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Bulk topological signatures of a quasicrystal
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We show how measuring real space properties such as the charge density in a quasiperiodic system can be
used to gain insight into their topological properties. In particular, for the Fibonacci chain, we show that the
total on-site charge oscillates when plotted in the appropriate coordinates, and the number of oscillations is
given by the topological label of the gap in which the Fermi level lies. We show that these oscillations have two
distinct interpretations, obtained by extrapolating results from the two extreme limits of the Fibonacci chain—the
valence bond picture in the strong modulation limit, and perturbation around the periodic chain in the weak
modulation limit. This effect is found to remain robust at moderate interactions, as well as in the presence of
disorder. We conclude that experimental measurement of the real space charge distribution can yield information
on topological properties in a straightforward way.
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I. INTRODUCTION

Quasicrystals have recently been shown to exhibit rich non-
trivial topological phases [1,2]. We consider in particular the
pure hopping Fibonacci Hamiltonian, which is known to have
gaps everywhere in the spectrum. One can assign a topological
label to each of them by virtue of the gap-labeling theorem
[3,4]. These gap labels map directly to the Chern numbers of
an appropriately extended model [5]. In this paper, we show
how these labels can be determined from relatively simple ex-
perimental measurement of the electronic charge distribution
along such a Fibonacci chain. Our proposed measurement is
distinct from previous studies, which characterize the topol-
ogy via the the winding of edge modes as a function of an
external tuning parameter. For example, in a recent polaritonic
crystal experiment [6], the external parameter is the phason
angle φ, which progressively transforms the Fibonacci chain
by a series of bond flips. It was shown that the energy of
an edge state in a gap with label q crosses the gap |q| times
as a function of φ. Every gap crossing is accompanied by
the corresponding edge state swapping its localization. This
idea has been used to build an adiabatic pump [7], whereby
charge was pumped from one edge of a photonic crystal to the
other by smoothly modulating between Fibonacci potentials
with different values of φ. These (and related [8,9]) studies
probe topological quantities by studying the behavior of edge
states under variation of a control parameter, namely the pha-
son angle. Given the bulk-edge correspondence principle, the
question arises if and how the topology manifests itself in
bulk quantities. In this letter, we show this is indeed the case,
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and furthermore that a single realization of the quasicrystal
suffices: it is not necessary to tune an external parameter such
as the phason angle.

The key idea is to plot real space quantities such as the
charge density, ni = 〈c†

i ci〉, as a function of their conumbering
index [10]. In this ordering, the oscillations of the charge
density indicate the label of the gap in which the Fermi level
lies. We show that this property is shared by other quantities
such as the entanglement entropy S(�) and that it is robust to
disorder and interactions.

Our result is immediately applicable to experimental se-
tups that allow doping-controlled measurements, such as STM
manipulation of confined electron surface states [11,12] and
photoemission spectra of polaritonic [6,13] and photonic [7]
crystals.

II. A BRIEF INTRODUCTION TO THE FIBONACCI CHAIN

The Fibonacci chain is a 1D quasicrystal obtained by pro-
jecting points from the 2D square grid onto the physical line

of slope τ = 1+√
5

2 (see Fig. 1). The simplest physical model
corresponding to the Fibonacci chain is the Fibonacci hopping
model,

Ĥ = −μ
∑

i

c†
i ci −

∑
i

tic
†
i ci+1 + H.c., (1)

where the nearest neighbor hopping integrals ti take two val-
ues tA or tB according to the Fibonacci sequence. μ is the
chemical potential, which is set to be constant throughout the
chain.

The spectrum of the Fibonacci hopping model in (1) is a
Cantor set. There are an infinite number of gaps, and each
gap can be labeled by a unique integer q. According to the
gap-labelling theorem [4], the number of states below a gap
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FIG. 1. (a) Cut-and-project method to obtain the Fibonacci
chain: points in a regular 2D grid are projected onto the physical
line of slope 1+√

5
2 . The projections (solid lines) represent sites of the

quasicrystalline lattice. The projections onto a plane perpendicular
to the physical line (dashed lines) define the conumber of each site.
(b) The sites corresponding to (a) in real space. (c) The reordering of
the sites in (b) according to their projection in perpendicular space:
also known as conumbering.

with label q is given by the integrated density of states (IDOS),

IDOS(ε)|ε∈q-gap = qτ−1 mod 1. (2)

In this paper, we perform calculations on approximants of
the Fibonacci chain. An approximant is a finite structure ob-
tained as the supercell of the periodic chain obtained by the
cut-and-project method if the golden ratio τ is replaced by
a convergent τn = Fn/Fn−1 where Fn is a Fibonacci number.
tA and tB are chosen such that the average hopping t = 1 [14].
This ensures that the bandwidth remains constant. All energies
are given in units of t . A modified version of the gap-labelling
theorem applies to the approximants,

IDOS(ε)|ε∈q-gap = q
Fn−1

Fn
mod 1, (3)

where q belongs to a finite subset of the integers depending on
the size of the approximant.

