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Multistep stochastic mechanism of polarization reversal in orthorhombic ferroelectrics
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A stochastic model of electric-field-driven polarization reversal in orthorhombic ferroelectrics is advanced,
providing a description of their temporal electromechanical response. The theory accounts for all possible
parallel and sequential switching events. Application of the model to the simultaneous measurements of
polarization and strain kinetics in a lead-free orthorhombic (K, Na)NbO3-based ferroelectric ceramic over
a wide timescale of seven orders of magnitude allowed identification of preferable polarization switching
paths, fractions of individual switching processes, and their activation fields. Particularly, the analysis revealed
substantial contributions of coherent non-180° switching events, which do not cause macroscopic strain and thus
mimic 180° switching processes.
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I. INTRODUCTION

Ferroelectric materials find numerous applications as trans-
ducers and actuators, electromechanical and infrared image
sensors, ferroelectric nonvolatile memories (FeRAM), etc.
[1]. Their constitutive characteristic is the appearance, below
a transition temperature, of a spontaneous polarization, which
can be redirected (switched) by application of electric field.
Fundamental physical properties of ferroelectrics, such as the
remanent polarization [2], permittivity [3], and piezoelectric
coefficient [4] are strongly dependent on the crystallographic
structure and can be modified by composition [2,5] and appli-
cation of mechanical stresses [6,7]. For such applications as
FeRAM, fast polarization switching is crucial since it allows
high operating frequencies of ferroelectric devices. The field-
dependent switching times are also strongly dependent on
the crystallographic structure and may be controlled by com-
position [8–10]. Particularly, optimization of the switching
kinetics is significant for the prospective multilevel data stor-
age [11–14]. However, the understanding of the underlying
mechanisms is still incomplete [15–17], especially because,
for most ferroelectrics, polarization switching involves com-
plicated ferroelastic switching processes [18].

The stochastic Kolmogorov-Avrami-Ishibashi (KAI)
model roughly captures the main features of the polarization
switching kinetics in ferroelectrics. This commonly used
approach, originally advanced to describe melt solidification
[19], assumes random and statistically independent nucleation
and growth of reversed polarized domains in a uniformly
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polarized medium when an opposite electric field is
applied [20,21]. Being initially developed for a scalar
order parameter, the KAI model considers variation of only
one polarization component. Thus, ferroelastic switching
processes in multiaxial ferroelectrics, which involve a few
polarization components, cannot be properly accounted for.
Another related feature that is missing in this approach is that
the polarization reversal in reality may proceed by sequential
switching events in addition to parallel events which are
assumed in the KAI model. Experimentally, consecutive
non-180°-switching processes were observed earlier by
x-ray diffraction [22] and ultrasonic measurements [23].
Recently, the characteristic times of two consecutive non-180°
switching steps were resolved by in situ x-ray diffraction
measurements [24]. However, the identified fractions of 180°
and non-180° processes remain controversial in the literature
ranging from scenarios with exclusively non-180° switching
events [14,25] to those with partial non-180° processes
[22–24,26,27], predominantly 180° processes [28,29], or
exclusively 180° switching events [30]. Very recently, it was
shown that these fractions could be substantially affected by
the composition [16].

A deeper insight into the complicated switching mech-
anisms in ferroelectrics/ferroelastics was gained by simul-
taneous measurements of the switched polarization and the
macroscopic strain supported by in situ x-ray diffraction ex-
periments performed on a polycrystalline ferroelectric lead
zirconate titanate (PZT) of tetragonal symmetry [31]. Later
the simultaneous polarization and the strain measurements
were also performed on PZT ceramics of rhombohedral
symmetry [32] and (K, Na)NbO3 (KNN)-based solid so-
lutions [33]. An advanced quantitative analysis of the
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above-mentioned experimental data was performed by means
of an original multistep stochastic mechanism (MSM) model
developed first for the systems of tetragonal symmetry [34].
The MSM model allowed identification of the fraction of
ferroelastically active 90°-switching events. A combination of
the MSM model with the inhomogeneous field mechanism
(IFM) model [35,36], accounting for the distribution of the
switching times due to the spatial distribution of the electric
field, allowed the description of the simultaneous polarization
and strain responses of tetragonal ferroelectric ceramics over
a broad time range with high accuracy [37]. Further extension
of the MSM model to ferroelectrics of rhombohedral crys-
tallographic symmetry applied to the available experimental
data [32] allowed extraction of fractions of 109°-, 71°-, and
180°-switching events as well as their activation fields [38].

No stochastic model is available yet for the descrip-
tion of the time-dependent electromechanical response of
orthorhombic ferroelectric/ferroelastic materials where pos-
sible 60°-, 90°-, 120°-, and 180°-switching events must be
accounted for. At the same time, kinetics of the polarization
switching in orthorhombic materials is of great interest, in
particular, because of the highest polarizations and switch-
ing rates observed on Ba(Zr0.2Ti0.8)O3−x-(Ba0.7Ca0.3)TiO3

solid solutions of orthorhombic symmetry [9,10]. In addition,
prospective electronic materials based on HfO2 thin films [39]
and promising piezoelectric KNN-based solid solutions [33]
demonstrate ferroelectric properties in orthorhombic phases.

The current work advances a stochastic model for the kinet-
ics of multistep switching processes during the polarization
reversal in orthorhombic ferroelectrics/ferroelastics. The pa-
per is organized as follows: In Sec. II, the MSM model for
single crystalline and the hybrid MSM-IFM model for poly-
crystalline orthorhombic systems are developed, including all
possible sequential non-180° polarization reorientation steps
and parallel 180° switching events. To describe the simulta-
neous strain kinetics, a relation between the time-dependent
strain and polarization is derived. In Sec. III materials prepa-
ration and characterization are described. In Sec. IV, the
MSM-IFM model is applied to the original polarization and
strain measurements on an orthorhombic KNN-based solid
solution over a time domain from 10–6 to 101 s for a range
of applied electric field values (0.3EC < Ea < 2.6EC) around
the coercive field EC, and the physical meaning of parame-
ters resulting from fitting is discussed. Finally, the results are
concluded in Sec. V.

II. THEORY OF CONSECUTIVE STOCHASTIC
POLARIZATION SWITCHING PROCESSES

In an orthorhombic ferroelectric, local polarization may
adopt one of the 12 possible directions along the medial plane
diagonals of the pseudocubic cell (〈011〉 directions). Appli-
cation of an electric field opposite to the initial polarization
direction promotes reversal of the polarization, which can
proceed through different intermediate switching events. In
this section, we first display possible switching paths in a
single crystalline case and then evaluate their probabilities
by an extension of the KAI approach. In the following, we
additionally account for the statistical distribution of the lo-
cal switching times characteristic of polycrystalline materials.

FIG. 1. (a) Possible ways of the field-driven polarization reversal
in orthorhombic state: exemplary 60°-60°-60° polarization rotation
path A-B-C-D, exemplary 60°-120° polarization rotation path A-B-D,
exemplary 120°-60° polarization rotation path A-C-D, exemplary
90°-90° polarization rotation path A-E-D, and a direct 180° polariza-
tion reversal A-D. (b) Definition of fractions of different polarization
switching paths. Both in (a) and (b) 60°-switching processes are
indicated with green lines, 120°-switching processes with blue lines,
90°-switching processes with purple lines, and 180°-switching pro-
cesses with red lines. Black arrows indicate the end of each process.

Hereinafter, we derive the variation of strain related to the
changing polarization.

A. Polarization rotations and switching channels

Consider a crystalline unit cell of an orthorhombic fer-
roelectric. The axes of a Cartesian frame are chosen to be
collinear with the main axes of a pseudocubic cell [Fig. 1(a)].
The system is assumed to be initially in the polarization state
Ps(0,−1,−1)/

√
2 (polarization pointing to A) with sponta-

neous polarization Ps and then it is driven to the final state
Ps(0, 1, 1)/

√
2 (polarization pointing to D) by application of

the electric field E pointing in the [011] direction. Polarization
reversal may proceed along different paths exemplarily shown
in Fig. 1(a), namely, by a direct 180° polarization reversal
path A-D, by two consecutive 120°- and 60°-polarization ro-
tations A-C-D, by two consecutive 60°- and 120°-polarization
rotations A-B-D, and by a triple consecutive 60°-polarization
rotation A-B-C-D. It should be noted that here the term
“rotation” is not used in the same sense as in monoclinic
ferroelectrics where the polar vector can freely rotate in a
given crystallographic plane, but instead refers to a rotation
path through a sequence of fixed polarization directions.

