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A generic two-dimensional disordered topological superconductor in symmetry class D exhibits rich phe-
nomenology and multiple phases: diffusive thermal metal (DTM), Anderson insulator (AI), and thermal quantum
Hall (TQH) phase (a topological superconductor). We numerically investigate the phase diagram of a lattice
model of such class-D superconductor, specifically focusing on transitions between the phases and the associated
universal critical behaviors. We confirm the existence of a tricritical point and its repulsive nature at the point on
the phase diagram where the three phases meet. We characterize the critical behaviors at various critical points
and the tricritical point using numerical evaluation of the localization length, the conductance (or conductivity),
and the density of states. We conclude that the two metal-insulator transitions (DTM-TQH and DTM-AI) belong
to the same universality class, whereas the tricritical point represents a distinct universality class.
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I. INTRODUCTION

Low-energy quasiparticle fermionic excitations in some
unconventional superconductors [1] and quantum magnets [2]
have an unusual property of being their own antiparticles.
These real or Majorana fermions attracted much attention in
condensed matter experiments in recent years [3–6]. Subse-
quent studies stressed the importance of quenched disorder in
experiments [7–10].

A canonical disordered system with low-energy Majorana
quasiparticles is a two-dimensional (2D) disordered topo-
logical superconductor in symmetry class D [11] modeled
by a mean-field Bogoliubov–de Gennes (BdG) Hamiltonian.
The physics of Anderson localization and the thermal trans-
port of quasiparticles in class-D systems is extremely rich.
Generically, such systems exhibit phase diagrams that encom-
pass (thermal) Anderson insulators (AIs), thermal quantum
Hall (TQH) phases, or topological superconductors, and
an enigmatic diffusive thermal metal (DTM) or “Majorana
metal” phase [12–18]. In addition to metal-insulator transi-
tions (MITs) and thermal quantum Hall transitions, class-D
systems may have tricritical points where all the three phases
meet.

Another 2D disordered system in class D with Majo-
rana particles results from fermionization of the random-bond
Ising model (RBIM) in two dimensions [19–25]. The phase
diagram of the RBIM does not contain a metallic phase [21],
but has an intriguing multicritical Nishimori point.

Both disordered superconductors in class D and the RBIM
can be reformulated as network models [20,25], which are
convenient for numerical simulations and have been exten-
sively studied [8,14,20,25–31]. However, many properties of
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the phases and phase transitions in class-D disordered super-
conductors remain elusive. In particular, the nature and even
the position of the tricritical point have remained unknown.
Several possibilities were proposed regarding this point [26],
but few definitive conclusions have been made [29,30].

In this paper, we study a class-D disordered px + ipy

superconductor described by a tight-binding Bogoliubov–de
Gennes Hamiltonian on a square lattice:

H/2 =
∑

j

(ε j + μ)c†
j c j +

∑
j

∑
ν=x,y

tν[c†
j+eν

c j + H.c.]

+ �
∑

j

[ic†
j+ex

c†
j + c†

j+ey
c†

j + H.c.]. (1)

Here μ, tν , and � are the chemical potential, the nearest-
neighbor hopping amplitudes, and the p-wave supercon-
ducting pairing amplitude, respectively. We parametrize the
hopping amplitudes in two directions as tx = (1 − α)t , ty =
(1 + α)t with 0 � |α| < 1. The system is isotropic at α = 0
and anisotropic otherwise. Quenched disorder is represented
by random on-site energies ε j drawn from a certain distribu-
tion, and j ≡ ( jx, jy) labels the lattice sites. The Hamiltonian
Eq. (1) describes spinless fermions and breaks time-reversal
symmetry, thus belonging to class D [11].

Below, we give a comprehensive numerical characteriza-
tion of different phases and phase transitions in this model,
including a discussion of the nature of criticality at the tricrit-
ical points.

The organization of the paper and its main findings are as
follows. In Sec. II, we draw the phase diagram of the model
Eq. (1) (Fig. 1). Panel (a) shows an anisotropic case with
α = 0.2, while panel (b) shows the isotropic case α = 0. In
both cases phase boundaries were identified by calculating
the quasi-one-dimensional (quasi-1D) localization length of
zero-energy eigenstates using the transfer matrix method. The
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FIG. 1. Phase diagram of the class-D disordered superconductor model, Eq. (1). (a) is for the anisotropic model at α = 0.2 and (b) is for
the isotropic model (α = 0). The solid lines connecting squares are phase boundaries determined by the transfer matrix method. The yellow
circles and dashed lines in (b) are determined by the kernel polynomial method with system size L = 3000 and expansion order N = 4000.
Zero-energy DOS takes non-negligible values [ρKPM(0) > 10−3] above this line, which we term a “gap closing.” TCP1 and TCP2 are tricritical
points. The red arrows denote points and regions where we studied phase transitions: A and B are metal-insulator transitions at μ/t = 3; C1,
C2, D1, and D2 are thermal quantum Hall transitions at W = 0.5, 2, 0.5, and 2, respectively.

isotropic system has an enhanced C4 lattice symmetry that
causes two TQH transitions to merge into one on the vertical
line μ = 0. This symmetry makes the study of the isotropic
system easier, and in the rest of the paper we focus on this
case. We expect that universal properties of the phases and
phase transitions are the same for α = 0 and α �= 0.

In Sec. III, we demonstrate a logarithmic divergence of
the low-energy density of states (DOS) in the DTM phase
using the kernel polynomial method [32]. This result is consis-
tent with theoretical predictions [12,13] and earlier numerical
studies [26]. Our result is that a logarithmic divergence of
the DOS is also present at the MIT point of the DTM-TQH
boundary [point A in Fig. 1(b)], which implies that the dy-
namical critical exponent z at this transition is equal to the
space dimension, z = d = 2.

In Sec. IV, we evaluate the critical exponent of a divergent
characteristic length ν at the MIT points of the DTM-TQH
and DTM-AI boundaries (points A and B) using finite-size
scaling analysis with polynomial fitting procedures [33]. The
values at the two points, νA = 1.35 ± 0.04 and νB = 1.36 ±
0.05, allow us to conclude that these transitions belong to the
same universality class.

In Sec. V, we study thermal quantum Hall transitions be-
tween insulating phases with different quantized values of
the thermal Hall conductivity [points C1, C2, D1, and D2
in Fig. 1(b)]. All these transitions exhibit very close values
of the localization length exponents consistent with ν ′ = 1,
the value at the clean Ising fixed point, confirming theoretical
predictions [12,14].

In Sec. VI, we study the critical properties at the vicinity of
the tricritical point where the phase boundary between distinct
TQH phases at μ = 0 terminates [point TCP1 in Fig. 1(b)].
Even the determination of the position of the tricritical point in
earlier numerical studies of network models was inconclusive
[14,26,28,29]. We establish the position of the tricritical point
TCP1 from a scaling analysis of the longitudinal conductivity
and the DOS along the critical line μ = 0. Next, we determine

a correlation length exponent ν ′′ and the dynamical exponent
z′′ at TCP1. The exponents ν ′′ and z′′ at TCP1 turn out to be
different from ν and z at DTM-TQH and DTM-AI transitions
(points A and B), indicating that TCP1 represents a distinct
universality class. We conclude from these numerical observa-
tions that the TCP is an unstable fixed point with two relevant
scaling variables in the μ-W plane.

