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Phase signatures in the third-harmonic response of Higgs and coexisting modes in superconductors
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Third-harmonic generation (THG) experiments on superconductors can be used to investigate collective
excitations like the amplitude mode of the order parameter known as Higgs mode. These modes are visible
due to resonances in the THG signal if the driving frequency matches the energy of the mode. In real materials,
multiple modes can exist giving rise to additional THG contributions, such that it is difficult to unambiguously
interpret the results. In this paper, we additionally analyze the phase of the THG signal for the first time, which
contains microscopic details beyond classical resonances as well as signatures of couplings between modes that
are difficult to observe in the amplitude alone. We investigate how the Higgs mode, impurities, or Coulomb
interaction affects the phase response and consider exemplary two systems with additional modes. We argue that
extracting this phase information could be valuable in future experiments.
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I. INTRODUCTION

Recent progress in ultrafast THz laser technology lead
to an increasing interest in studying collective excitations
of superconducting systems. Especially the investigation of
the amplitude (Higgs) mode of superconductors lead to a
new emerging field termed Higgs spectroscopy, where the
Higgs mode is used as a probe for intrinsic properties of
the system [1–4]. Intrinsically, a superconductor possesses
two collective modes due to the spontaneous U(1) symmetry
breaking: An amplitude oscillation of the order parameters,
known as the Higgs mode and a phase oscillation, known as
the Goldstone mode [5,6]. The Goldstone mode is a massless
mode in the long-wave limit for uncharged systems. However,
the Anderson-Higgs mechanism in a charged superconductor
shifts its energy to the plasma energy. The Higgs mode is
a massive mode with an energy at the quasiparticle energy
2� and thus is a low-energy excitation in the range of THz
frequency.

Experiments to excite the Higgs mode are usually per-
formed in either of two ways. One option is to quench the
system with an ultrafast, single-cycle THz pump pulse to
abruptly change the system’s parameter and bring it out of
equilibrium. The order parameter starts to automatically os-
cillate around its new equilibrium state with the Higgs mode
frequency. This general quench dynamics was theoretically
studied for the first time in Refs. [7–12] and later modeled
with realistic light pulses in Refs. [13,14]. Experimentally, it
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was measured in a pump-probe geometry, where the probe
pulse scans the dynamics of the system with a variable time-
delay after the pump pulse [1].

The second option is to drive the system periodically with a
multicycle THz pulse at frequency �. This enforces the order
parameter to oscillate with twice the driving frequency 2� due
to the quadratic excitation process [15–17]. Furthermore, this
leads to a third-harmonic generation (THG) process, which
can be measured in the transmitted electric field. Tuning the
driving frequency into resonance with the Higgs mode energy,
i.e., 2� = 2�, a resonance peak is visible in the signal. This
can be achieved either by varying the driving frequency or, as
it is currently done experimentally, by changing the value of
the order parameter �(T ) by sweeping the temperature T . The
resonance can be used as a signature for the collective Higgs
mode as it was demonstrated for the s-wave superconductor
NbN [1,18].

In many materials, more complicated effects may arise re-
sulting from coexisting modes additionally contributing to the
THG signal. Examples include quasiparticle excitations [16],
Leggett modes in multiband systems [19–21], Josephson-
Plasma modes in layered systems [22], Bardasis-Schrieffer
modes in systems with subleading pairing channels [23],
coexisting CDW fluctuations [24], or generally phonon and
magnon excitations. Theoretical investigations of such sys-
tem with multiple collective modes have become even more
important since THG experiments on several cuprates have
recently been performed [3]. There, an interesting phase sig-
nature indicating an interplay between two modes has been
detected but was not fully understood theoretically. It is there-
fore important to understand the signatures of Higgs modes in
spectroscopic experiments which can reveal the existence and
interplay with other modes.

