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The mechanocaloric effect is the temperature change of a material upon application or removal of an external
stress. Beyond its fundamental interest, this caloric response represents a promising and ecofriendly alternative to
current cooling technologies. To obtain large mechanocaloric effects, we need materials whose elastic properties
(e.g., strain, elastic compliance) are strongly temperature dependent. This is the case of ferroelectric perovskite
oxides, where the development of the spontaneous electric polarization is accompanied by significant strains
and lattice softening. Thus, in this work we study the mechanocaloric properties of model ferroelectric PbTiO3

by means of predictive atomistic (“second-principles”) simulations and a perturbative formalism introduced
here. Our calculations reveal relatively large effects (up to −4 K for relatively small applied compressions
of −0.1 GPa) and several striking features. In particular, we find that the mechanocaloric response is highly
anisotropic in the ferroelectric phase, as it can be either conventional (temperature increases upon compression)
or inverse (temperature decreases) depending on the direction of the applied stress. We discuss and explain these
surprising results, which compare well with existing experimental information. Our analysis suggests that the
coexistence of conventional and inverse mechanocaloric responses is probably common among ferroelectrics
and materials displaying a negative thermal expansion.

DOI: 10.1103/PhysRevB.104.184112

I. INTRODUCTION

A material subject to an external stress changes
its temperature and/or entropy by virtue of the so-
called mechanocaloric effect (also denoted elastocaloric or
barocaloric, respectively, when the applied stress is uniaxial
or hydrostatic) [1–4]. Mechanocaloric effects in solid-state
systems can be large, reaching values from 5 to 40 K
in shape-memory alloys [5], super-ionic conductors [6], or
plastic crystals [7]. This remarkable performance makes
mechanocalorics a viable alternative for applications in solid-
state cooling, as it is pressing to replace current technologies
(e.g., compressed gas) that are polluting, noisy, and difficult
to downscale.

Mechanocaloric effects are large in ferroelastic materials,
which are strongly responsive to mechanical perturbations and
often display stress-driven phase transformations, particularly
close to the ferroelastic transition point [8]. Interestingly, fer-
roelectrics (e.g., perovskite oxides like BaTiO3 and PbTiO3)
are known to be very sensitive to mechanical perturbations too
[9], and can in principle be expected to present a considerable
mechanocaloric response. Nevertheless, while ferroelectrics
have been thoroughly studied in regards to electrocaloric
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properties [10], their mechanocaloric performance has been
scarcely investigated so far [11–14].

In this article we present a theoretical study of the in-
trinsic mechanocaloric response of prototype ferroelectric
perovskite PbTiO3. Our work is based on predictive atomistic
(“second-principles”) simulations [15–17] of the temperature-
dependent elastic properties of PbTiO3, combined with a
perturbative formalism that we introduce here and should be
useful in the broader context of mechanocaloric investiga-
tions, including experimental ones. Among other remarkable
features, we find that the ferroelectric state of PbTiO3 presents
an acute mechanocaloric anisotropy, to the extent that the sign
of the adiabatic temperature change depends on the direction
along which the stress is applied. We argue that this feature is
probably common among ferroelectric compounds, as well as
in materials displaying negative thermal expansion.

II. METHODS

In the following we describe our perturbative formalism to
compute and interpret the mechanocaloric response, as well
as the second-principles simulation methods that allow us to
study the specific case of PbTiO3.