The 1D Hamiltonian (1) admits a natural extension to a 2D
Hamiltonian of electrons hopping on a rectangular lattice in
the presence of a magnetic field perpendicular to the plane
[5]. The q labels of the Fibonacci chain are directly related to
the Chern numbers of this ancestor 2D Hamiltonian.

The conumbering scheme is used to obtain an alternate
ordering of the sites in the Fibonacci chain [10]. We simply
arrange the sites according to the projection of the corre-
sponding 2D lattice points onto the perpendicular space—a
line perpendicular to the physical line (see Fig. 1). By this
procedure, sites that have more similar local environments in
real space are placed closer together in perpendicular space.
For example, sites in the central cluster in perpendicular space
have an A bond on each side, whereas sites in the left(right)
cluster have an A(B) bond to the right and a B(A) bond to
the left. We can further distinguish sites within each cluster
by comparing successively larger local neighborhoods of the
sites. By numbering all the projections according to their
positions in perpendicular space from left to right, we can
define the conumber j of the ith site of a given Fibonacci
approximant: C : Z → Z.

III. CHARGE DENSITY OSCILLATIONS IN
PERPENDICULAR SPACE

The main result of this paper is that the topological in-
variants of the Fibonacci chain q can be observed directly by
measuring the charge density of the the Fibonacci chain. The
charge density ni is inhomogeneous and is given by

ni = 〈c†
i ci〉 =

∑
k

c†
i ci f (εk − ε f , T ), (4)

where i ∈ {0, 1, 2, . . . Fn − 1} labels each site according to its
position along the chain, f (ε, T ) is the Fermi distribution
function at temperature T , and εk are the eigenvalues of the
Hamiltonian. The key idea is to map the charge density to
perpendicular space, η j = nC−1( j). This corresponds to reshuf-
fling the sites such that they are arranged according to their
positions in perpendicular space.

The tight-binding calculations were performed assuming
periodic boundary conditions [15]. Figure 2(a) shows the
charge density at zero temperature in real space as well as
in perpendicular space for three choices of μ, corresponding
to the Fermi level lying in the q = −1,−3, and 4 gaps. The
charge density in perpendicular space reveals the underlying
topological structure. η j winds q times when the Fermi level
is tuned to the gap with label ±q. This suggests a direct and
straightforward way to determine the topological invariants of
the Fibonacci chain via a doping controlled measurement of
the real space charge density for a single realization.

We investigate this further by computing the Fourier spec-
trum of the charge density in perpendicular space,

η̃ν =
Fn−1∑
j=0

e2πi
jν
Fn η j . (5)

In Fig. 2(b), the νth Fourier component η̃ν is plotted as a
function of the chemical potential, for ν corresponding to
the q labels of the five largest gaps in the spectrum of the
Fibonacci chain (q = −1, 2,−3, 4,−6). The same plot also
shows the integrated density of states of the Fibonacci chain,
corresponding to the energy μ. The five largest gaps are
marked with a shaded background. The magnitude of the νth
Fourier component η̃ν is largest precisely when the Fermi
level is tuned to aa gap with |q| = ν. The effect is particularly
prominent for small q (large gaps), where the qth component
dominates over all the other frequencies.

We can gain additional insight into these charge density
oscillations by considering two opposite limits—the strong
modulation limit (ρ = tA/tB → 0) and the weak modulation
limit (ρ → 1). The topology of the spectrum is unchanged
for the Fibonacci chain as long as ρ is finite and nonzero.
All the gaps remain open when modulating from one extreme
to the other. The intuition that accompanies each limit is
different, but the fundamental observation is the same—the
charge density in a q gap oscillates q times in perpendicular
space [see Fig. 2(b)].

