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Magnetic field behavior in s + is and s + id superconductors:
Twisting of applied and spontaneous fields
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We consider magnetic field screening and spontaneous magnetic fields in s + is and s + id superconductors
both analytically and numerically. We show that in general, the linearized model couples the moduli of order
parameters to the magnetic modes. This causes magnetic field screening that does not follow the standard
exponential law and hence cannot be characterized by a single length scale: the London penetration length. We
also demonstrate that the resulting linear mixed modes, correctly predict spontaneous fields and their orientation.
We show that these mixed modes cause external fields to decay nonmonotonically in the bulk. This is observed
as the magnetic field twisting direction, up to an angle of π/2, as it decays in the nonlinear model. Finally,
we demonstrate that there are two nondegenerate domain wall solutions for any given parameter set. These are
distinguished by either clockwise or anticlockwise interpolation of the intercomponent phase difference, each
producing a different solution for the other fields. However, only domain wall solutions in s + id systems exhibit
magnetic field twisting.
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I. INTRODUCTION

Recent experiments have reported the discovery of an
s + is superconducting state in Ba1−xKxFe2As2 [1–3]. Such
spin-singlet pairing states, that spontaneously break time re-
versal symmetry, have long been predicted [4–10], along with
the related s + id states [11–13], to form in multiband super-
conductors. In an effective model, these are described by at
least two complex fields or order parameters.

Such states can host multiple interesting phenomena,
such as massless modes [5,14], mixed collective modes
[5,15–21], new flux flow phenomena [22], stable and
metastable skyrmions [23–25], new thermoelectric effects
[26,27], and new fluctuation-induced phases [3,28–30].

Both s + is and s + id systems are characterized not only
by spontaneous breakdown of time reversal symmetry (BTRS)
but also by the appearance of noncollinear gradients of the
intercomponent phase difference and relative densities around
impurities [1,31–33].

The nature of spontaneous magnetic fields near impurities
in these systems is different from that in chiral systems, such
as in p + ip superconductors [34–36]. Spontaneous magnetic
fields in s + is superconductors are more subtle, and their
existence has been a subject of recent debate [37,38]. It has
also recently been suggested that spontaneous fields around
impurities exist for s + id systems [11,27,32,39], due to the
noncollinear gradient terms.

In contrast to the better studied p + ip systems, the spon-
taneous fields generated in s + is superconductors have only
recently started to be explored [18,26,27,39–41]. In particular
in [33] a comparative study was presented of the magnetic
fields generated by domain walls in both s + is and s + id
superconductors.

Note that, we will also use “spontaneous magnetic field” to
refer to fields generated in response to applied external field
H but in a direction perpendicular to H.

To demonstrate why anisotropic BTRS s-wave systems
have such different properties, consider an ordinary super-
conductor, with a single order parameter ψ and no crystal
anisotropies. The system is well described by the London
model, exhibiting exponential decay of both the magnetic field
B and the matter field |ψ | (order parameter magnitude) away
from a defect in the superconducting state. This exponential
decay is governed by the London penetration depth λ and
coherence length ξ , respectively [42–44],

B = B0e−r/λ, |ψ | = u − |ψ0|e−r/ξ , (1)

restoring the fields to their ground state value (B, ψ ) = (0, u).
Introducing an additional order parameter to an ordinary

superconductor creates a two-component isotropic system.
This system also exhibits exponentially decaying physical
quantities. This decay is govern by a London penetration
depth λ and two coherence lengths ξα , one for the magnitude
of each component |ψα|, as well as an additional Leggett
mode for the phase difference between the two complex order
parameters.

Most superconducting materials are anisotropic. Multiband
s + is and s + id systems exhibit anisotropy in each band,
which can be calculated from the symmetries of the associated
Fermi surface. If there are nontrivial intercomponent gradient
couplings in a time-reversal-invariant system, then the London
and Leggett modes in general hybridize [17]. This leads to
the magnetic field and phase difference coupling, such that
each of the quantities decays as two competing exponentials
with different length scales. This can lead to nontrivial vor-
tex states or skyrmions [25,45]. However, if time reversal
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symmetry is broken then all modes are generically coupled,
including the order parameter magnitudes. For example, in a
p + ip superconductor in an inhomogeneous state, solutions
for each physical field in general are described by all of the
anisotropic length scales [36]. This complexity motivates the
systematic investigation of magnetic properties of s + is and
s + id superconductors.

In this paper, we will study an effective Ginzburg-Landau
(GL) model for s + is and s + id pairing symmetries. We will
expand previous studies of anisotropy effects, demonstrating
that such systems can only be described by anisotropic mixed
modes. Using this we will make two key experimentally veri-
fiable predictions for s + is and s + id systems. (1) Magnetic
field twisting: the mixed modes predict that the magnetic
field will twist direction when decaying from a defect. (2)
Spontaneous magnetic field: fluctuations in the matter fields,
due to coupled linear modes, must excite fluctuations in the
magnetic field.

Hence, excitations that are commonly associated with
purely the matter fields, such as domain walls and defects, in
s + is and s + id models will exhibit a spontaneous magnetic
response. This confirms previous numerical calculations that
have been performed for domain walls [33]. It has been sug-
gested that defects do not produce spontaneous magnetic field
in such models [37]. However, the work in this paper supports
the authors previous comment on this suggestion [38].

We will perform numerical simulations of both the Meiss-
ner state and domain walls, comparing the results with the
predictions of the linear modes. In particular, we will demon-
strate magnetic field twisting and spontaneous fields for both.

II. ANISOTROPIC 2-COMPONENT MODEL

We consider a multiband dimensionless anisotropic
Ginzburg-Landau (GL) free energy,

F =
∫
R3

(
1

2
Qαβ

i j (Diψα )∗Djψβ + (∇ × A)2

2
+ FP

)
, (2)

where we have used Greek indices to denote components of
the order parameter ψα and Latin indices for spatial directions.
Repeated indices will denote summation throughout. Such
models can be microscopically derived (e.g., in Ref. [46]).
We are interested in two-component models, thus the order
parameter for the condensate is represented as two complex
fields,

ψα = ραeiθα (3)

where α ∈ {1, 2}. As GL theory is a U(1) gauge theory, we
include a gauge field Ai and corresponding covariant deriva-
tive Di = ∂i − iAi. The gauge invariant magnetic field is then
Bk = εi jk∂iA j . We find the GL field equations by taking the
variation of Eq. (2) with respect to the fields ψα and Ai,

Qαβ
i j DiDjψβ = 2

∂Fp

∂ψα

(4)

−∂ j (∂ jAi − ∂iA j ) = Im
(
Qαβ

i j ψαDjψβ

)
, (5)

where Eq. (5) is the anisotropic version of Ampère’s law and
thus we define the right-hand side of this equation to be the
supercurrent Ji.

TABLE I. General form of the anisotropy matrices for s + is and
s + id systems, derived from a microscopic model of a clean three-
band iron based system [46].

s + is s + id

Q11 =
⎛
⎝a1 0 0

0 a1 0
0 0 b1

⎞
⎠ Q11 =

⎛
⎝a1 0 0

0 a1 0
0 0 b1

⎞
⎠

Q22 =
⎛
⎝a2 0 0

0 a2 0
0 0 b2

⎞
⎠ Q22 =

⎛
⎝a2 0 0

0 a2 0
0 0 b2

⎞
⎠

Q12 =
⎛
⎝a3 0 0

0 a3 0
0 0 b3

⎞
⎠ Q12 =

⎛
⎝a3 0 0

0 −a3 0
0 0 b3

⎞
⎠

The gradient term in Eq. (2) is positive definite, hence
the ground state solutions are the constant configurations that
globally minimize Fp. As the potential term must be gauge
invariant, it can only depend on the condensate magnitudes ρα

and the phase difference θ12 := θ1 − θ2. The phase difference
terms will determine the symmetry of the target space, where
BTRS ground states exhibit spontaneous symmetry breaking
to a U(1) × Z2 symmetry. We choose the simplest BTRS term,

Fp = V (ρ1, ρ2) + η

8
ρ2

1ρ2
2 cos 2θ12, (6)

where η > 0. This choice for the potential leads to a degen-
erate ground state, corresponding to two gauge inequivalent
solutions θ12 = ±π/2. The remaining potential terms are as-
sumed to be of the traditional form,

V (ρ1, ρ2) = ααρ2
α + βα

2
ρ4

α + γ ρ2
1ρ2

2 , (7)

where αα < 0, βα > 0, and η/8 − γ < βα so that the nonzero
minimum value of ρα = uα > 0 and both condensates are
superconducting. A direct consequence of the Z2 degeneracy
in the ground state is the existence of domain wall solutions.
These one-dimensional defects occur when the phase differ-
ence interpolates between the two disconnected ground state
values, θ12 = ±π/2, forming a two-dimensional wall in the
order parameter.

