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Recent studies have suggested a new phase in the extended Bose-Hubbard model in one dimension at integer
filling. In this work, we show that this new phase is phase-separated into a supersolid and superfluid part,
generated by mechanical instability. Numerical simulations are performed by means of the density matrix
renormalization group algorithm in terms of matrix product states. In the phase-separated phase and the adjacent
homogeneous superfluid and supersolid phases, we find peculiar spatial patterns in the entanglement spectrum
and string-order correlation functions and show that they survive in the thermodynamic limit. In particular, we
demonstrate that the elementary excitations of the homogeneous superfluid with enhanced periodic modulations
are phonons, find the central charge to be c = 1, and show that the velocity of sound, extracted from the
intrinsic level splitting for finite systems, matches with the propagation velocity of local excitations in dynamical
simulations. This suggests that the low-energy spectrum of the phase under investigation is effectively captured
by a spinless Luttinger liquid, for which we find consistent results between the Luttinger parameter obtained
from the linear dependence of the structure factor and the algebraic decay of the one-body density matrix.
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I. INTRODUCTION

Bosonic Hubbard models remain in the focus of interest
in condensed matter and ultracold quantum matter physics
since the seminal paper of Fisher et al. [1]. In recent years,
considerable attention was devoted to extended/nonstandard
Hubbard models (for a review cf. Ref. [2]). There are a
number of reasons for this. The first is fundamental interest.
Extended Bose-Hubbard models provide perhaps the simplest
models that include beyond on-site interactions. Second is the
richness of the quantum phases. They exhibit a plethora of
quantum phases arising due to the interactions, even in one
dimension (1D): the Mott insulator (MI), Haldane insulator
(HI), superfluid (SF), supersolid (SS), and charge density
wave (CDW). Third, are the long-range interactions. They
provide the first step towards a description of systems with
long-range interactions, such as dipolar ones, for instance.
Last we have the experimental feasibility. Quantum simulators
of these models and their variants are experimentally feasible
in various platforms including ultracold atoms/molecules in
optical lattices [3], systems of trapped ions, Rydberg atoms,
and so on.

This work deals with the physics of the extended Bose-
Hubbard model in 1D and focuses on three of the most
challenging and discussed phenomena of contemporary
physics: supersolidity, phase separation, and entanglement.
Supersolidity in the extended Hubbard model in 1D has been
studied previously for incommensurate fillings [4–7], and
was claimed to be found for filling 1 in Ref. [8] without

in-depth discussion, however. The complete phase diagram
of the model was described by Batrouni et al. (see Ref. [9]
and references therein; our work expands the results found
in Ref. [10]). These authors studied the phase diagram of
the one-dimensional bosonic Hubbard model with contact (U )
and nearest-neighbor (V ) interactions focusing on the gapped
HI phase, which is characterized by an exotic nonlocal order
parameter. They used the stochastic Green’s function quantum
Monte Carlo as well as the density matrix renormalization
gGroup (DMRG) algorithm to map out the phase diagram.
Their main conclusions concerned the existence of the HI at
filling factor ν = 1, while the SS phase existed for a very wide
range of parameters (including commensurate fillings) and
displayed power-law decay in the one-body Green’s function.
In addition, they found that at fixed integer density, the system
exhibited phase separation in the (U,V ) plane.

In this work we apply the state-of-art DMRG method in
terms of tensor networks, i.e., we used matrix product states
(MPS) to study the ground-state properties of the extended
Bose-Hubbard model

H = − t
∑

i

(b†
i bi+1 + b†

i+1bi )

+ U

2

∑
i

ni(ni − 1) + V
∑

i

nini+1, (1)

with nearest-neighbor interaction on a one-dimensional chain
with L sites. Here, ni = b†

i bi is the number operator for
Bosons defined by [bi, b†

j] = δi j . The model is characterized
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FIG. 1. Main characteristics of the phase-separated ground state.
(a) Density profile. The system is separated into two phases described
by a flat density typical to a fluid (SF phase) and a periodic structure
typical to a solid (SS phase). The solid patterns of alternating oc-
cupation are pinned at the edges due to the use of open boundary
conditions, leaving the superfluid uniform density in the middle.
The volume occupied by each of the phases depends on the filling
n, which here is n = 1. (b) Off-diagonal single-particle correlation
function 〈b†

jbi〉 in SF and SS phases. Slow power-law decay [seen as
straight lines in a log-log plot in insets of Figs. 2(a) and 2(b)] allows
the system to be coherent at distances larger than the lattice spacing
which is a one-dimensional analog of Bose-Einstein condensation,
and implies that both phases are superfluid. (c) The entanglement
spectrum shows different periodicities in the two different phases.
The first four largest elements of the entanglement spectrum {λi} are
plotted in descending order λ1 � λ2 � λ3 � λ4.

by three energy scales: the nearest-neighbor tunneling ampli-
tude t , on-site interactions of strength U , and nearest-neighbor
interactions tuned by V . We set the energy scales in units of
the tunneling coefficient by setting t = 1 and continue with
dimensionless quantities.

We perform simulations both in a microcanonical ensem-
ble (fixed number N of particles) and a canonical ensemble
(fixed chemical potential μ and fluctuating number of parti-
cles).