A. The weak modulation limit

In the weak modulation regime, we follow the perturbative
analysis of Sire and Mosseri [16], writing the Hamiltonian as
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FIG. 2. (a) The charge density 〈c†
i ci〉 in real space (left) and perpendicular space (right), with the Fermi level tuned to the q = −1, −3, and

4 gaps. (b) The charge density in the q = 2 gap for three different values of ρ representing strong, intermediate, and weak modulation. (c) The
first few Fourier components of the perpendicular space charge density are plotted as a function of the chemical potential μ. Also shown is the
integrated density of states (dashed line) at energy μ, with the five largest gaps in the lower half of the spectrum marked with their q labels.
(d) Example of RG analysis in the strong modulation limit for a 13-site Fibonacci chain tuned to the q = 2 gap.

a sum of two terms,

Ĥ = −
Fn∑

i=1

tAc†
i ci+1 + H.c.

︸ ︷︷ ︸
Ĥ0

−
Fn∑

i=1

(ti − tA)c†
i ci+1 + H.c.

︸ ︷︷ ︸
Ĥw

(6)

Ĥ0 is the Hamiltonian of a periodic chain with hopping tA,
and Ĥw introduces the Fibonacci modulation. We use periodic
boundary conditions, so the index i (and j in the following)
are understood to wrap around modulo Fn. In perpendicular
space, these terms take a particularly simple form [17]

Ĥ0 = −
Fn∑

j=1

tAc†
j c j+Fn−2 + tAc†

j c j+Fn−1 + H.c., (7)

Ĥw = −
Fn−2∑
j=1

2wc†
j c j+Fn−1 + H.c., (8)

where we have used 2w = tA − tB. Ĥw connects each of the
leftmost Fn−2 sites to the site Fn−1 places to its right.

H0 can labeled by the integers μ = 0, 1, . . . , �Fn/2� and
its eigenvalues are given by Eμ = −2tA cos( 2πFn−1

Fn
μ). They are

(almost all) doubly degenerate and the corresponding eigen-
vectors are given by vμ( j) = 1√

Fn
exp(± 2π i

Fn
μ j). Notice that

the eigenvectors of the periodic chain, which are plane waves
in real space, are also plane waves in perpendicular space. The
wave number of the plane wave in real space m is related
to the wave number in perpendicular space μ by equating
cos( 2πm

Fn
) = cos( 2πFn−1μ

Fn
).

m ≡ μFn−1 (mod Fn) (9)

In [16], the authors use first-order perturbation theory to show
that the perturbation Ĥw immediately opens the gaps of the
Fibonacci chain. The opening of the gap at energy Eμ is asso-
ciated with the splitting of the degenerate plane wave states.
To first order, the perturbed energies and states around a gap
that has an even number of states below it are given by (see

Appendix for derivation)

E±
μ = −

(
2tA + 4w

Fn−2

Fn

)
cos

(
2πFn−1

Fn
μ

)

∓ 4w

Fn

sin
(
2π

Fn−2

Fn
μ

)
sin

(
2π
Fn

μ
) , (10)

v+
μ ( j) =

√
2

Fn
cos

(
2πμ j

Fn

)
, v−

μ ( j) =
√

2

Fn
sin

(
2πμ j

Fn

)
.

(11)

If there are an odd number of states below a gap, the same
expressions apply except μ → μ + 1

2 . The opening of the
gaps as the perturbation is turned on is shown in Fig. 3.

Comparing (9) with the gap labeling theorem (3), we obtain
that the slightly perturbed plane waves around the gaps with
an even (odd) number of states below them have the wave
number μ = cFn+q

2 (μ = cFn+q−1
2 ) where q is the gap label and

c is some integer. If the Fermi level is tuned to a gap q, then
only one of a pair of states with this wave number is occupied.
The contribution of this state to the charge density η

q
j is given

FIG. 3. The opening of gaps with increasing modulation strength
in the band structure of the Fn = 8 approximant: a comparison of
first-order perturbation theory with the exact result. The solid lines
are the eigenvalues at the center of the Brillouin zone and the dashed
lines are the eigenvalues at the edges of the Brillouin zone. The
shaded regions are the bands.
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by the squared amplitude of one of v±
μ ( j):

η
q
j ∝ 1

2

(
1 ± cos

(q j

Fn

))
(12)

All other occupied states appear in pairs, so their contri-
bution to the charge density is constant. This is precisely the
behavior seen in the top panel of Fig. 2(b). The oscillations are
sinusoidal with q periods as the conumber j varies in the inter-
val [0, Fn − 1]. They arise from the fact that the unperturbed
perpendicular space eigenstates at the energy where the gap
opens are plane waves with exactly the wave vector needed to
obtain q oscillations.

