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Local structural evolution in the anionic solid solution ZnSexS1−x
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The century-old Vegard‘s law has been remarkably accurate in describing the evolution of the lattice parame-
ters of almost all solid solutions. Contractions or expansions of lattice parameters of such systems depend on the
size of the guest atom being smaller or larger than the host atom it replaces to form the solid solution. This has
given rise to the concept of “chemical pressure” in analogy to the physical pressure. We have investigated using
EXAFS the evolution of the local structure in terms of atom-pair distances extending up to the third-nearest
neighbors in the family of compounds, ZnSexS1−x as an example of an anionic solid solution, in contrast to all
previous studies focusing on cationic solid solutions. Our results establish several common features between
these two types of solid solutions, while strongly suggesting that the concept of a chemical pressure is inaccurate
and misleading. Most interestingly, we also find a qualitative difference between the cationic solid solutions,
reported earlier, and the anionic solid solution.
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I. INTRODUCTION

It is a standard procedure in material science and engi-
neering to alter material properties and to design materials
for specific purposes by synthesizing different alloys. One of
the earliest investigations into understanding the underlying
structural changes that can be brought about by such alloying
was by Vegard [1], who pointed out almost exactly a hundred
years ago that alloying has systematic effects on the lattice
parameters. Considering the two end-member compounds that
define a given alloy, he showed that the lattice parameters of
any composition of the alloy can be expressed as an average
of the lattice parameters [2–11] of the end members weighted
by the respective compositions. There have been numerous
investigations that have established Vegard‘s law beyond any
doubt. Of course, there are cases where small deviations have
been observed [12–20] but these deviations are typically in
the order of a few percent, thereby showing the significance
and the universal validity of Vegard‘s law. This is a surprising
result because the two end members can have vastly different
lattice parameters reflecting vastly different bond lengths at
the atomic level.

The impact of Vegard‘s law has been so impressive that
the concept has been extended to suggest smooth varia-
tions of various properties and not just the lattice parameters
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[3–6,8–10] between the end members of any alloy system.
For example, in semiconductor physics, this concept has been
used to show that the band gap of an alloy semiconductor
tends to evolve approximately linearly with the composi-
tion, between the values determined by the two end-member
semiconductors, for example GaAs and InAs [21]. There are
many other properties that have been expressed in terms of
Vegard‘s law, indicating that there must be some microscopic
justification for its validity. Among other factors, the lattice
parameters of any material or compound are controlled by the
interatomic bond lengths within the unit cell, thereby suggest-
ing that the linear variation of the lattice parameters of alloys
with their composition may be a consequence of a linear
variation in the interatomic bond distances. Similar thinking
has often led the community to equate changing lattice param-
eters under the application of a physical pressure to changing
lattice parameters via alloying, labeling the latter process as
chemical pressure. Intriguingly, however, over the years sev-
eral experiments [8,22–24] on the extended x-ray absorption
fine structure (EXAFS) have established a relative invariance
of individual bond lengths in alloy systems. This has cast
severe doubts on the extensively used concept of chemical
pressure [23].

In Ref. [23], the ZnxCd1−xS alloy with 0 � x � 1 was
investigated to understand the relation between Vegard‘s law
and bond lengths. While the nearest neighbors (1st coor-
dination shell) were found to be relatively invariant, the
interatomic distances of the Cd–Cd and Zn–Zn pairs (2nd
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coordination shell) were shown to change much more rapidly,
but still falling short of explaining the observed changes in
the lattice parameters with respect to the alloy composition.
These changes, instead, were found to be accounted for by the
rapid changes of the Cd-S and Zn-S interatomic distances (3rd
coordination shell). All these observations could be explained
primarily in terms of changes in the M–S–M bond angles
with M = Cd or Zn along with relative invariances of the
nearest-neighbor M–S bond distances. Overall, the emerging
microscopic description of the structural evolution in alloys
seems to be fundamentally different from the application of
a physical pressure where individual bond distances change
proportionately with the lattice parameters. This suggests that
the association of the physical and the so-called “chemi-
cal” pressure is a derivative of a misplaced interpretation
of Vegard‘s law, where the macroscopically averaged lattice
constants measured by diffraction techniques are presumed to
control linearly the microscopic bond distances.

Interestingly, EXAFS studies on such solid solutions in in-
organic compounds have been exclusively focused on cationic
substitutions, for example ZnxCd1−xS [23], GaxIn1−xAs [22],
MnxCd1−xTe [8], or YInxMn1−xO3 [24]. While anionic sub-
stitution is also a well-established route to tune material
properties, there is no information available in the literature
on the microscopic evolution of various atom-pair distances
in an anionic-substituted inorganic system despite the known
validity of Vegard‘s law for such systems. In the present
study, we shall fill this gap by investigating the atom-pair
distances in ZnSexS1−x, where 0 � x � 1. Our analysis is
based on the EXAFS measured at the Zn, Se, and S K-edges,
in conjunction with ab initio electronic structure calculations
with full geometry optimizations. Based on a quantitatively
different microscopic evolution of the structural motifs in this
system compared to the earlier investigated cationic substi-
tuted systems, this study provides a complete insight into
the microscopic structural evolution in solid solution systems
independent of the site of the substitution.

