PHYSICAL REVIEW B 104, 174518 (2021)

Induced odd-frequency superconducting state in vertex-corrected Eliashberg theory
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We show that vertex corrections to Migdal’s theorem in general induce an odd-frequency spin-triplet su-
perconducting order parameter, which coexists with its more commonly known even-frequency spin-singlet
counterpart. Fully self-consistent vertex-corrected Eliashberg theory calculations for a two-dimensional cuprate
model, isotropically coupled to an Einstein phonon, confirm that both superconducting gaps are finite over a wide
range of temperatures. The subordinate d-wave odd-frequency superconducting gap is found to be one order of
magnitude smaller than the primary even-frequency d-wave gap. Our study provides a direct proof of concept
for a previously unknown generation mechanism of odd-frequency superconductivity as well as for the generic
coexistence of both superconducting states in bulk materials.
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I. INTRODUCTION

Odd-frequency superconductivity describes a Cooper-pair
condensate in which the quantum mechanical wave function
is odd under exchange of relative time between two elec-
trons of a Cooper pair. As first proposed by Berezinskii [1],
this ordered state is compatible with the Pauli principle as
long as either the momentum-space parity is even and the
electrons are of spin-triplet type, or the parity is odd and
one considers spin-singlet electron pairs (see, e.g., Ref. [2]
for a recent review). This type of superconductivity is
clearly beyond the Bardeen-Cooper-Schrieffer (BCS) theory
that neglects time-retardation effects between the electrons
of the Cooper pair, but can be described naturally within
Eliashberg’s theory [3]. Historically, it has been argued
that electron-phonon coupling can theoretically lead to odd-
frequency superconductivity, provided that the interaction has
a sufficiently strong odd momentum component as a result of
coupling between electrons and acoustic phonons [4]. How-
ever, such a scenario was considered unlikely if no spin
dependence enters into the interaction [5]. More recent the-
ories have shown that signatures of an odd-frequency phase
are indeed possible due to electron-phonon interactions only,
depending on the interaction strength [6-9].

Odd-frequency superconductivity has been discussed re-
currently in various forms [2,10]. In this discussion it is
important to distinguish between existence of a supercon-
ducting condensate with an odd-frequency order parameter,
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i.e., with nonzero gap function, and odd-frequency pair
correlations. The latter can occur when a frequency-even
superconductor is placed in close proximity to a magnetic
layer or when a magnetic impurity is placed on a conven-
tional superconductor [10-18]. The spins of the conventional
Cooper-pair electrons become rotated in the exchange field,
leading to a spin-triplet component with time-odd par-
ity [10,19]. Recent experiments have provided spectroscopic
observations of odd-frequency pair correlations [17,20-23].
The observation of an odd-frequency superconductivity phase
in a bulk material remains, however, thus far elusive.
The thermodynamic stability of an odd-frequency phase
in the presence of an even-frequency order parameter has
therefore been studied theoretically in several works [8,9,24—
26].

In many of the theoretical proposals for systems exhibiting
this rather exotic type of Cooper pairing, there exists one
particular degree of freedom that makes the occurrence of an
odd-frequency superconducting pairing possible. As laid out
in Ref. [2], odd-frequency superconductivity in bulk materials
is often associated with spin degrees of freedom, or with the
strong-coupling limit of electron-phonon interactions [6,26].
Other examples are pairing effects due to multiple band or
electron orbitals [27,28], influence of magnetic fields [7,8],
magnetic impurities [18], proximity effects [29,30], or due to
edge-state-induced ferromagnetic fluctuations [31].

Here we show that this conception is generally not
complete. By deriving self-consistent and vertex-corrected
Eliashberg equations, we prove that a finite odd-frequency
spin-triplet order parameter can theoretically always coexist
along with the “standard” even-frequency spin-singlet super-
conducting gap. Vertex corrections to the electron-phonon
problem generally become important if the ratio of phonon
to electron energy scale is not small [32], and it recently
has been shown that they are a potential candidate for
producing unconventional symmetries in several classes of
superconductors [33]. Our current results suggest that the phe-
nomenology of vertex corrections is even richer, in that they

Published by the American Physical Society


https://orcid.org/0000-0001-6845-2538
https://orcid.org/0000-0002-1699-2476
https://orcid.org/0000-0002-9069-2631
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.174518&domain=pdf&date_stamp=2021-11-24
https://doi.org/10.1103/PhysRevB.104.174518
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html

SCHRODI, APERIS, AND OPPENEER

PHYSICAL REVIEW B 104, 174518 (2021)

can also be responsible for odd-frequency superconducting
states. We benchmark our theory by solving the Eliashberg
equations for a Holstein-type Hamiltonian with Einstein
phonon and isotropic electron-phonon coupling, resembling
the characteristics of a prototypical cuprate superconductor.
The odd-frequency d-wave state is induced by its even-
frequency counterpart, which is the primary order parameter,
and is approximately one order of magnitude smaller in
amplitude. Our results suggest that the coexistence of both
condensates is possible due to a mixing of momentum-space
representations, triggered by the inclusion of vertex correc-
tions into our Eliashberg framework.