A. Perturbative formalism

We adapt to the mechanocaloric case a perturbative for-
malism recently introduced by some of us in the context of
electrocaloric effects [18]. Our starting point is the usual ther-
modynamic expression for the adiabatic temperature change
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caused by an applied stress [4],

�T (σa) = −
∫ σa

0

T

Cσ

(
∂ηa

∂T

)
σ

dσ ′
a

= −
∫ σa

0

T

Cσ

αa(T, σ ′
a)dσ ′

a, (1)

where the integral runs from zero to the final stress σa, ηa

denotes the strain conjugate to the applied stress, T is the
temperature, and Cσ is the specific heat at constant stress. Here
we introduce the thermal expansion coefficient αa, indicat-
ing that it depends on temperature and stress. The subscript
a labels stress and strain components in Voigt notation [19]
and we assume a Cartesian reference. Note that we write
�T (σa) to indicate explicitly that the temperature change can
be anisotropic, i.e., it may depend on the direction of the
applied stress. Finally, we adopt the usual sign convention that
a negative external stress corresponds to a compression of the
material.

As usually done in the literature [2], in the following we
work with an approximate version of the temperature change,

�T (σa) ≈ −T (0)

C(0)
σ

∫ σa

0
αa

(
T (0), σ ′

a

)
dσ ′

a, (2)

where the “0” superscripts indicate values calculated at zero
applied stress and we assume that Cσ and αa are independent
from the mechanocaloric temperature change. [This is a rea-
sonable approximation since, in most situations of interest,
|�T (σa)| � T (0) ≈ 300 K.] Besides being simpler and easier
to treat, this formula allows us to focus on how the thermal
expansion αa controls the effect. Note that this is the quantity
that can be expected to be most strongly T and stress depen-
dent; and the only one whose sign is undetermined and free to
change.

Now we write the strain in terms of the stress as a Taylor
series,

ηa = η(0)
a +

∑
b

S(0)
ab σb + · · · , (3)

where η(0)
a stands for the spontaneous strain at zero stress and

S(0)
ab is the compliance tensor at zero stress, with

Sab = ∂ηa

∂σb
. (4)

Taking the temperature derivative of Eq. (3), we obtain

αa = α(0)
a +

∑
b

α
(0)
ab σb + · · · , (5)

where α(0)
a is the thermal expansion vector of the unperturbed

material and we have

α
(0)
ab = ∂S(0)

ab

∂T

∣∣∣∣
σ

, (6)

which we can view as stress-induced thermal expansion co-
efficients. Using these simple expressions, now we evaluate
Eq. (2) in several cases.

1. Uniaxial stress

Imagine we apply stress along a specific Cartesian axis a,
so that σb = δabσa where δab is the Kronecker delta. We can
then substitute Eq. (5) into Eq. (2) and solve the integral to
obtain

�T (σa) = −T (0)

C(0)
σ

(
α(0)

a σa + 1

2
α(0)

aa σ 2
a + · · ·

)

= �T (1)(σa) + �T (2)(σa) + · · · ,

(7)

where we introduce �T (n)(σa) to denote the contribution of
nth order to the total adiabatic temperature change.

2. Biaxial stress

Suppose now that we apply stress along two Cartesian di-
rections simultaneously. To fix ideas, let us imagine we work
with σ1 and σ2, both varying from zero to a final value σ , the
generalization of our arguments being trivial.

When we work with two stress components, the one-
dimensional integrals presented above are not directly ap-
plicable, and we need to take some extra intermediate
steps. Let us discuss two equivalent ways to compute the
mechanocaloric temperature change in this case.

Method I. We can rotate our Cartesian coordinates so that
one of the axes coincides with the direction of the applied
stress, and thus recover a one-dimensional problem. In this
particular example we can use the unitary transformation(

σ‖
σ⊥

)
= 1√

2

(
1 1
1 −1

)(
σ1

σ2

)
, (8)

where σ‖ = 2−1/2(σ1 + σ2) defines the stress we intend to
apply. (The inverse transformation gives σ1 = σ2 = 2−1/2σ‖,
assuming σ⊥ = 0.) The strain η‖, conjugate to σ‖, is simi-
larly given by η‖ = 2−1/2(η1 + η2), and we also have α‖ =
2−1/2(α1 + α2) for the corresponding thermal expansion co-
efficient. We have thus defined an equivalent one-dimensional
problem where the applied stress σ‖ varies from zero to

√
2σ .