II. EXPERIMENTAL DETAILS AND DATA ANALYSIS

ZnSexS1−x samples with x = 1, 0.9, 0.8, 0.7, 0.5, and 0.0
were synthesized by the solid-state method, starting with the
desired stoichiometric ratio of ZnSe and ZnS. The compo-
nent powders were thoroughly mixed and then pelletized. The
pellet was sealed in a quartz ampule at a vacuum of 2 ×
10−6 mbar. This quartz ampule containing the pellet was then
heated in the furnace at 580 ◦C for 36 hours with a slow heat-
ing and cooling protocol. X-ray diffraction (XRD) was used
to determine the phase purity of the prepared samples. The
grinding, pelletizing, sealing, and heating cycles were contin-
ued till no impurity phase was detected in XRD. EXAFS data
at the Zn, Se, and S K-edges was recorded in transmission.
Fluorescence mode of detection was used for S K-edges in
compounds with x = 0.9, 0.8 and 0.7. Zn and Se K-edge
EXAFS measurements at room temperature and 30 K were
performed at P65 beamline [25] at PETRA III synchrotron,
DESY, Hamburg. For these measurements the absorbers were
prepared using the layered scotch tape method. The thickness
of the absorber was adjusted such that the absorption edge
jump �μt � 1. For the S K-edge measurements, the required

quantity of sample was spread on a cellular membrane with
the help of a solvent. Powder samples were mixed with water
and were precipitated on a cellular membrane using a vacuum
pressure set up. The S K-edge EXAFS data were collected at
300 K at the XAFS beamline at Elettra synchrotron, Trieste
[26]. Results obtained from Zn and Se K-edges with 30 and
300 K were consistent with each other with a reduced thermal
contribution for the 30 K data. Therefore, all data and analyses
presented in this manuscript is from the Zn and Se K-edge data
obtained with the sample at 30 K. However, the S K-edge data
could only be collected at room temperature and presented
here.

Data analyses were carried out using Demeter suite [27],
which uses FEFF 6.0 code [28]. The EXAFS χ (k) oscillations
at the Zn, Se, and S K-edges were obtained by individu-
ally subtracting the pre-edge background, normalizing to the
experimental edge step, and subtracting a smooth atomic
background from the normalized absorption data using the
Athena program. The resulting χ (k) were fitted to a model
based on the crystal structure using the Artemis program
[27]. Detailed fittings were carried out using the structural
parameters corresponding to the zinc blende structure appro-
priate for these compounds, focusing on EXAFS data in the
k range extending over 3–15 Å−1 for Zn-K and Se-K edges,
and 3-12 Å−1 for S-K edge. The inverse Fourier transform
was performed for the R range between 1.00 and 4.76 Å.
We fit the EXAFS data from Zn and Se K-edges simulta-
neously within a single structural model that automatically
imposes these constraints on Zn-Se bond distances for the
first and the third-nearest neighbors in order to obtain the
most robust information on the local structures in all cases.
Complete details of EXAFS data analyses can be found in
the Supplemental Material (SM) [29]. The contributions of
near neighbor scattering paths to the EXAFS signal were
computed using the FEFF code based on ab initio self-
consistent real space multiple-scattering calculations [28] and
implemented in Artemis software. Various bond distances (R),
mean-square-displacement in these distances (σ 2), amplitude
reduction factors (S2

0), and corrections to edge energies (�E0)
were allowed to vary during the fitting. However, the coordi-
nation number (N) for each scattering path was kept constant.

III. COMPUTATIONAL DETAILS

Electronic structure calculations were performed for the
ZnSexS1−x alloy with x = 1.00, 0.75, 0.50, 0.25, and 0.00,
by means of a projected augmented wave (PAW) [30] im-
plementation of density functional theory (DFT) within the
Vienna ab initio simulation package (VASP) [31–34]. The
generalized gradient approximation (GGA) [35] in the formu-
lation by Perdew-Burke-Ernzerhof (PBE) [36] was used for
the exchange-correlation functional. The experimental zinc
blende structure (space group F-43m) was used as a start-
ing point for the structural optimization of both ZnS and
ZnSe [37]. For the other three compositions investigated,
namely ZnS0.75Se0.25, ZnS0.50Se0.50, and ZnS0.25Se0.75, disor-
der was analysed by means of special quasirandom structures
(SQS) [38]. The latter were generated using a Monte Carlo
simulation based method [39] as implemented in the alloy the-
oretic automated toolkit (ATAT) [40–42]. Convergence in the
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distribution of the bond lengths and bond angles with respect
to the number of atoms in the supercell was checked by
doing the calculations with 64, 96, and 128 atom supercells
respectively. Hence, the physical properties of the ZnSexS1−x