The difference between this system and a standard mul-
ticomponent GL model is the anisotropy matrices Qαβ . To

ensure that the energy is real they must satisfy Qαβ
i j = (Qβα

ji ).
Note that for an s + is or s + id system, the form of these

matrices can be derived from a microscopic model, by start-
ing with a clean three-band model, relevant for iron based
compounds. It has been shown that under certain conditions
a three-band model is described by the above two compo-
nent GL model [46]. The form of the anisotropy matrices is
derived from the symmetries of the Fermi surface (see, e.g.,
Refs. [32,46]) and is given in Table I.

The s + is matrices exhibit a continuous SO(2) symmetry
about the z axis. They also exhibit an additional C2 twofold
symmetry about the x and y axes giving a symmetry of C2 ×
C2 × SO(2). In contrast the s + id model has only a twofold
symmetry in the basal (x, y) plane, leaving the system with
just a C2 × C2 × C2 symmetry.
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III. LINEARIZED MODEL

We now consider the spatial dependence of fields decaying
far from some defect. Generally this is governed by the non-
linear GL equations (5), which must be solved numerically.
However, fields are observed to decay to their ground state
values far from a given excitation. Hence, we can approximate
the long-range behavior of excitations by assuming that the
fluctuations of fields about their ground state values is small,
linearizing the equations of motion.

The standard approach is to consider each field individu-
ally, expanding the field about its ground state value while
keeping all others constant. In the standard GL model, this
leads to the famous London model for fluctuations in the
magnetic field B and a separate matter equation for pertur-
bations in the single condensate magnitude |ψ |. Whether the
superconductor is of type I or type II can then be determined
by which of these has the longer length scale. However, the
correct derivation of this result should be to linearize all fields
together, showing that in the linear limit the magnetic and
matter equations of motion decouple.

These two approaches ultimately lead to the same result for
a single component superconductor. However, for a multicom-
ponent anisotropic model it has been shown that the magnetic
and matter equations do not in general decouple in the linear
limit [17,36]. Hence, we cannot rely on the London model
to describe the magnetic response of our system and must
expand around all quantities simultaneously.

We will first write our energy functional in terms of gauge
invariant quantities. To achieve this, we introduce a new gauge
invariant vector field,

pi := Ai − ∂iθ�, θ� := 1
2 (θ1 + θ2), (8)

which is well defined wherever ρ1 and ρ2 are both nonzero.
Since the aim is to describe the system in regions where the
condensates are close to their (nonzero) ground state values,

this restriction is not problematic. Note that the magnetic field
Bk = εi jk∂i p j . This gives us the minimal set of gauge invariant
quantities (ρα, θ�, pi ), where

θ� := 1
2 (θ1 − θ2). (9)

The condensates may be conveniently expressed

ψα = ραei(θ�+dαθ� ), (10)

at the cost of defining the coefficients dα = (−1)α+1.
Localization of magnetic fields and characteristic length

scales, can typically be assessed by linearizing the theory
around the ground state. To that end, one assumes that, far
from any defect, the gauge invariant quantities decay to one
of the possible ground state values (ρα, θ�, pi ) → (uα, θ0, 0).
Note that θ0 = 0 or π/2 in the phase (anti)locked case and
θ0 = ±π/4 for s + is, s + id and p + ip materials, which
break time reversal symmetry. This is because we have defined
θ� to be half the phase difference θ12. Defining the quantities,

εα := ρα − uα, ϑ := θ� − θ0, (11)

the system is close to the chosen ground state precisely when
εα , ϑ , and pi are small. As these are small, we then assume
that only linear terms contribute to the field equations, which
we may derive by expanding the free energy up to quadratic
terms in (εα, ϑ, pi ) and considering its variation. It will be
convenient to define the matrices,

Qαβ
i j := Qαβ

i j exp i(dβ − dα )θ0, (12)

which enjoy the same symmetry as the anisotropy matri-

ces: Qαβ
i j = Qβα

ji . Note that Q11 = Q11, Q22 = Q22, Q12 =
e−2iθ0 Q12, and Q21 = e2iθ0 Q21, so passing from Q to Q
amounts to twisting the off-diagonal matrices by the ground
state value of the phase difference. With this notation, the
linearized free energy density is

Elin = 1
2Q

αβ
i j (∂iεα + iuα (pi − dα∂iϑ ))(∂ jεβ − iuβ (pi − dβ∂iϑ ))

+ 1
4 (∂i p j − ∂ j pi )(∂i p j − ∂ j pi ) + 1

2Hαβεαεβ + Hα3εαϑ + 1
2H33ϑ

2, (13)

where Hab is the 3 × 3 Hessian matrix of second partial derivatives of FP with respect to the variables (ρ1, ρ2, θ�) evaluated at
the chosen ground state, (u1, u2, θ0). This leads to the linear equations of motion,

−Rαβ
i j ∂i∂ jεβ − Iαβ

i j uβ (∂i p j − dβ∂i∂ jϑ ) + Hαβεβ + Hα3ϑ = 0, (14)

−Rαβ
i j uαuβdα (dβ∂i∂ jϑ − ∂i p j ) + Iαβ

i j uβdβ∂i∂ jεα + H3αεα + H33ϑ = 0, (15)

−∂2
j pi + ∂i∂ j p j − Iαβ

i j uα∂ jεβ + Rαβ
i j uαuβ (p j − dβ∂ jϑ ) = 0, (16)

where R and I denote the real and imaginary parts of Q,
respectively. From Eq. (16), or by direct calculation, we may
deduce that the total supercurrent, to linear order in small
quantities, is

Ji = Iαβ
i j uα∂ jεβ − Rαβ

i j uαuβ (p j − dβ∂ jϑ ). (17)

We note that the coupling of the equations depends critically
on whether I is nonzero, and that this may happen even if

the original Q matrices are purely real if the ground state has
complex phase difference (meaning θ12 �= 0, π ).

The linearized field equations are, in general, anisotropic,
so the length scales describing decay from a localized defect
to the ground state depend on the spatial direction along which
decay occurs. To analyze this, we choose and fix a direction n
in physical space and then impose on Eqs. (14)–(16) the ansatz
that εα , ϑ and pi are translation invariant orthogonal to n. In
practice, the most convenient way to implement this ansatz is
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to rotate to a new coordinate system (x1, x2, x3), such that the
x1 axis is aligned with our chosen direction n. We then seek
solutions which are independent of (x2, x3).

This amounts to choosing an SO(3) matrix R whose
columns are the chosen orthonormal basis, the first of which is
n and then transforming the Q matrices according to the rule

Qαβ �→ RT QαβR. (18)

Note that the phase-twisted anisotropy matrices Qαβ and their
real and imaginary parts Rαβ, Iαβ also transform in the same
way.