Now, to compute the temperature change, we need to solve
the integral

�T (σ‖) ≈ −T (0)

C(0)
σ

∫ √
2σ

0
α‖(T (0), σ ′

‖)dσ ′
‖, (9)

where

α‖ = 1√
2

(
α

(0)
1 + α

(0)
2

) + 1

2

(
α

(0)
11 + α

(0)
22 + 2α

(0)
12

)
σ ′

‖. (10)

Here we have used the relation α
(0)
12 = α

(0)
21 , which relies on

the fact that the compliance matrix S is symmetric. Also, for
conciseness, we have truncated the series at the linear order
in the applied stress. We can finally evaluate the integral to
obtain

�T (σ‖) = −T (0)

C(0)
σ

((
α

(0)
1 + α

(0)
2

)
σ

+ 1

2

(
α

(0)
11 + α

(0)
22 + 2α

(0)
12

)
σ 2

)
. (11)

Method II. Alternatively, we can imagine that the stress
is applied in two steps. [The result of our integral for the
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temperature change does not depend on how we apply the
stress, a property that relies on the fact that the underlying
free energy is (assumed to be) an exact differential.]

In the first step we have σ1 varying from zero to σ , with
σ2 = 0 throughout. The corresponding temperature change is
given by the original one-dimensional integral

�T (σ1)|σ2=0 = −T (0)

C(0)
σ

∫ σ

0
α1(σ ′

1)|σ2=0dσ ′
1

= −T (0)

C(0)
σ

(
α

(0)
1 σ + 1

2
α

(0)
11 σ 2

)
.

(12)

In the second step we have a constant σ1 = σ , while σ2

varies from zero to σ . The corresponding one-dimensional
integral is

�T (σ2)|σ1=σ = −T (0)

C(0)
σ

∫ σ

0
α2(σ ′

2)|σ1=σ dσ ′
2, (13)

where one must note that

α2(σ ′
2)|σ1=σ = α

(0)
2 + α

(0)
22 σ ′

2 + α
(0)
12 σ. (14)

Hence, inserting Eq. (14) into Eq. (13), we get

�T (σ2)|σ1=σ = −T (0)

C(0)
σ

(
α

(0)
2 σ + 1

2
α

(0)
22 σ 2 + α

(0)
12 σ 2

)
. (15)

Finally, we calculate the total temperature change by
adding the individual variations, to obtain

�T (σ1 = σ2) = − T (0)

C(0)
σ

((
α

(0)
1 + α

(0)
2

)
σ

+ 1

2

(
α

(0)
11 + α

(0)
22 + 2α

(0)
12

)
σ 2

)
,

(16)

which coincides exactly with the outcome of method I de-
scribed above [Eq. (11)].

It is worth noting that this two-step approach is, in essence,
directly applicable to any multicaloric effect, where, instead of
considering two different components of the same field (stress
in our case), one applies two fields of different nature (e.g.,
mechanical and electric).

3. Hydrostatic pressure

We finish with the case of an isotropic stress (hydrostatic
pressure) where all σ1 = σ2 = σ3 vary from zero to σ . The
two methods described above for the biaxial case are read-
ily applicable, the final result for the adiabatic temperature
change being

�T (σ1 = σ2 = σ3)

= −T (0)

C(0)
σ

((
α

(0)
1 + α

(0)
2 + α

(0)
3

)
σ + 1

2

(
α

(0)
11 + α

(0)
22

+ α
(0)
33 + 2α

(0)
12 + 2α

(0)
23 + 2α

(0)
31

)
σ 2

)
. (17)

B. Simulations for PbTiO3

In this work we evaluate the quantities controlling the
mechanocaloric temperature change (specific heat, sponta-
neous thermal expansion, etc.) by running Monte Carlo

simulations of an atomistic second-principles model of
PbTiO3. This model, described in detail in Ref. [15], has
successfully been used in several theoretical investigations of
PbTiO3 and related compounds [20–22], including a recent
study of the electrocaloric response [18]. Its only noteworthy
deficiency is that it predicts a ferroelectric transition temper-
ature that is too low as compared with the experimental one
(510 vs 760 K). However, as we show below, our results for
the key quantities of interest here (most notably, the thermal
expansion and specific heat) compare very well with exper-
imental values upon a simple temperature shift that makes
the theoretical and experimental Curie points coincide; hence,
this quantitative discrepancy is not critical for the present
purposes.