In our work, we therefore take into account the existence
of another mode and we investigate the THG signal for such
systems. Hereby, we concentrate on the phase of the 3�
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oscillations, which was not discussed theoretically so far. In
comparison with a classical driven oscillator, we show that a
driven BCS model contains additional microscopic details in
the phase of the signal. Furthermore, we develop a general
concept of antiresonance in a microscopic theory, which is
an intrinsic signature for coexisting or coupled modes. We
demonstrate this concept on two example systems, namely,
a coupling of the Higgs mode to a charge density wave and
secondly a Higgs mode with a coexisting Bardasis-Schrieffer
mode. With this paper, we propose that analyzing the phase
of the THG signal in addition to the amplitude yields addi-
tional information valuable for understanding the interplay of
superconductivity and other modes. Hereby, the nature and the
symmetry of the coexisting modes is not important for the
interplay mechanism such that our theory generally applies
and can easily be extended to other systems like d-wave
superconductors.

The paper is organized as follows. In Sec. II, we generally
discuss the phase response of a single driven oscillator. We
start from a classical model, proceed to a phenomenologi-
cal Ginzburg-Landau theory for superconductivity and finally
show a microscopic calculation in an effective action for-
malism. In Sec. III, we extend the single mode analysis to
a second mode. We start again with a classical model and
then discuss the general features of a microscopic theory.
In Sec. IV, we explicitly calculate the THG response of a
superconducting system with coexisting CDW. In Sec. V, we
explicitly calculate the THG response of a superconducting
system with Bardasis-Schrieffer modes. Finally, we summa-
rize and conclude in Sec. VI

II. PHASE SIGNATURE OF A SINGLE MODE

Before studying the full microscopic quantum mechanical
model for superconductors and its collective modes, let us
first consider a simple, well-known classical system. This will
allow us to define and observe the crucial features which are
important for the later discussion and we can compare the
similarities and differences between these systems. Hereby,
we investigate classical driven oscillators which represent the
collective modes of the system.

A. Harmonic oscillator

It is well known that a driven harmonic oscillator has a
characteristic amplitude and phase response which depends
on the driving frequency. With the eigenfrequency ω0, damp-
ing factor γ , driving amplitude F0, and driving frequency �,
the equation of motion for the displacement x(t ) reads

ẍ(t ) + ω2
0x(t ) + γ ẋ(t ) = F0 cos(�t ). (1)

The steady-state solution can be written as x(t ) = A cos(�t −
φ), where the frequency-dependent amplitude A and phase φ

are given by

A(�) = F0√(
ω2

0 − �2
)2 + γ 2�2

, (2a)

φ(�) = tan−1

(
γ�

ω2
0 − �2

)
. (2b)

FIG. 1. (a) Amplitude and (b) phase of a driven harmonic oscil-
lator for different damping γ according to Eq. (2) with F0 = 1 and
ω0 = 1.

One observes that the amplitude has a resonance peak at
� = ω0 which is accompanied by an abrupt phase change
from 0 to π . Thus the oscillation is in-phase with the driving
frequency below the resonance and lags behind with opposite
phase above the resonance.

The amplitude and phase is plotted in Fig. 1 for different
damping values γ . While for small damping a pronounced
resonance peak is visible in the amplitude, for large damp-
ing, the resonance peak is heavily suppressed and broadened.
In contrast, the phase still shows a phase change from 0
to π , even though it is broadened as well. This means that
both amplitude and phase have a signature of the resonance,
yet the phase change signature is more robust against the
influence of damping. Hence, in a strongly damped system
with suppressed resonance peak, the eigenmode would still
be identifiable via the phase signature.

B. Ginzburg-Landau model

Let us investigate now whether we can observe such a be-
havior for THz-driven collective modes in superconductors as
well. Hereby, the oscillator corresponds to a collective mode
which is driven by a THz light field. In the experiment, the
driven collective mode is not measured directly. Instead the
induced current proportional to the transmitted electric field is
recorded.

As a first step, we recapitulate the phenomenological
Ginzburg-Landau model, where we will consider amplitude
and phase fluctuations [6,15]. The time-dependent Lagrangian
of a superconductor coupled to a gauge field is given by

L = (Dμψ )∗(Dμψ ) − V (ψ ) − 1
4 FμνFμν, (3)

where ψ is the superconducting order parameter, Dμ = ∂μ +
ieAμ the covariant derivative with the four-vectors ∂μ =
(∂t ,−∇ ) and Aμ = (�,−A) and electromagnetic field ten-
sor Fμν = ∂μAν − ∂νAμ in units where c = 1. In principle,
the Lagrangian could also contain additional linear deriva-
tive terms. Yet, we assume perfect particle-hole symmetry,
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such that the time dynamics of a superconductor is described
only by a second-order derivative term [5,6]. The potential
V (ψ ) = α|ψ |2 + β