The final section, Sec. VII, is devoted to summary and
concluding remarks.

II. THE PHASE DIAGRAM

Equation (1) can also be expressed as

H =
∑
j,m

(c†
j c j )H j,m(cm c†

m)T , (2)

where the first-quantized Hamiltonian matrix H has the
particle-hole symmetry

σ1H σ1 = −HT , (3)

and the Pauli matrix σ1 acts on the particle-hole space.
The model Eq. (2) is easily solved in the clean limit (ε j ≡

0) in the momentum space. Taking the lattice spacing to be 1,
the two quasiparticle energy bands are

E±(kx, ky) = ± [(μ + 2tx cos kx + 2ty cos ky)2

+ 4�2(sin2 kx + sin2 ky)]1/2. (4)

The spectrum is gapped except for μ = ±4t and μ = ±4αt
(Fig. 2). Quantization of the Thouless-Kohmoto-Nightingale-
den Nijs integer [34] C of the gapped quasiparticle bands
(BdG Chern number) results in the emergence of chiral Majo-
rana edge modes, and a quantized thermal Hall conductance
κxy/T = C(π2k2

B/6h) [12]. For |μ| > 4|t | and |μ| < 4|αt |,
the system is an ordinary superconductor with C = 0. The re-
gions −4|t | < μ < −4|αt | and 4|αt | < μ < 4|t | correspond
to the two distinct topological superconducting phases (i.e.,
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FIG. 2. Band dispersion of the anisotropic model, with parameters α = 0.2, t = 0.6, � = 1. The three subfigures represent |μ| < |4αt |,
|μ| = |4αt |, and |μ| > |4αt |, respectively.

thermal quantum Hall phases) with C = 1 and −1, respec-
tively.

The spectrum Eq. (4) contains four Dirac fermions at
(kx, ky) = (0, 0), (0, π ), (π, 0), and (π, π ). Quantum phase
transitions between topologically distinct TQH phases at μ =
±4t and μ = ±4αt correspond to the vanishing of the mass
of one of the Dirac fermions. In the isotropic case as shown in
Fig. 1(b), the two topological transitions at μ = ±4αt merge
into a single transition at μ = 0, where the BdG Chern num-
ber changes by 2. In this case the Dirac fermions that appear
at (kx, ky ) = (π, 0) and (0, π ) are related by the C4 rotation
symmetry.

To determine the phase diagram, we rewrite the model (1)
as a two-orbital model (see Appendix A for details). We then
calculate the quasi-1D localization length λ of zero-energy
eigenstates by the transfer matrix method [33,35–37]. A phase
transition point is identified as a scale-invariant point of the
normalized quasi-1D localization length � ≡ λ/L with re-
spect to various transverse sizes L (see Sec. IV for details). For
numerical simulations, we use uniformly distributed disorder

ε j ∈ [−W/2,W/2], εiε j = δi, jW
2/12, (5)

and fix parameters � = 1, t = 0.6 in Eq. (1).
The addition of weak disorder (W � 5) localizes all bulk

quasiparticle states in the ordinary and topological supercon-
ductors converting them to AIs and TQH phases, respectively.
Direct transitions between distinct TQH phases remain in-
tact, as shown in Fig. 1. This observation is consistent with
the one-loop renormalization group (RG) analysis of the 2D
gapless Dirac fermion with random mass, where the random
mass is a marginally irrelevant perturbation at the clean Ising
model fixed point [19]. In the strong disorder limit (W � 18)
the TQH phases disappear, and all the states are Anderson
localized (AI phase). In the intermediate range of disorder
strength (8 � W � 17) between the two extremes, there is
a finite region of the DTM phase, where the quasiparticle
eigenstates at zero energy are extended in the bulk. The range
of disorder strength W where the DTM phase exists is widest
at μ/t = 0, and gradually disappears when |μ|/t � 9.

The phase diagram of the isotropic model [Fig. 1(b)] has
similar structure to that of an anisotropic model [Fig. 1(a)].
Note that the degeneracy of the two plateau transitions at

μ = 0 in the isotropic case is not lifted by finite disorder,
as the above-mentioned C4 lattice symmetry is still present
on average. The critical line along μ = 0 ends at a single
tricritical point TCP1. The transfer matrix calculations of �

suffer from strong finite-size effect around tricritical points,
making it difficult to analyze critical behavior in their vicinity
(see Appendix B). Nonetheless, we were able to determine the
location and critical exponents at TCP1 using scaling analysis
of the quasiparticle conductivity along the critical line.

III. DENSITY OF STATES IN TQH AND DTM PHASES
AND AT DTM-TQH TRANSITION

The density of states provides complementary informa-
tion about the phases and phase transitions. For simplicity
we focus on the isotropic model only, and impose periodic
boundary conditions to get the density of the bulk states.
Calculations by the kernel polynomial method show that the
zero-energy DOS in TQH phases is vanishingly small at weak
disorder, but acquires a finite value when the disorder strength
exceeds a certain value We, which we call the gap-closing
point or simply gap closing. Increasing disorder strength be-
yond We, we observe a transition to the DTM phase at a critical
value Wc, which corresponds to the DTM-TQH transition
point. For μ/t = 3 the gap-closing point is at We � 6.4, and
the DTM-TQH transition is at Wc = 8.03, as shown in Fig. 3.
Details of the precise determination of Wc are explained in the
following section, Sec. IV.

Determining We and Wc for many values of μ/t , we observe
that the gap closing and the MIT become closer in the vicinity
of tricritical points, and possibly merge at these points. A
similar separation and merging of the gap closing and MIT
were observed around a tricritical point in a model of a three-
dimensional disordered semimetal [38].

In the DTM phase, one can study the DOS and other prop-
erties using a nonlinear sigma model approach [12,13,26,27].
The study results in a logarithmic divergent DOS around the
zero single-particle energy (ε = 0):

ρ(ε) ∝ ln
1

|ε| + O(1). (6)
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FIG. 3. Zero-energy DOS ρKPM(0) of the isotropic model as a
function of disorder strength W at μ/t = 3. The data points are
calculated by the kernel polynomial method with 3000 × 3000 lat-
tice sites and expansion order N = 4000. Inset: ρKPM(ε) curves for
different W around ε = 0. Disorder strength for the two bold arrows
approximates the gap-closing point (We � 6.4) and critical point for
the insulator-metal transition (Wc = 8.03), respectively.