In the simulations we typically use a periodically repeated
supercell containing 10 × 10 × 10 instances of the five-atom
perovskite unit cell; we run 10 000 Monte Carlo sweeps
for thermalization and 100 000 more to compute averages.
Near the ferroelectric transition temperature we find it nec-
essary to employ a larger 12 × 12 × 12 supercell, to reduce
finite-size effects; in that case we run 10 000 thermalization
sweeps followed by 75 000 production sweeps. For the sake
of simplicity, in the results presented below the ferroelectric
polarization is always chosen to lie along the z axis.

To obtain thermodynamic properties (e.g., equilibrium
strain, specific heat, elastic compliance tensor) from our
Monte Carlo simulations, we proceed in the usual manner,
and rely on well-known linear-response formulas (see, e.g.,
the description in Ref. [18]). To illustrate the linear-response
approach, let us consider the case of the elastic compliance,
which we have not been able to find in previous literature.
The compliance component Sab is calculated as

Sab = ∂〈ηa〉
∂σb

, (18)

where 〈ηa〉 is the average equilibrium value of the strain
at given conditions of temperature and applied stress. More
specifically, 〈ηa〉 is

〈ηa〉 = 1

Z

∑
i

ηi,ae−β(Ui−V
∑

b ηi,bσb), (19)

where Z is the partition function

Z =
∑

i

e−β(Ui−V
∑

b ηi,bσb). (20)

Here i runs over microscopic states of the simulated system,
β = (kBT )−1 where kB is Boltzmann’s constant, V is the equi-
librium volume of the simulation supercell at the considered
conditions of temperature and stress, and Ui and ηi are, re-
spectively, the energy and strain of state i. Then, by taking the
derivative of 〈ηa〉 with respect to the applied stress, we can
readily obtain

Sab = βV [〈ηaηb〉 − 〈ηa〉〈ηb〉], (21)

which is our linear-response formula for the compliance. As
usually done in simulation studies of piezoelectric properties
that involve similar quantities [23], here we neglect the stress
derivative of the volume; we explicitly checked this is an
accurate approximation.

184112-3



MURILLO-NAVARRO, GRAF, AND ÍÑIGUEZ PHYSICAL REVIEW B 104, 184112 (2021)

FIG. 1. Computed polarization P = (0, 0, P) (a) and specific
heat Cσ (b) as a function of temperature.

To finish this section, let us note that in this study we
define strains by taking as a reference the lattice constant of
the cubic phase of PbTiO3, as obtained from a symmetry-
constrained first-principles simulation at 0 K. This reference
value is l0 = 3.88 Å. Hence, for the computed normal strains
ηa (where a = 1, 2, 3 labels the pseudocubic perovskite axes),
the corresponding lattice constants are given by

la = l0(1 + ηa). (22)

Note that we can use this simple expression because shear
strains (ηa with a = 4, 5, 6) are zero at all temperatures in
PbTiO3.

Finally, in the following we choose the Cartesian axes to
coincide with the pseudocubic directions of the perovskite
lattice. Also, we assume that the tetragonal ferroelectric phase

of PbTiO3 is characterized by a positive polarization along the
third Cartesian axis.

III. RESULTS AND DISCUSSION

We now present our results, emphasizing and discussing
the most interesting aspects revealed by our calculations. We
also compare with available experimental information.