We expand the results of the authors of Refs. [9,11] in
several aspects, which can be summarized as follows:

(1) Phase separation (PS). For weak on-site interactions
(small U ) and strong nearest-neighbor ones (large V ), the
ground state for filling n close to unity corresponds to a phase
separation between SF and SS phases. The characteristics
of the phase-separated ground state are illustrated in Fig. 1.
We perform a numerical analysis of the mechanical stability
in terms of second derivatives of the energy and the Gibbs

(a)

(a)

(b)

(a)

(b)

(b)

FIG. 2. Finite-size study of the inverse compressibility κ−1,
Eq. (9), as a function of the filling n for (U,V ) = (0.5, 4) as in Fig. 1.
Vanishing thermodynamic value of κ−1 Eq. (9) signals instability
towards phase separation. (a) SF-PS transition: The transition point
is estimated at critical filling nSF-PS

c = 0.815 defined as the position
of the intersection of lines corresponding to different system sizes.
In the phase-separated region, n > nc region, the value of the in-
verse compressibility κ−1 is lowered as the system size is increased
(lines correspond to L = 101; 127; 201; 301, from top to bottom) and
vanishes in the thermodynamic limit. Inset (1a) Example power-law
decay of the inverse compressibility κ−1 as a function of system size
L in the phase-separated regime, n > nc Inset (1b): Zoom-in on the
intersection. (b) PS-SS transition: Dependence of the inverse com-
pressibility on filling n is scaled with the system size L leading to the
estimated value for the critical density equal to nPS-SS

c = 1.27 [inset
(2a)]. Inset (2b) Example density in PS state close to the transition
to SS. Note that in the solid part the average density n ≈ 2.55/2
matches the critical filling nPS-SS

c .

potential as a function of the density n. The nature of the
SF-PS and PS-SS transitions is discussed in Fig. 2.

(2) Phase coexistence. The phase-separated ground state
corresponds to a genuine phase coexistence, stable for quite
a relevant interval of values of the mean density n. We also
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study n as a function of the chemical potential μ for fixed U
(V ) and varying V (U ) in Fig. 4.

(3) Entanglement oscillations. In the SF phase, in
the regime of parameters corresponding to the phase
separation/phase coexistence, all single-particle observables
seem to be spatially homogeneous, while entanglement
Rényi entropies and entanglement spectra exhibit oscilla-
tions. The spatial period of these oscillations, as well as
the period of the Schmidt gap closing, is of the order of
10 to 20 lattice constants, i.e., has nothing to do with
the periodicity of the CDW or SS, which is two lattice
constants.

(4) Luttinger liquid picture. Both in SF and SS phases,
the excitation spectrum is governed by gapless linear phonons
which make the Luttinger liquid description applicable and
therefore allow predictions of the long-range behavior of the
correlation functions.

We use Luttinger liquid theory to explain the presence of
oscillations in the entanglement spectrum thus ruling out the
possibility that these oscillations appear due to topological
effects.

The structure of the paper is as follows. In Sec. II we
discuss briefly the aspects of the present study from a general
perspective: supersolidity, phase separation, topology, and en-
tanglement properties in many-body systems in 1D. In Sec. III
we describe our numerical methods and in Sec. IV we recap
the phenomenology of the system. Sections V and VI are
devoted to the detailed discussion of our results concerning
phase separation, including the analysis of the mechanical
stability and entanglement oscillations. Luttinger theory is
discussed in Sec. VII, while we provide a short conclusion
in Sec. VIII.

II. PRELIMINARIES: PHENOMENA OF INTEREST

A. Supersolidity

A supersolid is a spatially ordered material with superfluid
properties. Practically, since the discovery of superfluidity by
Kapitza, Allen, and Misener [12,13], there have been constant
efforts to predict and realize systems that exhibit supersolidity.
In 2004, an observation of a finite superfluid signal in solid
He was reported in Refs. [14,15]. While this claim eventually
was disproved, it attracted an additional interest to supersolids
and eventually, their formation was observed in other systems.
Several mechanisms and scenarios for supersolidity were pro-
posed from superfluid He to ultracold atoms.

1. Andreev-Lifshitz-Chester scenario

In this scenario, vacancies (i.e., empty sites normally oc-
cupied by particles in a perfect crystal) exist even at absolute
zero temperature [16,17]. These vacancies might be caused by
quantum fluctuations, which also cause them to move from
site to site. Because vacancies are bosons, if such clouds
can exist at a very low temperature T , then a Bose-Einstein
condensation of vacancies could occur at temperatures less
than a few tenths of a kelvin.

2. Shevchenko scenario

Here, mass flow occurs along dislocation cores forming a
three-dimensional (3D) network [18–20].

3. Supersolid stripe phase

This phase can be formed in dilute weakly interacting two-
component Bose gases with spin-orbit coupling [21].

4. Supersolid in a cavity

One can realize a supersolid with the breaking of contin-
uous translational symmetry that emerges from two discrete
spatial ones by symmetrically coupling a Bose-Einstein con-
densate to the modes of two optical cavities [22].

5. Metastable supersolid phase

Such a phase was observed in systems of dipolar quantum
droplets [23–25].

6. Lattice supersolids

This mechanism occurs in systems described by extended
Hubbard models [4–8]; it is particularly efficient in the
Hubbard models with long-range interactions, such as, for
instance, dipolar interactions [26–29]. Due to the next-to-
nearest neighbor or even longer-range repulsion, atoms tend
to crystallize occupying a commensurate fraction of sites
(with one or few atoms in an occupied site). Such states are
termed density wave states (DW), and they are full analogs
of Mott insulator states (MI) with fully localized atoms, but
at lower densities. Quantum fluctuations may melt these crys-
tals, leading to the formation of supersolids. Such types of
superpersolidity in the extended Hubbard model in 1D were
studied previously for incommensurate fillings [4–7], and
were claimed to be found for filling one in Ref. [8] without
further discussion.

B. Phase separation

Phase separation has been at the center of interest of
physics for decades. It is understood as the creation of two
distinct phases from a miscible homogeneous mixture. A
paradigmatic example of phase separation is between two
immiscible liquids, such as oil and water. Recently, two
kinds of phase separation instances have become very hot
subjects in science: liquid-liquid phase separation in biol-
ogy as a regulator of cellular biochemistry ([30], see also
Ref. [31] and references therein), and quantum phase sep-
aration. Classically, these processes occur typically via two
distinct mechanisms.

1. Spinodal decomposition

Spinodal decomposition takes place when the decomposi-
tion into two phases occurs with no nucleation barrier [32].
The mixture is initially in an unstable state so that fluctuations
in the system spontaneously grow to reduce the free energy. In
the quantum scenario, the decay of unstable states may lead to
the macroscopic amplification of those quantum fluctuations
that initiated the process (cf. Refs. [33,34]).
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2. Nucleation

In nucleation and in the associated growth, there is a nucle-
ation barrier. While in spinoidal decomposition, an unstable
phase corresponds to the maximum of the free energy, nucle-
ation and growth occurs in a metastable phase and is resistant
to small fluctuations.