In the following we assume for simplicity that the spatial
parity is always even, hence, we want to describe the most
common Brillouin zone (BZ) symmetries of the supercon-
ducting gap function, such as s wave or d wave. We thereby
leave the straightforward generalization to more exotic
p-wave or f-wave states for future analysis. Consequently,
we are left with spin and time (frequency) as the only two
degrees of freedom since we do not include multiple orbitals
or bands in our formalism. Then the possible superconducting
order parameters are either even in frequency and spin singlet,
or odd in frequency and spin triplet.

The remainder of this paper is organized as follows:
We start Sec. II by introducing the general mathematical
framework of our theory, and present the vertex-corrected
Eliashberg equations, as they were developed in Ref. [33],
in Sec. IIA. We show in Sec. IIB that the results to those
self-consistent equations always induce an odd-frequency or-
der parameter, which describes Cooper pairs of spin-triplet
electrons. The self-consistent set of nonadiabatic Eliashberg
equations, including both even- and odd-frequency order
parameters, is given in Sec. IIC. We test our theory by us-
ing a one-band tight-binding description, which describes a
prototypical cuprate superconductor. Section III contains an
analysis of our numerical results with respect to momentum
and temperature dependencies. Finally, we conclude with a
short summary and discussion in Sec. I'V.

II. VERTEX-CORRECTED ELIASHBERG THEORY

Let us assume that the atomic vibrations in the supercon-
ductor can approximately be described by a single-branch
optical phonon mode with frequency 2. The purely electronic
degree of freedom is characterized by a single-band dispersion
&, with k a BZ wave vector. We consider a momentum-
independent electron-phonon scattering strength go, hence,
the Hamiltonian of the system can be expressed as

. . 1
H=XEWQNVMQZX%M+Q
k q

+80 ) ug Wy hsVi, (1)
k.q

with phonon displacement uq = bj’l + b_g, Pauli matrices p;,

and Nambu spinor ¥, = (c{ 12 €k, ). We use bfl and cfm
as phonon and electron creation operators, with o € {1, |}
labeling the electron spin.

At temperature 7 we define fermion and boson Matsubara
frequencies as w, =nT(2m+ 1) and ¢q; = 2n T, respec-
tively, with m, [ € Z. For sake of brevity, we adopt from here
on the four-momenta notation k = (K, iw,,) and g = (q, ig;).
For the Einstein phonon spectrum considered here the phonon
propagator can be written as a simple Lorentzian in frequency
space, D, = 2Q/(Q* 4 ¢;). The electron Green’s function
obeys the Dyson equation Gy = G? + GY3; Gy, which equiv-
alently can be written as

G = [po— G876 )

InEq. (2), 3¢ is the electron self-energy, and the bare-electron
Green’s function is defined as Gg = [iwgpo — Ep3]~". The
electron self-energy including the two lowest-order Feynman
diagrams for electron-phonon scattering can be expressed as

5 =T Z Vi, 3G, 3
ky

+ 717 VitV —t7361 5361 3Gk, sy 14h3, - (3)
ki.ka

where the electron-phonon interaction is defined via V, =
g%Dq [33-36]. The first-order vertex corrections are given by
the second term in Eq. (3).

In the following Sec. IIA we derive self-consistent
Eliashberg equations describing the interacting state of our
model system, where we follow closely the notation of
Refs. [33,37]. We show in Sec. IIB that our theory allows
for an induced subordinate odd-frequency spin-triplet super-
conducting state. A complete mathematical framework for the
coexistence of even- and odd-frequency Cooper pairs is given
in Sec. II C.

A. Even-frequency, spin-singlet Cooper pairs

The vast majority of superconductors exhibits the for-
mation of spin-singlet Cooper pairs, where all quantities
transform even along the real and Matsubara frequency axis.
Within our formalism, such a state can conveniently be de-
scribed by the electron self-energy ansatz

S = iop(1 — Zi)po + xahps + urs 4)

where the electron mass renormalization Z;, chemical poten-
tial renormalization yy, and superconducting order parameter
¢ are introduced. Plugging Eq. (4) into Eq. (2) gives

A ioZy et Xk, b,
Gy = — 01, 5
X o Po + o s+ @kpl (5)

with determinant
®k = [ia)ka]z — [Ek + Xk]2 - ¢/% (6)