alloy are directly extracted from the calculations of the 128
atom supercell. In more quantitative terms, the pair corre-
lation function in the 128 atom supercell matches to that
of a perfectly random alloy until the 7th coordination shell.
The equilibrium structures were determined by optimizing
internal positions and lattice parameters till the forces on the
atoms were smaller than 10−3 eV/Å. The integrals over the
Brillouin Zone were performed by means of a �-centered
Monkhorst-Pack k mesh of 14 × 14 × 14 for pristine ZnS and
ZnSe, while a k-mesh of 10 × 10 × 5 was used for the 128
atom supercells. An energy cutoff of 650 eV was used for
the kinetic energy of the plane waves included in the basis.
Convergence of the full structural optimization with respect
to plane wave energy cutoff and k mesh was checked for
all systems. To understand the quantitative precision of our
calculations, we can compare the optimized lattice parame-
ter for ZnS to the average of reported experimental values
[37]. The theoretical value of 5.45 Å is 0.70% larger than
the experimental reference, which we attribute to the general
overestimation associated with PBE. Hence, we conclude that
our theoretical analysis is very accurate, qualitatively as well
as quantitatively.

IV. RESULTS AND DISCUSSION

In Fig. 1, we show the x-ray diffraction patterns of
ZnSexS1−x for various x values. We have also shown for
comparison the standard diffraction patterns of ZnSe and ZnS
from the ICSD data base. These XRD patterns show that
these compounds form in the cubic zinc blende structure.
With an increasing incorporation of larger Se anions at the
S sites, one finds a systematic variation of lattice parameters
to larger values indicated by the progressive movement of the
diffraction peaks to lower angles in Fig. 1(a), illustrated by
the comparison of the peak positions relative to the vertical-
dashed line at 45◦. We have extracted the lattice parameter
from the XRD pattern for each composition and plotted it in
Fig. 1(b) as a function of the Se content x. The intermediate
lattice parameters show a linear variation between the two
end members, as indicated by the red-dashed line. This linear
variation with the composition is a confirmation of the fact
that this system obeys the Vegard‘s law.

Calculated lattice parameters obtained from geometry op-
timized calculations for each composition (x = 0.0, 0.25, 0.5,
0.75, and 1.0) are also shown in Fig. 1(b) with blue open
circles with the corresponding y-axis for the lattice parameters
shown on the right. We note that the right y-axis values are
slightly shifted with respect to those on the left axis to take
into account a small mismatch between the calculated and the
experimental values of lattice parameters with the calculated
values being slightly larger than the experimental ones. How-
ever, the relative scales on both axes are the same allowing us
a direct comparison of changes in the lattice parameter with
the composition obtained from calculations with the changes
observed experimentally. We find a good agreement between
the experiment and calculation, confirming that the theoretical

FIG. 1. (a) X-Ray diffraction (XRD) patterns of ZnSexS1−x solid
solution for different values of x. The peaks shift systematically
towards lower 2θ values with the increase in selenium concentration
(x) as can be seen with the help of the vertical dashed reference line
at 45◦. (b) The lattice parameter a (in Å) from experiment (red-solid
circles) and calculations (blue-open circles). The experimental points
are obtained from Rietveld analyses of the diffraction patterns as a
function of the composition x.

methods employed here capture the essential aspects of the
evolution of lattice parameters with the composition. This
then allows us to extract other measurable quantities from
these calculations to make a more direct comparison with
estimates obtained from the EXAFS experiments.

The k2-weighted EXAFS oscillations as a function of k for
all compositions x are shown in Figs. 2(a), 2(b), and 2(c) for
Zn K-edge, Se K-edge, and S K-edge, respectively. Prominent
oscillations with good signal-to-noise ratios are seen for k �
13 Å−1 for all edges. We show the corresponding Fourier
transforms of Zn K-edge, Se K-edge, and S K-edge EXAFS
data in Figs. 2(d), 2(e), and 2(f), respectively. These figures
show significant changes with respect to the alloy composition
and provide us with some understanding of the evolution of
the local structure as a function of x in this solid solution.
Figure 2(d) shows two main groups of features; one is a single
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FIG. 2. k2-weighted EXAFS oscillations obtained at (a) the Zn
K-edge, (b) Se K-edge, and (c) S K-edge for different compositions
(x) of ZnSexS1−x . The corresponding Fourier transforms are shown
for the Zn K-edge (d), Se K-edge (e), and S K-edge (f). Details of
data analysis are given in the Supplemental Material [29].

peak-like feature around 2 Å, while the other is a doublet-like
feature around 3–5 Å. The first peak around 2 Å arises from
the scattering from the nearest-neighbor coordination shell,
Zn–S or Zn–Se. The scattering peak moves systematically to
higher distances with an increasing Se content, which reflects
a longer Zn-Se bond. The farther features appearing between
3 and 5 Å arise from the 2nd and the 3rd coordination shells
of these compounds. Major contributions are due to the Zn–
Zn scattering from the second shell and to Zn–S or Zn–Se
scattering from the third shell. The well-defined peak arising
from the Zn–Zn scattering shows a systematic increase across
the composition series. Interestingly, the Fourier transforms
reported in Figs. 2(e) and 2(f) do not show any appreciable
shift in the peak positions with the composition. Since the first
peak appearing near 2 Å corresponds to Se-Zn scattering in
panel (e) and S-Zn scattering in panel (f), these results suggest
an invariance of these bond distances with the composition,
despite a systematic change in the lattice parameter. The peak
positions in Figs. 2(d), 2(e), and 2(f), however, cannot be di-
rectly interpreted as the bond distances because of the various
scattering phase shifts that make the peaks appear at a distance
different from the actual bond distances.