In quantum mechanics, phase separation typically concerns
conducting (metallic, superfluid) and insulating phases. A
characteristic example is the formation of the “wedding cake”
structures in a system described by the Bose-Hubbard (BH)
model in an optical lattice in a loose harmonic trap [3,35].
In such a case, MI regions with a fixed number of atoms
per lattice site are separated by SF rings (“wedding cake”
structure). Locally, the state of the system is determined by
the trapping potential, which acts as a local chemical potential.
Note, however, that for a fixed number of atoms in the homo-
geneous system, the ground state of the BH model is always
SF if the number of atoms N is incommensurable with the
number of lattice sites. In a strict sense, this is not a genuine
phase separation since it does not lead to phase coexistence in
a spatially homogenous system. This will be different in the
extended BH model studied in this work.

It is worth mentioning that similar mechanisms lead to
“wedding cake” structures in extended Bose-Hubbard models
[2], such as dipolar Hubbard models [27,36]. Another relevant
example might be the itinerant ferromagnetic instability in re-
pulsive fermions, studied primarily in trapped gases [37–40],
but investigated also very intensively in extended (and in
particular dipolar) Fermi-Hubbard models, where “wedding
cake” structures are also expected to appear [41–47].

C. Topology in 1D

Since we are going to argue that the considered model
does not possess topological order in SS and SF phases, let
us remind the reader about the peculiarity of low-dimensional
systems. In 1D, topological order exists only in the form
of symmetry-protected topological order (SPTP). There are
various ways of characterizing topological order: it is common
to look at topological invariants, edge states, hidden order
parameters, and entanglement properties, i.e., entanglement
entropies [48] and entanglement spectrum (ES) [49]. There
are two paradigmatic models that exhibit topological order
in 1D: the Su-Schrieffer-Heeger (SSH) model [50,51] and re-
lated models such as the original model of the acetylene chain
with electrons interacting with phonons living on the bonds,
or families of bosonic models in dynamical lattices, where
spins on the bond mimic phonons [52,53]), and the Affleck-
Kennedy-Lieb-Tasaki model [54] (or related models such a
biquadratic-bilinear Heisenberg model, cf. Refs. [55,56] and
references therein). The later phase is often termed as the
Haldane phase since it was postulated and discovered by Hal-
dane, in the context of the S = 1 one-dimensional Heisenberg
model [57,58]. Haldane formulated there the famous Haldane
conjecture, saying the one-dimensional Heisenberg models
for half-integer spins are gapless with algebraically decay-
ing correlations, whereas those with integer spins are gapped
with exponentially decaying correlations. The AKLT model,
which is an example of biquadratic-bilinear Heisenberg mod-
els, has the same properties. Its ground state in the case of

open boundary conditions is four-fold degenerate due to the
hidden D2 = Z2 × Z2 symmetry [59]. Kennedy and Tasaki
[60] demonstrated this by applying a nonlocal unitary to the
Hamiltonian of the models, as one gets a model with explicit
global discrete symmetry (�-rotation about x, y, z axes =
D2 = Z2 × Z2). Ferromagnetic order in the transformed sys-
tem corresponds to nonlocal topological order in the original
Heisenberg model. This order is indeed protected by the D2

symmetry [61]. The model possesses also two more discrete
symmetries: time reversal and space inversion about the bond
center. Adding various terms to the Hamiltonian, one may
break some of these, but as long as one of them survives, so
does the Haldane phase.

Later it was shown that if we allow arbitrary deformations,
there exists only one phase in 1D; the reasonable classification
of quantum phases can be achieved only applying deformation
that respect discrete symmetries [62]; in fact, the full classifi-
cation of symmetry protected quantum phases, including spin,
fermionic, and bosonic systems was achieved [63–67].

The SSH-like and AKLT-like models several quantum
phase transitions, and have the following properties with re-
spect to topological order.

1. Topological invariants

The winding number characterizes very well the topologi-
cal phases of the SSH-family (cf. Ref. [68]). These topological
invariants can be, but are more rarely, used for the AKLT-
family.

2. Edge states

The bulk-edge correspondence works obviously very well
for the SSH-family. For the AKLT-family it requires a nu-
merical solution with open boundary conditions but is also
straightforward.

3. Hidden order parameters

A string order parameter is typically defined and used for
the AKLT-family. It exhibits long-range order in the topo-
logical phase, and decays exponentially or vanishes in other,
nontopological phases.

D. Entanglement properties

Here we summarize the properties of entanglement in
many-body systems in 1D, analyzed later in the paper. We pay
special attention to possible sources of spatial oscillations of
entanglement entropies and/or the spectrum.

1. Entanglement entropies/spectrum far from criticality

In conventional uniform systems, these quantities
are homogeneous. Obviously, in systems that are
“dimerized” (trimerized, quadrumerized, etc.), entanglement
entropies/spectrum oscillate, even though all single-particle
observables are spatially homogeneous. In the extreme case,
k-merized states are k-producible: They are defined by the
product of entangled states of size k. If we put the cut
between the k-mers, we get entropies equal to zero, and a
trivial entanglement spectrum corresponding to a product
state. Interestingly, their results also hold for disordered
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systems, as shown recently in Ref. [69], using strong disorder
renormalization group methods.

2. Entanglement entropies at criticality

For standard systems in 1D of finite (but large) size L and
open boundaries, the entanglement entropies of ground states
read

Sα (�) = − ln[Trρα (�)]/(1 − α), (2)

where ρα (�) is the reduced density matrix of the block of size
� [70]. The behaviors of Rényi entropies for ground states
of critical (gapless) systems are well known according to
conformal field theory [70,71]

Sα (�) = α + 1

α

c

6b
ln (d[�|L]) + Ssl + γ , (3)

d[�|L] = |L/π sin (π�/L)|, (4)

where d[�|L] is the chord length on a ring of perimeter L. The
leading part exhibits a universal scaling law with prefactor
c called the central charge of the conformal field theory (in
fermionic systems, it is equal to the number of Fermi points).
An additional factor b distinguishes the case of periodic (b =
1) and open (b = 2) boundary conditions and γ constitutes
a nonuniversal constant. Subleading terms are denoted by Ssl

and, in general, oscillate in space.