The logarithmic divergence is numerically confirmed in
Fig. 4. The inset shows the DOS around ε = 0 calculated
with different values of the kernel polynomial expansion order
N . In the kernel polynomial calculation [32] of the DOS
ρ(ε) ≡ 1

V

∑
i δ(ε − εi ), the δ function is expanded in terms

of Chebyshev polynomials up to the order N . Thereby, the δ

function is approximated by

δN (ε − εi ) = a

πN

1

(ε − εi )2 + (aN−1)2
(7)

for finite large N , and the energy resolution is limited by
aN−1. a is a coefficient of order unity. Therefore, ρKPM(ε)
increases logarithmically with |ε|−1 only for |ε| � N−1, while
it converges to a constant value ρKPM(0) for |ε| 	 N−1. When
N increases, the constant value ρKPM(0) increases logarithmi-
cally:

ρKPM(N, ε = 0) ∝ ln(N ) + O(1). (8)

Details can be found in Appendix C.
The main part of Fig. 4 demonstrates that the zero-energy

DOS in the DTM phase indeed increases linearly with ln N .
Previous studies of the nonlinear sigma model also predicted
logarithmic divergence of conductance in the limit of large
system size [27]. Numerical results on the Landauer conduc-
tance in the DTM phase are consistent with this prediction
(see Appendix D).

Figure 3 suggests that the DOS at the DTM-TQH MIT
point, as well as in the localized phases nearby, also have
weak divergences around zero energy. Calculating ρKPM(0)
with different N , we confirmed that the zero-energy DOS at
the DTM-TQH MIT point scales as ln N for large N , while it
scales as N−α with a nonuniversal exponent α in the localized
phases near the MIT point (see Appendix C). The divergence
of ρKPM(0) as a function of N implies the same kind of
divergence of ρ(ε) as a function of ε.
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FIG. 4. Dependence of the zero-energy DOS on the kernel poly-
nomial expansion order N in the DTM phase. The data are taken at
(μ/t,W ) = (35/6, 14) for the isotropic model of the square sample
with 250 × 250 lattice sites. The error bar is the standard deviation of
64 disorder configurations. The dashed line shows a linear fit to ln N
in a region of large N . Inset: ρKPM(ε) vs ln ε for different values of
N at the same parameter point as in the main figure. The red shaded
area is the error bar of the N = 100 000 curve, and the black dashed
line is the linear fitting of data range ε ∈ [3.5, 5.5] × 10−5.

The logarithmic scaling of the low-energy DOS at the
MIT point means that the dynamical critical exponent is
the same as the space dimension: z = d = 2. In that regard,
the type of MIT of the DTM-TQH boundary in the class-D
model is not different from the Anderson transitions in the
standard Wigner-Dyson symmetry classes, where z = d . The
power-law scaling of the low-energy DOS in the localized
phases could be related to Griffiths singularities, as suggested
by a similar power-law divergence found in a 2D class-D
network model [25].

IV. SCALING BEHAVIOR AT
METAL-INSULATOR TRANSITIONS

The DTM-TQH and the DTM-AI transitions are both
Anderson-type metal-insulator transitions characterized by
the power-law divergence of the characteristic length ξ ∼
|x − xc|−ν . Here x is a tuning parameter with a critical value
xc at the Anderson transition point. In this section, we choose
x to be the disorder strength W . We evaluate the critical
exponent ν for both DTM-TQH and DTM-AI transitions by
a finite-size scaling analysis and polynomial fitting procedure
of a normalized quasi-1D localization length � [33,39]. A
standard argument leads to the scaling form � = F (φ1, φ2),
where

φ1 ≡ u1(w)L1/ν, φ2 = u2(w)L−y (9)

are the relevant and the least irrelevant (y > 0) scaling vari-
ables near the fixed point controlling the transition. For the
disorder-induced transition, u1,2 are functions of the dimen-
sionless disorder w = (W − Wc)/Wc.
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FIG. 5. Normalized quasi-1D localization length � as a function of the disorder strength W at μ/t = 3 for different transverse size L.
(a) Near the TQH-DTM transition point [point A in Fig. 1(b)]. (b) Near the DTM-AI transition point [point B in Fig. 1(b)]. Black circles are
raw data points, and colored curves are the polynomial fitting curves with the largest goodness of fit. Both fitting curves for (a) and (b) are
obtained with the expansion order of (n1, n2, m1, m2) = (3, 1, 2, 0).

In the multiple-dimensional parameter space of parameters
(which include w), the equation w = 0 defines the critical
subspace where φ1 = 0. On this subspace there is a fixed point
controlling the Anderson transition, where all irrelevant scal-
ing variables, including φ2, vanish. Near the critical subspace
both u1(w) and u2(w) can be expanded in Taylor series in
powers of w:

u1(w) =
m1∑
j=1

b jw
j, u2(w) =

m2∑
j=0

c jw
j . (10)

For sufficiently large L and small w, both φ1 and φ2 are small
and the scaling function can be further expanded near the fixed
point as

F =
n1∑

j=0

n2∑
k=0

a j,kφ
j
1φ

k
2 (11)

with a1,0 = a0,1 = 1. For a given set of expansion orders
(n1, n2, m1, m2), we minimize

χ2 ≡
ND∑

n=1

(Fn − �n)2

σ 2
n

(12)

using Wc, ν, y, {a j,k}, {b j}, and {c j} as fitting parameters. Here
ND is the number of data points, �n and σn are the nth data
point and its standard error, and Fn is the fitting value from
Eq. (11). We perform the fittings with (n1, n2, m2) = (3, 1, 0)
and m1 = 2, 3, that give a goodness of fit (GOF) well over 0.1.
Results of such fittings for the two metal-insulator transitions
are shown in Fig. 5 and Table I.

As shown in Table I, the fitting results are stable against
changes in m1 and the range of system sizes L. The results are

ν = 1.35 ± 0.04 for DTM-TQH, (13)

ν = 1.36 ± 0.05 for DTM-AI. (14)

Each value is taken from the fitting with the largest GOF,
and the numbers after the ± signs are the standard deviations

estimated by Monte Carlo simulations. Our value for ν at
DTM-TQH transition agrees with that of Ref. [28], which
reported ν = 1.4 ± 0.2. The 95% confidence intervals of ν

at the two transitions overlap within rather small errors bars,
suggesting that the transitions belong to the same universality
class.

To reinforce this conclusion, we further compare the dis-
tributions of the quasiparticle (thermal) conductance at the
two transitions. The conductance distribution should be scale
invariant at an Anderson metal-insulator transition point [40],
and should only depend on the universality class and the sam-
ple geometry [41]. Using the transfer matrix method [42,43],
we calculated the two-terminal conductance g of 106 samples
with square geometry and the periodic boundary condition
in the transverse direction. Figure 6 shows the critical con-
ductance distributions at the DTM-TQH and the DTM-AI
transitions. The distributions match well with each other. The
critical conductance distributions and the localization length
exponents ν at the two transitions strongly suggest that the two
metal-insulator transitions are in the same universality class.
We note that this is similar to the case of the quantum spin Hall
(QSH) systems, where it is known that the critical behavior at
the transition between the diffusive metal (DM) and the QSH
phase is the same as that at the DM-AI transition [44–46].