We define the probabilities for the first switching events as
η1, η2, η3, and η4 for switching starting with 60°, 120°, 90°,
and 180° rotations, respectively, i.e., η1 + η2 + η3 + η4 = 1
[Fig. 1(b)]. After the first 60°-polarization rotation, the
switching channel 1 splits up in two possible paths, a single
120°-polarization rotation with a weight η12 and a double 60°-
polarization rotation with a weight η11, satisfying η11 + η12 =
η1. In a ferroelectric, switching probabilities are physically
determined by the energy barriers between different polariza-
tion states, the strength and orientation of the local electric
field and/or mechanical stress, as well as electric and elastic
interactions between domains and boundary conditions. In a
stochastic theory of the macroscopic response, the parameters
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η11, η12, η2, η3, and η4 are understood as average characteris-
tics of the whole system.

B. Polarization variation due to multistep switching
events in uniform media (MSM model)

The classical KAI approach [19–21] assumes statistically
independent switching processes at different locations and
time moments. This obviously does not apply to consecu-
tive switching processes, for which some switching events
may only occur after previous ones are accomplished. The
assumption of statistical independence of switching processes
at different locations is also arguable. In this respect, piezore-
sponse force microscopy (PFM) and transmission electron
microscopy (TEM) disclosed clustering during polarization
reversal which ranges from a few [40] to 102–103 grains
[41,42] in polycrystalline thin films. In contrast to the latter
results, in bulk ceramics the grain-resolved three-dimensional
x-ray diffraction revealed a collective dynamics at a scale
of about 10–20 grains [43–45] that roughly corresponds to
the next neighbors. The study of polarization and electric
field correlations by means of the self-consistent mesoscopic
switching model (SMS) [46–48] revealed that the electric
field-mediated correlations in bulk ceramics have a typi-
cal scale of a grain size. The physical mechanism of the
short-range correlations consists in the effective screening
of depolarization fields by adapting bound charges at grain
boundaries. On the other hand, correlations due to elastic
interactions remain an open question [31]. We keep in the
following the simplified KAI assumption that switching pro-
cesses at different places are statistically independent and thus
neglect the electric and elastic interactions of domains during
their switching to concentrate on the sequential switching
events. Now we derive the probabilities of different consec-
utive switching steps following the MSM approach [34,38].

At the beginning, we assume a monodomain single crystal
with saturation polarization along [01̄1̄] [see Fig. 1(a)]. When
an opposite electric field is applied, the local polarizations
may undergo different switching processes with distinct nu-
cleation rates per unit time and unit volume and develop
growing switched domains of different geometries. In the
spirit of the KAI model [19–21], we consider first the re-
versed domains according to the 180°-switching process A-D
[Fig. 1(a)], which appear in response to the application of
electric field pulse at time t0 = 0. An essential element of
this approach, advanced by Ishibashi and Takagi [21], is the
probability q180(t, t0) for an arbitrary point in space not to be
comprised by a switched region of some domain,

q180(t, t0) = exp

[
−

(
t − t0

τ4

)β4
]
, (1)

where τ4 is the characteristic time of the 180°-switching
process and β4 is the so called Avrami index related to the
dimensionality D of the growing domain. Ishibashi and Takagi
[21] suggested two distinct scenarios of the reversed domain
nucleation: (I) the nucleation rate is constant in space and
time throughout the total polarization reversal while the con-
stant uniform electric field is held, and (II) there are only
initial nuclei but no new nucleation. Assuming the velocity
of domain growth to be constant (though field dependent),

β4 = D + 1 applies for regime I, and thus β4 is larger than
unity, while for regime II, β4 = D. This provides a contri-
bution to the total switched polarization proportional to the
fraction [1 − q180(t, t0)] of the system volume, which reads

�P180(t ) = η42PsL4(t ) = η42Ps

{
1 − exp

[
−

(
t

τ4

)β4
]}

.

(2)
The MSM model extends the KAI approach by applying

formula (1) to the first and the following switching events
of the two-step or three-step switching processes with their
respective characteristic times and Avrami indices. Simi-
lar to tetragonal ferroelectrics, in orthorhombic systems the
90°-90° polarization rotation sequence is possible, as pre-
sented exemplarily by the polarization rotation path A-E-D
[Fig. 1(a)]. Thus, as for the tetragonal case [34], we introduce
a probability q90,1(t1, t0) not to switch according to the first
90°-switching mechanism by some intermediate time t1 for
the 90°-90° polarization rotation path in orthorhombic coun-
terparts. Furthermore, we introduce a probability q90,2(t, t1)
not to switch according to the second 90°-switching mech-
anism by the time t after the first switching event occurred
at time t1. When summarizing over all possible intermediate
times t1 between 0 and t, the total probability to switch once
by the first 90° mechanism and not to switch anymore by the
second 90° mechanism by the time t is obtained as

L33̄(t ) = β3

τ3

∫ t

0
dt1

(
t1
τ3

)β3−1

× exp

[
−

(
t1
τ3

)β3
]

exp

[
−

(
t − t1
τ33

)β33
]
, (3)

where τ3 and τ33 are the characteristic times of the first and
the second 90° processes, respectively, and β3 and β33 are
the respective Avrami indices. By the derivation of Eq. (3),
time independent nucleation rates and constant velocities of
the domain growth were assumed [21]. Accordingly, the total
probability to switch first by the first 90° mechanism and then
by the second 90° mechanism by time t reads

L33(t ) = β3

τ3

∫ t

0
dt1

(
t1
τ3

)β3−1

exp

[
−

(
t1
τ3

)β3
]

×
{

1 − exp

[
−

(
t − t1
τ33

)β33
]}

= 1 − exp

[
−

(
t

τ3

)β3
]

− L33̄(t ). (4)

This provides a contribution to the total switched polariza-
tion

�P90−90(t ) = η3[PsL33̄(t ) + 2PsL33(t )] (5)

since each 90°-polarization rotation provides variation by Ps

along the [011] direction [see Fig. 1(a)].
Considering in the same manner the 120°-60° polarization

rotation path, formally similar to the 109°-71° process in
rhombohedral ferroelectrics [38], we introduce a probability
q120(t1, t0) not to switch according to the first 120°-switching
mechanism by some intermediate time t1. Furthermore, we
introduce a probability q60(t, t1) not to switch according to the
second 60°-switching mechanism by the time t after the first
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120°-switching event occurred at time t1. When summarizing
over all possible intermediate times t1 between 0 and t, the
total probability to switch once according to the first 120°
mechanism and not to switch anymore according to the second
60° mechanism by time t is obtained by integration over all
intermediate times t1,

L21̄(t ) = β2

τ2

∫ t

0
dt1

(
t1
τ2

)β2−1

× exp

[
−

(
t1
τ2

)β2
]

exp

[
−

(
t − t1
τ21

)β21
]
, (6)

where τ2 and τ21 are the characteristic times of the first 120°
and the second 60° processes, respectively, and β2 and β21 are
the respective Avrami indices. Accordingly, the total probabil-
ity to switch first according to the first 120° mechanism and
second according to the second 60° mechanism by time t reads
as

L21(t ) = β2

τ2

∫ t

0
dt1

(
t1
τ2

)β2−1

exp

[
−

(
t1
τ2

)β2
]

×
{

1 − exp

[
−

( t − t1
τ21

)β21
]}

= 1 − exp

[
−

(
t

τ2

)β2
]

− L21̄(t ). (7)

This provides a contribution to the total switched polariza-
tion

�P120−60(t ) = η2
[

3
2 PsL21̄(t ) + 2PsL21(t )

]
(8)

since each 120°-polarization rotation provides variation by
3Ps/2 and the following 60°-polarization rotation provides
variation by Ps/2 along the [011] direction [see Fig. 1(a)].