Having rotated our coordinate system and imposed the
ansatz that εα , ϑ and pi depend only on x1, the linearized
field equations (14)–(16) reduce to a coupled linear system
of ordinary differential equations for

�w(x1) = (ε1(x1), ε2(x1), ϑ (x1), p1(x1), p2(x1), p3(x1)) (19)

where we have written the gauge invariant vector field pi in
the new basis. The resulting coupled linear system may be
economically written,

Ad2 �w
dx2

1

+ B d �w
dx1

+ C �w = 0, (20)

where A, B, and C are the real 6 × 6 matrices.

A =
(

a 0
0 a′

)
, (21)

a :=

⎛
⎜⎝

−R11
11 −R12

11 I1β

11 uβdβ

−R21
11 −R22

11 I2β

11 uβdβ

I1β

11 uβdβ I2β

11 uβdβ −Rαβ

11 uαuβdαdβ

⎞
⎟⎠, (22)

a′ := diag(0,−1,−1,−1), (23)

B =
(

0 b
−bT 0

)
, (24)

b :=

⎛
⎜⎝

−I1β

11 uβ −I1β

12 uβ −I1β

13 uβ

−I2β

11 uβ −I2β

12 uβ −I2β

13 uβ

Rαβ

11 uαuβdα Rαβ

12 uαuβdα Rαβ

13 uαuβdα

⎞
⎟⎠, (25)

C =
(
H 0
0 〈R〉

)
, (26)

〈R〉i j := uαR
αβ
i j uβ. (27)

Note that A and C are symmetric while B is skew, and that
all the matrices depend implicitly on the chosen direction n
through the transformation Eq. (18).

The linearized system of field equations (20) describes how
a system recovers from a perturbation in the n-direction, under
the assumption of translation invariance orthogonal to n (for
example, how the system behaves near the boundary of a
superconductor with normal n, subject to an external magnetic
field). We seek solutions of the form

�w(x1) = �ve−μx1 , (28)

where �v is a constant vector and Reμ > 0, so that all fields
decay to their ground state values as x1 → ∞. We interpret �v
as a normal mode of the system about the chosen ground state,
μ as the associated field mass, and λ = 1/μ as the associated

length scale. Given such a solution, let �z = −μ�v. Then (�v, �z)
satisfies the linear system

�

(
�v
�z
)

= 1

μ

(
�v
�z
)

, (29)

where � is the 12 × 12 matrix

� :=
(
C−1B C−1A
−I6 0

)
. (30)

Hence, λ = 1/μ is an eigenvalue of �. Conversely, given an
eigenvector (�v, �z) of � corresponding to a nonzero eigenvalue
1/μ, �z = −μ�z and Eq. (28) is a solution of Eq. (20).

We conclude, therefore, that the length scales associated
with decay to the ground state in the fixed direction n are those
eigenvalues of �(n) with positive real part. Such eigenvalues
are solutions of the degree 12 polynomial equation:

det(A − λB + λ2C) = 0. (31)

It follows from the symmetry properties of A, B, and C that
Eq. (31) is actually a real degree 6 polynomial equation in λ2,
so if λ is a solution, so are −λ, λ, and −λ. Note that 0 is an
eigenvalue of � of algebraic multiplicity 2 with eigenvector
(0, . . . , 0, 1, 0, 0). This should be discarded as it does not
correspond to a solution of Eq. (20). Of the remaining 10
eigenvalues, precisely 5 have positive real part: these are the
five length scales we seek. Let us order them by decreasing
real part λ1, λ2, . . . , λ5. We call �v1, the mode corresponding
to the longest length scale λ1, the dominant mode since,
generically, at large x1, this will dominate the solution of
Eq. (20). Depending on the details of the defect being studied,
it may be, however, that the dominant mode is unexcited, so
subleading modes �v2, �v3, . . . may still be phenomenologically
important.

It is important to note that we have not followed the stan-
dard simplified approach to dimensional reduction; we have
retained all three components for pi. The standard approach,
in contrast, assumes that any local magnetic field always
occurs in a single direction, with a single attributed length
scale, requiring the retention of only a single component for
pi. This is only valid if the magnetic modes are entirely decou-
pled from the matter modes. If they are coupled, spontaneous
magnetic field can be excited in any coupled direction, due
to excitations in the matter fields. This can cause the excita-
tion of magnetic where one might not expect it, or a change
in the local field direction. As we see from the linearized
field equations, generically the anisotropy couples all fields
together and we must retain all components of pi, and hence
the magnetic field. If we neglect any of these components, our
ansatz becomes incompatible with the field equations.

In general, the masses μi = 1/λi associated with the mixed
modes �vi are complex. This causes the fields at large x1 to
behave differently from the standard monotonic Meissner ef-
fect. Instead, the fields will exhibit oscillatory behavior as they
decay, with a frequency determined by the imaginary part of
μi. For all parameter sets studied in this paper, the imaginary
part of μi gave periods much larger than the length scales of
the modes. Hence, any oscillatory behavior for s + is or s + id
states should be heavily damped and unobservable in experi-
ment for the parameters we considered. However, note that os-
cillatory linear modes are observable in p + ip systems [36].
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A. Mixed modes

In an isotropic multicomponent superconductor, the nor-
mal modes vi are separated into matter modes: those
associated with the coherence length (linear combinations of
the modulus of the order parameters [47,48]) as well as the
phase difference (Leggett) mode; and magnetic modes: those
associated with the magnetic penetration depth. Our analysis
reproduces these separate real length scales (coherence length
and magnetic penetration depth) in the isotropic limit Qαβ

i j =
δαβδi j .

Away from the isotropic limit, and in particular for the case
of s + is and s + id superconductors, the normal modes are
associated with linear combinations of magnetic and matter
degrees of freedom. Hence, we should consider all excitations
of our system in terms of these mixed modes �vi and their
corresponding length scales λi, as familiar quantities such
as the London penetration length do not exist. This leads
to an important physical consequence; a general excitation
decays with coupled modes, inducing spontaneous magnetic
fields.

By spontaneous magnetic fields, we mean emerging local
nonzero magnetic field, despite no matching applied external
field. Hence, if there is no applied field to the material, a
defect or domain wall will still exhibit local magnetic field.
Alternatively, if we apply an external field, such as in the
Meissner state, the linearization still predicts local magnetic
field orthogonal to the applied field direction (which is not
excited by the applied field itself).

In addition to domain walls and defects, if we apply
an external field H , such as for the Meissner state, the
spontaneous fields will cause magnetic field twisting. If the
magnetic component of a coupled mode is not parallel to
H , the induced magnetic field will twist the local magnetic
field away from the direction of H . Hence, in general we
would expect the local magnetic field induced by the Meiss-
ner state to twist its direction as it decays into the bulk of
the superconductor.

It is useful to have a measure of how mixed a given mode
is. We can achieve this by considering a general mode as a
vector in a five-dimensional space. Note that while the modes
are six-dimensional, v4

i is redundant (it does not contribute
to either the magnetic field or the condensates) and will be
excluded for this discussion. We define the quantity θ i

m as the
mixing angle of the ith mode,

cos θ i
m =

√∣∣v1
i

∣∣2+∣∣v2
i

∣∣2 + ∣∣v3
i

∣∣2︸ ︷︷ ︸
matter modes

, sin θ i
m =

√∣∣v5
i

∣∣2+∣∣v6
i

∣∣2︸ ︷︷ ︸
magnetic modes

.

(32)
Conceptually, the mixing angle is then the angle that the
five-dimensional vector makes with the region in this space
representing pure matter modes. This allows us to classify
each mode as either purely matter (θ i

m = 0), purely magnetic
(θ i

m = π/2) or mixed (0 < θ i
m < π/2). The angle can be used

as a numerical measure of the strength of the mixing. When a
mode exhibits a large density component and small magnetic
component, we call such a model density-dominated or vice
versa.