B. The strong modulation limit

When ρ = 0, a Fibonacci approximant of length Fn breaks
into Fn−3 atom sites (with an A bond on both sides) and
2Fn−2 molecule sites (with a B bond on either side). There are
three kinds of electronic states available: Fn−2 (anti)bonding
molecular states with energy ±tB, and Fn−3 atomic states with
zero energy. When ρ is slowly turned on, the self-similar
eigenvalue spectrum can be built by splitting each cluster
of states into three subclusters recursively [18]. The charge
density in the strong modulation limit can be recovered by
considering the real space structure of all the states below
a certain gap. We show how this can be done by care-
fully applying Niu and Nori’s renormalization group method
[19].

We illustrate this with the example of a 13-site Fibonacci
chain tuned to the q = 2 gap in Fig. 2(d). By (3), this fill-
ing corresponds to 3 electrons in the system. To place these
electrons unambiguously, we first perform one step of the
molecular RG detailed in [19] resulting in a Fibonacci chain
with 4 molecule sites and 1 atom site. We fill the 3 electrons
into the lowest energy states of this reduced system, which
are the 2 bonding states followed by the single atom state.
Finally, we reverse the decimation step, distributing the elec-
tron weight equally between the two ancestor molecule sites
in the original chain. This corresponds exactly to the picture
in the bottom panel Fig. 2(b). We find a charge density of 0.5
in regions of perpendicular space populated by molecule sites
in molecules with atom sites to both sides (labelled by M1).
These are precisely the molecule sites that become atom sites
after one decimation step. Other molecule sites (M2) have a
charge density of 0.25 and atom sites (A) have a charge density
of 0.

We can formulate a general recipe for obtaining the charge
density profile in this way. When q is a Fibonacci number Fm,
the number of electrons in an Fn-site Fibonacci approximant
takes a simple form: Fn−m−1. If m is odd [20], first use the
molecular RG step m−1

2 times to produce a chain with Fn−m+1

sites and place an electron in each of the Fn−m−1 bonding
states. Then reverse each of the RG steps while distributing
any electron weight evenly among among ancestor sites. In
the case of even m, apply the molecular RG step m

2 times,
then place one electron in all the bonding states as well as in
all of the atom states. Reverse the deflation steps in the same
way as before. This procedure can be generalized to arbitrary
q by applying Zeckendorf’s theorem [21]. When an Fn-site
Fibonacci chain is tuned to a gap with an arbitrary label q, the

number of electrons in the system Iq may not be a Fibonacci
number. However, Zeckendorf’s theorem guarantees that we
can uniquely express any positive integer as a sum of distinct
Fibonacci numbers with the constraint that the sum does not
include any two consecutive Fibonacci numbers. We write
Iq = Fm1 + Fm2 + . . . + FmM with the constraint |mα − mβ | �
2 and m1 > m2 > m3 . . . > mM . We can now split the problem
of filling Iq electrons in the original Fibonacci chain to M in-
dependent problems of filling Fmα

(α = 1, 2, . . . , M ) electrons
in Fibonacci chains of different lengths.

This is done recursively. In the first step, we follow the
procedure outlined above to fill Fm1 electrons in the original
Fibonacci chain but stop before the final step of reversing
the molecular RG. If m1 was odd, we now have an Fn−m1+1-
site Fibonacci chain with all the molecular bonding states
filled. Now, the question of how the remaining electrons are
distributed among the remaining atom sites is an indepen-
dent problem. This can be formalized by performing one
decimation step of the atomic RG [19], which keeps only
the atom sites. The new nearest neighbors are connected
with a renormalized strong bond if there used to be one
molecule between them, and with a renormalized weak bond
if there used to be two molecules between them. Now, the
problem has reduced to filling Fm2 + Fm3 + . . . + FmM elec-
trons in a Fn−m1−2-site Fibonacci. Alternatively, if m1 was
even we are left with an Fn−m1+1-site Fibonacci chain with
all the molecular bonding states and atom states filled. As
before, the problem of distributing the remaining electron
weight of Fm2 + Fm3 + . . . FmM electrons among the antibond-
ing states is an independent problem, which can be formalized
by performing one molecular RG step. By performing this
procedure M times and then reversing every RG step, tak-
ing care to distribute any electron weight in a deflated chain
evenly among the ancestor states we recover the charge den-
sity profile in the original chain in the strong modulation
limit.