In the case of the first 60°-switching event, description of
polarization reversal becomes more complicated because it
allows splitting in two channels as depicted in Fig. 1(b). The
probabilities for the two-step 60°-120° channel are essentially
similar to those by the 71°-109° process in rhombohedral
ferroelectrics [38] and can be described by formulas similar
to Eqs. (6) and (7). Namely, the total probability to switch
once according to the first 60° mechanism and not to switch
anymore by the second 120° rotation reads

L12̄(t ) = β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

× exp

[
−

(
t1
τ1

)β1
]

exp

[
−

(
t − t1
τ12

)β12
]
, (9)

where τ1 and τ12 are the characteristic times of the first
60° and the second 120° processes, respectively, and β1 and
β12 are the respective Avrami indices. The total probability
to switch first by 60° and second by 120° by time t reads
as

L12(t ) = β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

exp

[
−

(
t1
τ1

)β1
]

×
{

1 − exp

[
−

(
t − t1
τ12

)β12
]}

= 1 − exp

[
−

(
t1
τ1

)β1
]

− L12̄(t ). (10)

We note that the characteristic times and Avrami indices
may differ between 60°-120° and 120°-60° switching since
the energy barriers for both rotation angles depend on the
initial polarization and strain configurations. The 60°-120°
switching path provides a contribution to the total switched
polarization

�P60−120(t ) = η12
[

1
2 PsL12̄(t ) + 2PsL12(t )

]
(11)

since the first 60°-polarization rotation provides variation by
Ps/2 and the following 120°-rotation provides variation by
3Ps/2 along the [011] direction [see Fig. 1(a)].

A succession of three sequential 60°- switching pro-
cesses [such as the A-B-C-D path in Fig. 1(a)] is analog
to a succession of three 71°- switching events in rhom-
bohedral ferroelectrics [38] and can be considered in a
way similar to the two step processes, however, with
two intermediate times t1 and t2 for the second and the
third event, respectively. When integrating over all pos-
sible intermediate times, the probability to switch first
time on the 60°-60°-60° path and not to switch anymore
reads

L11̄(t ) = β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

× exp

[
−

(
t1
τ1

)β1
]

exp

[
−

(
t − t1
τ11

)β11
]
, (12)

where τ1 and τ11 are the characteristic times of the first 60° and
the second 60° processes, respectively, and β1 and β11 are the
respective Avrami indices. Similarly, the probability to switch
the first and the second time on the 60°-60°-60° path and not
to switch anymore is

L111̄(t ) = β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

exp

[
−

(
t1
τ1

)β1
] ∫ t

t1

dt2
β11

τ11

(
t2 − t1

τ11

)β11−1

exp

[
−

(
t2 − t1

τ11

)β11
]

exp

[
−

(
t − t2
τ111

)β111
]
, (13)

where τ111 and β111 are the characteristic time and the respective Avrami index of the third 60°-switching event. Finally, the
probability to switch sequentially three times by 60° equals

L111(t ) = β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

exp

[
−

(
t1
τ1

)β1
] ∫ t

t1

dt2
β11

τ11

(
t2 − t1

τ11

)β11−1

exp

[
−

(
t2 − t1

τ11

)β11
]{

1 − exp

[
−

(
t − t2
τ111

)β111
]}

= 1 − exp

[
−

(
t

τ1

)β1
]

− L11̄(t ) − L111̄(t ). (14)

184106-4



MULTISTEP STOCHASTIC MECHANISM OF … PHYSICAL REVIEW B 104, 184106 (2021)

The contribution to the total switched polarization for the
path 60°-60°-60° is thus

�P60−60−60(t ) = η11
[

1
2 PsL11̄(t ) + 3

2 PsL111̄(t ) + 2PsL111(t )
]

(15)

since the first and the third 60°-polarization rotations provide
variations by Ps/2 and the second 60° rotation provides varia-
tion by Ps along the [011] direction [see Fig. 1(a)].

The contributions of all switching channels sum up to a
total spontaneous polarization variation of

�P(t ) = η42Ps

{
1 − exp

[
−

( t

τ4

)β4
]}

+ η3Ps[L33̄(t ) + 2L33(t )]

+ η2Ps

[
3

2
L21̄(t ) + 2L21(t )

]

+ η12Ps

[
1

2
L12̄(t ) + 2L12(t )

]

+ η11Ps

[
1

2
L11̄(t ) + 3

2
L111̄(t ) + 2L111(t )

]
. (16)

We note that the time dependencies of probabilities Li(t )
do not have a physical meaning of a gradual transformation
of each particular ferroelectric cell. In line with the stochas-
tic KAI concept, these probabilities denote the parts of the
system, comprised by the respective switched domains. The
local switching at a certain place is assumed to occur instan-
taneously as soon as this location is covered by a switched
region of a growing domain.

The integrals in Eq. (16) cannot be solved in a closed
form for arbitrary parameters involved. However, the func-
tional dependencies Li(t ) are qualitatively similar for different
values of parameters βi. It is therefore illustrative to evaluate
these dependencies exemplarily in the closed form, which is
possible by setting all Avrami indices βi equal to unity, in
order to visualize their behavior. In this case,

L33̄(t ) = τ33

τ3 − τ33
(e−t/τ3 − e−t/τ33 ), (17a)

L33(t ) = 1 − e−t/τ3 − τ33

τ3 − τ33
(e−t/τ3 − e−t/τ33 ), (17b)

L21̄(t ) = τ21

τ2 − τ21
(e−t/τ2 − e−t/τ21 ), (17c)

L21(t ) = 1 − e−t/τ2 − τ21

τ2 − τ21
(e−t/τ2 − e−t/τ21 ), (17d)

L12̄(t ) = τ12

τ1 − τ12
(e−t/τ1 − e−t/τ12 ), (17e)

L12(t ) = 1 − e−t/τ1 − τ12

τ1 − τ12
(e−t/τ1 − e−t/τ12 ), (17f)

L11̄(t ) = τ11

τ1 − τ11
(e−t/τ1 − e−t/τ11 ), (17g)

L111̄(t ) = τ111

τ11 − τ111

[
τ11

τ11 − τ1
(e−t/τ11 − e−t/τ1 )

− τ111

τ111 − τ1
(e−t/τ111 − e−t/τ1 )

]
, (17h)

L111(t ) = 1 − e−t/τ1 − τ 2
11

(τ11− τ111)(τ11− τ1)
(e−t/τ11− e−t/τ1 )

+ τ 2
111

(τ11 − τ111)(τ111 − τ1)
(e−t/τ111 − e−t/τ1 ). (17i)

In the following, we do not choose a priori values of βi

or other fitting parameters, but instead use them to fit the
experimental data.

C. Consecutive switching events in polycrystalline materials:
A hybrid multistep-inhomogeneous field mechanism

(MSM-IFM) model

Ferroelectic ceramics often exhibit a rather dispesive re-
sponse to the applied electric field indicative of the statistical
distribution of the local switching times, which presents a key
hypothesis of the nucleation limited switching (NLS) model
[49]. Therefore we advance in this section a model accounting
for the distribution of the switching times in conjunction with
the above presented MSM model. Since the switching time
strongly depends on the electric field, the spatial distribution
of local electric field values in a spatially random system
like a ferroelectric ceramic may be a physical reason of the
statistical distribution of the local switching times [50,51].
Assuming that the field dependence of switching times of the
above introduced switching processes follows the Merz law
[52], τn(E ) = τ0 exp[(E (n)

A /E )
α
], where E (n)

A is an activation
field of the respective switching process and E the local field
value, the statistical distribution of switching times can be
derived from the statistical distribution of local field values
Z(E) around the applied field value Ea. In the following this
distribution will be assumed in the Lorentzian form

Z (E ) = A

πEa

κ

(E/Ea − 1)2 + κ2
(18)

with a dimensionless width κ which proved to work well in
conjunction with the NLS model in thin polycrystalline PZT
ferroelectric films [50,51]. The κ-dependent normalization
constant A = [1/2 + (1/π ) arctan(1/κ )]−1 approaches unity
when κ → 0. A scaling form of Eq. (18) reflects the scaling
properties of the polarization response observed on various
bulk polycrystalline ferroelectrics [8–10,34–37].