As shorthand notation we introduce the symbols

@ _ ol G Skt @ _ Pk
v =— VW o=—— Vv ==
O O Oy
so that the electron Green’s function can be written as
A . Z) A A N
Ge = iv P po + v b3 + v b1 (8)
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As has been shown in Ref. [33], Eqgs. (3) and (8) can be used
to derive a set of self-consistent vertex-corrected Eliashberg
equations, reading as

T - =
Zy=1- o Z Vi, (J/k(lz) +T Z Vii—k, VkZP;;Z)J/h),
kl k2

©))
xk=T Z Vi—k, (Vk(lX) +T ZVkl—kﬁkzPX)%), (10)
ki ko
¢ =-TY Vis, (y,fi” +TY Vi, ?kZP;?’>?k3>. (11)
ky ko

For brevity, the above equations are defined in terms of the
vector y = (yk(z), yk(X), y,f¢)), and we use k3 = ky — k| + k.
Additionally, we define matrices

V4 ) (®)
—y P 0y

P — [ o e Ty | (12)
" _yk(x) _yk(Z) 0
Z
ka — _yk() yk(X) _yk(d)) , (13)
0 _V1<(¢) _Vk(X)
_yk(d)) 0 _yk(Z)
Pk(¢) — 0 7/k(¢) yk()() ) (14)
Vk(Z) yk(X) _yk(¢)

The vertex-corrected Eliashberg equations (9)—(11) exhibit
richer phenomenology and more degrees of freedom than the
standard theory, which only takes into account the lowest-
order Feynman diagram. For example, it has been shown by
the current authors that superconductivity can be partially
suppressed by vertex corrections [33], and can eventually
lead to unconventional BZ symmetries of the pairing func-
tion [37,38].

B. Induced odd-frequency spin-triplet state

We now want to take a closer look at the electron self-
energy. The Pauli matrices p;, i € {0, 1, 2, 3}, form a basis
of the 2 x 2 Nambu space employed here. Notice, however,
that the ansatz for 3 in Eq. (4) does not include p,. The
neglect of this channel is justified due to the gauge freedom
of Eliashberg theory, i.e., any function proportional to 0,
describing spin-singlet, even-frequency Cooper pairs can be
interpreted as a complex phase of the superconducting gap
function, which will differ from ¢; only by a proportionality
factor. We are allowed to set the prefactor of p, identically
zero since no experimentally observable effects arise from this
complex phase, except in Josephson tunneling [39] which is
of no interest here. This is the well-established picture for
standard Eliashberg theory [40,41], and remains valid even
upon the inclusion of vertex corrections.

Considering the self-energy expression of Eq. (3), we can
define ¥ = ﬁ),ﬁl) + f),fz), where f)k and ﬁ,ﬁz) correspond to
contributions from the first- and second-order Feynman dia-
grams, respectively. From our ansatz (4) it follows that the

electron Green’s function does not include any term propor-
tional to p,, therefore, we obtain
Al
Imr[:E"] =0 (15)
from Eq. (3), as expected. However, applying the same opera-
tion to the nonadiabatic correction yields

1 -
ETr[/A)ZEI?)] =T7° Z Vi—ta Vis [Vk(IZ)(Vk(:&)yk(sX)
ki ka

+ y(zx)yk(;f))) + yk(lx)(yk(zz)yk(;ﬁ) _ yk(f)yk(gZ))
which does generally not vanish. Due to the fact that g“,i“d o'
02, even though our definition of ﬁ)k does not include the
0> channel, Eq. (16) describes an induced state. Similar
induction mechanisms due to magnetic fields have been
previously proposed within purely BCS pictures [42,43];
however, here retardation effects, that are captured by Eliash-
berg theory, are crucial for discussing induced odd-frequency
superconductivity [9].

A closer inspection of the induced function ;,j“d reveals that
each term in Eq. (16) contains y®, y, and y@® exactly
once, with different combinations of momentum and fre-
quency dependencies. Consequently, ;" = 0 in the normal
state because then ¢; and therefore y ) identically vanishes
[compare Eq. (7)]. We can therefore safely conclude that ;,i“d
describes physics of the superconducting state.