This procedure demonstrates that in the strong modulation
limit, the charge density at a given site depends only on a
small local neighborhood around it. The size of the relevant
local neighborhood for a given gap depends on the number of
RG steps needed to fill in the electrons up to that gap, which
is larger for small gaps with large q labels. Distinguishing
large local neighborhoods requires resolving smaller regions
in perpendicular space, which results in faster oscillations in
perpendicular space.

The charge density in the intermediate regime interpolates
between the two regimes and exhibits characteristics of both
pictures, as shown in Fig. 2(a).

IV. ROBUSTNESS

We find that the observed oscillations are robust to mod-
erate amounts of disorder, local interactions, as well as
edge effects. To study the effect of disorder, we add off-
diagonal noise to the Hamiltonian: ti → ti + δti with {δti}
a set of uniformly distributed random variables on the in-
terval [−δt, δt]. The oscillations in a gap are expected to
survive as long as the disorder does not close the gap
[22]. The threshold disorder strength at which the oscil-
lation breaks down therefore depends on the size of the
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FIG. 4. The perpendicular space charge density for the clean,
free (black), disordered (blue), and interacting (orange) Fibonacci
chain. For the disordered case, δt/t = 0.5, and the disorder average
is taken over 1500 realizations. The light blue background indicates
the statistical error to the mean.

gap q. An in-depth study of the relationship between the
threshold disorder strength and the gap size deserves its
own study. In this report, we comment on a few interesting
observations. Figure 4 depicts the disorder averaged result
over 1500 realizations with disorder strength δt/t = 0.5 and
fixed particle number for the cases q = −1, 4. We find that
the charge oscillations prevail even in regimes where the
disorder strength exceeds the gap size. For instance, the os-
cillations in the q = −1, 4 gaps are clearly visible even for
δt/t = 0.5, while −1 ∼ 0.3 and 4 ∼ 0.1. In Appendix C,
we show a similar figure for smaller gaps (|q| = 3, 5), where
the loss of the q-oscillations can be seen with increasing
disorder strength (see Fig. 6). We further study the effect of
nearest neighbor repulsion of the form V c†

i c†
i+1ci+1ci using

the density-matrix renormalization group (DMRG) [23,24].
As shown in Fig. 4, the oscillation persists with a renormalized
amplitude similar to the disordered case. Open boundary con-
ditions introduce deviations to the charge density for a small
number of sites close to the edges, but since sites close to the
edge in real space are uniformly distributed in perpendicular
space, these sites can be safely ignored without changing the
Fourier amplitudes in a significant way.

V. ENTANGLEMENT ENTROPY OSCILLATIONS IN
PERPENDICULAR SPACE

Similar oscillations are also present in the entanglement
entropy. The von Neumann entanglement entropy (EE) of
subsystem A� = [1, ..., �] with B� = [� + 1, ..., N] is given by

S� = S(ρA�
) = −Tr[ln(ρA�

)ρA�
]. (13)

In quantum critical gapless systems, the von Neumann entan-
glement entropy follows the Cardy-Calabrese [25] formula.
Corrections to this scaling behavior for the Fibonacci chain
have been calculated [26] with the Fibonacci modulation
treated as an irrelevant perturbation. The situation is a little bit
different if the perturbation is relevant. In gapped phases, the
von Neumann entropy spectrum saturates in the bulk. If the
gaps are topologically nontrivial, strong parity effects appear
in the entanglement spectrum that persist even deep in the
bulk. This alternating bulk entanglement entropy has been
shown to classify the topological phase of one-dimensional
quantum t1-t2 (SSH model) and t1-t2-t3 chains [27]. A gen-
eralization of this behavior can be seen in the entanglement

FIG. 5. The entanglement entropy S� in real (upper row) and co-
number (lower row) space in gaps with labels q = −1 and q = 4. We
only map data points from the bulk (marked by a shaded background)
to perpendicular space.