A. Basic Monte Carlo results

In Fig. 1 we present the temperature dependence of
the polarization as obtained from our Monte Carlo simula-
tions [Fig. 1(a)] as well as our results for the specific heat
[Fig. 1(b)]. We obtain a weakly first-order ferroelectric phase
transition at TC = 510 K, where one polarization component
becomes different from zero in a discontinuous fashion. This
transition, from the high-temperature cubic (Pm3̄m) phase to a
tetragonal polar (P4mm) state, agrees with the well-known ex-
perimental behavior of PbTiO3 [9] (albeit the underestimated
transition temperature mentioned above) and with previous
simulations using the same second-principles potential [15].
The specific heat presents an anomaly (a maximum) at the
transition temperature, also as expected.

In Fig. 2 we present how the strain-related quantities evolve
across this phase transition. Figure 2(a) shows the temperature
evolution of the normal strains (η1, η2, and η3) as well as their
average (ηave, which accounts—to first order—for variations
in volume). (We do not show the shear strains, which are
zero at all temperatures.) The symmetry breaking associated

FIG. 2. Computed temperature dependence of key strain-related quantities. We present the results for the normal strains (a), including
the average value ηave; the diagonal normal components of the compliance tensor (b); the off-diagonal normal components of the compliance
tensor (c); the T derivatives of the strains (d); the T derivatives of the diagonal normal components of the compliance tensor (e); and the
T derivatives of the off-diagonal normal components of the compliance tensor (e).
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FIG. 3. Mechanocaloric effect as a function of temperature for a compressive stress of −0.1 GPa applied (a) along the polarization
direction, (b) in the plane normal to P, and (c) hydrostatically.

with the ferroelectric transition is clearly visible in the figure.
Indeed, this transformation has an improper ferroelastic char-
acter, whereby we observe strain changes following the onset
of the spontaneous polarization.

More precisely, Fig. 2(a) shows two differentiated behav-
iors. In the paraelectric phase, for T > TC, the three strain
components are equal (η1 = η2 = η3) and increase gradually
with temperature. Hence, we have an isotropic positive ther-
mal expansion. In contrast, when we heat up the material
from low temperatures in the ferroelectric phase (T < TC), the
strain component parallel to the polarization (η3) decreases
with increasing temperature, while the components perpen-
dicular to it (η1 = η2) grow. This reflects the presence of a
tetragonal distortion (usually quantified by the c/a aspect ratio
of the tetragonal unit cell), which can be shown to be propor-
tional to the square of the spontaneous polarization (see, e.g.,
the discussion in Ref. [24]). Interestingly, the combination of
these normal strains results in an average deformation that
decreases with increasing temperature, yielding a negative
thermal expansion for T < TC. This effect has been discussed
in the literature, e.g., in Refs. [25,26].

Figures 2(b) and 2(c) show our results for the components
of the elastic compliance tensor involving normal strains.
The symmetry breaking from cubic (S11 = S22 = S33, S12 =
S13 = S23) to tetragonal (S11 = S22 
= S33, S12 
= S13 = S23) is
obvious here as well. We also find that, in the ferroelectric
phase, the direction of the polarization is elastically softer
than the perpendicular plane (S33 > S11 = S22). Furthermore,
all compliance components reach maximum values around the
transition point, presenting a simple monotonic variation at all
other temperatures.

Finally, in Figs. 2(d)– 2(f) we show the temperature deriva-
tives of the previous quantities, which we obtain numerically
from the data in the first three panels. These are the α(0)

a and
α

(0)
ab tensor components introduced above, the key ingredients

to compute mechanocaloric temperature changes within our
perturbative formalism.

B. Mechanocaloric temperature change

The results in Figs. 1(b) and 2 allow us to compute the
adiabatic mechanocaloric temperature change using the for-
malism introduced above. Representative results are given in

Fig. 3, all corresponding to the application of a compressive
stress of −0.1 GPa. We consider a uniaxial stress along the
polarization direction in Fig. 3(a), a biaxial stress in the plane
perpendicular to P in Fig. 3(b), and a hydrostatic pressure in
Fig. 3(c). In all cases we show the total �T as well as the
individual contributions with a linear (�T (1)) and quadratic
(�T (2)) dependence on the stress.