Next, we want to examine the frequency symmetry of
g“,i“d, which we do here by neglecting the momentum depen-
dence for the moment. We can safely assume that Z,, is even
along the Matsubara frequency axis, therefore, Z,, = Z_,,_,

and likewise for x,, and ¢,,. From the definitions in Eq. (7)
2) (x) 0

it directly follows that y, ) = =Y m—t> Yul! =¥ ._y, and
(# = »® _ For the sake of the argument, let us define

— VA (@)
le - Z Vm*mlvmlfmzyn(ﬂ)y/7(1)2()ym27m1+m7

my,my

a7

which is representative for each term in Eq. (16). Note that we
write the definition of m3 = my — m; + m here explicitly. The
function B, has fermionic Matsubara frequency symmetry,
so we need to consider B_,,_;. Replacing m with —m — 1
in Eq. (17) changes V,,_,, to V_, _n—1 and ynf)_,nlm to
yrff)_ i —m—1- We therefore make the definition /i, = —m; — 1
or, equivalently, m; = —m; — 1. Since the summation over
index m; includes all integers, we alternatively sum over index
mp, So as to get

Z @)
ﬂfmfl = Z lefmvfmlflfmz)/im)]_IV,f,f))/mf+m,_m- (18)
my,my
Next, we make a similar definition as before, i, = —m, — 1,
leading to
— 2) x) (@)
ﬂ*m*1 - Z le*mV’hZ*’hlyfﬁnflyfrhgflyﬁllfﬁzzfmfl‘ (19)
Ty 7y

As a last step we invert the frequency index of each function
on the second line of Eq. (19), using the aforementioned
symmetries. After renaming the dummy indices 7; and 7,
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to m; and my, respectively, we arrive at

Bm = —B-m-1- (20)

From here it is trivial to show that all terms in Eq. (16) obey
this particular symmetry, hence, ;,i“d is an odd-frequency pair-
ing function. Note that this does in itself not imply a breaking
of time-reversal symmetry [2,44]. The spin-triplet part of
the pair wave function can, however, break time-reversal
symmetry [2].

When focusing on the momentum dependence, it is more
difficult to make concrete analytical statements. This is due to
the fact that the BZ symmetries of ¢ and yx are a priori not
known. We return to this aspect in Sec. III A when presenting
our numerical results.

As mentioned before, we assume even momentum-space
parity and neglect orbital and band degrees of freedom in this
work, hence, we can restrict our symmetry classification of
{,i“d to spin and frequencies. We have shown analytically that
the induced function is odd along the Matsubara frequency
axis, it therefore describes spin-triplet electron pairs [2] which
coexist with the even-frequency, spin-singlet Cooper pairs
described by ¢. Needless to say, all this interpretation is
needed only if ¢" is finite, which can not be guaranteed
from the functional form of Eq. (16). Therefore, we derive
in the following Sec. IIC the self-consistent equations gov-
erning the coexistence of superconducting states ¢, and .
This is a necessary step for showing that the vertex-corrected
electron-phonon interaction can support the spin-triplet
odd-frequency state.

C. Equations for coexisting pairing channels

We repeat the derivation of Sec. II A in the most general
way possible within the 2 x 2 Nambu space employed here.
The electron self-energy given by Eq. (3) remains valid, while
we modify the ansatz in Eq. (4) to

Sk = ioe(l = Zpo + Xihs + b1 + Gepan (21
i.e., we now explicitly include the p, channel. At this stage &
is just a mathematical definition, and we analyze its meaning
later. With Eq. (21) at hand, the electron Green’s function
reads as

A x)

Gi=ivPpo+ v+ v+ 7P (Q2)

© _

where we use the straightforward definitions 7y,

$k/ Oy and
O = lionZi]* — [& + xx)* — ¢f — ¢ (23)

Due to the self-consistent inclusion of ¢ in our Eliashberg
formalism, we get a total of four equations, reading as

T N N
a-1-Lyw, (y,;z) 7Y vk.kzy,gggwkﬁ),
ky

ko
(24)

=T Vi, (V,fl“ +T Y Vi Vi O %), (25)
ki

ky

¢ =-T Z Vit (J/k(fp) +T Z Vii—k, ?szli?)Vk;)» (26)
ki

ko

Go=-TY Vi (y,ff) +TY Vi 7 0F )?,@). 27)
ki

ka

Instead of the three-component vectors used in
Sec. ITA, Egs. (24)—(27) are defined in terms of
)7kT = (yk(z), yk(X), yk(‘z’) , ykm ). Likewise, the matrices Q,((‘)
are extended to a 4 x 4 pseudovector space, and read as

(Z) 0 (#) )

VY Yk Vi Yk
(x) (Z2) ) (@)
Q(Z) _ yk J/k yk _yk (28)
k| _., @ (9] @ )
Vi Yk Vi Vi
Z
_yk({) _7/1<(¢) J/k(X) _yk( )
zZ
_yk(X) _yk( ) yk(C) _yk(tl))
(Z) (x) (@) )
Q(X) _ _yk yk _yk _yk (29)
= o e o @ |
Yk Y Vi Vi
Z
Yo o @
V4
O 0 o
(%) (¢) (x) (2)
Q(¢) _ _yk yk yk yk (30)
ko (Z) ) (@) (Ol &
Yk Vi Vi Yk
Z
_yk(X) yk( ) _yk(f) _7/1<(¢)
Z
_yk(t) yk(llJ) _yk(X) _Vk( )
(#) ©) (Z) (x)
0¥ = 143 Yk Yk Vi 31)
= o o o el
Yk Yk Yk Yk
Z
yk( ) Vk(X) yk(¢) _yk(f)

