 μm−1 and a spacing in log-space
of �[log10 Im(k̃)] equal to 0.06. The resulting electromagnetic
quasimodes agree very well with what has been previously
reported based on both 2D finite element method simulations
[23,62] and the Green’s matrix method [16]. In order to eval-
uate the structural entropy and therefore the localization maps
in the present case, we have used a suitable generalization of
Eqs. (4) and (5) to a continuous distribution [63]. Figure 3(b)

displays the result of this analysis performed on a total of
65 different resonant modes. Differently from the results of
Fig. 2, which considered all the scattering resonances of the
system, Fig. 3(b) shows the structural entropy Sstr as a func-
tion of q for the resonant modes that can be excited when
the material and geometrical parameters of the cylinders are
explicitly taken into account. Interestingly, Fig. 3(b) displays
the same behavior of Fig. 2, demonstrating that optical modes
with different types of spatial decay can actually be excited
in Vogel spirals. The qualitative agreement between the lo-
calization maps obtained via the Green’s matrix method and
the more general 2D-GMT shows that the former captures
the essential spectral properties associated with the aperiodic
geometry of the structures, regardless of their specific ma-
terial parameters. Additionally, the latter analysis confirms
that we can subdivide the modes of a golden-angle Vogel
spiral into three broad categories, depending on the nature
of their spatial decay. In particular, we have identified opti-
cal modes with exponential, Gaussian, and power-law decay.
Representative examples of each mode category are reported
in Figs. 3(c)–3(e), respectively, along with the correspond-
ing spatial decay curves. Therefore our results demonstrate
that the localization map analysis can correctly predict the
type of spatial decay of the optical modes of Vogel spiral
arrays.

Moreover, Fig. 3 shows the usefulness and applicability of
the localization maps in the investigation of the average spa-
tial decay of quasimodes supported by Vogel spirals. Indeed,
without using localization maps, if one wanted to determine
the spatial decay of optical quasimodes, it would be necessary
to analyze the behavior of every single quasimode supported
by the structure, most likely by fitting the spatial profile of
each mode, as it has been done in Figs. 3(c)–(e), right panel.
In typical photonic structures, such as the ones investigated in
this paper that support thousands of electromagnetic modes,
this is clearly not feasible and, more importantly, this would
not capture the global trend that characterizes the spatial de-
cay profile of the quasimodes. As a result, the localization
map analysis not only allows one to investigate the over-
all spatial decay of quasimodes of Vogel spirals, which has
never been studied so far, but also provides a unique theoret-
ical tool without which this goal would be very difficult to
achieve.

IV. CONCLUSIONS

In conclusion, we have studied the spatial decay of quasi-
modes of several Vogel spiral arrays of electric dipoles in
two dimensions using the concepts of structural entropy and
localization maps. The quasimodes are determined via the
Green’s matrix method as well as the more general 2D-GMT
in the dipole limit, enabling to understand the connection
between the spatial decay and the lifetime of the quasimodes.
By means of this analysis we find that three types of spa-
tially decaying quasimodes coexist in Vogel spirals, namely,
exponential, power law, and Gaussian, which have been inde-
pendently demonstrated by calculating the electric field in real
space. Our analysis shows that the most localized modes in
Vogel spirals, both spatially (smallest participation ratios) and
temporally (largest lifetimes), are on average the ones with
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Gaussian decay. We also provide a direct demonstration of
critical modes in Vogel spirals, which are the modes that ex-
hibit power-law decay. Our findings unveil the rich spectrum
of optical resonances supported by Vogel spiral structures,
with a broad range of coexisting quasimodes that exhibit
different types of spatial decay.
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