entropy (EE) of a Fibonacci approximant by using the conum-
ber transform. The subsystem A�(B�) is defined as all sites to
the left (right) of the bond between the �th and (� + 1)th site.
The EE of a Fibonacci approximant as a function of the cut
location � is shown in the upper row of Fig. 5 for two different
fillings. Here, we have applied open boundary conditions. The
bottom row shows the same data for the EE, however plotted
versus the co-number of the �th site—the site immediately to
the left of the cut. In the lower plots, only the data for sites
in the interior of the chain (the grey zone of the upper plot)
are shown, since open boundaries introduce spurious edge ef-
fects. Just like the fluctuations presented above for the charge
density, the bulk entanglement spectrum oscillates between
particular values when the chemical potential is tuned inside
a gap. These fluctuations map to full-period oscillations in
perpendicular space, where the number of oscillations predicts
precisely the topological label of the corresponding gap. The
alternating EE reported in [27] for the t1-t2 model, which is the
lowest order approximant of the Fibonacci chain, can be inter-
preted as corresponding to |q| = 1 gap. Here, perpendicular
space only contains two in-equivalent points (corresponding
to A and B sites), and the entanglement alternates between two
values in the bulk. This can be interpreted by the formation of
a valence bond at dimers in the chain in the large modula-
tion limit. When analyzing larger approximants, new higher
labeled gaps open in the single particle spectrum, leading to
more complex entanglement structures, which ultimately lead
to the appearance of higher order oscillations—similar to the
results and RG analysis presented previously for the charge
density. A detailed analysis of the ground state entanglement
is subject of an upcoming work.

VI. CONCLUSIONS

We have shown that studying observables such as the
charge density or the entanglement entropy in perpendicular
space reveals the topological information stored in the many-
body wave function of the Fibonacci chain. In particular,
the gap labels of the Fibonacci chain can be measured by
observing the oscillations of the charge density in perpendic-
ular space when the filling is tuned to its topological gaps.
An interesting direction for future work, finally, concerns the
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generalization of our results to quasicrystals in higher dimen-
sions, which are characterized by several topological indices.

APPENDIX A: SPECTRAL ANALYSIS USING RG IN THE
STRONG MODULATION LIMIT

In the main text, we presented a procedure that recovers the
charge density profile in the strong modulation limit, using an
RG scheme in real space. In this limit, the band structure and
the wave functions are well described in terms of a pertur-
bative RG scheme where the small parameter is the coupling
ratio, ρ = tA/tB  1. Here, we present an alternate equivalent
formulation focusing on the splitting of the spectrum.

For ρ = 0 the chain breaks up into molecules (m) and
atoms (a), and the spectrum consists of three levels that
broaden into three bands as ρ is increased. The RG theory
gives the relationship between spectra of a long chain and
those of shorter chains. Thus one can show that the energy
spectrum of the nth approximant has a symmetric structure
due to the particle-hole symmetry. [29]. One gets three main
groups of levels: The lowest Fn−2 m levels being the so-called
molecular bonding (m−), the highest Fn−2 being antibonding
m+) levels. The central group of Fn−3 levels are so-called
atomic (a) levels. Each of these can be subdivided into three
groups and so on.

For sites in the conumbering system, the same demarcation
occurs within the interval [1, Fn]. The first set of Fn−2 sites (the
left subinterval) are m sites and their partners lie in the right
subinterval. The a sites lie in the middle subinterval. Filling
up the lowest levels results in a charge of 0.5 per m site, filling
up all the a levels results in a charge of 1 per a site. The p-
h symmetry ensures that, for half-filling, all sites are filled
equally, with ni = 0.5.

With this notation in place we can now discuss the way
total charge is built up on each site for different fillings. Ne

in the following denotes the number of (spinless electrons).
One can restrict to the lower half of the spectrum since the
upper half can be deduced by p-h symmetry. Let us consider
the cases where Ne is a Fibonacci number, Ne = Fn− j , where
j = 2, 3, .... For any j, it is easy to check that Fn− j−1 =
Mod[qFn−1, Fn] with q = (−1) jFj . In other words, all the
levels of the lowest band are completely filled upto the gap
of label q.

(1) For Ne = Fn−2 (q = −1), the lowest band (m−) is com-
pletely filled. To leading order, the total charge is 0.5 on m
sites, and 0 on a sites. Plotted as a function of conumber one
has a plateau where ni = 0.5 on the left and on the right, and
a central region ni = 0. This zero-order picture is modified
by higher order corrections in ρ, that lead to finer structures
within each region.