As a crosscheck, it is instructive to inspect Eqs. (24)—(27)
with respect to their frequency symmetries. Starting with
xx and ¢, we know that the first summands of Egs. (25)
and (26), corresponding to the respective contributions due to

the lowest-order Feynman diagram, are even in wy since yk(X)

and yk(‘z’) are even in frequency. Further, in both equations the

vertex corrections give rise only to products yi, - Vi, - Vi, that
are even in wy. This conclusion can be drawn by considering
that yk(x ), yk(‘p) are even, while yk(z) , yk(g) are odd. The opposite
holds when considering the functions w;Z; and ¢, in Egs. (24)
and (27), respectively. Here, all first- and second-order contri-
butions are odd along the Matsubara frequency axis, such that
function Z; is even and ¢ is odd.

We note further that we can connect the current equations
to the theory of Sec. I A by setting ¢ = 0. As a consequence,
also yk(“ = 0 and we recover )7kT as three-component vectors.
Furthermore, for f = Z, x, ¢ we need to consider only the
upper 3 x 3 submatrix of Q,((f )| set yk@) = 0, and obtain the

matrix Pk(f ) as introduced in Sec. 11 A.

In the following sections we apply the here-introduced the-
ory to a cuprate model system. From here on, when referring
to an induced state ;‘,i“d, we mean that the vertex-corrected
Eliashberg equations for Zy, xx, and ¢ of Sec. Il A are
solved self-consistently. Afterwards we calculate ¢™ in a
“one-shot” calculation, which means that the odd-frequency
order parameter is not included in the self-consistent cycle,

but computed once, using Eq. (16). On the other hand, when
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meV
H1 5
—7r
d ind
(meV meV
™
1g Blg
Alg Blg
Alg Blg
Alg Blg

FIG. 1. (a)~(c) Computed self-consistent solutions to Egs.
(9)—(11) for the mass renormalization Z (a), chemical potential
renormalization x (b), and C,-symmetric even-frequency d-wave
order parameter ¢ (c). (d) Induced odd-frequency d-wave spin-triplet
order parameter. (e)—(h) Projections of the functions Z, x, ¢, and
¢ according to form factors £, with i =1,...,7. fél) =1,
f(z) = cos(k,) + cos(k ), f = cos(k;) cos(ky), f(4) = cos?(k,) +
cos?(ky), £ = sin?(k,) + sin?(k,), £¥ = cos(k,) — cos(k,), f” =
cos(k,) cos(ky)[cos(k,) — cos(k,)].

referring to function ¢, we mean the numerical solution from
the four coupled Eliashberg equations in Sec. I C. All calcula-
tions are performed with the Uppsala Superconductivity Code
(UPPSC) [8,45-49] (see also Appendix A for numerical de-
tails).

III. CUPRATE MODEL SYSTEM

We start the numerical analysis by considering a one-band
tight-binding electron energy dispersion that is representative
for the family of copper-based superconductors (cuprates).
The electron energies are defined as

& = —tD[cos(ky) + cos(k,)] — 1@ cos(ky) cos(ky) — 1
(32)

(a)/]r Cind (b)Tr ¢
(meV) (meV)
ky 0 / \ 0.5 ky 0 / \ 0.5
/ 0 \ / 0
\ 0.5 0.5
_7L7T 0 m _7171' 0 T
k. k.

FIG. 2. (a) Renormalized Fermi surface, colored by ¢ obtained
from a single-shot calculation. (b) Same as (a), but using the fully
self-consistent solutions to Egs. (24)—(27).

with nearest- and next-nearest-neighbor hopping energies
tM' =0.25eV and t® = —0.1 eV. The chemical potential
is fixed at u = —0.09 eV. This parameter choice renders a
well-nested Fermi surface (compare Fig. 2) characteristic for
the cuprates (see, e.g., Refs. [50,51] for a comprehensive
overview). The Einstein phonon frequency and electron-
phonon scattering strength are chosen here as Q2 = 50 meV
and gop = 150 meV, respectively.