2 |ψ |4 is the free energy of a superconductor
with β > 0 and α = α0(T − Tc) such that for T < Tc the
potential takes the form of a Mexican hat with the ground state
ψ0 = √−α/β. We introduce amplitude (Higgs) fluctuations
H (r, t ) and phase (Goldstone) fluctuations θ (r, t ) via

ψ (r, t ) = (ψ0 + H (r, t ))eiθ (r,t ), (4)

and choose a gauge Aμ → Aμ + 1
e ∂μθ and ψ → ψe−iθ . Then,

the Lagrangian up to second order in the fluctuations reads

L = (∂μH )(∂μH ) + 2αH2 − 1
4 FμνFμν

+ e2ψ2
0 AμAμ + 2e2ψ0AμAμH. (5)

Hereby, the phase fluctuations are removed from the La-
grangian by the chosen gauge and are implicitly included in
the longitudinal component of the transformed gauge field Aμ

which obtains an additional mass term ∝AμAμ. This effect
is known as the Anderson-Higgs mechanism [25]. In a region
close to the transition temperature, where the influence of nor-
mal carriers can be relevant, a low energy density fluctuation
can remain, which is known as the Carlson-Goldman mode
[26–28]. Such a scenario requires a two-fluid model descrip-
tion and might be interesting to study in future. Calculating the
equations of motion for the Higgs mode H , neglecting spatial
fluctuations for q → 0 and choosing a gauge with � = 0,
yields

∂2
t H (t ) − 2αH (t ) = −e2ψ0A(t )2. (6)

The dynamics of the Higgs oscillations is governed by a
harmonic oscillator with frequency ω0 = √−2α. The driving
term is quadratic in the vector potential A(t ). With a peri-
odic light field A(t ) = A0 cos(�t ), the system is effectively
driven by 2� such that the resonance in the system occurs at
2� = ω0. Thus, on a phenomenological level, the collective
Higgs oscillations of a superconductor and its amplitude and
phase signature is exactly described by the classical model
discussed before. The measured transmitted field is described
by the induced current given by [15]

j(t ) = ∂L
∂A

= −2e2ψ2
0 A(t ) − 4e2ψ0A(t )H (t ). (7)

A nonlinear third-harmonic component in the current is
induced as A(t ) H (t ) ∝ cos(3�t − φ) + . . . The resonance
behavior of the amplitude and phase in the current j(t ) is
directly given by the Higgs response H (t ).

C. Microscopic BCS model

While in the phenomenological model the coupling of light
to the system contains no further details, in a microscopic
model additional effects with frequency-dependent suscep-
tibilities occur. Furthermore, there are quasiparticles in the
microscopic model which render the Higgs mode less stable
due to the additional decay channel.

To address these effects, we proceed to the full microscopic
theory using the usual effective action approach described for
example in Refs. [16,29]. We will derive known expressions
but reanalyze these concentrating on the phase structure. The

BCS Hamiltonian reads

HBCS(t ) =
∑
k,σ

εkc†
k,σ

ck,σ −
∑
k,k′

Vk,k′c†
k,↑c†

−k,↓c−k′,↓ck′,↑

+ 1

2

∑
k,σ

∑
i, j

∂2
i jεkAi(t )Aj (t )c†

k,σ
ck,σ . (8)

Hereby, εk = ξk − εF is the electron dispersion ξk measured
relative to the Fermi level εF and c†

k,σ
or ck,σ the electron

creation or annihilation operators. The separable BCS pairing
interaction is given by Vk,k′ = V fk fk′ with pairing strength
V and symmetry fk. A coupling to light represented by the
vector potential A(t ) is realized by minimal coupling εk →
εk−A(t ). An expansion in powers of A(t ) yields the low-
est nonvanishing diamagnetic coupling term shown above,
while the linear paramagnetic coupling ∝∂iAi(t ) vanishes due
to parity symmetry. In the expression, we have introduced
the short-hand notation ∂2

i j = ∂2
kik j

. Here, we initially neglect
long-ranged Coulomb interaction and the coupling to phase
fluctuations which is important in real materials. We will show
later in Sec. II D that including Coulomb interaction does
not affect the phase signature. The action of the system in
imaginary time τ is given by