(2) For Ne = Fn−4 (q = −3), the lowest sub-band of the
lowest band is completely filled. This implies that each of
the plateaus again splits into two plateaus. The number of
maxima (Nb.half-maxima at each edge) is 22 − 1 = 3 as ex-
pected from the q value for this filling.

(3) For Ne = Fn−3 (q = 2) the lowest band is partly filled,
leading to different charges on the two types of m sites. The
total on-site occupancy is 0.25 for the mm sites and 0.5 for the
am sites to leading order. These values are modified by higher
order corrections when ρ is slowly turned on.

When Ne is not a Fibonacci number, we employ Zeck-
endorf’s theorem in an analogous way to the previous section.
Consider for example the case Ne = Fn−2 + Fn−5, where one
can check that q = 4. Now the lowest band being completely
filled, all of the m sites have a charge of 0.5. In addition,
the occupancy ni equal to 0.5 at lowest order at the am atom
sites (atom sites, which become m after an RG step) and their
partners to the right. For finite ρ, the resulting profile has 4
maxima.

The above special cases show how oscillations of charge
can be explained based on the simplified picture in the strong
modulation limit.

APPENDIX B: PERTURBATIVE ANALYSIS IN
THE WEAK MODULATION LIMIT

When the modulation is weak, tA/tB ∼ 1, we can treat the
Fibonacci modulation as a perturbation to the homogeneous
chain [10,16]. In real space, the Fibonacci hopping Hamilto-
nian splits into two parts,

Ĥ = −
Fn∑

i=1

tAc†
i ci+1 + H.c.

︸ ︷︷ ︸
Ĥ0

−
Fn∑

i=1

(ti − tA)c†
i ci+1 + H.c.

︸ ︷︷ ︸
Ĥw

(B1)

Ĥ0 is the Hamiltonian of a periodic chain with nearest neigh-
bor hopping tA, and Ĥw introduces the Fibonacci modulation.
We use periodic boundary conditions, so the index i (and j in
the following) are understood to wrap around modulo Fn. The
matrix representation of the Fibonacci hopping Hamiltonian
in perpendicular space, which we will denote with Ĥ has a
particularly pleasing form. The only nonzero hopping terms
lie on four diagonals. The −tAs go in the ±Fn−2th diagonal
and the −tBs go in the ±Fn−1th diagonal.

The decomposition of Ĥ as a sum of a term that represents
the homogeneous chain Ĥ0 and the Fibonacci perturbation
Ĥw takes the following form:

Ĥ0 = −
Fn∑

j=1

tAc†
j c j+Fn−2 + tAc†

j c j+Fn−1 + H.c. (B2)

Ĥw = −
Fn−2∑
j=1

2wc†
j c j+Fn−1 + H.c. (B3)

where we have used 2w = tA − tB. Ĥw connects each of the
leftmost Fn−2 sites to the site Fn−1 places to its right. Ĥ0 is
a circulant matrix and Ĥw is a Toeplitz matrix with only the
±Fn−1th diagonals filled.

Before applying the Fibonacci modulation, consider
the eigenstates of the unperturbed Hamiltonian. Recall that the
eigenvalues of Ĥ0 are given by Em = −2tA cos( 2πm

Fn
) with the

integer m constrained by 0 � m � �Fn/2�. Almost all of these
are doubly degenerate. If Fn is odd, the m = 0 eigenvalue
is nondegenerate. If Fn is even, then additionally, the m =
�Fn/2� eigenvalue is also nondegenerate. The corresponding
eigenstates take the form of plane waves with wave number
2π
Fn

m.
Remarkably, the unperturbed Hamiltonian represented in

perpendicular space is a circulant matrix. This means that
it is also diagonalized by a Fourier transformation and the
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eigenstates, which are plane waves in real space, are also
plane waves in perpendicular space. But the wave numbers
are shuffled or the wave number that corresponds to a plane
wave with a given energy is different. In perpendicular space,
the eigenstates are plane waves labeled by the integer μ =
0, 1, . . . �Fn/2�. As in real space, the eigenstates are almost
all doubly degenerate, and the eigenstate with label μ has the
wave number 2π

Fn
μ. However, the energy of this plane wave

is Eμ = −2tA cos( 2πμFn−1

Fn
). It is straightforward to check that

the Eμ labeled by μ and the Em labeled by m represent the
same set of energies. They are simply ordered differently.
The perpendicular space and real space wave numbers can be
related to each other (modulo Fn) by equating Em and Eμ,

m ≡ μFn−1 (mod Fn). (B4)