A. Momentum dependence

Here we analyze the momentum structure of zero-
frequency components as found from Egs. (9)—(11) and
Eq. (16) at T = 60 K. In Figs. 1(a)-1(c) we show our results
for Z =Zxkm=—1, X = Xk,m=—1, and ¢ = ¢k n—_1, respec-
tively. As directly apparent from Fig. 1(b), the chemical
potential renormalization has a nematic BZ structure, i.e.,
a mixture of s-wave and si-wave symmetry that breaks
the tetragonal C4 to a C, rotational symmetry. The super-
conductivity order parameter ¢ has a d-wave shape with
seemingly small nematicity [37]. After solving Eqgs. (9)-
(11) self-consistently we calculate the induced odd-frequency
spin-triplet order parameter via Eq. (16). The result ™ =
¢ind | is shown in Fig. 1(d). Similarly as ¢ [37], ¢ obeys
d-wave symmetry arising from the nesting properties of &.
Additionally, we learn that the induced function ¢"® is ap-
proximately one order of magnitude smaller than ¢, and does
not seem to have a nematic component. Note that the here-
obtained (d-wave) odd-frequency order parameter is distinct
from the odd-frequency s-wave, spin-triplet order parameter
proposed originally by Berezinskii for *He [1].

For a closer investigation of the momentum symmetries
we define seven different form factors f W ¢ {1, cos(k )+
cos(k ), cos(ky)cos(ky), cos?(ky) + cosz(k ), sin®(ky) +

sin (k ), cos(ky) —cos(ky),  cos(ky)cos(ky)[cos(k,) — cos
k1), i=1, ,7. The form factors with indices
i=1,...,5 belong to the Ay, representation, while i = 6 and

i = 7 belong to the By, representation. Considering a function

h, we can get the contribution in / due to BZ dependence f %
by calculating the projection

Zk P e meo
Z|Zk l)hkm o|

In Figs. 1(e)-1(h) we show the contributions due to each f ()
for functions Z, x, ¢, and ¢™, respectively. Form factors

A(i)(h)

(33)
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belonging to the Ay, (B},) representation are highlighted with
purple (brown) background color. We have additionally tested
other BZ symmetries, but the ones shown in Fig. 1 are clearly
the most relevant.

From Fig. 1(e) we learn that the mass renormalization
function has no finite projection in the Bj, channel, which is
why Z is not nematic [compare also Fig. 1(a)]. Even though x
shows prevalent contributions from the A, representation, the
projections for i = 6 and i = 7 are non-negligible, which is
why the chemical potential clearly breaks C, rotational sym-
metry. A similar picture emerges for the C,-symmetric order
parameter ¢ [see Fig. 1(g)]; here the dominant representation
is Bi,, while small (but finite) contributions stem from Aj,.
Turning to the induced term ¢, the projections in the Ay,
channel are negligible to good approximation, which is why
we observe a non-nematic d-wave state in Fig. 1(d).

So far we have shown that the induced order parameter
is finite due to the vertex correction to Eliashberg theory,
and results from a mixing of different momentum-space sym-
metries. However, it remains to be shown that the actual
(renormalized) interaction can support such an odd-frequency
spin-triplet state, i.e., we need to solve the fully self-consistent
equations (24)—(27). We find that ¢ is in fact very similar
to the “one-shot” calculated ¢/". In Fig. 2(a) we show the
induced function ¢ as calculated before, projected on the
renormalized Fermi surface, which is given by the condition

&k + xkm=—11/Zk.m=—1 = 0. (34)

On the other hand, using the fully self-consistent results for
¢ = {k.m=—1 does hardly lead to significant changes, as can
be seen in Fig. 2(b). Both functions obey d-wave symmetry,
and are of similar magnitude. Our calculations also reveal
that the remaining functions Z, x, and ¢ are hardly affected,
depending on whether the odd-frequency spin-triplet order
parameter is included self-consistently, or calculated in an
isolated way.

B. Temperature evolution

In this section we discuss the temperature dependence of
the superconducting state for our cuprate model system de-
scribed by Eq. (32). For this purpose we define the experimen-
tally observable superconducting gap Ax = Pk m=—1/Zk.m=—1-
This function describes an energy gap due to even-frequency
spin-singlet Cooper pairs. Analogously, we define the odd-
frequency spin-triplet gap function as Nk = &k m=—1/Zk.m=—1
or, alternatively, n" = ¢ _ | /Zy u——1 when we are con-
cerned with the non-self-consistent induced order parameter
Gm—o-

We start by numerically solving Eqgs. (9)—(11) as function
of temperature, which leads to the blue circles in Fig. 3(a),
representing A(T) = m]?x|Ak(T)|. For all temperatures at

which A(T) is finite we find the same BZ symmetries as
in Sec. III A. The functional behavior of the even-frequency
superconducting gap is accurately modeled by

A(T) = RevJa — bT<, (35)

shown as solid blue curve. The variables a, b, and ¢ in
Eq. (35) are fitting parameters. The odd-frequency spin-triplet
order parameter n"4(T) = mkax|17i?d(T)|, as calculated from