B. Long-range dominant modes

To understand a given field at a long range, we must first
consider the leading mode �v1. If this mode is excited by the
excitation (c1 �= 0), then �v1 is the dominant eigenvector for
that field and the long-range behavior is described by that
mode. However, if the mode is not excited, then we must
consider the next mode �v2 and so on. Hence the dominant
mode at long range will be the first excited mode.

Previous work has assumed that B2 = B1 = 0, forcing any
spontaneous magnetic field to be in the x3 direction. However,
in our case, we consider the more general situation, where
the magnetic field is everywhere orthogonal to x1 but is not
assumed to lie in a fixed direction in the (x2, x3) plane. Hence,
for a given linear solution, the magnetic field in our chosen
orthonormal basis is Blin(x1) = (0,−p′

3, p′
2), so the direction

of spontaneous magnetic field for a given mode can be ap-
proximated as

Blin ‖ Re
(
0, v6

i ,−v5
i

)
. (33)

The dominant eigenvalue with magnetic component will
determine the direction of the magnetic field at long range. If
this does not match the magnetic field direction for the nonlin-
ear part of the defect (for example the spontaneous magnetic
field for a domain wall, or the direction of external field for a
Meissner state), then the magnetic field will exhibit twisting as
the fields decay spatially from x1 = 0 (nonlinear dominated)
to x1 → ∞ (linear dominated). This will be most obvious for
the Meissner state, where the magnetic field direction can be
fixed to be any orthogonal direction on the boundary of the
system, allowing up to π/2 twisting to occur.

C. Summary and results

The solutions to the linear equations above, for the parame-
ters given in the Appendix, are plotted in Fig. 1 for s + id and
Fig. 2 for s + is. In both figures, we generally see significant
mixing, dependent on the orientation of n (the direction along
which the fields vary). For both s + is and s + id , we observe
that when n corresponds to a crystal axis (n = x̂, ŷ or ẑ), all
mixing disappears. This suggests that excitations with fields
that vary solely in the direction of a crystal axis, will exhibit
no spontaneous magnetic fields.

If we consider some specific values of n =
(cos ω sin ϕ, sin ω cos ϕ, sin ϕ) for s + id superconductors,
we can understand what the linearization predicts in detail.
For example, consider ϕ = 0, ω = π/4 leading to the linear
solution,

μ1 = 0.33, v1 = (0, 0, 0.91, 0.27, 0, 0)T ,

μ2 = 0.39, v2 = (0, 0, 0, 0, 0, 1)T ,

μ3 = 0.65 ± i0.084, v3 =

⎛
⎜⎜⎜⎜⎜⎝

0.343 ∓ i0.12
−0.044 ∓ i0.144

0
0

−0.55 ∓ i0.485
0

⎞
⎟⎟⎟⎟⎟⎠,

μ4 = μ3, v4 = v3,

μ5 = 1.63, v5 = (0.0297, 0.509, 0, 0,−0.116, 0)T ,
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FIG. 1. Plot of the linear mode mixing θm and masses
μ for an s + id superconductor with parameters given in
the Appendix. The direction of the field variation is x̂1 =
(cos ω cos ϕ, sin ω cos ϕ, sin ϕ), with ϕ = 0 (basal plane) for the left
plot and ϕ = π/4 for the right plot. ω determines the angle about
the z-axis. The top panels plot the masses (inverse length scales)
μi = 1

λi
. Each μi is a different color, with the real part plotted as

a solid line and the imaginary part as a dashed line of the same color.
The bottom panel plots the mixing angle θ i

m of each mode, where
the colors of the modes match the colors of the corresponding mass
above (note θm = 0 is a pure matter mode and θm = π/2 is a pure
magnetic mode). It can be seen that the linear modes for an s + id
system decouple when the fields vary in the direction of a crystalline
axis but nontrivially couple when they do not.

where we have used our freedom to set x3 = z. There are three
mixed modes here v3, v4 and v5, which all couple magnetic
field in the x3 = z direction with the matter fields. Hence,
for a linearly dominated system we would expect sponta-
neous magnetic field only in the z-crystalline axis direction.
The leading length scale is the phase difference mode v1

followed by the purely magnetic mode v2. This means if
the mode v2 is excited, the magnetic field will twist in the
x̂2 = (−1/

√
2, 1/

√
2, 0) direction.

FIG. 2. Plot of the linear mode mixing θm and masses μ for an
s + is superconductor with parameters given in the Appendix. The
direction of the field variation is x̂1 = (cos ϕ, 0, sin ϕ), where ϕ = 0
corresponds to the basal plane. Note that an s + is superconductor
is SO(2) symmetric about the z axis. The top panel plots the masses
(inverse length scales) μi = 1

λi
. Each μi is a different color, with the

real part plotted as a solid line and the imaginary part as a dashed
line of the same color. The bottom panel plots the mixing angle θ i

m

of each mode, where the colors of the modes match the colors of the
corresponding mass above (note θm = 0 is a pure matter mode and
θm = π/2 is a pure magnetic mode). It can be seen that the linear
modes for an s + is system decouple when the fields vary in the basal
plane or the z-axis direction, but nontrivially couple when they do
not.

If we consider the linear solution on any great circle that
connects crystalline axes, e.g. n = (cos ω, sin ω, 0) or x̂1 =
(cos ω, 0, sin ω) for ω ∈ [0, 2π ], the behavior of the linear
modes is similar to that discussed above. Hence, they will
all exhibit mixing for a single magnetic field direction. Note
that, due to the SO(2) symmetry of s + is superconductors, all
orientations can be described by the second of these families
and hence exhibit this mixing behavior.

If we consider a direction for s + id that is not on one
of these great circles e.g. ϕ = π/2 and ω = π/2, or n =
(1/2, 1/2, 1/

√
2), we observe mixing in multiple magnetic

field directions. The linear solution for this orientation has
modes corresponding to four different spontaneous magnetic
field directions, leading to a complicated spontaneous mag-
netic field response, with nontrivial magnetic field twisting.
However, we can predict that at long range x1 → ∞, the
leading mode μ1 will dominate and the magnetic field will
twist approximately in the x̂2 = (−1/

√
2, 1/

√
2, 0) direction.

IV. MEISSNER STATE

We now consider the effect of applying an external mag-
netic field to a superconducting material, requiring us to
solve the full nonlinear equations of motion in Eq. (5). In
particular we model a superconductor/insulator boundary as
a semi-infinite superconductor � occupying the half-space
x1 � 0, where x̂1 is the inward pointing normal. An external
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magnetic field H = H0x̂3, orthogonal to the boundary nor-
mal (x̂1 · x̂3 = 0) is applied. This excites the superconducting
fields, that decay orthogonally from the boundary into the
bulk of the system, dimensionally reducing the problem to a
one-dimensional variational problem on x1 ∈ [0,∞).

We first perform a transformation of coordinates from the
crystaline basis (x, y, z) to the excitation basis (x1, x2, x3).
Note, our new first coordinate is the inward pointing normal
and the direction of field variation x̂1; and the third is the exter-
nal field direction x̂3 = Ĥ . This coordinate transformation is
performed by transforming the anisotropy matrices according
to Eq. (18).

This allows us to dimensionally reduce the nonlinear field
equations to the half-line, by substituting the following ansatz
into Eq. (5):

ψα = ψα (x1),

A = A1(x1)x̂1 + A2(x1)x̂2 + A3(x1)x̂3, (34)

As the fields are dependent on x1 only, the mag-
netic field has two nonzero components B = (0, B2, B3) =
(0,−∂1A3, ∂1A2), both orthogonal to x1. Due to our choice
of orthonormal basis, B3 measures the strength of the local
magnetic field in the direction of the applied external field and
B2 the strength orthogonal to this.