3. Entanglement spectrum at criticality

The Schmidt gap (difference between the lowest and the
second-lowest eigenvalue of the ES, or between the highest
two squared Schmidt coefficients) closes, i.e., ceases at zero.
In topological phases, the ES remains degenerated, in accor-
dance with the symmetry protecting the topological order —
it was first demonstrated for the AKTL-family in Ref. [61]. In
the case of oscillating ES, as in the SSH-family, the oscilla-
tions cease to zero at criticality [69]. Finally, if we approach
criticality from a trivial phase, where there exists a “standard”
local order parameter (magnetization, staggered magnetiza-
tion, etc.), then closing of the Schmidt gap is directly related
to the vanishing of the order parameter at criticality [55,56].

III. SIMULATION METHOD

We calculate the ground states by means of the DMRG
algorithm expressed in terms of MPS states [72,73]. A general
multipartite state of L parties, with (finite) local dimension
d , |�〉 = ∑

σ cσ |σ〉, where σ = σ1 . . . σL is the vector of lo-
cal indices σi = 1, . . . , d , can always be decomposed into
products of tensors with the aid of the singular value decom-
position. We use the convention of Vidal [74] for a canonical
form, and write our ground state in the MPS form

|�〉 =
∑

σ

�σ1λ[1] · · ·λ[i−1]�σiλ[i] · · ·

× λ[L−1]�σL |σ1 . . . σi . . . σL〉 . (5)

At site i, {�σi} is a set of d matrices and λ[i] =
diag(λ1, λ2, . . . , λχmax ) the diagonal singular value matrix of
a bipartition of the chain between site i and i + 1, i.e., the
Schmidt values (see Ref. [72]). One then approximates the

exact ground state by keeping only the χmax largest Schmidt
values for each partition, where χmax is known as the bond
dimension. This is the best approximation of the full state
in terms of the Frobenius norm and enables us to handle big
system sizes. Note that when simulating Bosonic systems that
are, in principle, infinite dimensional, we introduce an error
by truncating the local Hilbert space dimension to d . One has
to be careful in choosing this parameter and make sure that
the physics is still captured within the chosen truncation, e.g.,
by scaling in this parameter and comparing the results as is
shown in the Supplemental Materials (SM) [75]. Equation (5)
corresponds to finite length and open boundary conditions.
The DMRG algorithm can also be formulated in the thermo-
dynamic limit for infinite MPS (iMPS) [76–78]. In this case,
instead of a finite chain, we have a finite and repeating unit cell
of length L∞. For calculations in the microcanonical ensemble
with a fixed number of particles, we can explicitly target the
ground state for a filling n := ∑

i 〈ni〉 /L by employing U (1)
symmetric tensors [79], which is implemented in the open
source library TENPY [80].

IV. OBSERVABLES

The extended Bose-Hubbard model, Eq. (1), admits a rich
phase diagram and has been investigated thoroughly in the
past two decades [5–8,10,81–86].

In these works, the following expectation values were ana-
lyzed in order to classify the observed phases:

CSF(i, j) = 〈b†
i b j〉 , (6)

CDW(i, j) = 〈δni(−1)|i− j|δn j〉 , (7)

CHI(i, j) = 〈δni exp

⎛
⎝−iπ

∑
i�l� j−1

δnl

⎞
⎠δn j〉 , (8)

for which δni = ni − n. In one spatial dimension, the ob-
servable CSF discriminates between the Mott-insulating (MI)
phase and the superfluid (SF) phase by means of an expo-
nential or power-law decay. A power-law decay of CSF is
considered as long-range correlations in the special case of
one spatial dimension. For two or more spatial dimensions, a
superfluid is characterized by true long-range correlations in
CSF. The other two functions, CDW and CHI, show true long-
range correlations and assume constants at long distances
1 � |i − j| in their corresponding phases, i.e., CHI signals the
HI while CDW — CDW ordering [10]. Note that CHI vanishes
in Mott-like phases, where δni = 0. It decays exponentially
in the SF and SS phases — there δni can be regarded as
independent random variables so that the average of the ex-
ponential factor in CHI must decay as η|i− j| with |η| � 1. If
δni are correlated, as in Luttinger liquids in 1D, the decay
also has a power law and CDW CDW ordering [10]. In the
present paper we concentrate on SF, SS, and the phenomenon
of phase separation, but the considered model exhibits also
the HI phase, in which CHI shows long-range order, in full
agreement to Ref. [9]. We do, however, evaluate CHI in the SF
and SS phases, to demonstrate that there CHI decays with a
power law and reveals spatial features from the entanglement
spectrum (yet no topological order is determined).
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Recently, machine learning has been used to detect the
presence of new phases in the region of strong nearest-
neighbor and weak on-site interactions where the system
phase-separates into a superfluid and a supersolid phase [11].

In the following, we explore and provide a detailed descrip-
tion of this region of the phase diagram considering in detail
different fillings, bringing attention to interesting features of
the entanglement distribution.

V. PHASE SEPARATION

For large nearest-neighbor interactions and weak on-site
interactions [(U,V ) ∼ (0.5, 4)], we observe a phase separa-
tion (PS) into a supersolid (SS) and superfluid (SF) region that
manifests in the characteristic onset of a density wave order
starting from the boundaries of the system[see Fig. 1(a)]. The
superfluid region shows a power-law decay of CSF and a uni-
form density, whereas the supersolid region features staggered
local densities with a simultaneous presence of coherence as
indicated by the power-law decay of CSF [see Fig. 1(b)].