Bearing in mind that we will shortly introduce a perturbation
with an Fn-site supercell, we describe the band structure of Ĥ0

as consisting of Fn bands in a Brillouin zone that spans the
interval k ∈ [− π

Fn
, π

Fn
[. For the unperturbed problem, all the

bands touch each other, reflecting the fact that we have done
nothing other than downfold the usual cos( 2πk

Fn
) dispersion

onto a smaller Brillouin zone. Introducing the perturbation
Ĥw splits the doubly degenerate states of Ĥ0, and opens
Fn − 1 gaps. The gap opening can be seen using first-order
perturbation theory. The edges of gaps with an even (odd)
number of states below them are at k = 0( π

Fn
). We will show

the calculation for the even case in detail. The odd case is
entirely analogous.

The rank 2 degenerate subspace labeled by μ has two
states |μ,±〉 with energy −2tA cos( 2πFn−1

Fn
μ). The first-order

corrections are given by the eigensystem of a 2 × 2 matrix V̂
whose entries are Vαβ = 〈μ, α| Ĥw |μ, β〉 with α, β = ±.

Vαβ = −4w

Fn

⎛
⎜⎝Fn−2 cos

(
2π

Fn−1μ

Fn

) sin (2π
μ

Fn
Fn−2 )

sin (2π
μ

Fn )
sin (2π

μ

Fn
Fn−2 )

sin (2π
μ

Fn ) Fn−2 cos
(
2π

Fn−1μ

Fn

)
⎞
⎟⎠.

(B5)

The eigenvalues of Vαβ are ε± = −4w
Fn

[Fn−2 cos(2π
Fn−1μ

Fn
) ±

sin(2π
μ

Fn
Fn−2 )

sin(2π
μ

Fn
) ], and the corresponding eigenvectors are

( 1√
2
,± 1√

2
) . So, we have that the plane waves with the

wave number 2πμ

Fn
split into the states |μ,±〉∗ with the

energies E±
μ

E±
μ = −

(
2tA + 4w

Fn−2

Fn

)
cos

(
2πFn−1

Fn
μ

)

∓ 4w

Fn

sin
(
2π

Fn−2

Fn
μ

)
sin

(
2π
Fn

μ
) (B6)

〈 j|μ,+〉∗ =
√

2

Fn
cos

(
2πμ j

Fn

)
, 〈 j|μ,−〉∗

=
√

2

Fn
sin

(
2πμ j

Fn

)
. (B7)

By combining the gap labeling theorem and (B4), we can
compute the perpendicular space wave number of the slightly
perturbed plane waves around each gap. Em is monotonic
when m ∈ [0, �Fn/2�]. Therefore, for gaps with an even num-
ber of states below them

2m ≡ qFn−1 ≡ 2μFn−1 (mod Fn)

⇒ μ = cFn + q

2
(B8)

where c is some integer. For gaps with an odd number of
states below them, an analogous calculation at the edge of the
Brillouin zone [30] results in:

2m + 1 ≡ qFn−1 ≡ (2μ + 1)Fn−1 (mod Fn)

⇒ μ = cFn + q − 1

2
(B9)

APPENDIX C: ROBUSTNESS OF
THE CHARGE OSCILLATIONS

As mentioned in the main text, the oscillations of the
charge density in perpendicular space are robust against local
perturbations of the hopping integrals. The robustness of a
particular oscillation at a gap |q| is further found to scale in-
versely with the gap size |q|, i.e., oscillatory features are
lost for lower disorder strength in smaller gaps. In Fig. 6,
we illustrate this qualitatively by the charge oscillations in the
gaps |q| = 3 and |q| = 5, where |q|=5 < |q|=3. For the gap
with label |q| = 3, we find that the oscillations are fully visible
upon introducing disorder of strength δt/t = 0.2, whereas
oscillatory features are lost in the case δt/t = 0.5. For the
|q| = 5 gap, a disorder strength of δt/t = 0.2 is sufficient to
wash out the five-period structure visible in the clean case,
hence being less resilient to noise due to its smaller gap size.

FIG. 6. Perpendicular space charge density for the disordered
Fibonacci approximant at gaps with labels |q| = 3, 5 and varying
disorder strength. Disorder averages are taken over 2000 realizations,
the light background in the plots indicating the statistical error to the
mean.
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