Averaging over the statistical distribution of the local
switching times τn is associated with the averaing over
the statistical distribution of the local field values E by a
relation

∫ ∞

0
dE Z (E )... =

∫ ∞

τ0

dτn
A

απτn

W (n)[ln (τn/τ0)]1/α−1

([ln (τn/τ0)]1/α − [ln (t (n)/τ0)]1/α )
2 + (W (n) )2

... (19)
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with the characteristic times t (n) = τ0 exp[( E (n)
A

Ea (1+κ2 ) )
α

] and the

distribution widths W (n) = E (n)
A

Ea

κ
1+κ2 . When averaging the ex-

pressions (2)–(4), (6), (7), (9), (10), and (12)–(14) over the
switching time distribution (19) some simplifications will be
undertaken as follows. The modeling of multistep polariza-
tion reversal in tetragonal [34,37] and rhombohedral [38]
ferroelectric ceramics revealed that the first switching steps,
supported by residual strains in a highly poled initial state,
are typically characterized by Avrami indices β in the range
0.1–0.3. As was shown in Ref. [36], when an Avrami in-
dex is remakably smaller than unity and the statistical field
distribution is narrow enough [that means κ � 1 in the
context of Eq. (18)], the averaging over the switching times
(19) hardly changes the Debye-like functions of the type
of Eq. (2). That is why in the following the statistical av-
eraging will not be applied to the switching times τ1, τ2,
and τ3, related to the first 60°, 120°, and 90° processes, re-
spectively, which will be taken at the value of the applied
electric field as τn = τ0 exp[(E (n)

A /Ea)
α
]. In contrast, for the

Avrami indices β larger than unity, a Debye-like function on
the logarithmic time scale can be approximated by a theta
function [36], 1− exp[−(t/τ )β] ∼= θ (t−τ ), and further aver-
aged using the distribution (19), the approximation applied
for the other switching events. Furthermore, we note that the
third switching event in the 60°-60°-60° switching path and
the second switching event in the 120°-60° switching path
are identical, and thus their activation energies E (111)

A = E (21)
A

and the respective switching times τ111 = τ21. Finally, be-
yond the switching times τ1, τ2, and τ3 and the distribution
width κ , the other independent parameters used for fitting
the experiment in the following are the distribution widths
W (11), W (111), W (12), W (33), and W (4) and the characteristic
times t (11), t (111), t (12), t (33), and t (4), related to the activation
fields E (11)

A , E (111)
A , E (12)

A , E (33)
A , and E (4)

A , respectively, as
well as the process fractions ηi. Using the introduced simpli-
fications and performing the integration over switching times,
the probability expressions (2)–(4), (6), (7), (9), (10), and
(12)–(14) can now be evaluated for polycrystalline media.

For the 180°-switching process, the switching probability
after averaging reads

L4(t ) ⇒ A

π

{
arctan

[
[ln(t/τ0)]1/α − [ln(t (4)/τ0)]

1/α

W (4)

]
+ arctan

[
[ln(t (4)/τ0)]

1/α

W (4)

]}
. (20)

For the 90°-90°-switching process, the above-defined switching probabilities after averaging read

L33̄(t ) ⇒ A
β3

τ3

∫ t

0
dt1

(
t1
τ3

)β3−1

exp

[
−

(
t1
τ3

)β3
]{

1

2
− 1

π
arctan

[
{ln[(t − t1)/τ0]}1/α − [ln(t (33)/τ0)]1/α

W (33)

]}
, (21)

and

L33(t ) ⇒ 1 − exp

[
−

(
t

τ3

)β3
]

− L33̄(t ). (22)

For the 120°-60°-switching process the above-defined switching probabilities after averaging read (note that τ111 = τ21 and
W111 = W21)

L21̄(t ) ⇒ A
β2

τ2

∫ t

0
dt1

(
t1
τ2

)β2−1

exp

[
−

(
t1
τ2

)β2
]{

1

2
− 1

π
arctan

[
{ln [(t − t1)/τ0]}1/α − [ln(t (21)/τ0)]

1/α

W (21)

]}
(23)

and

L21(t ) ⇒ 1 − exp

[
−

(
t

τ2

)β2
]

− L21̄(t ). (24)

For the 60°-120°-switching process the above-defined switching probabilities after averaging read

L12̄(t ) ⇒ A
β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

exp

[
−

(
t1
τ1

)β1
]{

1

2
− 1

π
arctan

[
{ln [(t − t1)/τ0]}1/α − [ln(t (12)/τ0)]

1/α

W (12)

]}
(25)

and

L12(t ) ⇒ 1 − exp

[
−

(
t

τ1

)β1
]

− L12̄(t ). (26)

For the 60°-60°-60°-switching process, the switching probabilities defined in Sec. II B after averaging read

L11̄(t ) ⇒ A
β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

exp

[
−

(
t1
τ1

)β1
]{

1

2
− 1

π
arctan

[
{ln [(t − t1)/τ0]}1/α − [ln(t (11)/τ0)]

1/α

W (11)

]}
, (27)
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L111̄(t ) ⇒ A2

απ

β1

τ1

∫ t

0
dt1

(
t1
τ1

)β1−1

exp

[
−

(
t1
τ1

)β1
] ∫ t−t1

τ0

dτ
[ln(τ/τ0)]1/α−1W (11)/τ(

[ln(τ/τ0)]1/α − [ln(t (11)/τ0)]1/α
)2 + (W (11))2

×
{

1

2
− 1

π
arctan

[
{ln [(t − t1 − τ )/τ0]}1/α − [ln(t (111)/τ0)]

1/α

W (111)

]}
(28)

and

L111(t ) ⇒ 1 − exp

[
−

(
t

τ1

)β1
]

− L11̄(t ) − L111̄(t ). (29)

The functions (20)–(29) will be implemented in the follow-
ing in Eq. (16) to describe the polarization and strain response
of a polycrystalline KNN material in the orthorhombic struc-
ture.

D. Relation between polarization and strain variations

A relation between the macroscopic strain s and the macro-
scopic polarization p can be derived from a general relation
for electrostriction [53,54],

si j = Qi jmn pm pn, (30)

where the electrostriction tensor Qi jmn is introduced and sum-
mation over the repeated indices implied. For ferroelectrics
with a cubic parent phase, the piezoelectric coefficient is re-
lated to the spontaneous polarization P and can be derived
from Eq. (30) if the spontaneous polarization is singled out as

pn
∼= Pn + ε0εnmEm (31)

with the permittivity of vacuum ε0 and the relative permittiv-
ity of the ferroelectric εnm. When substituting Eq. (31) into
Eq. (30) the strain results as

si j
∼= Qi jmnPmPn + di jkEk + ε2

0Qi jmnεmlεnkElEk (32)

providing an expression for the piezoelectric coefficient [53]

di jk = 2ε0εkmQi jml Pl . (33)

The first term in Eq. (32) represents the spontaneous strain
S. The last term in Eq. (32), quadratic in electric field, is by
two orders of the magnitude smaller than the linear, piezoelec-
tric term at highest fields involved in the experiment and thus
will be neglected in the following.

We start with a single crystal problem, depicted in
Fig. 1(a), and focus on the polarization and strain components
in the direction of the applied field, i.e., [011]. A corre-
sponding strain variation may be calculated as the component
�s′

33(t ) in the new coordinate frame (x′, y′, z′), rotated about
the initial x axis in such a way that the z′ axis points in the field
direction. The transformation matrix required for this rotation
is

T =

⎛
⎜⎝

1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2

⎞
⎟⎠. (34)

The strain variation in the new frame reads �s′ = T�sTT

and the strain component of interest is �s′
33 = T3i�sikT T

k3 =

(�s22 + 2�s23 + �s33). In the “parent” coordinate frame of
Fig. 1(a), collinear with the cubic parent phase, the tensor
of electrostriction has a particularly simple form allowing the
expression of all nonzero matrix elements through only three
distinct matrix elements in Voigt notations, Q11, Q12, and
Q44 [54]. Thus, the spontaneous strain components

�S22 = Q12
(
P2

1 + P2
3

) + Q11P2
2 ,

�S33 = Q12
(
P2

1 + P2
2

) + Q11P2
3 ,

�S23 = �S32 = 2Q44P2P3. (35)

Now the time dependent strain variation along the field
direction can be represented as

�s(t ) = �S′(t ) + �s′
P(t ), (36)

where the first term represents a contribution of the sponta-
neous polarization to the strain [the first term in Eq. (32)] and
the second one a contribution of the piezoelectric effect [the
second term in Eq. (32)].