A phase transition happens if the equation of state, describ-
ing the dependence of the chemical potential on the density,
has two minima. The single-minimum scenario converts to the
two-minima one when an inflection point dμ/dn = 0 appears.
Indeed, it is known that the divergence in compressibility
leads to a phase separation [87–89] and this criteria was used
to locate its position numerically. Thus, the occurrence of the
phase separation can be understood as a mechanical instability
of the system, signaled by a vanishing inverse compressibility
[90–93]

κ−1 = n2 ∂2E
∂n2

≈ n2 E (n + �n) + E (n − �n) − 2E (n)

�n2
, (9)

FIG. 3. Filling n versus chemical potential μ for finite chains of
length L with OBC and no explicit U (1) symmetry. The apparent
discontinuity at roughly μ ≈ 1.13 signals spinodal decomposition
for fillings between n = 0.817 and 1.31. Insets (a) Wider range in
μ showing the extent of the SS phase, (b) Finite-size extrapolation
for the filling values in the main plot at μ = 1.1296 to estimate the
lower critical filling nc = 0.817.

where E = E0/L is the ground-state energy density and n =∑
i 〈ni〉 /L the average particle density. For these calculations,

we fix L and vary n = N/L in an equidistant manner N ∈ N,
such that �n = (N1 − N0)/L for different fillings. The system
becomes mechanically unstable and phase separation occurs
when the compressibility becomes infinite (or κ−1 = 0) [93].
We show that this is exactly the case and report the finite-size
scaling of the SF-PS transition in Fig. 2. We estimate the
transition point at the crossover of for different finite system
sizes as nSF-PS

c ≈ 0.815 [see Fig. 2, inset (1b) for a detailed
view]. For larger fillings, n > nc, the inverse compressibility
κ−1 tends towards zero in the thermodynamic limit [see Fig. 2
inset (1a)], signaling spinodal decomposition leading to the
phase-separated ground states for intermittent fillings. We
estimate the critical filling as nPS-SS

c ≈ 1.27 from extrapolating
the points for which the second derivative changes abruptly
[see Fig. 2(a)]. This filling coincides with the average density
of the SS part in the PS configuration n ≈ 2.55/2 in the

(a)

(b)

FIG. 4. Dependence of filling n on the chemical potential μ for
different system sizes L and different values of U The phase sepa-
ration is seen as a discontinuity in n(μ). (a) Fixing V = 4 we alter
U and see that beyond Uc ≈ 1 the systems form a CDW, seen by the
plateaus at filling n = 1 (lines are ordered in increasing order of U
from the top line to the bottom one). (b) For smaller V , PS occurs at
higher fillings such that it is not present in the n = 1 phase diagram
for small V anymore (lines are ordered in increasing order of U from
the top lines to the bottom ones).
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(a)

(c) (b)

FIG. 5. Spatial period � taken from the Entanglement spectrum
(ES) at (U,V ) = (0.5, 3) with OBC and χmax = 100, d = 6 as a
function of the system size L. This state was reported as SS in
Ref. [8], but it is actually an SF. Further, the spatial oscillations
vanish in the thermodynamic limit as the spatial period grows lin-
early in system size. However, we show that for incommensurate
fillings like in Figs. 6 and 7 these kinds of oscillations do survive
in the thermodynamic limit. (a,b) ES λsi for bonds at the center of
a system of length L = 50 and L = 200, respectively. (c) ES for
iDMRG simulation in the thermodynamic limit with a unit cell size
L∞ = 100 showing no spatial oscillations.

vicinity of PS transition, as shown in Fig. 2 inset (2b). To rule
out artifacts from the restricted local Hilbert space dimension,
we achieve consistent results for maximal local occupation
number d = 4, 6, 9 and found no significant differences be-
tween d = 6 and d = 9 (see Ref. [75]). As a compromise
between performance and accuracy, we fixed d = 6 for all
presented calculations.

The surface energy between SS and SF phases is min-
imized in configurations with only two domains. Open
boundary conditions, employed in DMRG calculations, pin
the solid region to the edges while the superfluid one is ob-
served in the center (see Fig. 1). The solid region appears at
random positions within the unit cell in iDMRG calculations,
where unit cells are repeated periodically, as one would expect
in a phase-separated ground state.

An alternative way to narrow down the appearance of phase
separation is via altering the chemical potential μ := ∂E/∂n
(note that κ = n−2∂n/∂μ). In Fig. 3 we show the filling n(μ)
obtained with open boundary conditions for finite chains as
we vary the chemical potential μ. Notably, we observe a
discontinuity at μc ≈ 1.13, exactly at the point where the
compressibility κ becomes infinite. We extrapolate the critical
fillings to be between nc ∈ [0.82, 1.31]. This is in agreement
with the densities we obtained in the previous calculation.
We show in Fig. 4 how the dependence n(μ) changes if we
alter (U,V ). In Fig. 4(a) discontinuities in n(μ) are clearly
visible, signaling the formation of a PS state below a critical
Uc(V = 4) ≈ 1. For larger values of U , the system forms a
CDW phase at commensurate fillings, signaled by the forma-

(a)

(b)

FIG. 6. Entanglement properties of the superfluid bulk for filling
n = 0.77 and (U,V ) = (0.5, 4) close to phase-separation. (a) Oscil-
latory subleading part Ssl of the Rényi-2 entropy S2 in Sec. II. (b) The
four largest squared Schmidt coefficients λsi shown spatially along
the bonds. The inset (1a) shows spatial frequencies from Fourier
analysis of λsi . The extrapolation yields a spatial period � = 4.3 in
the thermodynamic limit.

tion of plateaus with constant n(μ) (i.e., n = 1 here). From
Fig. 4(a) we observe that the phase separation occurs for larger
average densities n > 1 if the nearest-neighbor interaction is
weak. Therefore, the reported effects go beyond the usual
commensurate effects between lattice geometry and average
density.