Two aspects are common to all the results in Fig. 3. First,
the largest temperature changes are obtained in the vicinity
of the phase transition. This is consistent with the results in
Fig. 2, which shows that all the relevant quantities (T deriva-
tives) present their largest absolute values around TC. Second,
for the considered −0.1 GPa, the linear effect dominates the
caloric response, even in the vicinity of the phase transition.
As a matter of fact, the linear approximation to �T is a good
one in a wide range of applied stress; indeed, as shown in
Fig. 4, we need to reach compressions of about −1.5 GPa
for the quadratic effect to dominate at temperatures close to
TC [see results for 523 K in Fig. 4(a)], and even higher when
we move away from the transition temperature [−10.7 GPa at
T = 413 K, as shown in Fig. 4(b)].

We also find that, in all cases, the obtained �T is positive
and relatively small above TC, as consistent with the computed
small isotropic thermal expansion at high temperatures [see
Fig. 2(a)]. A marked anisotropy of the caloric responses ap-
pears when we move below TC, reflecting the lower symmetry
of the tetragonal ferroelectric state.

FIG. 4. Linear and quadratic contributions to the barocaloric
effect as a function of applied compression at 523 K (a) and
413 K (b).
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Indeed, most importantly, we find that the ferroelectric
state may present a conventional (�T > 0) or inverse (�T <

0) effect depending on how the compressive stress is applied.
When we compress in the plane perpendicular to the polar-
ization [Fig. 3(b)], we obtain �T > 0 reflecting the positive
thermal expansion of the a and b lattice constants. In contrast,
a compression along the polar axis [Fig. 3(a)] yields a negative
temperature change, as a result of the reduction of the c lattice
constant upon heating.

Hence we obtain a remarkable result: because of the devel-
opment of the ferroelectric polarization and its impact in the
lattice strains, PbTiO3 turns out to be an extremely anisotropic
mechanocaloric, to the point that the sign of the temperature
change depends on the direction of the applied stress. As far as
we know, this is the first example of mechanocaloric material
presenting such a sign anisotropy. (Examples of materials that
can switch between conventional and inverse behaviors are
known, though [27–29].)

Note also that the relationship just described between po-
larization and strain is not exclusive of PbTiO3, but typical
of ferroelectric perovskites (see, e.g., the behavior of the
tetragonal phase of BaTiO3 [30,31]) and other ferroelectric
families (see, e.g., the case of LiTaO3 [32]). Hence, the coex-
istence of conventional and inverse mechanocaloric responses
may be a common feature among ferroelectrics. In addition,
materials with a negative thermal expansion (where, often,
some lattice constants decrease and some increase upon heat-
ing [26,33,34]) are also good candidates to present such a
behavior.

It is also worth to mention that our computed temperature
changes for uniaxial and biaxial compression are remarkably
large, despite the modest stress of −0.1 GPa considered here.
Indeed, as shown in Figs. 3(a) and 3(b), we get temperature
changes exceeding 3 K close to the phase transition (510 K),
and still notable as we move into the ferroelectric state (e.g.,
above 1 K for all temperatures between 450 and 510 K). Also
remarkably, the gap between the positive and negative effects
is as large as 7 K at TC.

In contrast, the response to a hydrostatic pressure
[Fig. 3(c)] is relatively small within the ferroelectric phase,
as it suffers from the partial cancellation of the conven-
tional and inverse effects just discussed. We have a maximum
barocaloric �T ≈ −1 K at TC, the inverse effect being
dominant. This is a direct consequence of the negative vol-
umetric thermal expansion obtained for T < TC and shown in
Fig. 2(a). Naturally, as we cross TC and the isotropic thermal
expansion changes from negative to positive, so does the sign
of the barocaloric response. The same applies to the elas-
tocaloric response to an uniaxial stress along the polar axis.