Considering the spontaneous strain contributions, we note
that the strain variation during 90° rotations, such as A-E
and E-D switching steps, amounts to �Smax = −2Q44P2

s and
+2Q44P2

s , respectively, denoting the maximum strain varia-
tion in a single switching event. During a 120° rotations, such
as A-C or B-D switching steps, the strain variation has an am-
plitude of (Q11 − Q12 + 4Q44)P2

s /4. Since in the following we
will study experimentally the average polarization and strain
variations in polycrystalline materials, we may apply here
the relation 2Q44 = Q11 − Q12 valid for ceramics [54]. This
reduces the amplitude of the strain variation by 120° rotations
to (3/4)�Smax. 60° rotations contribute to the strain variation
differently. Thus, in the triple 60° sequence A-B-C-D, the
first A-B step generates the strain variation of (3/4)�Smax,
the last C-D step the strain variation of (−3/4)�Smax, while
the switching step B-C does not change the strain. Generally,
by all multistep switching events, the first step negatively
contributes to the strain, while the consecutive steps contribute
non-negatively, so that the complete variation at the end of the
process equals zero. Taking all the contributions together, the
spontaneous strain variation with time equals

�S′(t ) = �Smax
[
η3L33̄(t ) + η2

3
4 L21̄(t ) + η12

3
4 L12̄(t )

+ η11
3
4 [L11̄(t ) + L111̄(t )]

]
. (37)

When calculating the piezoelectric strain contribution, we
account at once for the fact that in poled ceramics, char-
acterized by the Curie symmetry group ∞m, the dielectric
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permittivity tensor has the form

ε̂′ =

⎛
⎜⎝

εa 0 0

0 εa 0

0 0 εc

⎞
⎟⎠

in the frame with the z′ axis oriented along the poling direc-
tion. Then the piezoelectric strain variation is transformed to

�s′
P(t ) = 2ε0εcQ11E [�P(t ) − Ps], (38)

when compared to the initial state without applied electric
field (E = 0) and using the polarization variation along the
field direction, Eq. (16) (for the derivation see Appendix A).

The 180°- and the non-180° switching events contribute
to the strain variation differently. The first ones only change
the strain through the second term in Eq. (36) linear in polar-
ization. In contrast, the non-180° switching processes rotate
polarization by either 90°, 60°, or 120° and thus change the
strain by both terms in Eq. (36). We note also that the com-
plete consecutive rotations along all paths cause no variation
of the strain in the final state through the term quadratic in
spontaneous polarization, Eq. (37), but they do through the
term linear in spontaneous polarization, Eq. (38).

The above-developed MSM model for single crystalline
materials can also be applied to polycrystalline materials, al-
though with some reservations. Crystalline grains of arbitrary
shapes are randomly distributed and oriented in ceramics. For
that reason, the maximum possible polarization of orthorhom-
bic ceramics is limited by 0.912Ps [55]. Another essential
difference to a uniform medium is a nonhomogeneous distri-
bution of the applied electric field, which is one of the reasons
for the mentioned statistical distribution of local switching
times accounted by the NLS [50,51] and the IFM [35,36]
models. A combination of the MSM and the IFM models
provided a better description of the time-dependent electrome-
chanical response of tetragonal PZT ceramics [38]. Therefore,
in the present work, we apply the hybrid MSM-IFM model,
derived in Sec. II C, together with the time-dependent expres-
sions for strain (36)–(38) to the analysis of the polarization
and strain response of the KNN-based ceramic during the
polarization reversal. We note that both formulas for polariza-
tion (16) and strain (36) are assumed to be averaged over the
whole polycrystalline system and neglect electric and elastic
interactions [56] between different switching regions.

III. EXPERIMENTAL DETAILS AND SAMPLE
CHARACTERIZATION

Bulk ceramics with chemical composition
(Na0.49K0.49Li0.02)(Nb0.8Ta0.2)O3 and 2 wt % MnO2 addition
were processed using a solid-state reaction route described
elsewhere [57]. Green pellets were sintered at 1080 °C for 2 h
and a density of 97.1% of the theoretical density was obtained.
Sintered ceramic samples were ground to a thickness of 0.5
mm and sputtered with platinum electrodes, followed by
400 °C stress-relief annealing.

For structural analysis, sintered samples were crushed into
powder and annealed at 500 °C for 2 h. X-ray diffractograms
(XRD) were collected on the crushed powder using a diffrac-

FIG. 2. Powder XRD pattern of orthorhombic KNN sample. Re-
flections are indexed according to an orthorhombic setting. Enlarged
profile of (220) and (002) reflections in the 2theta range 44.5–47 ° is
shown in the inset.

tometer with Bragg-Brentano geometry (Bruker AXS D8
Advance, Germany) with Cu-Kα radiation. The XRD of a
NIST standard LaB6 powder sample was measured to refine
the instrumental profile. The Rietveld refinements were per-
formed using the General Structure Analysis System (GSAS)
software [58]. The starting parameters for the refinement were
taken from the x-ray and neutron powder diffraction data re-
finements of Orayech et al. [59]. The refinement of structural
parameters was restricted to the positions of Nb and O ions
and the isotropic temperature factor Uiso was assumed uniform
for the A site, B site, and oxygen ions, respectively.

X-ray powder diffraction profile of the ceramic sample
is shown in Fig. 2, exhibiting typical perovskite structure
without detection of secondary phase. An enlarged profile
of the pseudocubic (220) and (002) reflections is shown in
the inset. The intensity ratio of the (220) to (002) reflec-
tions is larger than unity, characteristic of an orthorhombic
structure [60]. Rietveld refinement demonstrates that the pat-
tern is well fitted with the orthorhombic Amm2 space group
(see the Supplemental Materials [61]). This is also confirmed
by the temperature-dependent dielectric permittivity (Fig. 3),
where the tetragonal to orthorhombic phase transition tem-
perature is around 100 °C and thus, the phase structure is
orthorhombic at room temperature.

Standard electromechanical characterization of the sample
combining large-signal polarization and strain measurements
is presented in Fig. 4. Large signal polarization hysteresis
loops were measured using a modified Sawyer-Tower circuit
and an electric field of 4 kV/mm with a frequency of 0.1 Hz
was applied. The strain hysteresis loops were simultaneously
obtained by measuring the displacement of the sample using
an optical displacement sensor (D63, Philtec Inc., USA). The
coercive field is 0.54 kV/mm. The maximum negative strain
is −0.045% while the maximum positive strain is 0.086%.

Time-dependent polarization reversal was measured using
the pulse switching setup described in Ref. [31]. Each sample
was first annealed and cycled with a bipolar electric field of
4 kV/mm at 0.5 Hz for 20 times to remove any potentially
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FIG. 3. Temperature-dependent dielectric constant and loss tan-
gent of the investigated KNN ceramic sample, measured at 1, 10,
and 100 kHz. Two dielectric anomalies are observed around 100 °C
and 300 °C, corresponding to the orthorhombic-tetragonal phase
transition temperature TO-T and the Curie temperature TC, respec-
tively. The ceramic material is in orthorhombic structure at room
temperature.

unstable electric contributions. Before each measurement, the
samples were poled under 4 kV/mm for 10 s, followed by
a relaxation time of 30 s to ensure the same starting condi-
tions before each pulse application. A broad range of electric
field pulses, Ea (from Ea = 0.15 to 1.30 kV/mm), which
are approximately in the range 0.3EC < Ea < 2.6EC, were
applied to the sample. In the meantime, the time dependence
of the switched polarization and macroscopic strain response
were simultaneously recorded. Bipolar polarization and strain
hysteresis loops were measured before and after the pulse
experiment to ensure it did not irreversibly affect the electrical
properties. The full set of dynamical measurements may be
found in the Supplemental Material [61]. A set of representa-
tive switching curves is analyzed in the next section.