VI. SPATIAL OSCILLATIONS IN SF PHASE

For the homogeneous superfluid at fillings below the
phase-separated phase, enhanced spatial oscillations appear
in the entanglement spectrum (ES) and other observables
(see Figs. 5–8). These signatures are present in SF states
for weak on-site interactions U over a broad range of V .
Such oscillatory patterns were reported earlier in Ref. [8] at
(U,V ) = (0.5, 3) and n = 1. However, for the superfluid at
integer fillings, we observe the absence of oscillations in the
thermodynamic limit such that they cannot be linked to a
bulk feature of the given phase and must be related to finite-
size effects, instead. We demonstrate this in Fig. 5, where
we show the spatial period of the oscillatory patterns in the
entanglement spectrum (examples thereof are visible in insets
in Figs. 5(a) and 5(b)] as a function of the system size, for
which we observe a linear increase, i.e., a vanishing frequency
for L → ∞. This is in agreement with iDMRG simulations
(thereby directly approximating the ground state in the ther-
modynamic limit), for which we do not find oscillations at all.
It should also be noted that the system is in a superfluid phase
for these parameters and not a supersolid phase as claimed
in Ref. [8]. The commensurate scenario at n = 1 is in strong
contrast to incommensurate fillings, for which oscillations in
the entanglement spectrum are a robust feature of the bulk.
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FIG. 7. (a) Subleading part Csl containing the oscillatory part of
the string-order correlator CHI Eq. (8). (b) Oscillatory part of the
Rényi-2 entropy S2. (c) The spatial dependence of the four largest
squared Schmidt coefficients λ2

si
on the bonds of the MPS. (a)–

(c) The orange lines are guides to the eye with every third data point
plotted to highlight the envelope. We highlight one line in cyan color
in all three subplots as a guide to the eye, making it apparent that the
period is the same in all three quantities.

In the inset of Fig. 6(a), we display a finite-size extrapola-
tion of the spatial period, which is extracted from the leading
frequency in the Fourier transform of the oscillatory part of
the entanglement spectrum [see Fig. 6 a)]. Notably, �(1/L →
0) ≈ 4.3 assumes a finite value in the thermodynamic limit.

The oscillations of the entanglement spectrum cannot be
detected by standard local observables and two-body correla-
tions, but, interestingly, they appear prominently in nonlocal
observables like the string-order correlator, for which the
long-range power-law decay is modulated by oscillations of
the same frequency [cf. Fig. 7(a)]. To extract the oscillatory
part of Csl we fit it with a power-law decay CHI(i, j) = c/|i −
j|αCsl and divide the correlator by the envelope c/|i − j|α
to show the remaining oscillatory part. In contrast, common
correlators without the nonlocal string term do not show this
oscillatory behavior as depicted in Fig. 8. All of the correlators
here decay algebraically, in particular the ones involving the
nonlocal string term, indicating a lack of long-range trivial and
topological order, but power-law correlations. The correlators
with string terms exhibit oscillations in the tails reminding us
of the oscillations of the ES.

FIG. 8. Comparison of different common correlators for the
same state as in Fig. 7 in the SF phase with oscillating ES. We
denote the nonlocal string term as � = exp(−iπ

∑
0�l< j δnl ) with

δnl = nl − n. We see that only the correlators with this string term
show the oscillations matching the ES. The critical exponent α is
obtained from linear fitting the respective correlator in a double
logarithmic scale (dotted lines in corresponding colors).

A complementary way to resolve these spatial oscillations
is given by the Rényi entropy in Eq. (2), accessible in ex-
periments for the special case α = 2. S2(�) depends on the
purity ρ2(�) for a lattice block of size �, which can be detected
in the framework of trapped ions through quantum state to-
mography [94] or through direct measurement of the quantum
purity [95].

The asymptotic decay of the Rényi entropies Sα (�) for
critical systems is well known [70,71] and given by Eq. (3).
The leading contribution to Sα (�) is proportional to ln(d[�|L])
and describes a universal scaling law with prefactor c called
the central charge of the conformal field theory (in a fermionic
system, it is equal to the number of Fermi points). An ad-
ditional factor b distinguishes the case of periodic (b = 1)
and open (b = 2) boundary conditions and γ constitutes a
nonuniversal constant. Subleading terms are denoted by Ssl

and, in general, oscillate in space. The subtle oscillations of
the entanglement spectrum are obviously carried over to the
subleading terms of the Rényi entropies, which we present in
Figs. 6 and 7.

We note that we observe the same properties for the homo-
geneous SS above the filling for phase separation. The main
difference is that for this SS, there is a spatial solid pattern in
the density. Taking this into account, the remaining properties
are the same as is shown in the SM [75].

Overall, the spatial oscillations in the entanglement spec-
trum that can be uncovered by looking at the string order
correlators or Rényi entropies, are a clear manifestation of a
broken translational symmetry. This point is further strength-
ened by simulations with iDMRG: Upon choosing a suitable
unit cell size, iDMRG can converge, as is the case in Fig. 7,
and yields results in agreement with the bulk of finite-size
simulations. For unit cell sizes incommensurate with the spa-
tial period, iDMRG has trouble converging. We show further
details about this in the SM [75]. This feature distinguishes the
superfluid phase under investigation from the superfluid phase
at filling n = 1. In the following, we convince ourselves that
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this phase is still well described by Luttinger liquid theory and
shows the same critical finite-size scaling behavior.

VII. LUTTINGER LIQUID DESCRIPTION

Long-range properties of gapless one-dimensional systems
are well captured by the Luttinger liquid theory and are gov-
erned by the Luttinger parameter K . This theory is based on
using an effective low-energy Hamiltonian and can be used to
calculate the small-momentum and long-range behavior of the
correlation functions. The Luttinger theory, being an effective
one, takes the Luttinger parameter as an input and an inde-
pendent calculation is needed to relate the value of K to the
microscopic parameters of the lattice model. In the following,
we use two independent ways to calculate K , which is useful
for the characterization of the system properties. Furthermore,
it serves as a stringent test for the internal consistency of the
numerics.

We check various other quantities and compare them with
known parameters for an SF without spatial oscillations.
Within the Luttinger liquid description, the lowest-lying ex-
citation spectrum is considered to be linear in momentum k,
i.e., E (k) = h̄kvs, where vs is the speed of sound. Further-
more, the speed of sound is related to the compressibility
through mv2

s = n∂μ/∂n = (nκ )−1[96]. In a finite-size (open
boundary) system of size L, the minimum allowed value of the
momentum is inversely proportional to the length of the wire,
i.e., kmin = π/(L + 1). As a result, the excitation spectrum has
a level splitting

�E = π h̄vs

L + 1
, (10)

which vanishes in the thermodynamic limit L → ∞. We con-
firm this antiproportional scaling �E ∝ (L + 1)p in Fig. 9(a)
by a fit of the critical exponent p = −0.931 ± 0.006, which is
consistent with the expected value of pLL = −1.