S =
∫ β

0
dτ

(∑
k,σ

c†
k,σ

(τ )∂τ ck,σ (τ ) + H (τ )

)
. (9)

We perform a Hubbard-Stratonovich transformation introduc-
ing the bosonic field �, with amplitude fluctuations �(t ) =
� + δ�(t ). After integration of fermions, we split the action
in a mean-field and fluctuating part, which we expand up to
fourth order in A. For more details about the calculation see
Appendix A. The effective action with Matsubara frequencies
iωm in fourth order of the vector potential reads

S(4) = 1

2

1

β

∑
iωm

δ�(−iωm)H−1(iωm)δ�(iωm)

− 2δ�(−iωm)
∑
i, j

χ
i j
�A2 A2

i j (iωm)

+
∑
i jkl

A2
i j (−iωm)χ i jkl

A2A2 (iωm)A2
kl (iωm). (10)

Hereby, H−1(iωm) is the inverse Higgs propagator defined as
the renormalized pairing interaction V

H−1(iωm) = 2

V
+ χ��(iωm). (11)

The susceptibilities are given by

χ��(iωm) =
∑

k

f 2
k X11(k, iωm), (12a)

χ
i j
�A2 (iωm) =

∑
k

fk
1

2
∂2

i jεk X13(k, iωm), (12b)

χ
i jkl
A2A2 (iωm) =

∑
k

1

4
∂2

i jεk ∂2
klεk X33(k, iωm) (12c)
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FIG. 2. Diagrammatic representation of the effective action in
[(a) and (b)] the clean limit according to Eq. (16) and in [(c) and
(d)] the dirty limit according to Eq. (24). (a) Diamagnetic Higgs
excitation. (b) Diamagnetic quasiparticle excitation. (c) Paramag-
netic Higgs excitation. (d) Paramagnetic quasiparticle excitation. The
wiggly lines represent the vector potential A, the solid lines the BCS
Green’s function G0 and the double dashed line the Higgs propagator
H . The filled square vertex corresponds to fkτ1, the filled circle
vertex to ∂2

i jεkτ3 and the empty circle vertex to ∂iεkτ0.

with

Xαβ (k, iωm) = 1

β

∑
iωn

tr[G0(k, iωn)ταG0(k, iωm + iωn)τβ]

(13)

and the BCS Green’s function G−1
0 = iωmτ0 − εkτ3 + �kτ1

where τi are Pauli matrices. The indices � and A2 in the
susceptibilities represent the vertices, i.e., the coupling to the
Higgs propagator via fkτ1 or the coupling to light via ∂2

i jεkτ3,
respectively. Integrating out the amplitude fluctuations and
after analytic continuation iωm → ω + i0+, one obtains

S(4) = 1

2

∫
dω
∑
i jkl

(
χ

i j
�A2 (−ω)χ kl

�A2 (ω)H (ω)

+ χ
i jkl
A2A2 (ω)

)
A2

i j (−ω)A2
kl (ω). (14)

There are two contributions in the action, one containing the
Higgs oscillations and one the quasiparticle response [16].
These contributions are shown diagrammatically in Figs. 2(a)
and 2(b).

For simplicity, we will only consider linear-polarized light
in x direction, such that we can neglect the polarization indices
in the following. With this, the third-harmonic response is
given by

j (3)(3�) = − δS(4)

δA(−ω)

∣∣∣∣
3�

∝ χH (2�) + χQ(2�) (15)

with the Higgs (H) and quasiparticle (Q) contribution

χH (ω) = χ�A2 (−ω)χ�A2 (ω)H (ω), (16a)

χQ(ω) = χA2A2 (ω). (16b)

Comparing the response j (3) with the phenomenological
Ginzburg-Landau model in Eq. (7), we can observe several

differences which modify the response. First, the Higgs prop-
agator H (ω) is a more complex object compared to the
steady-state solution in Eq. (2) and does not have a simple
resonance pole as we will see. Second, light does not di-
rectly couple to the Higgs mode but through the susceptibility
χ�A2 (ω). Third, there is an additional quasiparticle response
given by χA2A2 (ω).