C. Comparison with previous works

We can compare our theoretical predictions with experi-
ment in different ways.

First, based on experimental results for the temperature
dependence of the lattice constants of PbTiO3 (we used those
reported in Ref. [35]), we can numerically obtain the spon-
taneous thermal expansion vector α(0). Then we shift down
the experimental temperatures to make the transition point
coincide with the calculated TC = 510 K. With this data,

combined with our calculated results for Cσ , we can trivially
estimate �T (1), i.e., the part of the mechanocaloric response
that is linear in the applied stress and which, according to
our calculations, dominates the effect for moderate compres-
sions. Figure 5 shows the results for �T (1) thus obtained
[symbols labeled “exp. (I)”], together with our theoretical pre-
dictions. We find that the agreement between theory and the
experiment-based estimate is essentially perfect, indicating
that our simulations capture very well (save the error in TC) the
thermal evolution of PbTiO3’s lattice. In particular, the change
of sign of the barocaloric effect across TC is readily recovered
when using the experimental data for α(0), which displays the
same reversal across the Curie point (from negative to positive
thermal expansion) as computed.

Second, we deduce �T (1) exclusively from experimental
information, by combining the structural results of Ref. [35]
with the calorimetric data of Ref. [11] (shifted too, so that
the experimental and theoretical TC’s coincide). We thus ob-
tain the symbols labeled “exp. (II)” in Fig. 5, which are
in excellent agreement with our theoretical values and our
first experimental estimate [exp. (I)]. This indicates that the
(temperature-shifted) specific heat is in excellent agreement
with our predictions.

Indeed, for example, Refs. [11,36] report values between
2.6 and 2.9 MJ m−3 K−1 for Cσ near room temperature, while
our computed value at 300 K is about 3.4 MJ m−3 K−1.
Furthermore, after the mentioned temperature shift, we obtain
Cσ = 3.4 MJ m−3 K−1 at 300 K from the data in Ref. [11], in
perfect agreement with our calculation. This suggests that our
computational approach predicts PbTiO3’s thermal properties
with remarkable accuracy.

Finally, the barocaloric effect in PbTiO3 was reported in
Ref. [11], which in principle allows us to make a direct com-
parison. Below TC, this article describes an inverse behavior
that is similar to the one we predict, with quantitative results
(e.g., �T ≈ −2 K at the transition temperature for a pressure
of −0.03 GPa) in reasonable agreement with our computed
values. However, Ref. [11] also reports that the negative
temperature change persists above TC for all the measured
pressures (e.g., �T ≈ −0.1 K is measured at about 25 K
above TC for −0.03 GPa), which would suggest that PbTiO3

presents a negative thermal expansion in its paraelectric phase.
This is in direct contradiction with abundant experimental
[37–39] and theoretical [15,40,41] studies of the structural
evolution of this compound. Hence, we are not sure about the
status of the barocaloric results of Ref. [11] or to what extent
we should expect agreement with our predictions.

Additionally, we should stress we have not found any ex-
perimental investigation addressing the (strong) anisotropy of
the mechanocaloric response in the polar phase of PbTiO3.
This question, which constitutes one of our most interesting
predictions, remains to be explicitly verified experimentally.