We further extract the central charge c from the von Neu-
mann entropy (Rényi entropy in the limit α → 1)

S1 = c

6
log(d[�|L]), (11)

for which we obtain an extrapolated value of c(L → ∞) ≈
0.99 throughout the superfluid phases, which is in perfect
agreement with the predicted result cLL = 1 for a spinless
Luttinger liquid [see Fig. 9(b)].

To check the validity of Eq. (10), we compute the
speed of sound vs at four distinct points in parame-
ter space (V, n) ∈ {(4, 0.6), (4, 0.4), (0.5, 1), (0.5, 0.6)} with
fixed U = 0.5 and compare them with dynamical simula-
tions. For this, we disturb the ground state at the middle
of the chain |δ�0〉 = b†

L/2 |�0〉 and compute its time evo-
lution |�(t )〉 = exp(−iτH ) |δ�0〉 via trotterization (TEBD)
[97,98]. We then compute the density distribution at each
time step and substract the ground-state density, 〈δni〉 =
〈�(τ )|ni|�(τ )〉 − 〈�0|ni|�0〉. The resulting lightcones are
displayed in Fig. 10 and match well the overlayed fitted
speed of sound from Eq. (10) (in magenta). Further we com-
pare these values of the speed of sound obtained via vs =
1/(h̄πn2κK ), incorporating the Luttinger parameter K from
Eq. (22) and the compressibility κ from Eq. (9). We extrapo-

FIG. 9. Critical scaling for a superfluid and supersolid states with
and without spatial oscillations. Solid blue lines: SF at (U,V ) =
(0.5, 4) with n = 0.62 and spatial oscillations. Dashed orange lines:
SF at (U,V ) = (0.5, 0.5) at integer filling without spatial oscilla-
tions. Dotted green lines: SS at (U,V ) = (0.5, 4) with n = 1.333 and
spatial oscillations. Despite very different spatial features, all states
seem to be well described within the same field theoretic description.
(a) Finite-size scaling of the level splitting �E = E1 − E0 vanishing
in the thermodynamic limit and yielding the critical exponent p
from �E ∝ 1/(L + 1)p, roughly matching the expected pLL = −1
for a Luttinger liquid. (b) Central charge c Fig. 11 extrapolated to
the thermodynamic limit c∞ from c = c∞ + const./L matching the
central charge cLL = 1 for a spinless Luttinger liquid.

late results to the thermodynamic limit and find a reasonable
agreement within 18%, 14%, 1%, and 9%, again for (V, n) ∈
{(4, 0.6), (4, 0.4), (0.5, 1), (0.5, 0.6)} and fixed U = 0.5, re-
spectively. This is a stringent test of the internal consistency
of the method, as thermodynamic relation between the com-
pressibility obtained from equation of state and the speed of
sound is tested.

In the following, we rely on Luttinger liquid theory to
describe the asymptotic behavior of correlation functions. To
do so, we employ an abelian bosonization analysis [99]

b†
x → ψ†(x) ∼

∞∑
m=−∞

e2π im(nx+φ)+iθ (x), (12)

in which [φ(x), ∂x′θ (x′)] = iδ(x − x′) satisfy canonical com-
mutation relations. Here the ∼ symbol denotes equality up to a
prefactor, which depends on the momentum cutoff employed
to derive the low-energy description [100]. The low-energy
effective Hamiltonian of the extended Bose Hubbard model
in 1D results to

H = 1

2π

∫
dx

(
uK (∂xφ)2 + u

K
(∂xθ )2

)
+ Osg, (13)

in which Osg denotes additional sine-Gordon type opera-
tors as a result of the density-density interactions which are
responsible for the opening of energy gaps (e.g., in the MI and
HI phases). For the characterization of the superfluid phase,
these operators are irrelevant and can be disregarded.
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FIG. 10. Dynamical analysis of a local perturbation. We create a
particle at a central site of the ground-state wave function and track
the time evolution of the space-resolved density. The propagating
defect 〈δni〉 = 〈�(τ )|ni|�(τ )〉 − 〈�0|ni|�0〉 shows a typical “light-
cone” structure, for which the red and blue coloring corresponds to
positive and negative excess with respect to the average ground-state
density. The boundary of the cone propagates with the speed of
sound (highlighted in magenta), obtained by fits of the level splitting
according to Eq. (10). In all panels we fixed U = 0.5 and parameters
L = 30, χmax = 400, and d = 6.

The local density is given by

nx → ρ(x) = [n + ∂xφ(x)]
∑

l

e2π il[nx+φ(x)], (14)

in which n denotes the average density. Note that the slowly
oscillating contributions correspond to l = 0, which allows
one to identify δρ(x) = ρ(x) − n ≈ ∂xφ as the field encoding
the local density fluctuations. This allows to approximate the
argument of the � operator to

∑
x<l<x′ δnl → φ(x′) − φ(x).