We emphasize that the familiar way of considering a
one-dimensional excitation, is to retain only one gauge field
component (A2), effectively fixing the magnetic field direction
in the applied field direction x̂3. It is clear that this ansatz is not
consistent with the field equations Eq. (5) for general choices
of anisotropy Q. Hence, numerically minimizing F with a
single gauge field component will not lead to solutions of
the full three-dimensional equations of motion. While we can
assume the fields have translational symmetry (independent
of x2 and x3), we must retain all three gauge field components
and hence two orthogonal directions of magnetic field B2 and
B3.

By retaining all three components of the gauge field, we
open up the possibility of magnetic field twisting. To measure
this, we will consider what we dub the twisting angle,

cos θt = (
B3/

√
B2

3 + B2
2

)
. (35)

Once translational invariance is applied, we seek global
minimizers of the Gibbs free energy of the system,

G =
∫

�

F − Hi

∫
�

Bi +
∫

∂�

Fsurf (36)

subject to natural boundary conditions (detailed in the Ap-
pendix), where F is the free energy density. Since we are
interested in the bulk behavior in this paper, we neglect surface
contributions [49] and set Fsurf = 0. The external field Hi has
no effect on the bulk equations of motion in (5) and leads to
purely boundary effects. The sample is assumed to be infinite
in size, with the right-hand numerical boundary deep in the
bulk, which can be fixed without loss of generality to the
ground state,

ψ1 = u1, ψ2 = u2ei π
2 , Ai = 0. (37)

We numerically evolved the system in Eq. (36), using a
gradient decent method, where we have discretized the model

on a regular one-dimensional grid of N lattice sites with
spacing h > 0. The plots in this section were simulated with
values N = 1001 and h = 0.05. We approximated the first-
and second-order spatial derivatives using central fourth-order
finite difference operators, yielding a discrete approximation
Edis to the functional G(φ), where φ = (ψα, Ai ) are the col-
lected fields. Mathematically, this is a function Edis : C →
R, where the discretized configuration space is C = (C2 ×
R3)N � R7N . Hence, we represent the field configuration by a
vector φ ∈ R7N . To find a local minimum of Edis with respect
to the collected fields φ, we use an arrested Newton flow algo-
rithm. That is, we solve for the motion of a notional “particle”
in C, with trajectory φ(t ), moving according to Newton’s law
in the potential Edis,

φ̈i = −∂Edis(φ)

∂φi
, (38)

starting from rest (φ̇(0) = 0) at an initial configuration φ(0) ∈
C. The time evolution is approximated using a simple Euler
method. That is, we evolve the configuration from time t to
time t + δt by the rule

φi(t + δt ) = φi(t ) + δt φ̇i(t ), (39)

φ̇i(t + δt ) = φ̇i(t ) − δt
∂Edis

∂φi

∣∣∣∣
φ(t )

, (40)

where δt > 0 is a fixed small parameter (typically δt = 0.1h).
Evolving this algorithm initially causes the configuration φ(t )
to roll downhill, that is, to relax towards a local minimum,
where

∂Edis

∂φi
= 0. (41)

If the algorithm is left to run without any damping, φ(t )
will overshoot the minimum and oscillate indefinitely, so we
implement an arresting criterion: as soon as

dEdis(φ)

dt
=

7N∑
i=1

∂Edis(φ)

∂φi
φ̇i > 0 (42)

we set φ̇(t ) = 0 and restart the flow [from φ(t )]. This condi-
tion can be thought of as the force or acceleration being in the
opposite half-plane to the velocity. Another commonly used
arresting condition is that energy increases on the current time
step:

Edis(φ(t + δt )) > Edis(φ(t )).

Of course, this condition is equivalent to ours in the con-
tinuous time limit (δt → 0), and is, perhaps conceptually
simpler, but has the (significant) disadvantage that it requires
the computation of Edis at each time step. In summary, our
time stepping algorithm is

φi(t + δt ) = φi(t ) + δt φ̇i(t ),

φ̇i(t + δt ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ∂Edis
∂φ

∣∣∣∣
φ(t )

· φ̇(t ) > 0,

φ̇i(t ) − δt ∂Edis
∂φi

∣∣∣∣
φ(t )

otherwise.

(43)
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FIG. 3. Meissner state for an s + id (top) and s + is (bottom) system with boundary normal x̂1 = (1, 0, 0) and external magnetic field H =
0.1(0, cos χ, sin χ ). The boundary is at x1 = 0, where B3 measures the strength of local magnetic field in the external magnetic field direction.
Comparatively B2 gives the strength of local magnetic field orthogonal to the external field direction, such that B3(0) = 0.1, B2(0) = 0. The
twisting angle is given in Eq. (35) and determines the amount the local magnetic field twists away from the external field direction. We have
also plotted the normalized energy density F̂ = F − F0, the condensate densities ρ1, ρ2 and phase difference θ12 = θ1 − θ2. We can see that
the magnetic field twists direction as it decays for both s + is and s + id , when the applied magnetic field is not in a crystalline-axis direction.

We continue this time evolution until the condition in Eq. (41)
is met within a given tolerance,

max
i∈{1,2,...,7N}

∣∣∣∣∂Edis(φ)

∂φi

∣∣∣∣ < tol. (44)

The results reported below used tol = 10−6.

A. Meissner state results

We simulated the boundary problem described above for
the parameters given in the Appendix. We simulated multiple
orientations of boundary normal x̂1 and applied magnetic field
x̂3, uniquely defining the orthonormal basis in Eq. (18), with
external field strength H0 = 0.1.

In Fig. 3, the Meissner state with normal x̂1 = (1, 0, 0) is
plotted, where the applied magnetic field direction is x̂3 =
(0, cos χ, sin χ ) for χ = 0, π

4 , π
2 . The linear modes in this

direction for an s + id system, shown in Fig. 1 (at ω = 0), and
s + is, shown in figure Fig. 2 (at ϕ = 0), predict no mixing
of magnetic and matter components. This suggests there is
no spontaneous magnetic field in the linear theory for this
boundary orientation, regardless of the direction of applied
magnetic field. This is also what we observe for the full
nonlinear solutions in figure Fig. 3, however for χ = π/4 we
still observe some magnetic field twisting. This is due to both
magnetic modes being excited for this orientation (as opposed

to one for the other orientations), which decay with different
length scales (or masses).

In Fig. 4, we have plotted the numerical solution with
boundary normal x̂1 = (1/

√
2, 1/

√
2, 0) and applied field

direction x̂3 = (− cos χ/
√

2, cos χ/
√

2, sin χ ). The linear
modes for this orientation are given in Eq. (34) and predict
spontaneous magnetic field purely in the ẑ crystalline axis
direction. If this prediction approximates the full nonlinear
solutions well, we would expect to observe magnetic field
twisting when the applied external field direction x̂3 is or-
thogonal to the ẑ-direction but not when it is parallel. This is
precisely what we observe, with twisting for χ = 0 but not for
χ = π/2. In addition, as the leading (purely) magnetic mode
is in the (1/

√
2,−1/

√
2, 0) direction, we expect the magnetic

field to twist towards this direction as x1 → ∞ which is what
we observe for χ = 0, π/4. However, it is expected that this
does not occur for χ = π/2 as this mode is never excited,
due to it being purely magnetic and orthogonal to the applied
external field direction x̂3.