FIG. 3. (a) Experimentally obtained bond distances: Zn–Se
(black-solid triangles) and Zn–S (green-solid squares from Zn K-
edge and red-solid circles from S K-edge analyses) belonging to the
first coordination shell as a function of the composition along with
the calculated bond distances shown with corresponding blue-open
symbols. (b) Composition averaged nearest-neighbor bond distances
(red-solid circles from experimental estimates and blue-open circles
from the calculations) as a function of the composition, showing a
close adherence of the averaged cation-anion bond distance to the
expectation based on the Vegard‘s law.

We now turn to the quantitative analyses of the EXAFS
results in order to obtain a detailed description of the evolu-
tion of the local structures as a function of the composition
in ZnSexS1−x. While all derived parameter values from the
EXAFS analysis are presented in tables in the SM, here we
show plots of various interatomic distances as a function of
the composition separately presenting atom-pairs belonging to
different coordination shells. This provides us an effective in-
sight into the evolution of the local structure with composition
around the central atom where the EXAFS data is collected
from. Figure 3(a) shows three sets of nearest-neighbor bond
lengths separately obtained from the analysis of the EXAFS
data. Zn–Se bond lengths, shown by black-solid triangles, are
obtained from simultaneous, constrained fitting of EXAFS at
the Zn and Se K-edges, as discussed before. The red-solid cir-
cles show the S–Zn bond lengths obtained from the analyses
of the S K-edges, while the green-solid squares show the same
Zn–S bond lengths but obtained from an analysis of the Zn
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K-edge EXAFS data. Ideally, these two bond distances should
be the same as they describe the same Zn–S bond length.
However, we present these separately, since these two, derived
from two very different measurements, provide us with inde-
pendent measures of the bond length, the difference between
the two measures serving as an estimate of the reliability of
the technique. In the highly magnified scale of Fig. 3(a), both
Zn–Se and Zn–S bond lengths show an approximately linear
increase with Se content, as emphasized by the dashed straight
lines drawn through the data points as a guide to the eye.

It can be argued that the increase in the Zn–S bond length
reflects a negative chemical pressure around the Zn site. This
is due to the substitution of S with a larger ion, Se, thereby
increasing the lattice parameters and the Zn–S bond length.
If we consider the ZnSe rich end of the composition, instead,
replacing Se with S leads to a contraction of the Zn–Se bond
lengths. This reflects a positive chemical pressure on the sys-
tem, brought about by a doping with the smaller S ions at the
larger Se sites. A more insightful analysis can be made by
comparing the percentage change of these bond lengths (ξ )
with respect to a unit change in the composition, which is
the value of x in ZnSexS1−x. From Fig. 3(a), we estimate ξ

to be about 1.2% and 0.7% for the Zn–S and Zn–Se bonds,
respectively. If these bond lengths were to change according
to Vegard‘s law, there would be a single fictitious bond whose
length would linearly interpolate from the value of Zn–S bond
length in ZnS to that of Zn–Se at the other end; we can
calculate the corresponding idealized rate of change of this
fictitious bond, labeled as ξVegard. In the present case, for the
first coordination shell, we estimate ξVegard = 5.1 %, which is
very different from the values extracted from the experiment.
This analysis demonstrates that the Zn–S and Zn–Se bonds are
much more rigid than what one could expect from Vegard‘s
law. This is very similar to what was reported for ZnxCd1−xS
solid solutions, where the Zn–S and Cd–S bond distances are
found to change much less than what is predicted by Vegard‘s
law [23].

Overall, the changes in the nearest-neighbor bond lengths
in both cationic and anionic substituted systems do not reflect
the changes observed in the lattice parameter with varying
compositions. At this stage, we must stress that the application
of physical pressure to any given compound would usually
lead to changes in the lattice parameter in correspondence to
those of the nearest-neighbor bond lengths in absence of any
phase transition [43]. Therefore, drawing an analogy between
composition-driven and pressure-driven changes in the lattice
parameters does not appear to be very accurate. In other
words, the concept of “chemical pressure”, extensively used
in tuning properties of various systems, is at best a misnomer,
arising from the limitation of the Vegard‘s law, suitable for
describing lattice parameters, in providing a description of the
microscopic evolution of the local structural aspects in terms
of the interatomic bond distances.