FIG. 4. Large signal bipolar polarization p and strain s loops,
measured under 4 kV/mm and 0.1 Hz.

IV. MODEL ANALYSIS OF POLARIZATION AND STRAIN
DEVELOPMENT OVER THE TIME WINDOW

For the purpose of modeling, polarization and strain were
measured over the time window for exemplary switching field
values Ea in the range 0.650–1.300 kV/mm where polariza-
tion reversal processes were completed. For the field values
outside this range, only initial or final stages of the polariza-
tion and strain reversal were observed, which do not allow
reliable evaluation of fitting parameters. Figure 5 displays
the time-dependent data (in red) together with theoretical fit-
ting curves according to the MSM-IFM model, represented
with black solid lines. Note that the leakage current and the
reversible dielectric displacement were subtracted in the pre-
sented polarization �p data in Fig. 5.

The variation of the strain starts in all measurements from
zero (poled reference state), which is not explicitly seen in
the plot since the data below 10–4 s are not experimentally
accessible.

We note a good quantitative agreement of the polarization
and strain magnitudes achieved at t = 10 s with the corre-
sponding values at the respective fields in polarization and
strain loops in Fig. 4. Because of accessible time window
for polarization studies between 10–6 and 10 s, the applied
field range suitable for dynamic measurements appears to be
far away from the polarization saturation achieved at about 4
kV/mm. The fact that not the whole system undergoes polar-
ization reversal is reflected in the modeling by the adjustable
field dependent values Ps(E ) and �Smax(E ) as well as an
adjustable vertical shift �S0(E ) added to strain, Eq. (36), to
meet a proper strain value in the long time limit.

The KNN material studied here exhibits some dy-
namic polarization features different from tetragonal [8,34–
37,50,51] and rhombohedral [8,32,38] PZT compositions and
a tetragonal Cu-stabilized 0.94Bi0.5Na0.5TiO3–0.06BaTiO3

(94BNT-6BT) material [36,62], which typically demonstrate
a more or less smeared steplike behavior on the logarithmic
time scale. Its behavior is also different from very disper-
sive response of (1−x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3

(BZT-BCT) compounds of different symmetries [9,10], which
typically demonstrate almost straight-line dependence over
many decades on the logarithmic time scale. In contrast, the
KNN compound studied here reveals, at high fields above
0.9 kV/mm, two distinct initial temporal stages with different
slopes [Figs. 5(e), 5(g), 5(i)] followed by a slow saturation at
long times. This feature is reminiscent of the switching behav-
ior of PZT composition at the morphotropic phase boundary
[32], which might occur due to the phase coexistence. The
KNN material studied here is, however, a single-phase one
as is evidenced by x-ray data analysis (Fig. 2 and Fig. S1 in
the Supplemental Material [61]) supported by dielectric data
(Fig. 3). Another remarkable feature of the material is a rather
dispersive strain reponse with a very small strain which is by
one order of the magnitude smaller than that of tetragonal PZT
[34] and shows comparatively minuscule changes through the
time range, while polarization is about one-half that in this
PZT.

To extract from the experiment a large number of
parameters, involved in the theory, an educated guess
based on the elementary Landau analysis is helpful (see
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FIG. 5. Variation of the polarization (a), (c), (e), (g), (i) and strain (b), (d), (f), (h), (j) with time during field-induced polarization reversal at
different applied field values in kV/mm, as indicated in the plots. Experimental curves and fitting curves are represented with the red symbols
and black solid lines, respectively.

Appendix B). To this end, free energy profiles were calculated
for a chosen K0.5Na0.5NbO3 solid solution, for which a set of
verified Landau coefficients is known [63]. From the values
of energy barriers and coercive fields for particular switching
processes in the exemplary orthorhombic K0.5Na0.5NbO3, the
lowest activation fields EA may be expected for the 60° and
90° processes, while higher activation fields for the 120°
process and the highest one for the 180° process. Accord-
ingly, it may be expected that the characteristic switching
times of 60°-switching events, τ1, t (11), t (111), and of 90°-
switching events, τ3, t (33), related to the activation fields
E (1)

A , E (11)
A , E (111)

A , and E (3)
A , E (33)

A , respectively, are much
shorter than the characteristic times of 120°-switching events,
τ2, t (12), related to the activation fields E (2)

A , E (12)
A . The latter

characteristic times, in turn, are expected to be much shorter
than that of the 180°-switching event, t (4), related to the acti-
vation field E (4)

A .
Thus, it may be expected that fast switching events pro-

viding negative strain occur at short times τ1, t (11), t (111),
and τ3, t (33), which are mostly beyond the accessive time
window for strain, while the consequent gradual increase of
strain occurs at larger times τ2, t (12). From Eqs. (17c) and
(23), the magnitude of the first switching step in the path
120°-60° appears to be proportional to τ111/τ2 
 1, and thus
its contribution to the spontaneous strain is negligible. This
makes the second switching step in the process 60°-120° with
the characteristic time t (12) presumably responsible for the late
stage of the strain response observed at all exemplary applied
fields.

The paradoxically low strain magnitude resulting from
fast initial switching events, clearly visible in the polariza-
tion response, suggests that these processes do not contribute
much to the spontaneous strain, as is the case for the 180°
switching. However, the latter processes are characterized
by high activation fields and expected in the best case at
later switching stages. It is known, on the other hand, that

fast non-180° processes may occur in a coherent way, so
that their average macroscopic strain vanishes, and thus
mimic the 180° switching [64]. Such quasi-180° processes
were indirectly identified in the electromechanical response
of tetragonal PZT, with characteristic times typical of 90°
events [34,37], and of rhombohedral PZT, with character-
istic times typical of 71° events [38]. Very recently, such
synchronized 90°-domain switching processes were directly
observed by Zhu et al. during electric field loading of a
barium titanate single crystal by using a fast camera com-
bined with a polarized light microscope [17]. What coherent
processes of this type are conceivable in orthorhombic ferro-
electrics?

Figure 6 displays possible coherent switching processes
which do not cause macroscopic spontaneous strain variation
in ferroelectrics of different symmetries. As was suggested
by Arlt [64], a 90°-domain wall driven by electric field and
crossing a regular stack of 90°-domain walls in a tetrago-
nal ferroelectric, as is shown in Fig. 6(a), does not cause a
variation of macroscipic spontaneous strain because the strain
changes in neighbor domains cancel each other. A fully anal-
ogous process is possible also in orthorhombic ferroelectrics
as is shown in Fig. 6(c). The only difference consists in the
domain wall orientation with respect to the pseudocubic unit
cell which is rotated by 45°. A similar process in rhombohe-
dral systems [38] is provided by a moving 71°-domain wall
crossing a regular stack of 109°-domain walls as is shown in
Fig. 6(b). The geometry of this configuration is a bit more
complicated since the plane of a mechanically and electrically
compatible 71°-domain wall is not perpendicular to the figure
plane [65]. A process in orthorhombic systems analogous to
the latter one is represented by a moving 60°-domain wall
crossing a regular stack of 120°-domain walls as is shown
in Fig. 6(d). Also here, the 120°-domain walls are rotated
by 45° with respect to the pseudocubic unit cell orientation.
Thus, in contrast to tetragonal and rhombohedral systems,
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FIG. 6. (a) Array of equidistant horizontal 90°-domain walls in a tetragonal ferroelectric with a mean polarization in the [001] direction is
swept from right to left by a field-driven vertical 90°-domain wall that reverses the mean polarization. (b) A field-driven vertical 71°-domain
wall (indicated by a solid line) sweeping through the equidistant 109°-domain wall system (indicated by dashed lines) and reversing the mean
polarization in a rhombohedral ferroelectric. (c) Similar to the case (a) domain configuration and the sweeping domain wall in an orthorhombic
ferroelectric. (d) A field-driven vertical 60°-domain wall (indicated by a solid line) sweeping through the equidistant 120°-domain wall system
(indicated by dashed lines) and reversing the mean polarization in an orthorhombic ferroelectric. Empty squares represent a pseudocubic unit
cell orientation in each configuration.

orthorhombic ones allow two macroscopic strain-free non-
180° switching scenarios.