(a) ’; 10k ;
NG
E ot _ o Data
) 10 x n™4(T") |—Fit
O 1 1 1 I @—0—0—0
0 20 40 60 80 100
T (K)
b) . . .
( )> 10 B o
2 |AMT)
E ot o Data
S 10 x n(A,T')|[——Fit
O 1 1 I I @—0—0—0
0 20 40 60 80 100
T (K)

FIG. 3. Temperature dependence of the even-frequency spin-
singlet (blue) and the odd-frequency spin-triplet gap function (times
10) (red). Open circles represent our computed results, while solid
lines are obtained from fitting our data to Egs. (35) and (36). (a) Re-
sults obtained from Eqgs. (9)—(11) and (16). (b) Self-consistently
computed temperature dependence from Eqs. (24)—(27).

Eq. (16), is shown in red color in Fig. 3(a). Again, open circles
represent our numerical results, while the solid line is found
from a functional fit, here given as

(T, n(T) =T Reva — bT*. (36)

As direct comparison to 7™ we also solved the fully self-
consistent equations (24)—(27) for n as function of 7', leading
to the curves shown in Fig. 3(b). It is directly apparent that re-
sults computed from the two different approaches only differ
marginally. The zero-temperature limit of the even-frequency
gap is in both cases fitted as A(T — 0) >~ 10 meV, while the
transition temperatures are given by 7. ~ 85 K. Further, we
learn that the odd-frequency gap can equally accurately be
determined in a single-shot or self-consistent calculation. This
confirms the observations already made in Sec. [IT A, i.e., it is
a good approximation to calculate ; (or equivalently ;) via
Eq. (16), requiring significantly less computational resources.

It is apparent in Fig. 3 that » — 0 meV for small tem-
peratures, which is consistent with earlier predictions [4,52],
while the even-frequency gap approaches a finite value A(0)
as T — 0 K. We note, however, that Fig. 3 contains only
very few points for small temperatures, which stems from the
necessary increase in the number of Matsubara frequencies
to ensure convergence, becoming computationally unfeasible
in the limit 7 — 0 K (see also Appendix A). Nonetheless,
it can be recognized from both Figs. 3(a) and 3(b), that our
results support the fitted behavior 1, n™(T — 0) = 0 meV
very accurately. To understand this trend, recall that the gap
function is evaluated at w,,—_; = —n T . Therefore, as T — 0,
the frequency also approaches zero energy. Since the order
parameter is an odd function, n and 7™ must also go to
zero in the limit 7 — 0. An explicit numerical proof that
our formalism provides the expected frequency even and odd
superconducting gap functions is given in Appendix B.

Our data reveal furthermore that the odd-frequency su-
perconducting gap is approximately one order of magnitude
smaller than its even-frequency counterpart. This finding is
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in agreement with previous adiabatic Eliashberg theory calcu-
lations of the odd-frequency gap using ab initio input [8,9].
However, in contrast to these previous works where the
odd-frequency order parameter gives rise to a paramagnetic
Meissner effect, here the obtained odd-frequency supercon-
ductivity is expected to lead to a diamagnetic response. This
occurs because the odd-frequency order parameter is real in
Matsubara space and therefore the London kernel (see [9]) is
always positive, giving a diamagnetic response. Conversely,
for magnetic-field-induced odd-frequency superconductivity
the corresponding order parameter is purely imaginary in
Matsubara space [8,9], which leads to a paramagnetic re-
sponse. Since in vertex-corrected Eliashberg theory both order
parameters are expected to yield a diamagnetic Meissner
effect, we suppose that this is the reason why it has been ex-
perimentally elusive so far. Therefore, it is natural to associate
the superconducting properties of the system with the domi-
nant even-frequency order parameter only. A possible way to
detect the here-predicted odd-frequency superconducting state
could be with muon spin-rotation spectroscopy (uSR) [2,20]
or with polar Kerr effect measurements [53,54], which are
two techniques that are sensitive to time-reversal symmetry
breaking in bulk materials. Polar Kerr effect measurements
did previously observe a time-reversal symmetry breaking in
the superconducting state of cuprate superconductors [53], but
further work is needed to investigate whether it is related to the
here-proposed induced odd-frequency superconductivity.

IV. SUMMARY AND DISCUSSION

We have shown that vertex corrections to the electron-
phonon problem in superconductors generally can lead to
a coexistence of even- and odd-frequency superconduct-
ing states. Our analysis reveals that, due to a mixing of
momentum-space representations, the dominant spin-singlet
even-frequency order parameter induces a spin-triplet odd-
frequency superconducting gap, which, in comparison, falls
short approximately one order of magnitude in amplitude.
Both order parameters have the same critical temperature and
are expected to yield a diamagnetic Meissner effect, hence,
there is no straightforward way of verifying the induced odd-
frequency spin-triplet Cooper pairs experimentally.