Finally, in Fig. 5, we consider the numerical solution with
boundary x̂1 = (1/2, 1/2, 1/

√
2) and applied field direction

x̂3 = cos χ (1/
√

2, 1/
√

2, 0) + sin χ (1/2, 1/2,−1/
√

2). The
linear modes for this orientation were observed to have mul-
tiple coupled magnetic field directions. This means we would
expect spontaneous magnetic field for all choices of external
applied field direction, which is what we observe. As all
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FIG. 4. Meissner state for an s + id (top) and s + is (bottom) system with boundary normal x̂1 = (1/
√

2, 1/
√

2, 0) and external magnetic
field H = 0.1(cos χ/

√
2, − cos χ/

√
2, sin χ ). The boundary is at x1 = 0 where B3 measures the strength of local magnetic field in the external

magnetic field direction. Comparatively B2 gives the strength of local magnetic field orthogonal to the external field direction, such that
B3(0) = 0.1, B2(0) = 0. The twisting angle is given in Eq. (35) and determines the amount the local magnetic field twists away from the
external field direction. We have also plotted the normalized energy density F̂ = F − F0, the condensate densities ρ1, ρ2 and phase difference
θ12 = θ1 − θ2. We can see that for s + is due to symmetry this is equivalent to Fig. 3, where as for s + id we see spontaneous magnetic field
for multiple directions, causing twisting.

modes are excited, we also expect the magnetic field to twist
towards the (−1/

√
2, 1/

√
2, 0) direction (corresponding to

the leading mode), which is what we observe.
To summarize, the linearization is surprisingly accurate

at describing the spontaneous magnetic field response of the
full nonlinear Meissner state solutions. The magnetic field
twisting is highly dependent on the form of Qαβ

i j and is also
significant. This may offer an experimentally viable way of
determining the symmetries that a material exhibits when in a
superconducting state.

V. DOMAIN WALLS

A direct consequence of the Z2 symmetry of Fp in
Eq. (6) is the existence of domain walls solutions. These
are one-dimensional excitations that interpolate between
the two distinct, gauge inequivalent ground state values,
limx1→±∞ θ12 = ∓π/2. The field configurations are indepen-
dent of all but one spatial coordinate x1. In an isotropic
two-component BTRS model, this forms a two-dimensional
wall in the condensates only, with normal parallel to x1.
However, it has recently been shown that in s + is and s +
id models, domain walls also exhibit spontaneous magnetic
field [31,33]. The linearization in section III offers a way of
both explaining and predicting the form of these spontaneous

fields. It is important to understand spontaneous fields induced
by domain walls (and other defects), as they are important
indicators for the underlying pairing symmetries of the host
materials.

We seek one-dimensional solutions to the full nonlinear
bulk equations of motion (4) and (5), for both the s + is and
s + id models (parameters given in the Appendix). As we are
interested in solutions far from any boundary effects, we can
fix the boundary conditions such that

(ψ1, ψ2) → (u1,−iu2), x1 → −∞,

(ψ1, ψ2) → (u1, iu2), x1 → +∞,

(A1, A2, A3) → (0, 0, 0), x1 → ±∞, (45)

where x̂1 is the unit normal of the domain wall. Note, we have
transformed from the crystalline basis (x̂, ŷ, ẑ) to the excita-
tion basis (x̂1, x̂2, x̂3) by transforming the anisotropy matrices
according to Eq. (18). This leaves all fields dependent on
x1 only. In addition, A1 = A2 = A3 = 0 on the boundary is
a gauge choice, leading to the finite energy requirement that
∂1ψ1 = ∂1ψ2 = 0 on the boundary.

For a domain wall solution, the phase difference θ12 ∈ S1

interpolates from π/2 to the antipodal point −π/2. This can
be achieved by traversing the target S1 clockwise or anti-
clockwise. For a BTRS model with no anisotropy, the domain
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FIG. 5. Meissner state for an s + id (top) and s + is (bottom) system with normal x̂1 = (1/2, 1/2, 1/
√

2) and external magnetic field
H = 0.1 cos χ (1/2, 1/2, −1/

√
2) + 0.1 sin χ (−1/

√
2, 1/

√
2, 0). The boundary is at x1 = 0 where B3 measures the strength of local magnetic

field in the external magnetic field direction. Comparatively B2 gives the strength of local magnetic field orthogonal to the external field
direction, such that B3(0) = 0.1, B2(0) = 0. The twisting angle is given in Eq. (35) and determines the amount the local magnetic field twists
away from the external field direction. We have also plotted the normalized energy density F̂ = F − F0, the condensate densities ρ1, ρ2 and
phase difference θ12 = θ1 − θ2. We can see that for s + is and s + id all directions of applied field exhibit spontaneous fields and field twisting.

walls corresponding to the different routes are degenerate in
energy and have identical forms for the gauge invariant fields
|ψα|. However, considering these two possible domain wall
solutions for a general anisotropic BTRS model, we find that
the domain walls are not degenerate in energy. We can see
this by considering a simple approximation to a domain wall,
allowing only θ12 to depend on x1, while all other quantities
are fixed to their ground state values: ρα = uα and p = 0.
Such a configuration has energy (per unit area),

Freduced =
∫ ∞

−∞

{
1

8

(
Q11

11u2
1 + Q22

11u2
2

)
(θ ′

12(x1))2

− 1

4
Q12

11u1u2 cos θ12(x1)(θ ′
12(x1))2

+ η

8
u2

1u2
2 cos 2θ12

}
dx1. (46)

We note that if Q12
11 = 0 then Freduced is invariant under the

transformation θ12 → π − θ12, which converts between the
two domain wall solutions. In addition, as u1, u2 > 0, when
Q12

11 �= 0 the second term will either be positive definite or
negative definite, dependent on the sign of Q12

11 and cos θ12.
Hence, if Q12

11 > 0 then the clockwise domain wall is lower
energy and if Q12

11 < 0 then the anticlockwise domain wall

has lower energy. This suggests that the sign of Q12
11 can be

used to predict which of the two domain wall solutions is the
global minimizer for a given orientation. This approximation
is rather crude, as it ignores couplings between θ12 and the
other fields. However it seems to capture the behavior of the
systems studied numerically very well.

We study domain walls by solving the equations of mo-
tion in Eqs. (4) and (5) numerically. In particular, we seek
one-dimensional numerical minimizers of the free energy
functional in Eq. (2). We first choose an orientation (nor-
mal) for the domain wall x̂1, which is also the sole spatial
dependence for the fields. We then transform the anisotropy
matrices according to Eq. (18) and dimensionally reduce by
assuming that all field derivatives orthogonal to x1 are zero
(an effective gauge choice). We then use an arrested Newton
flow method (described previously for the Meissner state sim-
ulations in Sec. IV), subject to the fixed boundary conditions
described in Eq. (45). Of course, we now seek to minimize
a discrete approximant Edis to the Helmholtz free energy F ,
rather than the Gibbs free nergy G, as there is no applied mag-
netic field. We find numerical minimizers for the parameters
described in the Appendix, for typical values of N = 1001
and h = 0.15.

The initial field configuration φ(0) was chosen to
interpolate the phase difference either clockwise or
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FIG. 6. Plots of two domain wall solutions corresponding to the phase difference θ12 = θ1 − θ2 winding either clockwise (red) or
anticlockwise (blue). We have plotted the gauge invariant condensate magnitudes ρ1, ρ2 and the total magnetic field strength |B|. We can
see that the magnetic response of the two different domain walls is different.

anticlockwise,

θ0
12(x) =

⎧⎪⎨
⎪⎩

−π
2 , x < −L

−π
2 ± (x+L)π

2L , |x| � L
π
2 , x > L

, (47)

respectively, where x = h(i − (N + 1)/2), i ∈ [1, N] is the
lattice site and the typical width of the initial condition was
2L = 10. This allows us to consider both the clockwise and

anticlockwise domain wall solutions discussed above, chosen
by interpolating the phase difference around the target circle
in the corresponding direction.

A. Domain wall results

We have plotted examples of both domain wall solu-
tions with normal x̂1 = (0.1736, 0, 0.9848) in Fig. 6(a) and
x̂1 = (0.309,−0.9511, 0) in Fig. 6(b). Both the clockwise
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FIG. 7. Plot of the total normalized free energy F̂ = F − F0 of each domain wall solution for all possible orientations. We have mapped
each possible orientation (normal vector) to a point on the unit 2-sphere. The sphere has then been colored by the total normalized free energy of
the corresponding domain wall solution. Since both s + is and s + id models are symmetric under z �→ −z we plot only the upper hemisphere.
There are two nondegenerate domain wall solutions depending on the winding of the phase difference (clockwise or anticlockwise). Note that
the minimal energy domain wall is always the clockwise solution for s + is but is orientation dependent for s + id .

and anticlockwise domain wall solutions exhibit spontaneous
magnetic fields for both orientations; however the strengths
of the spontaneous fields differ for each solution. This
demonstrates that the two domain wall solutions for a given
orientation will have distinct experimental signatures.