To account for two coherent processes related to the sweep-
ing 60°- and 90°-domain walls, respectively, we introduce
to the polarization response given by Eq. (16), two addi-
tional contributions, �P41(t ) = η412PsL41(t ) and �P43(t ) =
η432PsL43(t ), where similar to Eq. (20)

L41(t ) = A

π

{
arctan

[
[ln(t/τ0)]1/α − [ln(t (41)/τ0)]

1/α

W (41)

]

+ arctan

[
[ln(t (41)/τ0)]

1/α

W (41)

]}
(39a)

and

L43(t ) = A

π

{
arctan

[
[ln(t/τ0)]1/α − [ln(t (43)/τ0)]

1/α

W (43)

]

+ arctan

[
[ln(t (43)/τ0)]

1/α

W (43)

]}
, (39b)

with process fractions η41, η43, activation fields E (41)
A =

E (1)
A , E (43)

A = E (3)
A , characteristic times

t (41) = τ0 exp

[(
E (1)

A

Ea(1 + κ2)

)α
]
,

t (43) = τ0 exp

[(
E (3)

A

Ea(1 + κ2)

)α
]
,

and width parameters

W (41) = E (1)
A

Ea

κ

1 + κ2
, W (43) = E (3)

A

Ea

κ

1 + κ2

Note that the latter two coherent processes contribute to strain
only through the total polarization in the piezoelectric part,
Eq. (38).

By fitting polarization with �P(t ) + �P41(t ) + �P43(t )
and strain with Eq. (36), using Eq. (16) and expressions (20)–
(29) from the MSM-IFM model, the solid curves in Fig. 5
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TABLE I. Activation electric fields (kV/mm).

EA
(1) EA

(11) EA
(111) EA

(12) EA
(2) EA

(21) EA
(3) EA

(33) EA
(4)

42 29.5 23 55 56 23 36.5 27 75

were obtained. A few parameters are known from independent
measurements, like the relative permittivity εc = 688 and the
electrostriction coefficient Q11 = 0.0302 m4/C2 derived from
Fig. 4. The best fitting parameters common for all applied
fields are τ0 = 8 × 10−12s, as well as κ = 0.15 ± 0.01 and
α = 0.72 ± 0.01 which are close to the parameters of tetrag-
onal PZT [37] and BNT-BT [62], respectively.

Table I presents activation fields, which determine charac-
teristic times for all involved switching processes according
to the assumed Merz law. As expected, the lowest values
have the fields for the 90°- (E (3)

A , E (33)
A ) and 60°-switching

events (E (1)
A , E (11)

A , E (111)
A = E (21)

A ), the medium values those
for 120°-switchings (E (2)

A , E (12)
A ) and the highest value that of

180° switching, E (4)
A . All activation fields remain stable over

the studied applied field range supporting the validity of the
Merz law for all processes.

Table II presents mechanical and electrical field-dependent
fitting parameters as well as the Avrami indices. The maxi-
mum polarization Ps and the magnitude of spontaneous strain
�Smax show a monotonic rise with the increasing field while
the strain shift �S0 shows a monotonic decrease of the mag-
nitude compatible with the experimental data in Fig. 4. The
Avrami indices β2 and β3 (where available) are not much
different from unity. In contrast, the Avrami index β1 is re-
markably smaller than unity for the applied fields below E =
0.9 kV/mm. Such a feature was previously observed for the
first switching steps in tetragonal [34,37] and rhombohedral
[38] ferroelectrics and is believed to be related to the support
of the initial steps by residual stresses in the highly poled ini-
tial state [24]. The possibility of the index β1 < 1 is provided
by a switching scenario II (see Sec. II B) where there are only
latent nuclei but no new nucleations as suggeted by Ishibashi
et al. [21]. This implies also fractal geometries of nucleating
domains with dimensionalities less than unity. It is noteworthy
that β1 exceeds unity for the fields higher than 0.9 kV/mm, for
which the polarization curves become substantially different
in shape (Fig. 5).

The fractions of different processes ηi exhibit more com-
plicated trends represented in Table III.

TABLE II. Avrami indices, mechanical parameters, and sponta-
neous polarization.

Ea, �Smax, �S0, Ps,
kV/mm β1 β2 β3 % % C/m2

0.65 0.25 0.9 −0.165 −0.026 0.153
0.75 0.3 0.75 −0.185 −0.022 0.166
0.9 1 1 0.9 −0.195 −0.0123 0.1725
1.1 1.2 1 −0.2 −0.0026 0.179
1.3 1.5 −0.205 0.0032 0.18

TABLE III. Process fractions.

E,
kV/mm η11 η12 η2 η3 η41 η43 η4

0.65 0.17 0.08 0 0.4 0.35 0 0
0.75 0.17 0.05 0 0.4 0.28 0.1 0
0.9 0.17 0.05 0.05 0.4 0 0.33 0
1.1 0.51 0.15 0 0.135 0 0.145 0.06
1.3 0.73 0.2 0 0 0 0 0.07

These quantities are determined not only by activation bar-
riers for particular processes, but also by the microstructure
of the material like grain sizes and shapes, their orientation,
properties of the grain boundaries, etc., and therefore may be
considered as independent fitting parameters. The field depen-
dence of these parameters appears to be distinct at low and
high fields. The fractions of the switching paths 60°-60°-60°
(η11), 60°-120° (η12), and 90°-90° (η3) remain stable below
E = 0.9 kV/mm. At higher fields, η11 and η12 significantly
increase, while η3 significantly decrease and finally vanish.
The coherent 60° process with the fraction η41 essentially con-
tributes to switching below E = 0.9 kV/mm but disappears at
E = 0.9 kV/mm and above. In contrast, the coherent 90° pro-
cess behaves nonmonotonically; it is absent at both the lowest
and the highest applied fields and its fraction η43 reaches a
maximum right at 0.9 kV/mm. We note that the two initial
fast 90°- and 60°-switching processes, as well as their coher-
ent counterparts, have characteristic switching times different
by one order of the magnitude and therefore can be clearly
resolved. Finally, the true 180°-switching process becomes
visible only at the two highest applied fields and is quite es-
sential for the adequate description of the long-time behavior
in spite of relatively low fraction of η4 = 0.06–0.07. The dif-
ference in process fractions at low and high fields reflects the
respectively distinct shapes of the time-dependent polarization
in these field regions. At the highest fields, the polarization
reversal is strongly dominated by two processes, the faster
60°-60°-60° switching and the slower 60°-120° switching.
We note that the true 180°-switching processes characterized
by high activation fields and long switching times were not
identified before in tetragonal [34,37] and rhombohedral [38]
systems. Also noteworthy is a nonmonotonic field dependence
of the theoretical minimum strain value in Figs. 5(b), 5(d),
5(f), 5(h), and 5(j) which is unfortunately beyond the region
of reliably measured strain. This seems to be related with the
change in the dominating switching scenario from the 90°-90°
to the 60°-60°-60° path.

As a result, to describe the polarization switching of an or-
thorhombic ferroelectric/ferroelastic material, seven different
possible switching paths should be taken into account (Fig. 7)
which distinctly show themselves over the range of applied
fields. The nonmonotonous manner in which some of the fast
processes appear and vanish with an increase of the applied
field may hint at a competition between different mechanisms,
which may appear simultaneously as several expanding do-
mains, even within one grain, only to be devoured by the
fastest growing domain. This might be the reason for only
a brief appearance of the typically slow 120°-60° switching
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FIG. 7. A complete representation of all detected switching paths
between the polar state marked with a down arrow to the polar
state marked with an up arrow. In addition to the switching paths
shown in Fig. 1(b), two coherent switching processes as described
via Fig. 7 were taken into account. The η41 process is the 60° domain
wall sweeping through the stack of 120° domains and η43 depicts
a process at which a 90° domain wall is sweeping through the 90°
domains stack.

path at the applied field of 0.9 kV/mm around which the
breakdown in the balance between 60°-60°-60° and 90°-90°
switching processes also occurred. Residual stresses can also
boost one of the fast processes giving it an edge over the
other or even preclude one from happening if the strains it
invokes cannot be realized due to, e.g., clamping with other
grains.