Our numerical results confirm the existence of a finite
odd-frequency d-wave order parameter in our cuprate model
system, serving as a proof of concept. Note that the nonadia-
batic mechanism of singlet-triplet Cooper-pair mixing is quite
general and does not rely on inversion-symmetry breaking.
Hence, we cannot rule out that a similar picture can be found
in other classes of superconductors, i.e., it is possible that the
induced state generically exists in a large variety of materials.
Even though it has been argued in the past that odd-frequency
superconductivity might only be realized for very anisotropic
electron-phonon interaction mediated by acoustic phonons [4]
or, alternatively, for spin-dependent couplings [5], our results
are obtained for a completely isotropic electron-phonon cou-
pling mediated by optical phonons. Our results are enabled by
the renormalized vertex function (see Refs. [33,37,38]), which
is closely associated with Fermi-surface nesting conditions.
This allows for a self-consistent and strongly anisotropic
interaction, supporting both even- and odd-frequency super-

conducting gaps to coexist. Our results furthermore imply that
a stronger realization of an odd-frequency order parameter
can be expected in nonadiabatic superconductors where vertex
corrections beyond Migdal’s approximation are important.

Lastly, it is currently an open question whether systems
with dominant odd-frequency order parameter exist. We spec-
ulate that, within the formalism used here, this is an unlikely
scenario because the primary even-frequency gap induces its
odd-frequency counterpart. However, if we would assume
odd-momentum-space parity, the situation would be different.
In this case, ¢ would still be dominant and describe spin-
singlet odd-frequency Cooper pairs with, e.g., p-wave BZ
symmetry, while ¢ would represent an induced spin-triplet
even-frequency order parameter, a scenario that we leave for
future investigations.
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APPENDIX A: COMPUTATIONAL DETAILS

All numerical results presented in this work have been
carried out with at least 32 momentum points along each
spatial dimension. We performed convergence checks with
larger grids to ensure that our calculations are reliable.
The number of Matsubara frequencies w,,, q;, with m,[ €
[—M, M — 1] was chosen as function of temperature, but al-
ways 2M 2 250. The vertex-corrected Eliashberg equations
are solved by using Fourier convolution techniques, which
is a crucial aspect of our implementation for the simula-
tions to be computationally feasible. For this purpose, all

(a) (b)
. 1
Q6
=% I 05}
g 2 4\ >
J\ P
a, 2\ R
-1 0 1z ‘
w (eV) £ o5l If
X > 1
| “— -1
-1 1
M wp, (eV)

FIG. 4. Calculated frequency dependence at 7 = 60 K of the
frequency even (a) and odd (b) superconducting gap functions Ay,
and 7y ,,. Different colors correspond to varying choices for the
momentum k on the X — I' line, as illustrated by the sketch below
(a), showing the third quadrant of the tetragonal BZ [X = (-, 0),
M= (—m,—m)].
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self-consistent functions must be interpolated to a larger fre-
quency grid [-3M, 3M — 1] at the beginning of each step of
the self-consistency cycle (see also Ref. [33]). As convergence
criterion, we set the threshold to the maximally allowed abso-
lute7change in Z, x, ¢ (and ¢, if included self-consistently) to
1077,

Usually, when taking the odd-frequency spin-triplet or-
der parameter ¢; self-consistently into account, i.e., solving
Egs. (24)—(27) instead of Egs. (9)—(11) and (16), the number
of iterations needed for convergence increases significantly.
It has been shown in the main text that it is often a good
approximation to use g“,i“d instead of ¢, to reduce the run time,
as both BZ symmetry and order of magnitude do not change.

APPENDIX B: FREQUENCY DEPENDENCE

Here we provide an explicit example of coexisting even-
and odd-frequency order parameters, obtained for our cuprate

model system at 7 = 60 K. The inputs for our calculation are
chosen as in the main text, and we focus here on solutions
of the four self-consistent Eliashberg equations (24)—(27). In
Figs. 4(a) and 4(b) we show the computed Ag, and 5y n,
respectively, as function of Matsubara frequencies. Below
Fig. 4(a) of this figure we show a sketch of the tetragonal
BZ, in which we choose momenta along the high-symmetry
line X — I'. The color bar, valid for the two main graphs,
corresponds to the arrow.

We directly observe that, as expected, A is an even and
n an odd function of frequency for all momenta. The largest
absolute values of both functions are found in the low-energy
regime, i.e., for Matsubara frequencies with index m = —1
and 0. Due to the d,2_,» symmetry of both gap functions,
we find the maximum gaps as function of k around the X
point, while A and 7 effectively vanish at the BZ center [com-
pare the results shown for the order parameters in Figs. 1(c)
and 1(d)].
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