We have also plotted the total free energy for all possible
orientations of the normal x̂1 for an s + is model in Fig. 7(a)
and an s + id model in Fig. 7(b). These plots display the
free energy for all possible orientations for the normal in the
crystalline basis, by mapping each orientation to a point on a
unit 2-sphere. Due to the symmetry of F under the reflexion
z �→ −z, it is sufficient to retain only the upper hemisphere
of the resulting plot. Each point is then colored by the total
(normalized) free energy of the numerical solution.

When simulating these sets of solutions, we choose a set of
approximately equidistant points on the sphere for x̂1 and use
the local minimum from the previous simulation as the initial
condition for the next. This preserves whether the domain wall
interpolates clockwise or anticlockwise.

By considering the free energy plots we can see the
predicted spatial symmetries of the full three dimensional
models: SO(2) × C2 for s + is and C2 × C2 × C2 for s + id .
Note that the clockwise domain wall is the minimal energy
solution for all orientations in s + is, whereas the minimal en-
ergy solution switches between clockwise and anticlockwise
solutions depending on the orientation for the s + id system.
This matches the prediction of the simple model Eq. (46) well:
it is straightforward to see that Q12

11 > 0 for all orientations
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FIG. 8. Plots of the value of Q12
11 and the total free energy difference between the clockwise and anticlockwise domain wall solutions for

both s + is and s + id for all orientations. We have mapped each possible orientation (normal vector) to a point on the unit 2-sphere. The
sphere has then been colored by the value of Q12

11 after performing the transformation in Eq. (18) (left) and the energy of a clockwise domain
wall minus that of an anticlockwise domain wall (right). We observe similar qualitative features to the two plots, for both s + is and s + id , in
particular the contours where the functions are 0. This supports the claim that sign of Q12

11 is a good indicator for which domain wall is lower
energy.

for the s + is model, and the orientations where anticlockwise
domain walls are favored in the s + id model match closely
the orientations where Q12

11 < 0, see Fig. 8.
In addition, the corresponding maximum magnetic field

strength is plotted for all orientations in Figs. 9(a) and 9(b).
We have also added arrows showing the direction of the maxi-
mal magnetic field (which are always tangent to the surface
of the hemisphere). By this, we mean the direction of the
spontaneous field at any point x1 where |B(x1)| = Bmax. The
spontaneous field B(x1) is an odd function about the center of
the domain wall (assumed to be x1 = 0) which is consistent
with the topological requirement that

∫
x1

B(x1)dx1 = 0. This
means there will be two points ±xmax

1 where the spontaneous
field corresponds in magnitude to Bmax with opposite mag-
netic field B(±xmax

1 ) = ±Bmax. An example of this can be seen

in Fig. 10, where the different components of the spontaneous
magnetic field are odd functions about the center of the do-
main wall x1 = 0. Hence, all the plotted arrows are double
sided, representing this symmetry of the solutions.

The plots of maximum magnetic field demonstrate that
there is no spontaneous field generation when the normal is
aligned with any of the crystalline axes, as predicted by the
linearization, which has no mixed modes for such orienta-
tions. In addition, the spontaneous field direction on great
circles (where Bmax �= 0) connecting crystalline axes (e.g. the
great circle x̂1 = (cos ω, 0, sin ω) for ω ∈ [0, 2π ]), matches
the prediction from the linearized theory. In particular, the
linearized theory predicts a single direction of spontaneous
magnetic field orthogonal to the great circle, as is seen in the
full nonlinear numerical solutions. Note that the great circle
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FIG. 9. Plot of the spontaneous field strength of each domain wall solution for all possible orientations. We have mapped each possible
orientation (normal vector) to a point on the unit 2-sphere. The sphere has then been colored by the maximum magnetic field strength of the
corresponding domain wall solution. In addition, we have plotted the direction of the local spontaneous field, where its strength is a maximum,
as an arrow tangent to the 2-sphere. There are two nondegenerate domain wall solutions depending on the winding of the phase difference
(clockwise and anticlockwise). This plot matches the prediction made in the linearization section and offers an experimentally verifiable
signature. The spontaneous field strengths are two orders of magnitude lower than Hc2 in the basal plane.

corresponding to the basal plane for s + is exhibits no sponta-
neous field Bmax = 0 (as predicted), where as for s + id there
is spontaneous field. Hence, for s + id , this creates a vorticity
in the tangent arrows B̂max about each of the crystalline axes
(where Bmax = 0). If we visualize the spontaneous maximum
magnetic field as a continuous vector field on S2, then we
can characterize how the field circulates a given crystalline
axis using a winding number N . Hence, if Bmax rotates clock-
wise once (N = 1) or anticlockwise once (N = −1) as we
circle the axis. The crystalline axes at the north and south
pole both have N = 1 for both domain wall solutions. How-
ever, the clockwise/anticlockwise domain wall solutions have
N = +/− about the ŷ axis and N = −/+ about the x̂ axis,
respectively.

Finally, we consider how the spontaneous magnetic field
locally twists direction as x1 increases. We compare the spon-
taneous field direction with that of Bmax, defining the local
twisting angle to be

tan θt (x1) = |Bmax × B(x1)|
|Bmax · B(x1)| . (48)

Note that while there are two values of x1 that correspond to
|Bmax| with magnetic field ±|Bmax|, the chosen point has no ef-
fect on θt . The spontaneous field and twisting angle are plotted
for two different orientations for a clockwise s + id domain
wall in Fig. 10. We note that the s + is solutions exhibits no
twisting for all orientations, which matches the linearization.
This is due to all orientations x̂1 for s + is, having at most a
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FIG. 10. Plots of the twisting angle θt (x1), for a clockwise s + id domain wall. This shows how the direction of the spontaneous
magnetic field changes as it decays from the point where the spontaneous field is strongest. The top row corresponds to the orientation
that exhibits the most twisting x̂1 = (−0.5878, −0.8090, 0). The bottom row corresponds to one of many orientations with no twisting
x̂1 = (0.1736, 0, 0.9848), such that the spontaneous magnetic field is in the same direction at all points in space. Note that for s + is no
orientations exhibit spontaneous magnetic field twisting for domain walls.

single direction of magnetic field for any mixed mode. This
does not mean that there is only a single mixed mode for the
given orientation, but that all mixed modes share the same
magnetic field direction as given in Eq. (33). Hence, this
predicts that all spontaneous magnetic field will be in the same
direction and exhibit no twisting. The nonlinear solutions for
all orientations match this prediction, exhibiting no twisting
and with all spontaneous fields matching the predicted linear
direction.

s + id models, in contrast, exhibit significant magnetic
field twisting as can be seen in Fig. 10. This is a result of a dif-
ferent mixed mode dominating in the nonlinear region of the
domain wall (where |B| is large) and the linear region (when
|B| is small), causing the spontaneous magnetic field to twist
direction as it decays from its maximum value (θt = 0). Note
that as a result of the topological requirement

∫
Bdx1 = 0, the

magnetic field is an odd function about the center (x1 = 0)
as can be seen in the plots of the different magnetic field
components.

To demonstrate how the amount of twisting for s + id
models changes with orientation, we have plotted θmax

t :=
max{θt (x1) : x1 ∈ R} in Fig. 11. This shows that on the great
circles that connect crystalline axes there is no twisting, which
matches the linearization. Like with s + is models, on these
great circles the linearization predicts a single direction for
the magnetic field for all mixed modes and hence no twisting.
However, away from these great circles the twisting becomes
significant for both the clockwise and anticlockwise domain
walls. This offers an experimental signature that can differen-
tiate between s + is and s + id systems.