V. THERMAL QUANTUM HALL TRANSITIONS

The TQH-TQH transition and TQH-AI transition are both
direct insulator-insulator transitions (plateau transitions) char-
acterized by the power-law divergence of the localization
length ξ ∼ |x − xc|−ν ′

. In this section we take μ/t as the vari-
able x. When varying μ/t with fixed weak disorder W � 5, we
encounter a sequence of thermal quantum Hall transitions be-
tween topologically distinct TQH phases in the phase diagram
in Fig. 1. Critical properties at these plateau transitions have
been reported in previous literature [28–30], but the numerical
results are not consistent. For the isotropic model Eq. (1), it is
also not obvious whether the TQH-TQH transition at μ = 0
has the same universal properties as the TQH-AI transition
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TABLE I. Results of finite-size scaling analysis at the metal-insulator transitions A and B along the line of μ/t = 3. The Taylor expansion
orders in Eqs. (10) and (11) are chosen as (n1, n2, m2 ) = (3, 1, 0), while m1 is either 2 or 3. The fittings are also carried for different ranges of
transverse size L. The square brackets denote 95% confidence intervals from 1000 Monte Carlo simulations.

m1 L W GOF Wc ν y �c

(a) transition A (TQH-DTM transition)
2 � 56 [7.8, 8.32] 0.76 8.026[8.016, 8.034] 1.371[1.311, 1.437] 0.789[0.443, 1.266] 0.346[0.293, 0.389]
2 � 64 [7.8, 8.32] 0.90 8.028[8.016, 8.036] 1.351[1.262, 1.408] 0.910[0.462, 1.584] 0.358[0.305, 0.401]
3 � 56 [7.8, 8.32] 0.85 8.024[8.016, 8.032] 1.363[1.287, 1.434] 0.696[0.450, 1.112] 0.333[0.292, 0.379]
3 � 64 [7.8, 8.32] 0.89 8.026[8.014, 8.035] 1.342[1.231, 1.411] 0.784[0.430, 1.541] 0.344[0.302, 0.396]

(b) transition B (DTM-AI transition)
m1 L W GOF Wc ν y �c

2 � 56 [16.6, 18.6] 0.34 17.612[17.582, 17.647] 1.348[1.279, 1.402] 1.062[0.593, 1.747] 0.311[0.282, 0.333]
2 � 64 [16.6, 18.6] 0.46 17.624[17.585, 17.694] 1.360[1.241, 1.448] 1.013[0.317, 2.080] 0.303[0.256, 0.333]
3 � 56 [16.4, 18.6] 0.43 17.612[17.581, 17.639] 1.332[1.274, 1.393] 1.088[0.676, 1.887] 0.311[0.282, 0.334]
3 � 64 [16.4, 18.6] 0.48 17.623[17.584, 17.663] 1.360[1.286, 1.457] 1.047[0.556, 2.118] 0.304[0.261, 0.333]

around μ = ±4t , because the former transition is described
by a field theory of two copies of disordered Dirac fermions,
as opposed to one copy of Dirac fermions for the latter
transition.

To compare the scaling behavior at the two TQH transi-
tions in the isotropic model, we employ a finite-size scaling
analysis for the two-terminal conductance, and evaluate the
localization-length exponent ν ′ from its polynomial fitting.
At TQH transition points, both the normalized quasi-1D lo-
calization length � and the two-terminal conductance should
show a scale-invariant behavior. However, � diverges at TQH

-15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

-15 -10 -5 0
0

0.1

0.2

0.3

0.4
L=128

L=192

L=256

FIG. 6. Distributions of the two-terminal conductance at the
DTM-TQH transition point (blue curves) and at the DTM-AI tran-
sition point (red curves). The critical conductances are computed in
the square geometry (L × L, L = 128, 192, 256) with the periodic
boundary condition along the transverse direction. The distributions
are calculated at Ws = 8.08 (for the DTM-TQH transition) and Ws =
17.35 (for the DTM-AI transition) on the line μ/t = 3. We chose the
values Ws for the two transitions so that 〈g〉 is scale invariant. This
is illustrated in the inset, where the critical conductance distributions
calculated with three different system sizes are seen to overlap well at
Ws = 8.08. Note that Ws thus determined are slightly different from
the corresponding critical disorder strengths Wc determined by the
polynomial fitting.

transitions in the clean limit. In the weak disorder limit, this
divergence is cut off by finite system sizes, but the critical
value of � is still large, and also exhibits large statistical
errors. At the same time, the average critical conductance goes
to a constant at a TQH transition, with smaller statistical errors
(see Appendix B). We thus use the dimensionless average
conductance G = 〈g〉 as the scaling quantity for the evaluation
of ν ′.

The conductance g is calculated in a square geometry,
L × L, with the periodic boundary condition in the transverse
direction. For each μ and L, we take an average over at least
104 samples, to guarantee 0.1% precision for the average
conductance G = 〈g〉. Near the TQH transition point, G can be
fitted by a scaling function of the relevant scaling variable φ1

and the least irrelevant scaling variable φ2 as G = F (φ1, φ2).
For fixed W , these scaling variables are

φ1 = u1(δμ)L1/ν ′
, φ2 = u2(δμ)L−y′

, (15)

where δμ ≡ μ − μc is the deviation of μ from its critical
value μc at a TQH transition. In the vicinity of the fixed
point (where φ1 = φ2 = 0), both u1 and u2 can be expanded
in small δμ. We introduce m1 and m2 as the respective Taylor
expansion orders as in Eq. (10).

We choose two representative critical points at each of the
two TQH critical lines in the isotropic model, one at weak
disorder [points C1 and D1 in Fig. 1(b)] and one at a stronger
disorder [points C2 and D2 in Fig. 1(b)]. For the transitions
C1, C2, and D1, corrections due to irrelevant scaling variables
are negligible [Fig. 7(a)], and the data can be well fitted by
a single-parameter scaling function G = F (φ1), i.e., n2 = 0.
For the transition D2, both the relevant and the least irrelevant
scaling variables are essential due to considerable finite-size
corrections [Fig. 7(b)].

For the transitions C1 and C2, the scaling function F (φ1) is
even in φ1 because the conductance G is an even function of μ

due to the particle-hole symmetry. Indeed, the first-quantized
Hamiltonian matrix is Hermitian, and the particle-hole sym-
metry Eq. (3) can be rewritten as H∗ = −σ1Hσ1. If we write
H explicitly as a function of μ, {ε j}, tx, ty, and �, the
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FIG. 7. Two-terminal conductance G as a function of μ near (a) transition C1 (W = 0.5) and (b) transition D2 (W = 2). G0 = π 2k2
BT/6h

is the thermal conductance quantum. The black circles are raw data points and the colored curves are from the fitting results. Each data point
is averaged over a few tens of thousands of samples to guarantee the precision of 0.1%.

symmetry becomes

H∗(μ, {ε j}, tν,�) = σ1H(−μ, {−ε j},−tν,−�)σ1. (16)

The signs of tx, ty, and � can be further reversed by a gauge
transformation that assigns −1 for one of the two sublattices
in the square lattice. Therefore, if {−ε j} and {ε j} appear
with equal probabilities in the ensemble of different disor-
der realizations, all physical quantities that are even under
the complex conjugation, including the average conductance,
should be even functions of μ. Thus, for the transitions C1 and
C2 that happen at μc = 0, we keep only even terms in the ex-
pansion of Eq. (11) in φ1, and only odd terms in the expansion
of Eq. (10) in δμ as in the quantum Hall transition [47]. For
the transitions D1 and D2, we keep both even and odd terms
in φ1 and δμ. The results of the best fits for these four plateau
transitions are summarized in Table II.