In the following, let us disentangle these effects. Evaluat-
ing the Matsubara sum and rewriting the momentum sum as
integral assuming s-wave symmetry, the Higgs propagator can
be analytically evaluated at T = 0. Concentrating on the pole
structure, one obtains the well-known result [7,10–12,24]

H (ω) ∝ 1√
4�2 − ω2

. (17)

It does not have a simple pole but a square root term in the
denominator. This is in contrast to the solution of the classical
oscillator Eq. (2), where a simple pole 1/(ω2

0 − �2) occurs
for γ = 0. It is interesting to note that this behavior results
from the different decay property of the intrinsic Higgs mode
compared to the eigenmode of a classical oscillator. While the
eigenmode of a classical oscillator is undamped without ad-
ditional damping γ , the Higgs mode has a characterize 1/

√
t

decay in the time domain even without damping [7,10–12]. It
can be understood as a decay into quasiparticles as the Higgs
mode energy overlaps with the quasiparticle continuum at 2�.
In addition to the obvious consequence of stronger damping,
it also affects the phase response. The square root reduces the
π phase change at the resonance frequency to π/2. Thus the
driven amplitude oscillation only lags behind a quarter cycle
at high frequencies instead of being completely antiphase as
found in the phenomenological model.

The phase response of the Higgs mode is additionally
affected by the susceptibilities χ2

�A2 in Eq. (16). However,
this is an additive phase contribution that is continuous and
slowly varying around the resonance at 2�. The observation
of a phase jump is therefore directly related to the analytic
structure of the Higgs propagator in Eq. (17).

Finally, let us examine the quasiparticle response which is
actually known to be much larger than the Higgs response
[16]. Evaluating the Matsubara sum of the respective suscep-
tibility and solving the momentum sum (see Appendix A) one
obtains for the pole structure

χA2A2 (ω) ∝ 1√
4�2 − w2

+ . . . (18)

The quasiparticle response has the same square root pole
structure as the Higgs mode, leading to the same π/2 phase
change at the resonance frequency.

In Figs. 3(a) and 3(b), the amplitude and phase of the
diamagnetic Higgs and quasiparticle response is shown using
εk = −2t (cos kx + cos ky) − μ, t = 10 meV, μ = −10 meV,
� = 1 meV, and a residual broadening ω → ω + i0.05 meV.
Hereby, the momentum sums are evaluated numerically on
a 2d grid with 2000 × 2000 points without approximation
assuming linear polarized light in x direction. Confirming the
analytic study, we can see that phase shows a π/2 phase
change at the resonance frequency 2� = 2�. Above the
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FIG. 3. Intensity (top row) and (normalized to zero) phase (bot-
tom row) of THG response for Higgs (H), quasiparticles (Q) and
total (T). [(a) and (b)] Uncharged BCS model without Coulomb
interaction in Eq. (16). The Higgs contribution is scaled by 2 × 104

to be visible. [(c) and (d)] BCS model including Coulomb interaction
in Eq. (22). The Higgs contribution is scaled by 5 × 103 to be visi-
ble. [(e) and (f)] BCS model with impurities using Mattis-Bardeen
approach in Eq. (24).

resonance, a drift is observable to higher values for the quasi-
particles and lower values for the Higgs mode. As it has been
emphasized in literature [16], the Higgs mode is much smaller
in the clean-limit BCS theory.

D. Influence of Coulomb interaction

As a next step, we discuss the influence of Coulomb inter-
action given by an additional term in the Hamiltonian

Hc = 1

2

∑
k,k′,q

∑
σ,σ ′

V (q)c†
k+q,σ

ck,σ c†
k′−q,σ ′ck′,σ ′ , (19)

where V (q) is the Coulomb potential. We follow Ref. [16] and
decouple the Coulomb interaction by means of an additional
Hubbard-Stratonovich transformation introducing the density
field ρ(q, τ ) = ρ0 + δρ(q, τ ) and allow amplitude and phase
fluctuations in the superconducting order parameter �(τ ) =
(� + H (τ ))eiθ (τ ). With this, one obtains for the fourth-order
action

S(4)(δ�, θ, δρ) = 1

2

1

β

∑
iωm

[
φ
(−iωm)M(iωm)φ(iωm)

+ φ
(−iωm)b(iωm) + b
(−iωm)φ(iωm)