In summary, domain walls produce spontaneous magnetic
fields due to mode mixing. This is due to the anisotropy of
the model, causing the modes to have both matter and mag-
netic components. While the linear modes are only strictly

justified far from the excitation of the domain wall, we have
demonstrated that they are remarkably accurate at predict-
ing the spontaneous magnetic fields even when the model is
nonlinear dominated. This suggests that spontaneous fields
for anisotropic models can be predicted accurately using the
linearized model alone. This is quite a remarkable feature
of a traditionally highly nonlinear model. In addition, we
have demonstrated that both s + is and s + id models ex-
hibit two different domain wall solutions (coined clockwise
and anticlockwise solutions). Finally, s + id models exhibit
significant magnetic field twisting as the spontaneous fields
decay x1 → ∞.

VI. UPPER CRITICAL FIELD

For mathematical convenience, we have worked through-
out with dimensionless quantities. To get a rough idea of the
size of the spontaneous magnetic fields predicted in real sys-
tems, it is useful to compare Bmax with the upper critical field
Hc2 for the systems studied. This may be computed numeri-
cally using the standard strategy (reducing the GL equations
linearized about the normal state to a coupled harmonic oscil-
lator problem). Note that Hc2 is anisotropic, that is, it depends
on the direction of the applied field.

We find the for the considered regime, the value of Hc2 for
s + is varies between 1.6468 (H parallel to the basal plane)
and 4.2656 (H in z direction) and has SO(2) symmetry about
the z axis, as it must.

For s + id , we find that Hc2 matches the fourfold symmetry
about the z axis of the free energy and is maximal in the z
direction with Hc2 = 2.6596 and minimal in the basal plane,
going as low as Hc2 = 1.0245.

The key takeaway from this calculation is that the sponta-
neous fields from the previous section are approximately two
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FIG. 11. Plots of the maximum twisting angle of the magnetic field of domain wall in an s + id superconductor: clockwise phase difference
winding (left) and anticlockwise phase difference winding (right). We have mapped each possible orientation (normal vector) to a point on the
unit 2-sphere. The sphere has then been colored by the value of θmax

t for that orientation. The twisting(θmax
t ) is the same for the two domain

wall types.

orders of magnitude weaker then Hc2 in the basal plane. This
is strong enough to be detected using multiple experimental
techniques.

VII. CONCLUSION

In conclusion, we have demonstrated that the familiar Lon-
don model is, in general, not accurate in describing the mag-
netic field behavior of anisotropic s + is and s + id systems.
This is a consequence of the normal modes not separating
into purely magnetic and matter modes, but being mixed. This
means even a small pertubation of the superconducting gap
induces magnetic field and vice versa. This mixing of both
magnetic and matter components was shown to be a generic
feature of anisotropic models with mixed gradient terms.

The key observable consequence of mixed modes is their
contribution to spontaneous magnetic fields. The orientation
dependence of these spontaneous fields gives an experimen-
tally verifiable signature for the pairing symmetries of the
system. This also explains the previous results in Ref. [33],
and allows spontaneous field directions to be predicted using
linear algebra.

In addition, we have extended the previous approach to
linearizing anisotropic models [36]. We demonstrated that the
familiar symmetry reductions used to study one-dimensional
excitations are not always valid in these systems. In particular,
due to the anisotropy one must include all components of the
vector gauge field Ai, else the symmetry reduction will not, in
general, be a solution of the full three-dimensional equations
of motion. It is this approach that allows the magnetic field to
twist direction as it decays.

We also demonstrate that, in general, the behavior of the
magnetic field cannot be characterized by a single length
scale: the London magnetic field penetration length.

For s + is models the decaying field in the Meissner state,
exhibits magnetic field twisting, due to modes that sponta-
neously generate magnetic field, orthogonal to the applied
field direction. Instead, various components of the magnetic
field decay with different length scales. Hence, as the fields
decay, the magnetic field twists towards the mode with the
longest length scale. However, for s + is excitations that ex-
hibit purely spontaneous magnetic fields, there is no field
twisting, due to all mixed modes having equivalent magnetic
components.

s + id models, in contrast, exhibit twisting due to both
disparate length scales and purely spontaneous fields. This
is due to the s + id mixed modes having multiple magnetic
field directions, such that the spontaneous fields twist as they
decay. This has been shown to result in significant magnetic
field twisting for domain walls, and it is likewise expected to
occur for defects.

The spontaneous magnetic fields for domain walls in both
s + is and s + id were studied in detail. These spontaneous
fields offer one of the best experimental signatures to dif-
ferentiate between various pairing symmetries. This can be
achieved using scanning probes of magnetic fields of domain
walls, pinned in various orientations relative to crystal axes.
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TABLE II. Form of the anisotropy matrices for s + is and s + id
systems.

s + is s + id

Q11 =
⎛
⎝4 0 0

0 4 0
0 0 0.3

⎞
⎠ Q11 =

⎛
⎝4 0 0

0 4 0
0 0 0.3

⎞
⎠

Q22 =
⎛
⎝0.5 0 0

0 0.5 0
0 0 2

⎞
⎠ Q22 =

⎛
⎝0.5 0 0

0 0.5 0
0 0 2

⎞
⎠

Q12 =
⎛
⎝1 0 0

0 1 0
0 0 0.2

⎞
⎠ Q12 =

⎛
⎝1 0 0

0 −1 0
0 0 0.2

⎞
⎠
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APPENDIX A: PARAMETERS USED

All simulations make use of the following potential,

FP = −1

2
|ψ1|2 − 1

2
|ψ2|2 + 2|ψ1|4 + 3|ψ2|4 + 3

2
|ψ1|2|ψ2|2

+1

8
|ψ1|2|ψ2|2 cos 2θ12, (A1)

where we have set αα = 1/2, β1 = 4, β2 = 6, γ = 3/2 and
η = 1. In addition, the anisotropy matrices Qαβ are set as
given in Table II, where we have set a1 = 4, a2 = 1/2, a3 = 1,
b1 = 0.3, b2 = 2 and b3 = 0.2 for both s + is and s + id
models.

APPENDIX B: NATURAL BOUNDARY CONDITIONS

To find numerical solutions of the Meissner state in the
region � we must minimize the Gibbs free energy in Eq. (36)

among all fields φa, a ∈ [1, 6] defined on �. This leads to the
following variation for G:

δG =
∫

�

{
∂G
∂φa

− ∂i

(
∂G

∂ (∂iφa)

))
δφa (B1)

+
∫

∂�

(
∂Fsur f

∂φa
− ni

∂G
∂ (∂iφa)

)
δφa, (B2)

where we have used the divergence theorem, and recalled that
n is an inward pointing normal to ∂�. Demanding that δG = 0
for all variations requires both of these integrals to vanish
identically and hence φa satisfies the usual Euler-Lagrange
equations in � together with the boundary conditions,

niQ
1β
i j D jψβ = 0, (B3)

niQ
2β
i j D jψβ = 0, (B4)

∂iAi = 0, (B5)

B = H. (B6)

This can be simplified by first performing a change of ba-
sis from the crystaline basis (x̂, ŷ, ẑ) to the excitation basis
(x̂1, x̂2, x̂3) by performing the transformation in Eq. (18) on
the anisotropy matrices. This leads to the following simpler
boundary conditions in the new basis,

Q1β

11 D1ψβ = 0, (B7)

Q2β

11 D1ψβ = 0, (B8)

A′
1 = 0, (B9)

B = H. (B10)

We impose these boundary conditions at x1 = 0, then at x1 =
L, where L is large, we demand that b′ = a′ = 0, ψ1 = u1, and
ψ2 = iu2, such that the fields are in their ground state. Note,
as we are interested in bulk behavior, we have neglected the
presence of surface terms [49] that lead to additional magnetic
effects [41].
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