The localization-length exponents ν ′ at all four transitions
are very close to ν ′ = 1, consistent with the theoretical predic-
tion that a TQH transition is controlled by the clean Ising fixed
point, where the disorder is marginally irrelevant [12,14]. This
also suggests that any mixing between the two copies of Dirac
fermions at μ = 0 due to disorder does not change the critical
nature of the TQH plateau transition, compared to the one
copy of the Dirac fermion at μ/t = 4. Therefore, we expect
that we are able to study the scaling properties near tricritical
points of 2D class-D disordered superconductors by focusing
only on TCP1 in the next section.

VI. TRICRITICAL POINT TCP1

The MIT lines of the DTM-TQH and DTM-AI boundaries
and the plateau transition lines for the AI-TQH and TQH-
TQH boundaries merge into tricritical points in the phase
diagrams. TCP1 and TCP2 are such multicritical points in the
isotropic model [Fig. 1(b)], where the DTM, TQH with C =
+1, and TQH with C = −1 phases share their boundaries at
TCP1 and the DTM, TQH with C = 1, and AI with C = 0
phases share their boundaries at TCP2. As we mentioned in
the introduction, the critical behavior at the tricritical points
in 2D class-D systems is not well understood. Here, using the
isotropic model, we locate the position of TCP1 on the phase
boundary at μ = 0 with high precision, and study the critical
behavior at this point in detail. The idea of our approach is the
following.

The plateau transition between topologically distinct clean
superconductors (i.e., TQH conductors) at μ = 0 is sta-
ble against weak disorder, since weakly random mass is
renormalized to zero for Dirac fermions. Thus, the vertical
critical line μ = 0 with sufficiently small W represents the
Dirac semimetal phase. Quasiparticle transport on this line
is ballistic, and the (thermal) conductivity σ should show
a scale-invariant quantized value determined by the num-
ber of Dirac fermions [48–50]. On the other hand, beyond
a certain critical value WTCP, the system enters the DTM
phase where the conductivity should become logarithmically

TABLE II. Results of a finite-size scaling analysis of the two-terminal conductance at TQH transitions C1, C2, D1, and D2. The
conductance is calculated with the square geometry (L × L) and with the periodic boundary condition along the transverse direction. For
C1, C2, and D1, we omit the dependence of the conductance scaling function on the irrelevant scaling variable, therefore n2 = 0 in Eq. (11).
The expansion orders associated with the relevant scaling variable are fixed to (n1, m1) = (4, 3). The square brackets denote 95% confidence
intervals evaluated from 1000 Monte Carlo simulations. μc = 0 for transitions C1 and C2 by the symmetry (see the text).

L G n2 m2 GOF μc ν ′ y′ Gc/G0

C1 24–128 >1.6 0 0.14 0 1.002 [0.999, 1.003] 1.9891 [1.9890, 1.9892]
C2 24−80 >1.45 0 0.11 0 1.017 [1.009,1.026] 1.8494 [1.8490, 1.8498]
D1 24–128 >0.8 0 0.34 2.4045 [2.4045, 2.4046] 1.000 [0.998, 1.002] 0.9947 [0.9946, 0.9947]
D2 24−80 >0.7 1 0 0.13 2.4727 [2.4726, 2.4729] 1.008 [0.964, 1.020] 0.59 [0.51,0.68] 0.9343 [0.9334, 0.9351]
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FIG. 8. (a)–(c) Thermal conductivity σ ≡ GL/M as a function
of sample aspect ratio R ≡ M/L. The thermal conductance G is
calculated in a cylinder geometry of length L and circumference M
in the isotropic model along μ = 0 and different disorder strength
W = 2, 4, and 6, respectively (σ0 = G0/π ). Each data point is an
average over ≈102–103 disorder configurations to reach the precision
0.2%. (d) σ at fixed (sufficient large) aspect ratio R = 5 as a function
of W along the μ = 0 line for different length L.

divergent with the system size [12]. Based on this picture, we
study the conductivity σ as a function of the system size L
along the μ = 0 line and determine WTCP as the point where
σ starts to show a significant L dependence.

We calculate the thermal conductance G of cylindrical
systems of length L and circumference M in the isotropic
model along μ = 0 by the transfer matrix method. We then
convert the conductance to conductivity, using σ ≡ GL/M.
Figures 8(a) and 8(c) show σ as a function of the aspect
ratio M/L for several values of the disorder W and system
lengths L. We see that for each W and L, the conductiv-
ity data approach a constant as M/L is increased, and that
M/L = 5 is already large enough to approximate the M/L →
∞ limit.

Figure 8(d) shows σ at a fixed aspect ratio M/L = 5 as
a function of the disorder strength W for different system
sizes L. The conductivity barely changes with L as long as
the disorder strength is below a certain critical value WTCP.
The comparison of the conductivity at μ = 0 and μ = 4t in
the clean limit confirms the quantization of σ to the number
of Dirac nodes (data not shown). Above WTCP the conductivity
increases significantly with the system size L. These observa-
tions suggest that the portion W > WTCP on the μ = 0 line
is already in the DTM phase, and (W, μ) = (WTCP, 0) cor-
responds to the disorder-induced semimetal-metal quantum
phase transition tricritical point [TCP1 in Fig. 1(b)].

This phase transition is characterized by the power-law
divergence of a characteristic length scale ξ on the DTM side
(W > WTCP), ξ ∼ (W − WTCP)−ν ′′

. To precisely determine
WTCP and the exponent ν ′′ at TCP1, we use a one-parameter
scaling function for the conductivity in the DTM phase,

FIG. 9. (a) Conductivity σ as a function of W along the μ = 0
line, with a fixed aspect ratio M/L = 5. Each data point (colored
markers) is the average over a few thousand disorder realizations.
The black lines are from the polynomial fitting, where the data in a
disorder range of 3 < W < 4 are fitted by Eq. (18) with the expan-
sion order (n, m) = (1, 3). Inset: Single-parameter scaling function
for σ = f [L1/ν′′

u(w)], where we used ν ′′ = 1.54 and Wc = 2.67. All
the data in the range of 3 < W < 4 and different length L collapse
into the single scaling function. (b) Conductivity as a function of
ln L at (μ/t,W ) = (0, 6). The conductivity is obtained from the
two-terminal conductance G of the cylinder geometry with a length L
and circumference M, σ = GL/M, with fixed aspect ratio M/L = 3.
The error bar is the standard error of 102–103 samples. The relative
precision is around 0.2%.