+
∑
i jkl

A2
i j (−iωm)A2

i j (iωm)χ i jkl
A2A2 (iωm)

]

(20)

with

φ
(iωm) = (δ�(iωm), θ (iωm), δρ(iωm)), (21a)

M =

⎛
⎜⎜⎝

H−1 iωm
2 χ�ρ χ�ρ

− iωm
2 χρ�

ω2
m

4 χρρ − iωm
2 χρρ

χρ�
iωm

2 χρρ − 1
V (q) + χρρ

⎞
⎟⎟⎠, (21b)

b(iωm) =

⎛
⎜⎜⎝

∑
i j A2

i j (iωm)χ i j
�A2 (iωm)

−iωm
∑

i j A2
i j (iωm)χ i j

ρA2 (iωm)∑
i j A2

i j (iωm)χ i j
ρA2 (iωm)

⎞
⎟⎟⎠. (21c)

The susceptibilities are given in Appendix B. Integrating the
fluctuations and using 1/V (q) → 0 for q → 0, one obtains for
the third-order current j (3) = χH + χQ

χQ = χA2A2 −
χ2

A2ρ

χρρ

, (22a)

χH = (χA2� − χA2ρχ�ρ/χρρ )2

H−1 − χ2
�ρ

/χρρ

. (22b)

The Coulomb interaction renormalizes the Higgs and
quasiparticle response. Yet, due to obtained structure, the
phase signature is not changed. The expressions in the nu-
merator containing the terms χA2ρ and χ�ρ do not contain
poles and only add continuous phase contributions around 2�.
This can be seen in Figs. 3(c) and 3(d), where the respective
expressions are numerically evaluated with the same param-
eters of the previous section. Except global scaling factors
and small deviations resulting from the 1/χρρ contribution the
result is basically unchanged with a phase change of π/2 at
the resonance.

E. Influence of impurities

Recently it was pointed out by several papers [20,21,30–
33] that nonmagnetic impurities allow an additional param-
agnetic coupling of light to the condensate. This is shown
diagrammatically in Figs. 2(c) and 2(d) where the light-
coupling vertices are in the τ0 channel. While these diagrams
vanish in the clean limit, they have been shown to dominate
the optical nonlinear response even for small disorder. To
model impurities, different approaches have been used, e.g.,
quasiclassical Eilenberger equations equivalent to impurity
ladder summations [31], the self-consistent Born approx-
imation [32], or averaging disorder configurations in real
space [33]. Here, we adopt the Mattis-Bardeen approxima-
tion first applied to the nonlinear response in Ref. [20] and
subsequently formulated in the effective action framework in
Ref. [21]. This approach allows to model impurities with an
effective vertex approximation and shows qualitatively similar
results to Refs. [31–33].

Following Ref. [21], we implement a 3D continuum model,
where we can express the THG current within the Mattis-
Bardeen approximation as

j (3)(3�) = χH (2�) + χQ(2�) (23)
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with the Higgs (H) and quasiparticle (Q) susceptibilities

χH (2�) = 2χAA�(2�,−�)

×χAA�(−2�,−�)H (2�), (24a)

χQ(2�) = χAAAA(�, 2�,−�). (24b)

The triangle and square bubbles are defined as

χAA�(ωm, ωl )

= 1

β

∑
ωn

∑
kk′

|Jkk′ |2 tr[G0(ωn + ωm, k)

×G0(ωn + ωm + ωl , k′)G0(ωn, k)τ1], (25a)

χAAAA(ωm, ωl , ωp)

= 1

β

∑
ωn

∑
kk′k′′

|Jkk′ |2|Jkk′′ |2

× tr[G0(ωn, k)G0(ωn + ωm, k′)G0(ωn + ωm + ωl , k)

×G0(ωn + ωm + ωl + ωp, k′′)], (25b)

and are shown in Figs. 2(c) and 2(d). The transition matrix
element Jkk′ = 〈k| ep

m |k′〉 is approximated by a Lorentzian dis-
tribution

|Jkk′ |2 ≈ (evF )2

3N (0)

1

π

γ

(εk − εk′ )2 + γ 2
(26)

with impurity scattering rate γ , Fermi velocity vF , and density
of states at Fermi surface N (0). We choose the parameters
� = 2 meV, mass m = 0.78me of the parabolic band disper-
sion, εF = 1 eV, and impurity scattering rate γ /� = 10. As
γ � 2�, the considered case corresponds to a superconductor
in the dirty limit [20]. We evaluate Matsubara sums ana-
lytically and numerically compute the momentum integrals.
For further details about the calculation see Ref. [21]. While
the Mattis-Bardeen approximation may not yield qualitatively
accurate results in the nonlinear response, it serves well to
discuss qualitative differences of the phase response compared
to the clean limit.