Finally, let us note that our results are consistent with
other theoretical studies of PbTiO3. For instance, using a
first-principles-based effective Hamiltonian, Lisenkov et al.
[12] predict �T = +6 K under the application of a tensile
stress of +0.2 GPa along the polar direction and near the
transition temperature; this is in acceptable agreement with
our computed �T ≈ −4 K upon an uniaxial compression of
−0.1 GPa close to TC. Our results are also consistent with the
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FIG. 5. Comparison between the theoretical prediction and two experimental-based estimates of the linear contribution to the
mechanocaloric response, for a compressive stress of −0.1 GPa applied along the polarization direction (a), in the plane normal to P (b),
and hydrostatically (c). As explained in the text, “exp. (I)” labels the case where we combine the experimental thermal expansion with the
theoretical specific heat, while “exp. (II)” corresponds to the case in which both thermal expansion and specific heat are taken from experiment.

effective-Hamiltonian study of Barr et al. [13], who report a
temperature change of about −5 K upon release of a tensile
load of +0.2 GPa close to TC. Similarly, a phenomenological
study of PbTiO3 and related ferroelectrics [14] reports temper-
ature increases of up to +2 K for a tensile uniaxial pressure
of +0.1 GPa along the polarization direction and close to TC.
Hence, all these literature results are quantitatively and quali-
tatively consistent with the dominant linear effect revealed in
the present work, whereby the sign of �T ≈ �T (1) depends
on the nature (tensile or compressive) of the applied stress.

IV. SUMMARY AND CONCLUSIONS

In this work we have used predictive atomistic simula-
tion (second-principles) methods to investigate the intrinsic
mechanocaloric response of prototype ferroelectric PbTiO3.
Notably, we find that the effects can be quite large in the
vicinity of the ferroelectric Curie point (up to −4 K for com-
pressions of only −0.1 GPa), even though no phase transition
is induced in the material (hence, our obtained values do not
have any latent-heat contribution).

Remarkably, we reveal that the mechanocaloric response
is strongly anisotropic in the ferroelectric phase of the com-
pound. More precisely, we find that the effect is conventional
(temperature increases under compression) if a stress is
applied in the plane perpendicular to the spontaneous polar-
ization, and inverse (temperature decreases) if we compress
along the polarization direction. As far as we know, such
a coexistence of conventional and inverse responses had
never been observed or predicted before in any material, and
remains to be explicitly confirmed experimentally. Neverthe-
less, we find that our results are compatible with available
experimental information on the elastic properties of PbTiO3,
which suggests that the predicted coexistence is real.

Our theoretical calculations rely on a perturbative for-
malism that we introduce here and which should be useful
in the broader context of mechanocaloric studies, includ-
ing experimental ones. (We illustrate this explicitly when
checking our predictions against experimental information.)
We should emphasize that this perturbative theory applies
whenever the external stress is not as large as to induce a

discontinuous phase change in the material. Hence, the caloric
response it captures is eminently reversible and does not in-
clude any latent-heat contribution. While, admittedly, the best
mechanocaloric materials largely base their performance on
the latent heat released (absorbed) at stress-driven first-order
phase transitions [1–4], the present scheme allows us to in-
spect in detail the behavior within the range of continuous
deformations, and is the key to the most interesting conclu-
sions of this work. For example, thanks to this perturbative
formalism, we can determine the dominance of the lowest-
order temperature change (linear in the applied stress) for the
moderate compressions used here (typically, −0.1 GPa), and
thus predict (and explain) the coexistence of conventional and
inverse mechanocaloric responses in the ferroelectric state.

Along the same lines, our perturbative theory plainly shows
that the key to the predicted coexistence of conventional
and inverse effects lies in the differentiated temperature de-
pendence of the strains in the polar phase of PbTiO3: the
strain parallel to the spontaneous polarization decreases upon
heating, while the perpendicular strains increase. Interest-
ingly, this feature is shared by many ferroelectrics [30–32];
and a similar anisotropic behavior of the strains is typi-
cal of compounds exhibiting a negative thermal expansion
[26,33,34]. Thus, our analysis suggests that such compounds
are likely to present a coexistence of conventional and inverse
mechanocaloric responses.

We hope this work will encourage further investigations of
the (potentially exotic and large) mechanocaloric properties of
materials seldom considered to that end, such as ferroelectrics.
We also hope that the simple perturbative formulas introduced
here will be useful in future mechanocaloric studies, both
theoretical and experimental.
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