In order to obtain a microscopic understanding of these
results, we have performed extensive large-scale ab initio cal-
culations for a series of ZnSexS1−x compositions, namely for
x = 0.00, 0.25, 0.50, 0.75, and 1.00, as discussed in detail in
the methodology section. The final geometry of the optimized
structure for each composition was analyzed for extracting the
nearest-neighbor Zn–S and Zn-Se bond lengths. These bond

lengths are found to depend on the local chemical environ-
ment, giving rise to a distribution of nearest-neighbor bond
lengths. The average values of the distributions are shown
in Fig. 3(a), where blue-open triangles and circles are used
for Zn–Se and Zn–S, respectively. The slight mismatch of
the calculated lattice parameters with those obtained from
experiments [see Fig. 1(b)] translates into a similar mismatch
between the calculated and experimental bond lengths; this is
accounted for by a rigid shift of the right axis of Fig. 3(a)
with respect to its left axis that brings the calculated and
experimentally determined bond lengths of the end members,
ZnS and ZnSe, to appear on top of each other. This allows us
to make a direct comparison between the rates of change of the
nearest-neighbor bond lengths obtained from the calculations
(dashed-blue lines) and those obtained from the experiments
(dashed-black and red lines). The fact that the curves are al-
most on top of each other highlights the remarkable agreement
between experiment and theory.

To investigate the Vegard‘s law in microscopic terms, we
plot the nearest-neighbor bond lengths for the two end mem-
bers, ZnS and ZnSe, using the same symbol (red-solid circles)
in Fig. 3(b). Then, we draw a dotted-red line connecting
these two points, which shows the expected variation of a
single, fictitious, nearest-neighbor cation-anion bond distance
with the composition. This corresponds to a microscopic
modeling of the solid solution in terms of a virtual crys-
tal approximation (VCA) for the alloy system [44]. Finally,
we also include the composition-weighted average of the
experimentally-determined nearest-neighbor bond distances,
Zn–S and Zn–Se, for all the intermediate compositions, using
again red-solid circles. Clearly, the average bond distance
interpolates linearly between the two end members, in excel-
lent agreement with dotted line connecting the end members,
which is inspired by Vegard‘s law. The same conclusions can
be drawn using the bond lengths obtained from the calcu-
lations, as shown with blue open circles in Fig. 3(b). This
shows that the adherence of the composition-dependent lattice
parameters to the Vegard‘s law arises from a very different
microscopic evolution than that of the individual bond lengths,
and should only be thought of in an average sense, charac-
terised by sampling over many unit cells. Since the lattice
parameters are determined from experiments that necessarily
average over many unit cells to have properly defined x-ray
diffraction peaks, the averaged lattice parameters obtained
from these experiments have always conformed to the Veg-
ard‘s law. However, EXAFS is specifically sensitive to the
local structure and is devoid of any such space averaging,
thereby leading to results that do not follow a Vegard‘s law
type dependence on the composition. These results lead one
to naturally ask about the length-scale of averaging that is
required to arrive at the global description captured by x-ray
diffraction experiments starting from the local description ob-
tained from EXAFS. In the following, we address this issue by
determining the interatomic distances between pairs of atoms
that are increasingly farther apart.

We first focus on the 2nd coordination shell, by analyzing
the Zn K-edge data, which relate uniquely to Zn–Zn distances.
For intermediate compositions, we found it necessary to adopt
a model with two different Zn–Zn distances to obtain a satis-
factory fit to the EXAFS oscillation, since no model with a
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FIG. 4. (a) Experimentally obtained two Zn–Zn distances (long:
black-solid triangles, short: red-solid circles) for the second co-
ordination shell as a function of the composition along with the
corresponding calculated quantities shown with blue-open symbols.
(b) Experimentally obtained Se–Se (black-solid circles), S–S (red-
solid triangles), and Se–S (green-solid stars) distances as a function
of the composition, along with the calculated quantities with corre-
sponding blue-open symbols.

single Zn–Zn distance could adequately describe the exper-
imental data. This stems from the fact that Zn–Zn distances
are defined by the Zn-S-Zn and Zn-Se-Zn connectivities.
Since the bond length of Zn-S, which is the same as S-Zn,
is distinctly different from that of Zn-Se (and Se-Zn), it is
evident that we need a shorter Zn–Zn distance for the Zn pairs
connected via an S atom and a longer Zn–Zn distance for
the Zn pairs bridged by an Se atom. The variations of these
two Zn–Zn distances as a function of Se content are shown
in Fig. 4, using black-solid triangles for the long distance
and red-solid circles for the short one. The bimodal Zn-Zn
distances can be seen to retain values close to the Zn–Zn dis-
tances found in pure ZnS and ZnSe. The small variations with
respect to the alloy composition are compatible with the minor
variations of the individual Zn–S and Zn–Se bond lengths,
reported in Fig. 3. Interestingly, this is in contrast to what
was reported for the closely related ZnxCd1−xS system [23];
in that case, it was found that the cation-cation second shell
distances between Zn–Zn, Zn–Cd, and Cd–Cd atom pairs
changed more rapidly with the composition than the bond dis-
tances in the first coordination shell. This different behavior

found in the second coordination shell signals, for the first
time, the qualitative difference in the evolution of the local
structures between a cation-substituted system (ZnxCd1−xS)
and an anion-substituted system (ZnSexS1−x). It is important
to note that this unexpected finding is also confirmed by the
electronic structure calculations, which show that the longer
Zn–Zn bonds indeed arise from those Zn pairs that are bridged
by Se atoms while the shorter Zn–Zn pairs are invariably
connected by a bridging S atom, thereby leading to a bimodal
distribution. These average Zn–Zn bond distances are plotted
separately in Fig. 4(a), using blue-open triangles and circles
for the Se and S bridged pairs, respectively. Clearly, the longer
Zn–Zn bonds are in remarkable agreement with the experi-
mental data. Even the short Zn–Zn bonds exhibit a reasonable
agreement, if we take into account the larger uncertainties
associated with extracting estimates of the short Zn–Zn bonds
for large values of x (� 50), due to the reduced number of
such pairs in the dilute S end of the solid solution.