The 90° processes could survive at higher fields only in a
form of the coherent quasi-180° switching that does not pro-
duce strain. Ultimately, with the applied field increasing, the
slow true-180° switching process makes a limited appearance.
It is reasonable to hypothesize that at higher applied fields it
will gain more prominence since when all potential barriers
eventually flatten, this process would be the one not creating
any strains and not requiring laminar domain structures to
occur.

V. CONCLUSIONS

To understand the microscopic processes un-
derlying the field driven polarization reversal in
ferroelectrics/ferroelastics, it is critically important to
investigate simultaneously electrical and mechanical
responses to the applied electric field. Since particular
switching processes may contribute exclusively or mostly
to the polarization response, but do not contribute to the
spontaneous strain, it appears possible to rectify contributions
of particular switching channels, as it was done in the current

study of the single-phase orthorhombic KNN ferroelectric
ceramic.

The stochastic MSM-IFM model, extended in this work
to the case of orthorhombic ferroelectrics/ferroelastics,
allowed a thorough analysis of the original simultaneous
measurements of polarization and strain response of
orthorhombic KNN piezoceramic over a wide time window.
It enabled us to deconvolute the contributions of particular
switching paths and quantify their fractions, activation
fields, and Avrami indices, related to the dimensionality
of the respective growing domains. Particularly, the analysis
revealed a substantial contribution of the fast processes, which
do not cause macroscopic spontaneous strain and exhibit
characteristics of non-180° switching events. Such coherent
non-180° switching processes were indirectly identified in
previous studies [34,37,38] and recently directly observed
optically [17]. This is in agreement with a general conclusion
from molecular dynamics that 180° switching in tetragonal ce-
ramics proceeds rather via sequential 90°-domain wall motion
[25]. Coherent processes may also be related to the recently
observed avalanche switching behavior in such diverse fer-
roelectric/ferroelastic systems as Pb(Mg1/3Nb2/3)O3-PbTiO3

and BaTiO3 with quite distinct domain shapes and structures
[18].

The advanced approach should, however, be further elab-
orated. The main limitation of the actual MSM-IFM model
lies in the assumed Lorenz statistical distribution of the
local electric fields, which substantially reduces the flex-
ibility of the model. In fact, statistical field distributions
observed in different materials may be quite asymmetrical
[8–10,36,62,66]. In some materials, like HfO2-based ferro-
electrics, Gaussian proved to be more suitable for description
of the statistical field distribution [66–68]. Using a more
adequate statistical field distribution may further improve
description of the dynamic electromechanical response of fer-
roelectrics/ferroelastics.
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APPENDIX A: RELATION OF POLARIZATION
AND PIEZOELECTRIC STRAIN FOR

ORTHORHOMBIC SYMMETRY

In a single crystal, the piezoelectric contribution to the
strain along the poling direction [011], calculated in the new
coordinate frame (x′, y′, z′), given by s′ = TsTT with Eq. (34),
equals

s
′P
33 = ε0E√

2

{
2Q12(ε21 + ε31)P1 + [(Q11 + Q12)(ε22 + ε32) + 2Q44(ε23 + ε33)]P2

[(Q11 + Q12)(ε23 + ε33) + 2Q44(ε22 + ε32)]P3

}
. (A1)
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Considering the diagonal form of the permittivity tensor
in the new frame with the z′ axis oriented along the poling
direction, which implies the Curie symmetry group ∞m as
for poled ceramics [54],

ε̂′ =
⎛
⎝εa 0 0

0 εa 0
0 0 εc

⎞
⎠

the permittivity tensor in the initial frame becomes

ε̂ =
⎛
⎝εa 0 0

0 εc+εa
2

εc−εa
2

0 εc−εa
2

εc+εa
2

⎞
⎠.

This reduces the formula (A1) to

s
′P
33 = ε0εcE√

2
(Q11 + Q12 + 2Q44)(P2 + P3). (A2)

From P′ = TP it follows that P′
3 = (P2 + P3)/

√
2. Using

further the relation 2Q44 = Q11 − Q12 valid for ceramics one
finds

s
′P
33 = 2ε0εcQ11EP′

3. (A3)

When comparing with the initial state without an applied
electric field but after poling in the [01̄1̄] direction, the polar-
ization variation �P(t ) = P′

3(t ) − (−Ps) which results in the
formula for strain variation, Eq. (38).

APPENDIX B: ELEMENTARY LANDAU ANALYSIS
OF SWITCHING BARRIERS

An elaborated Ginzburg-Landau-Devonshire (LGD) model
for the particular KNN material under consideration is not
available. However, a qualitative field behavior of the switch-
ing barriers can be studied by using the data for similar
orthorhombic KNN compounds [63]. Thus, an eighth order
Landau free energy density as function of polarization com-
ponents reads

GL = α1
(
P2

1 + P2
2 + P2

3

) + α11
(
P4

1 + P4
2 + P4

3

) + α12
(
P2

1 P2
2

+ P2
1 P2

3 + P2
2 P2

3

) + α123P2
1 P2

2 P2
3 + α111

(
P6

1 + P6
2 + P6

3

)

+ α112
[
P2

1

(
P4

2 + P4
3

) + P2
2

(
P4

1 + P4
3

) + P2
3

(
P4

1 + P4
2

)]
+ α1111

(
P8

1 + P8
2 + P8

3

) + α1122
(
P4

1 P4
2 + P4

1 P4
3 + P4

2 P4
3

)
+ α1112

[
P6

1

(
P2

2 + P2
3

) + P6
2

(
P2

1 + P2
3

) + P6
3

(
P2

1 + P2
2

)]
+ α1123

(
P4

1 P2
2 P2

3 + P2
1 P4

2 P2
3 + P2

1 P2
2 P4

3

)
− E1P1 − E2P2 − E3P3, (B1)

where the Landau coefficients α for the orthorhombic com-
pound K0.5Na0.5NbO3 at temperature T = 300 K can be
found by Pohlmann et al. [63]. The highest energy barrier for
switching between different stable polarization states in the
absence of external electric field appears to be that for the di-
rect 180°-polarization reversal [e.g., the AD path in Fig. 1(a)],
while the lowest barrier exists for any 60°-polarization switch-
ing [e.g., the AB path in Fig. 1(a)]. The relation between
barriers for 180°, 120°, 90°, and 60° processes is �G180 :
�G120 : �G90 : �G60 = 7.49 : 4.18 : 1.76 : 1. When electric
field E is applied in the [011] direction, the energy profile (B1)
is tilted and the mutual relations between barriers substantially
change because the field has different projections at different
switching paths. That is why the coercive fields for overcom-
ing these barriers exhibit another sequence. Thus the barrier
for the second 60° process [e.g., the BC path in Fig. 1(a)]
disappears first at the coercive field of E = 1.1 × 107 V/m.
In the course of further field increasing the next barriers to
vanish at the field E = 2.14 × 107 V/m are those for both
90° processes in the 90°-90° switching path [e.g., the AE and
ED paths in Fig. 1(a)]. The next barrier disappearing at a bit
larger field E = 2.18 × 107 V/m is the one for the third 60°
process [e.g., the CD path in Fig. 1(a)]. The barrier for the
first 60° process [e.g., the AB path in Fig. 1(a)] vanishes at the
field E = 2.25 × 107 V/m. A substantially larger field E =
3.22 × 107 V/m is required to suppress the barriers for both
120°-switching steps [e.g., the AC and BD paths in Fig. 1(a)]
and a further enhanced field E = 4.13 × 107 V/m to suppress
the barrier for the 180° switching [the AD path in Fig. 1(a)].
We note that the above relations between the energy barriers
and coercive fields result from a very simple Landau analysis
and can be remarkably modified by ferroelastic interactions,
particularly, by residual stresses in highly poled states.
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