σ (L,W ) = f (L1/ν ′′
u), where

u(w) =
m∑

k=1

bkw
k, w = W − WTCP

WTCP
(17)

is the relevant scaling variable in the μ = 0 subspace. Note
that this scaling form is valid only on the DTM side (w > 0).
Near TCP1, we expand f (x) in powers of small x:

σ (L,w) =
n∑

k=0

akLk/ν ′′
uk (w). (18)

We apply the standard polynomial fitting procedure to those
numerical conductivity data in the DTM phase close to TCP1.
The results are shown in Table III and Fig. 9(a). The best
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TABLE III. Results of finite-size scaling analysis of the thermal conductivity near TCP1. The conductivity data in the DTM phase are
fitted by the polynomial function defined in Eqs. (17) and (18) with n = 1 and m = 3, 4. The data in a range of 3 < W < 4 are fitted. The
square brackets are 95% confidence intervals from 1000 Monte Carlo simulations. The thermal conductivity unit σ0 is defined by the thermal
conductance quantum G0 ≡ π 2k2

BT/6h as σ0 = G0/π .

L W n m GOF WTCP ν ′′ σc/σ0

24–120 3–4 1 3 0.24 2.665[2.461,2.748] 1.535[1.479,1.599] 1.926[1.922,1.929]
24–120 3–4 1 4 0.22 2.729[2.419,2.814] 1.536[1.478,1.592] 1.926[1.923,1.929]

fitting with expansion order (n, m) = (1, 3) gives

WTCP = 2.67 ± 0.09, ν ′′ = 1.54 ± 0.03. (19)

The critical behavior of σ (L,W ) described by the usual
power-law scaling function near TCP1 should cross over to
a logarithmic dependence in the DTM phase. In fact, for any
finite W > WTCP, if L is sufficiently large (L > ξ ), we should
see a logarithmic behavior rather than a power law, as we
have mentioned in Sec. III. Indeed, already at W = 6, which
is barely inside the DTM phase, the conductivity data can be
reasonably fit by a linear function of ln L [see Fig. 9(b)]. This
suggests that we should only use a relatively narrow range of
W to find ν ′′ from fits to a power law.

The semimetal-metal quantum phase transition can be also
characterized by a DOS scaling with a dynamical critical ex-
ponent [51–53]. A single-parameter DOS scaling near the zero
energy was previously considered for the Dirac semimetal-
metal quantum phase transition in three dimensions [51]. The
same scaling argument applies in two dimensions, and gives
the following scaling function for the DOS ρ(ε,W ) near
ε = 0 [51,53]:

ρ(ε,W ) ∝ |w|(2−z′′ )ν ′′
f±(|ε||w|−z′′ν ′′

), (20)

with the dynamical exponent z′′. f+(x) and f−(x) are universal
DOS scaling functions in the DTM (w > 0) and in the Dirac
semimetal (w < 0).

To evaluate the dynamical exponent z′′ and the scaling
functions f±(x), we calculate the DOS along the line μ = 0
at different disorder strengths W . In the weak disorder region,
the numerical value ρKPM(0) by the kernel polynomial method
remains negligibly small (<10−3), reflecting the ballistic
transport of Dirac-type excitations. The vanishing ρKPM(0) is
consistent with the RG calculations of Refs. [13,26], which
give ρ(ε) ∝ |ε|[1 + αW ln(1/|ε|)]. Above a certain disorder
strength ρKPM(0) takes a finite value (>10−3). The value of W
where this happens matches well with the location of TCP1
determined by the conductivity scaling [Fig. 10(a)]. To eval-
uate the dynamical exponent z′′, we fit the low-energy DOS

at W = WTCP = 2.7 by

ρ(ε,W = WTCP) ∝ |ε|(2−z′′ )/z′′
(21)

[see Fig. 10(b)]. The fitting gives

z′′ = 1.065 ± 0.0025. (22)

We emphasize that the confidence bound for the dynamical
exponent is from a single fit, while the true bound must
be larger when uncertainties of WTCP and the DOS data are

FIG. 10. (a) ρKPM(0) as a function of the disorder strength W
along μ = 0. The solid line is a cubic spline interpolation of the
data points. Inset: ρKPM(ε) in a small ε region for different W .
(b) ln ρKPM(ε) vs ln ε at TCP1 (WTCP = 2.7). The dashed line is
the linear fit ln ρKPM(ε) = a ln ε + b in the range 0.02 � ε � 0.12.
The dynamical exponent z′′ is extracted from the coefficient a =
(2 − z′′)/z′′. (c) The scaling collapse of the DOS data near TCP1
along the line of μ = 0. We use z′′ = 1.065, ν ′′ = 1.54, WTCP = 2.7,
and ε ∈ [0.05, 0.4]. The data with W ∈ [2.9, 3.6] collapse onto the
upper branch that represents the DOS scaling function f+ for the
DTM phase. The data with W ∈ [1.7, 2.6] collapse onto the lower
branch that represents the DOS scaling function f− for the Dirac
semimetal (DSM) phase.
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  mass
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FIG. 11. Schematic RG flow around a disorder-induced tricritical
point in the 2D symmetry class D. FP0 and FP1 are fixed points in
the clean limit and at finite disorder, respectively. The horizontal and
vertical axes correspond to μ and W in the phase diagram of the
tight-binding model [see Figs. 1(a) and 1(b)].

included. In Fig. 10(c) the DOS data are rescaled according
to Eq. (20) using the values for z′′, ν ′′, and WTCP obtained
above. As expected, all data for different ε and w < 0 collapse
onto one curve and those for w > 0 collapse onto another
curve. These two curves represent the universal DOS scaling
functions f±(x).

The exponents ν ′′ and z′′ at TCP1 are clearly different from
those of the metal-insulator transition points on the DTM-
TQH boundary (point A) and the DTM-AI boundary (point
B). This implies that TCP1 is an unstable fixed point in the
low-energy limit, where both μ and w ≡ (W − WTCP)/WTCP

are relevant scaling variables.
We anticipate that the critical behavior near TCP1 is

generic, and applies to other tricritical points in disordered
class-D models. TCP1 in the isotropic model is described by
two copies of the random-mass Dirac fermion, and the lattice
Hamiltonian leads to finite couplings between the two. On the
other hand, generic tricritical points present in the anisotropic
model and TCP2 in the isotropic model are described by a
single copy of the random-mass Dirac fermion. As we have
already mentioned, the numerical results of Sec. V show that
the plateau transitions on the TQH-TQH boundary and on the
TQH-AI boundary share the same clean-limit Ising criticality.
This indicates that the couplings between the two copies of
the Dirac fermion as well as the random mass in each Dirac
fermion are irrelevant around the clean-limit fixed point all the
way up to TCP1. Therefore TCP1 in the isotropic model can
be regarded as two decoupled generic tricritical points of the
class-D symmetry. Without any interference between the two
copies, the critical nature of TCP1 must be the same as of a
generic tricritical point.