The second coordination shell with the anions at the center
includes Se–Se, S–S, and Se–S (or S–Se) atom pairs. The dis-
tances between them were extracted, for all compositions, by
analyzing the corresponding Se and S K-edge EXAFS, and are
shown in Fig. 4(b) with solid-black circles, red triangles, and
green stars, respectively. The S–S distances, extracted from
the S K-edge EXAFS analysis, could be estimated only up
to x � 50 with reasonable accuracy. Similarly, the Se–S dis-
tances could be estimated for only x = 50 and 70 due to a low
contribution from S scattering for more Se-rich compositions.
Nevertheless, these limited data illustrate clearly the trends
with the compositions and can be used as a further test to eval-
uate the accuracy of the computational model. The average
Se–Se, S–S, and Se–S atom pair distances extracted from the
calculations are plotted in Fig. 4(b), using corresponding blue
open symbols. The excellent agreement between theory and
experiment confirms that the calculations can be trusted for
analyzing diluted S compositions, where the experiment suf-
fers from a low contribution from S scattering, as mentioned
above. Overall, our results show a strikingly different trend
for the anion-anion atom-pair distances [Fig. 4(b)] in compar-
ison to the cation-cation atom-pair distances [Fig. 4(a)]. The
anion-anion atom-pair distances exhibit a rapid variation with
composition, almost in conformity with the Vegard‘s law, in
contrast to the relatively rigid behavior of the cation-cation
distances.

To understand these fundamental differences, we note that
every anionic pair is bridged by a Zn atom, thereby lead-
ing to Se-Zn-Se, S-Zn-S, and Se-Zn-S bonds. If we keep
in mind that the individual Zn–S or Zn–Se bond lengths do
not change appreciably across the composition of the solid
solution [see Fig. 3(a)], then the only way the anionic pairs
can vary significantly is by changing the angles between the
Se–Zn–Se, S–Zn–S, and Se–Zn–S bonds around the central
Zn atom. In contrast, for cationic pairs, the relative invariance
of Zn–Zn atom-pair distances reflects that the Zn–Se–Zn and
Zn–S–Zn bond angles around the anions (Se or S) do not
change much with the composition. This argument can be
reformulated on a quantitative basis by calculating the av-
erage angles of the anionic and cationic pairs in the second
coordination shell. We have calculated the bond angles by
considering triangles formed by the bond distances reported
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FIG. 5. Zn–Se–Zn (black-solid circles), Se–Zn–Se (red-solid up
triangles), S–Zn–S (purple-solid stars), and Zn–S–Zn (magenta-solid
down triangles) bond angles obtained from first and second co-
ordination shell bond distances presented in Figs. 3(a), 4(a), and
4(b). S–Zn–S bond angles and Zn–S–Zn bond angles for dilute S
compositions (x �50%) could not be estimated with any reasonable
accuracy due to the large uncertainties in the S–S and short Zn–Zn
bond distances (see Fig. 4). The average angles evaluated from the
calculations are also shown with corresponding blue-open symbols,
indicating a very good agreement in most cases. The experimentally
obtained S–Zn–S angles appear to be slightly shifted with respect to
the calculated values, as shown by the dc-shifted blue dashed line;
this mismatch is within the uncertainty of estimating these angles
from the individual bond distances. All angles obtained for the two
pure compounds are in good agreement with the tetrahedral bond
angle (109.47◦).

in Figs. 3(a), 4(a), and 4(b). The experimental estimates of the
angles of the Zn–Se–Zn, Se–Zn–Se, S–Zn–S, and Zn–S–Zn
bonds are plotted in Fig. 5, using solid-black circles, red
triangles, and purple stars, respectively. We can also extract
the angles from the optimised structures obtained via DFT,
which leads to a distribution of angles due to the presence of a
number of symmetry-inequivalent sites in the large super-cells
considered. We obtain the average over this distribution of
angles to compare with the EXAFS derived angles, as shown
in Fig. 5 using corresponding blue-open symbols. Theoretical
and experimental data are in excellent agreement, particularly
for the Zn–Se–Zn and Se–Zn–Se angles. The slight mismatch
obtained for the S–Zn–S bond angles is within the expected
error in the experimental estimation; this is clear from the
experimental estimate of the S–Zn–S bond angle for pure
ZnS being nearly 1◦ higher than the known value of the
tetrahedral bond angle (109.47◦). From this analysis, it is
evident that the increase in the lattice parameter [Fig. 1(b)]
is substantially controlled by the increasing metal-centered
bond angles (Fig. 5) rather than by the modest expansion of
the individual Zn–S or Zn–Se bonds [Fig. 3(a)] and hardly
by the nearly constant anion-centered bond angle (shown for
Zn-Se-Zn in Fig. 5). This is in sharp contrast to what would
happen under the application of a physical pressure, which
would result in the change of bond lengths instead of bond