Correlation functions of the rescaled fields φ′ = φ
√

K and
θ ′ = θ/(

√
K ) are readily obtained by a generating functional

of the corresponding quantum mechanical partition function
[101] and result in the asymptotic expressions

〈φ(x)φ(x′)〉 = − 1

2K
log (|x − x′|), (15)

〈θ (x)θ (x′)〉 = −K

2
log (|x − x′|). (16)

By using the identity

〈ei
∑

k bk f (xk )〉 = e− 1
2

∑
k,k′ bkbk′ 〈 f (xk ) f (xk′ )〉, f ∈ {φ, θ}, (17)

FIG. 11. Luttinger parameter K dependence on the filling n,
calculated with OBC with χmax = 400 and d = 6 at U = 0.5 and
V = 4. Two independent estimations are used, from the long-range
asymptotic of the off-diagonal single-particle correlation function
〈b†

i b j〉 Eq. (18) and from the small momenta of the structure factor
S(q) via Eq. (22). (a) Structure factor S(q) for small momenta at
different fillings. With the onset of phase separation, S(q) deviates
from linear dependence at its origin and Eq. (22) becomes invalid.

we arrive at the following asymptotic forms of the correlation
functions, keeping only the dominant contributions

| 〈ψ†(x)ψ (x′)〉 | ≈ | 〈ei[θ (x)−θ (x′ )]〉 | ∝ |x − x′|−K/2, (18)

| 〈ψ†(x)�ψ (x′)〉 | ≈ | 〈eiθ (x)ei[φ(x′ )−φ(x)]e−iθ (x′ )〉 |
∝ |x − x′|−1/2(K+1/K ), (19)

| 〈δρ(x)�δρ(x′)〉 | ≈ | 〈∂xφei[φ(x′ )−φ(x)]∂x′φ〉 |
∝ |x − x′|−1/(2K )−2, (20)

| 〈ρ(x)ρ(x′)〉conn. | ≈ | 〈∂xφ∂x′φ(x′)〉 | ∝ |x − x′|−2. (21)

The Luttinger liquid predictions for the long-range asymp-
totic of the correlation functions are verified in Fig. 8 and
a very good agreement is found. Note that the oscillations
observed in Figs. 6 and 7 are consistent with the field theoretic
description if subleading corrections are not neglected.

Thus, the Luttinger liquid is capable of capturing correctly
the long-range properties. At the same time, a microscopic
simulation is needed to connect the parameters of the mi-
croscopic Hamiltonian to the effective parameters of the
Luttinger liquid model. In particular, it is of great practical
value to find such a relation for the Luttinger parameter K .
We extracted the Luttinger parameter K from correlation func-
tions in Eqs. (18) to (20). However, we expect that oscillatory
subleading terms are more important in Eqs. (19) and (20),
causing large error bars for fits of the leading order only, and
we resort to a detailed comparison between the value of K
obtained from Eqs. (18) and (22) only in Fig. 11.

Alternatively, the Luttinger parameter K can be extracted
from the slope of the linear part of the structure factor S (q) =∑

i j e−iq(i− j)(〈nin j〉 − 〈ni〉 〈n j〉)/(L + 1) [102,103]. In the
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framework of the Tomonaga-Luttinger description, we can
compute the Luttinger parameter via

1

2πK
= lim

q→0

S (q)

q
, (22)

where q and S(q) depend on the system size L and the
boundary conditions, see Refs. [104,105]. We obtain S(q)/q
by performing a fit of the lowest momenta where S(q) ∝ q is
linear. If the lowest-lying excitation spectrum is exhausted by
linear phonons, the Luttinger liquid description is applicable
and the Luttinger parameter defined according to Eq. (22) is
independent of the actual size of the system L if it is large
enough. We see that both estimations of K match well in the
SF phase, as seen in Fig. 11.

The knowledge of the Luttinger parameter K allows one
to apply the effective description as provided by the Lut-
tinger liquid to static and dynamic long-range properties. In
particular, low-momentum behavior of the momentum distri-
bution can be obtained as a Fourier transform of off-diagonal
single-particle correlation function (19) resulting in a diver-
gent n(k) ∝ |k|1−K/2 behavior for K < 2. That is, for all cases
shown in Fig. 11, the occupation of zero-moment state di-
verges in the thermodynamic limit which is a reminiscence
of Bose-Einstein condensation in one dimension. Another
special value of the Luttinger parameter is K = 1/2, below
which an SF state might be sustained a unit filling as opposed
to a Mott insulator, which is realized for any finite height of
the optical lattice [106,107]. In the considered system small
values of K correspond to a large filling fraction n, a further
increase in n leads to a phase transition.

In conclusion, we do not find signatures that suggest an
alternate field-theoretic description for the SF with spatial
oscillations linked to a “symmetry enriched quantum critical-
ity” [108,109]. The most striking evidence for the absence of
(quasi) zero-energy edge modes is provided by the finite-size
scaling of the energy level splitting ∝ (L + 1)−1. Due to the
bulk-boundary correspondence and as outlined in Ref. [109],
an intrinsically gapless topological phase would host edge
excitations that provide strong corrections to the lowest split-
ting, i.e., Eq. (10), which we do not observe throughout the
superfluid phase. Furthermore, we do not see any spontaneous
boundary occupation, nor did we observe nonvanishing edge-
to-edge correlations in the thermodynamic limit. Instead, we
demonstrated the applicability of the standard Luttinger liquid
description by numerical estimates of the excitation spectrum,
the central charge, and the Luttinger liquid parameter.

VIII. CONCLUSION

In this work, we presented a state-of-the-art numerical and
analytic study of the extended Bose Hubbard model in 1D. In

particular, we have carried out detailed studies of the newly
found phases. We also confirmed and deepened the analysis
of phase separation in this system by looking at various quan-
tities characterizing it. A clarification that the entanglement
spectrum oscillations survive in the thermodynamic limit and
established further regions in the parameter space where this
is the case was also established. We did not observe any edge
states, or bulk-edge correspondence in these regions. Neither
were we able to propose a hidden order parameter, nor could
we find a good k-merized variational state there, nor could we
see variations from expected scaling in this universality class.
We did confirme that the model agrees, in the superfluid phase,
with the predictions made within the standard framework of
Luttinger-Tomonaga theory. We provided a relation between
the Luttinger parameter and the microscopic parameters of
the BH model. We thus concluded the absence of topological
order/effects there.

In view of recent progress with experiments on dipolar
atoms, Rydberg atoms, and trapped ions, as well as novel
methods of detection of entanglement entropies and spec-
trum, our results open an interesting playground to test CFT
and Luttinger liquid properties in experiments. Our simple
bosonization approach is fully applicable in the superfluid
phase only. A more powerful field theory predicting the phase
transition between superfluid and supersolid would be of
general interest. The outlook for future studies includes inves-
tigations of the same model in two dimensions, and extension
to true long-range interactions, with a particular focus on
dipolar ones, where the experiments are on the way.
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