Based on all numerical evidence, we provide a schematic
RG flow diagram near a generic tricritical point in class D
in two dimensions (see Fig. 11). The diagram describes both
the case of a single disordered Dirac fermion (TCP2) and the
case of two uncoupled copies of disordered Dirac fermions
(TCP1). Around the clean-limit fixed point FP0, the uniform
mass of the Dirac fermions is relevant while the random mass
is marginally irrelevant. The unstable fixed point FP1 exists
at finite disorder, corresponding to tricritical points in 2D
class-D disordered systems. The RG trajectory that starts at

FP1 and ends at FP0 corresponds to the plateau transition line
between topologically distinct gapped phases. Above FP1, the
RG flows are controlled by fixed points of other effective
theories, which describe the thermal metal phase and the
metal-insulator Anderson transitions.

VII. CONCLUSIONS

In summary, we have provided comprehensive characteri-
zations of phases and quantum phase transitions in a model
of the 2D disordered class-D topological superconductor.
The rich phase diagram comprises three fundamental phases:
DTM, AI, and TQH phase.

We demonstrated the logarithmic divergence of low-energy
DOS in the DTM phase and at the DTM-TQH transition.
This implies that the dynamical exponent z at the DTM-TQH
transition is 2, the same as the spatial dimension.

By a finite-size scaling analysis of the quasi-1D lo-
calization length, we determined the critical exponent of
the divergent characteristic length ν = 1.35 ± 0.04 for the
DTM-TQH transition and ν = 1.36 ± 0.05 for the DTM-AI
transition. Critical conductance distributions at the two transi-
tions are also very similar. Therefore we conclude that the two
metal-insulator transitions are controlled by the same fixed
point.

TQH plateau transitions between distinct topological su-
perconducting phases survive in the presence of disorder, up
to TCPs. Around the TQH plateau transition lines, low-energy
excitations of the system are described by the field theory of
Dirac fermions with random mass. For the isotropic model
Eq. (1), two TQH transitions degenerate into one along the
line of zero chemical potential (μ = 0), and two of the tricrit-
ical points also merge into one point TCP1. Scaling analysis
of the two-terminal conductance shows that the localization
length exponent ν ′ = 1 with high precision, for both the
TQH-TQH and the TQH-AI transitions. This suggests that the
impurity scattering between the two flavors at μ = 0 has no
significant effect on the critical nature of the TQH transition
and the tricritical points.

Scaling analyses of the conductivity and the low-energy
DOS near TCP1 give the critical exponent of the divergent
characteristic length ν ′′ ≈ 1.54 and dynamical exponent z′′ ≈
1.06, respectively. These values are different from those at
the metal-insulator transitions. We deduce from these obser-
vations that the tricritical point is an unstable fixed point with
two relevant scaling variables on the μ-W phase plane. This
conclusion is in agreement with Ref. [30], but contradicts
Ref. [29].

The numerical results reported in this paper are consistent
with our recent RG analysis of the 2D Dirac fermions with
random mass [54]. The two-loop RG analysis as well as its
four-loop extension find an infrared unstable fixed point at a
finite disorder strength, where the uniform Dirac mass is a
relevant scaling parameter.

The findings strongly suggest that the criticality of DTM-
TQH and DTM-AI transitions can be effectively described by
a nonlinear sigma model, where the zero-energy DOS near
the critical point is nonzero (and even divergent in an infinite
system). Meanwhile, the TQH transitions and tricritical points
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can be described by effective theories of Dirac fermions with
vanishing zero-energy DOS [53].
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APPENDIX A: TIGHT-BINDING MODEL OF A 2D CLASS-D
TOPOLOGICAL INSULATOR

The diagonalization of the matrix H in Eq. (2) can be re-
stated as the solution of a tight-binding model of a topological
insulator with two orbitals (a, b) per site:

H =
∑

j

(ε j + μ)(a†
ja j − b†

jb j ) + �
∑

j

[i(a†
j+ex

b j

+ b†
j+ex

a j ) + (a†
j+ey

b j − b†
j+ey

a j ) + H.c.]

+
∑

j

∑
ν=x,y

tν[(a†
j+eν

a j − b†
j+eν

b j ) + H.c.]. (A1)

In this picture, the two orbitals represent particles and holes
of the original BdG Hamiltonian (1), and the interorbital
hoppings correspond to the p-wave pairing amplitudes �. We
use this topological model for the transfer matrix calculations
of the localization length and the conductance as well as the
kernel polynomial method calculation of the DOS. The con-
ductance and the DOS calculated in the tight binding model
Eq. (A1) are those of the Bogoliubov quasiparticles in class-D
disordered superconductor model Eq. (1).

To calculate the two-terminal Landauer conductance G =
(e2/h)Tr[t†t] of the disordered topological insulator model,
we use the method in Refs. [42,43] to get the transmission
matrix t . We attach two leads to the disordered model, each
consisting of decoupled 1D metallic wires,

Hlead = tlead

∑
j

[a†
j+ex

a j + b†
j+ex

b j + H.c], (A2)

with a hopping amplitude tlead. The leads are semi-infinite and
disorder free, and the plane wave eigenstates of the leads are
labeled by wave vector kx, where the chemical potential is
equal to 2tlead cos(kx ). In the present paper, we set the chemi-
cal potential at the half-filling point (kx = π/2) and calculate
the Landauer conductance along x.

APPENDIX B: FINITE-SIZE EFFECTS NEAR THE
TRICRITICAL POINT TCP1

Both the normalized quasi-1D localization length � and
the two-terminal conductance G should exhibit scale-invariant
behavior along the plateau transition line between topologi-
cally distinct gapped phases below the tricritical point TCP1.
When the system undergoes the semimetal-metal quantum
phase transition and enters the DTM phase, both � and G

are expected to increase monotonically with the system size
L. Figures 12(a) and 12(b) show, respectively, � and G as
functions of the disorder strength W along the line μ = 0, for
different system sizes. Notice that in a weak disorder region
(0 < W < 2.5), both quantities indeed take scale-invariant
critical values. The critical value of � diverges in the clean
limit, while in the same limit, the critical value of G converges
to an integer in units of G0.

However, above TCP1 at WTCP � 2.7, the metallic nature
of the DTM phase is manifest only for sufficiently large W �
6, where both � and G increase with L. In the range 5 < W <

6, we observe a nonmonotonic behavior in both � and G: they
decrease with L for smaller L values and increase with L for
larger L values. When W gets even closer to WTCP (2.7 < W <

5), both � and G decrease with L up to the largest numerically
available system size.

We attribute the nonmonotonic L dependence of � and G
to finite-size effects near the tricritical point. As is typical
in the presence of such effects, above WTCP, curves for two
successive values of L cross at a point, but this point sys-
tematically shifts toward smaller W upon increasing L. We
expect that for sufficiently large L, the crossing points will
finally collapse to the tricritical point TCP1 at W = WTCP.
In view of the finite-size effects, we have to either simulate
very large systems, or resort to other methods to precisely
determine the position of TCP1. In the main text, we used
the conductivity scaling analysis to find the critical disorder
for the semimetal-metal transition along μ = 0.