FIG. 6. Experimental estimates of third nearest-neighbor Zn–Se
(black-solid circles) and Zn–S (red-solid triangles) distances as a
function of the composition x. The same bond distances obtained
from calculations are shown with corresponding blue-open symbols.

angles. Finally, we can compare the evolution of the bond
angles for the second coordination shells in cationic solid
solutions (addressed in Ref. [23]) and anionic solid solutions
(addressed here). In both cases, changes in the bond angles are
primarily responsible for the changes in the lattice parameters.
However, the cationic solid solution has been shown [23] to
be controlled by changing anion-centered bond angles with
the cation-centered angles relatively constant. On the contrary,
the reverse is seen for anionic solid solutions, as illustrated in
Fig. 5. We shall return to the discussion on the implication of
this finding later in the text, after presenting the variations in
the third coordination shell.

The experimental estimates of the bond lengths Zn–Se and
Zn–S in the third coordination shell are reported in Fig. 6,
with solid-black circles and red triangles, respectively. The
corresponding distances from the theoretically calculated re-
sults are also shown, with corresponding blue-open symbols,
in the same figure, once again in good agreement with the
experimental data. As done in the previous plots, we draw a
dashed-black line joining the Zn–S and Zn–Se bond distances
in pure ZnS and ZnSe, indicating the variation with compo-
sition that would be expected on the basis of Vegard‘s law.
The other data points reported in Fig. 6 are shown to be in
a remarkable agreement with this Vegard‘s law dictated varia-
tion. This is particularly evident for the Zn–Se bond distances,
where most of the experimental data points with very small
error bars appear virtually on the dashed line. The composi-
tion dependent Zn–S bond distances, instead, show a small
deviation from the dashed line, though much smaller than the
deviations seen for the first and second coordination shells.
Without a doubt, a large part of this discrepancy arises from
the sizable uncertainty in the estimates of the Zn–S distances
for the dilute sulphide compounds, which is also reflected by
the large error bars. Keeping this uncertainty in mind, even
the Zn–S bond distance can be considered in good agreement
with what is expected from Vegard‘s law. This conclusion is
further supported by the fact that the values extracted from
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FIG. 7. Relative deviations of the rates of change of various inter-
atomic distances with the composition from those expected from an
application of Vegard‘s law plotted as a function of the corresponding
interatomic distance, characterizing different coordination shells of
the solid.

the electronic structure calculations fall exactly on top of the
dashed line.

Thus, our analysis provides an understanding of the evo-
lution of the microscopic atom-pair distances successively
through first, second and third coordination shells, leading
to an average description of the microscopic justification of
Vegard‘s law for the lattice parameter variation. The indi-
vidual bond distances for the first and second coordination
shells differ significantly from the Vegard‘s law type expec-
tation, while in the third coordination shell this expectation
is fulfilled rather accurately. This suggests that the length-
scale over which the interatomic distances begin to mimic
Vegard‘s law is approximately equal or larger than the dis-
tances found in the third coordination shell. Therefore, this is
the microscopic origin of Vegard‘s law concerning the lattice
parameters, since the lattice parameters are determined by
the diffraction technique that averages over a much longer
length scale. Additionally, it is extremely important to keep
in mind that this conformity of the interatomic distances with
the Vegard‘s law is brought about primarily by suitable mod-
ifications in the bond angles and not by changes in the bond
lengths, underlining the difference in the structural evolutions
due to compositional changes and those realized under the
application of pressure.

For a more quantitative visualization of the previous rea-
soning, we can employ ξ and ξVegard, which respectively
denote the calculated rate of change of a given interatomic
pair distance with the composition and the corresponding rate
of change expected from Vegard‘s law. For each bond length
in each coordination shell, it is useful to evaluate the relative
departure from the Vegard s law defined by ξ/ξVegard.

This deviation has been plotted for different interatomic
pairs in Fig. 7, as a function of the interatomic distance
up to the third coordination shell. Within the experimen-
tal uncertainties, this figure provides a clear view of how