Similar finite-size effects are also observed close to TCP1
along μ �= 0, as shown in Fig. 12(c). A scale-invariant point
for �(L) for smaller μ can be found only for L � 96. We
interpret the value of W at the crossing point of the L =
96, 128, 160 curves in Fig. 12(c) as the critical disorder
strength Wc of the DTM-TQH transition at μ = 0.1. The
DTM-TQH transition line determined in this way shows a
sharp “dip” structure near the TCP1 at (WTCP, μ) = (2.7, 0).
Farther away from the TCP1, the finite-size effects of �(L) are
weaker, and the scale-invariant point of �(L) (at the metal-
insulator transition) can be observed at smaller L. Precise
determination of the MIT lines requires a polynomial fitting
procedure, while a rough estimate from the plots of �(L) vs
W is enough to reveal the structure of the phase diagram.

APPENDIX C: DOS IN THE ANDERSON INSULATOR
PHASE NEAR THE MIT TRANSITION LINE

The DOS in the localized phase near the MIT point shows
weakly singular structures around zero energy, as seen in
Fig. 3. In this paper, we calculate the DOS by the kernel
polynomial expansion method [32], where the δ function
is approximated by its finite-order expansion in terms of
the Chebyshev polynomials. Due to this approximation, the
energy resolution is limited by the truncation order of the
polynomial N . As a consequence, the numerical DOS ρKPM(ε)
is different from the true DOS ρ(ε) at finite N :

ρ(ε) ≡ 1

V

∑
i

δ(ε − εi ),

ρKPM(ε) ≡ 1

V

∑
i

π−1aN−1

(ε − εi )2 + (aN−1)2
. (C1)
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FIG. 12. (a) Normalized quasi-1D localization length � and (b) two-terminal conductance G as a function of the disorder strength W
along μ = 0. The data points are calculated with the isotropic class-D model. G0 = π 2k2

BT/6h is the thermal conductance quantum. (c) � as
a function of W at μ = 0.1. The red arrow indicates the DTM-TQH transition point at μ = 0.1.

Here a is a coefficient of order unity. The true DOS and the
numerical DOS are related by the energy integral,

ρKPM(ε) =
∫ +∞

−∞
dxρ(x)

π−1aN−1

(ε − x)2 + (aN−1)2
. (C2)

The relation leads to

ρKPM(0) ∝
{

ln N, if ρ(ε) ∝ ln
(
1/|ε|),

Nα, if ρ(ε) ∝ |ε|−α,
(C3)

with α > 0. Namely, when the true DOS shows the logarith-
mic (power-law) divergence in ε, the numerical DOS at the
zero energy shows the logarithmic (power-law) divergence in
N . The same conclusion is drawn numerically, when ρKPM(ε)
in Eq. (C2) is given by an integral of the Gaussian kernel.

To study the singularity of ρ(0) in the localized phase near
the MIT line, we calculate the DOS by the kernel polynomial
method with different values of the truncation order N at
several parameter points in the localized phase (Fig. 13). The
numerical results show that a linear fitting works well in the
plot of ln ρKPM(0) vs ln N , where the linear coefficient is small
and slightly differs for different points in the phase diagram.
The results suggest that the low-energy DOS shows a power-
law divergence ρ(ε) ∼ |ε|−α , with a nonuniversal exponent
α. The power-law divergence is consistent with the Griffiths
effects previously proposed in a study of a 2D network model
in class D [25].

APPENDIX D: FINITE-SIZE SCALING
OF CONDUCTANCE IN THE DTM PHASE

The metallic phase in class D is amenable to analytical
treatment, since it is described by a weakly coupled 2D sigma
model [12,13,27]. A perturbative analysis of the sigma model
leads to the beta function

β(g) ≡ dg

d ln L
= a0 + a1

g
+ a2

g2
+ a3

g3
+ . . . , (D1)

where the coefficients ai can be read off from Refs. [27,55].
These and other references give beta functions in terms of the
coupling constants t of various sigma models, and one has to
be careful about the relation between g and t . The first two
coefficients are

a0 = 1

π
, a1 = − 2

π2
. (D2)

For sufficiently large L it is sufficient to keep only the
leading term (a0) in the beta function, which then leads to a
logarithmic divergence of the conductance with respect to the
system size L:

g(0)(L) = g0 + a0 ln L, (D3)

similar to the weak antilocalization in the 2D sigma model in
the symplectic class AII [55,56].

FIG. 13. (a) Phase diagram of the isotropic class-D model taken from FIG. 1(b). (b–d) Zero-energy DOS ρKPM(0) as a function of an
expansion order N of kernel polynomial method at three parameter points in the Anderson insulator phase. The locations of the parameter
points are specified by blue dots in the panel (a) as A, B, and C, for the data shown in panels (b), (c), and (d), respectively. The calculation
is carried out with the square-geometry sample (L × L) of size L = 1000 with periodic boundary condition in both x and y directions. The
expansion order N ranges from 300 to 4000. The error bar is the standard deviation of four samples.
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FIG. 14. Conductance as a function of ln L in the DTM phase
at (μ/t,W ) = (1, 10). The two-terminal conductance of the square
geometry, L × L, is calculated with the periodic boundary condition
along the transverse direction. L ranges from 8 to 256. The error bar
is the standard error of 104 samples. The blue straight line is a linear
fit to Eq. (D3), resulting in a0 = 0.202 ± 0.003. The red dashed line
is a nonlinear fit to Eq. (D5), resulting in a0 = 0.28 ± 0.02, a1 =
−0.13 ± 0.03.

To test this logarithmic scaling, we compute the Landauer
conductance G in the square geometry (L × L) at a point in
the DTM phase at (μ/t,W ) = (1, 10) for different system

sizes L (Fig. 14). A logarithmic function g = g0 + a0 ln L
gives a reasonable fit in the range L ∈ [8, 258], though the
coefficient a0 ≈ 0.20 differs from the sigma model prediction
a0 = 1/π ≈ 0.32. We attribute this discrepancy to insufficient
systems sizes L. In the range of L available to us, the correc-
tions coming from the higher-order terms in the beta function
may not be negligible.

Let us consider Eq. (D1) keeping a0 + a1/g in the right-
hand side. This equation can be solved exactly, and g(L)
can be expressed in terms of the Lambert W function. For
our purposes it is sufficient to solve the equation iteratively.
We use the function (D3) as the zeroth approximation, and
substitute it into the equation:

dg

dl
= a0 + a1

g0 + a0l
, l ≡ ln L. (D4)

This is easily solved:

g(L) = g0 + a0 ln L + a1

a0
ln

(
1 + a0

g0
ln L

)
. (D5)

Using this function to fit the data we obtain the red dashed line
in Fig. 14, with the fitting parameters

a0 = 0.28 ± 0.02, a1 = −0.13 ± 0.03, (D6)

in reasonable agreement with the analytical values (D2). The
value of the coefficient a0 is close to the one numerically
obtained in Ref. [18].
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