the interatomic distances evolve and approach the behavior
predicted by Vegard‘s law, given by ξ/ξVegard = 1. Clearly,
both bond distances corresponding to the first coordination
shell, i.e. Zn–S and Zn–Se, exhibit a pronounced departure
from the Vegard‘s law with ξ/ξVegard ∼ 0.2, indicating that
the individual bond distances are more rigid than would be
naively expected based on the evolution of the lattice pa-
rameters (or Vegard‘s law) as a function of the composition.
We note that the deviation from the Vegard‘s law observed
[23] earlier for closely related Zn–S and Cd–S first-neighbor
distances in Zn1−xCdxS was somewhat more pronounced, in-
dicating higher degrees of rigidity of these bonds, compared
to what we find here for Zn–S and Zn–Se first-neighbor bond
distances. Interestingly, the second coordination shell of the
present anionic solid-solution series presents two contrast-
ing scenarios, based on whether we consider cation-cation
(metal-metal) distances or anion-anion (ligand-ligand) dis-
tances. Two distinct cation-cation distances are found in the
system [see Fig. 4(a)], designated as short and long ones. Nei-
ther of these two interatomic distances show any significant
variations as a function of the composition, leading to a rather
small ξ/ξVegard (�0.3). Among these two, we note that the
estimates of the short Zn–Zn bond is more error prone [see
Fig. 4(a)]; therefore, the estimated ξ/ξVegard ∼ 0.3 for the long
Zn–Zn atomic distances is a more reliable estimate. We also
note that this value is in good agreement with the value of
ξ/ξVegard (0.25) estimated from the theoretical evaluation of
the interatomic distances shown in Fig. 4(a) with blue symbols
and dashed lines. Interestingly, S–S and Se–Se interatomic
distances, still belonging to the second coordination shell,
show a much more rapid variation with the composition, in
closer agreement with expectations based on Vegard‘s law, as
indicated by the large values of ξ/ξVegard ∼ 0.72. These dis-
tinctive behaviors of rigidity in Zn-Zn and adaptability in S–S
and Se–Se bond distances with changing lattice parameters
across the solid solution can only arise from a relative rigid-
ity of the Zn–S–Zn and Zn–Se–Zn bond angles close to the
tetrahedral angle as in the pure samples, simultaneously with
a flexible S–Zn–S and Se–Zn–Se bond angles. This clearly
contrasts the scenario encountered in the case of the cation
substituted solid solution of Zn1−xCdxS [23] where Zn–S–Zn
and Cd–S–Cd bond angles were found to evolve across the
composition series with a relatively inflexible S–Zn–S and S–
Cd–S bond angles. Figure 7 shows that the interatomic Zn–S
and Zn–Se distances in the third coordination evolve almost
in conformity with the lattice parameter variation dictated by
the Vegard‘s law, indicated by near unity value of ξ/ξVegard.

We now strive to rationalize this difference between the
cationic substituted systems and the anionic substituted ones
in terms of the pivotal element defining the changing bond
angle to accommodate the varying composition and, hence,
the microscopic origin of changes in the lattice parameters. In
Ref. [23], it was originally observed that anion centered bond
angles changed significantly while the cation centered ones
remained rigidly close to the tetrahedral angle of the pure end
members in the case of a cation-substitution (M1−xM ′

xX ) se-
ries. This led to identifying two fundamental building blocks
of the substituted compositions, namely rigid MX4 and M ′X4

units. These building blocks were connected through the
corner-sharing of an X atom. The potential to change the X -
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centered angles was assumed to be softer than that to change
the M-centered ones. However, this hypothesis is contradicted
by our present results on anionic substituted solid solution
series, where we find a relative rigidity of the X -centered
bond angles while the M-centered ones remain soft. If we
have to think in terms of fundamental building blocks, we
shall then be forced to assume rigid M4X and M4X ′ tetrahe-
dral units for the anionic substituted systems. This indicates
that neither M4X nor MX4 tetrahedral units are fundamental
building blocks from energetic considerations. It is easy to
understand the relative invariance of the M–X bond distances
irrespective of the substitution type, as this is controlled by
the covalency/hybridization between the two sites, M and
X ; in fact, this constitutes the basic concept for defining the
covalent radii of various atoms in specific oxidation states
irrespective of the specific solid in which such a bond may
exist. However, the interatomic distances between the same
type of atoms, such as the M − M and X − X bond dis-
tances, are controlled relatively less by covalency and more
by the requirement of minimising the electrostatic repulsions
between similar atoms. This observation provides us with a
clue to understanding the apparently different behaviors of
the two types of substituted systems on a common platform.
Assuming that the solid solution affects one sublattice, the
adjustments required to minimize the electrostatic repulsions
are best achieved by displacing the nearby atoms under the
condition that the covalent radii in the same sublattice are
separately preserved for each atomic type. This implies that,
upon cationic substitution, the average cation-cation distance
in the second coordination shell is expected to change, while
the average anion-anion distance should remain relatively
unaffected. The opposite trend is expected upon anionic sub-
stitution, and this is indeed what has been observed in the
present experimental and theoretical data. Together with the
relative rigidity of the M–X bond lengths, this implies that
the M − X − M angles should change and X − M − X angles
should not change in M1−xM ′

xX cationic solid solutions, while
the M − X − M angles should not change and X − M − X
angles should change in MX1−xX ′

x anionic solid solutions.

Finally, our paper establishes that these very changes are the
microscopic origin of the century-old Vegard‘s law, which is
an average statement connecting changes in the lattice param-
eters to changes in the composition. Our results also underline
the qualitatively dissimilar manner of the microscopic evolu-
tion of structural aspects with solid solutions, often mistakenly
thought of as “chemical” pressure, in comparison to the mi-
croscopic structural changes under the application of physical
pressure.
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