The resulting amplitude and phase of the dirty supercon-
ductor are shown in Figs. 3(e) and 3(f). We find a pronounced
resonance peak at 2� = 2�. Here, the Higgs contribution is
no longer subdominant but instead gives the main contribution
to the THG signal. The resonance peak is accompanied by a
positive phase jump of roughly π across the resonance. The
detailed structure of this phase response as well as the value
of the phase jump show some weak dependence on material
parameters.

The more complex phase structure in the dirty limit
can be understand as follows. While the clean phase re-
sponse is dominated by the π/2 phase jump of the Higgs
propagator, the phase contribution of the susceptibilities in
the dirty case add a steep positive drift above 2�, such
that the overall phase change is increase to roughly π .
The susceptibility is represented by the fermionic triangles
χAA�(2�,−�)χAA�(−2�,−�) and shown in Fig. 2(c). Thus
the phase response in the dirty limit is not only given by the
Higgs propagator but has an additional contribution from the
electron-mediated microscopic coupling of light to the Higgs
mode.

III. PHASE RESPONSE OF TWO MODES

Now, we will consider systems which contain two modes
and study the interaction between these. Again, we start by an
analysis of the classic analogon of two coupled oscillators to
understand the fundamental properties before proceeding to a
microscopic model.

A. Coupled oscillators

If there are two modes in a system, interference effects
occur in the driven system which can lead to the so-called
antiresonance phenomenon. The usual way to understand this
effect is based on the assumption that there are two modes in
the system which are coupled and only one of these modes is
externally driven. For a particular driving frequency, the ex-
ternal force on the driven mode cancels exactly with the force
induced by the other coupled mode such that the amplitude of
the oscillation of this mode vanishes – thus the name antires-
onance. Furthermore, the antiresonance is accompanied by a
negative phase jump of π , therefore it goes in the opposite
direction compared to a resonance.

The same phase signature can also be obtained when both
oscillators are driven and the observed signal is comprised of
the sum of both oscillation amplitudes. Here, this effect is
a trivial consequence of a destructive interference and does
not necessarily rely on a coupling between the modes. An
additional coupling between the modes allows for a tuning
of the antiresonance frequency. We refer to this scenario as
antiresonance behavior as well.

To make this effect more clear, let us first investigate again
the classic model where we consider now two coupled and
driven oscillators described by the following equations of
motion:

x′′
1 (t ) + ω2

1x1(t ) + γ1x′
1(t ) + gx2(t ) = F1 cos(�t ),

x′′
2 (t ) + ω2

2x2(t ) + γ2x′
2(t ) + gx1(t ) = F2 cos(�t ). (27)

There are two oscillators x1(t ) and x2(t ) with individual eigen-
frequencies ωi, dampings γi and driving amplitudes Fi but
same driving frequencies �. The coupling between the modes
is controlled by the constant g. Using the complex variable
method ansatz

xi(t ) = A1 cos(�t − φi ) = Re x̂i(t ), (28)

where x̂i(t ) = Â1(�)ei�t with Âi(�) = Ai(�)e−iφi (�), we
write the equations in matrix form(

P−1
1 g
g P−1

2

)(
Â1

Â2

)
=
(

F1

F2

)
, (29)

where we define the “propagator” of the oscillators as P−1
i =

−�2 + ω2
i + i�γi. Inversion of the matrix leads to the solu-

tion (
Â1

Â2

)
=
(

P̃1 −gP1P̃2

−gP1P̃2 P̃2

)(
F1

F2

)
(30)

with the renormalized propagator P̃i = (P−1
i − g2Pj )−1 where

i �= j. We also consider the total response xT = x1 + x2,
where

xT (t ) = AT cos(�t − φT ) = Re x̂T (t ) (31)
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FIG. 4. [(a) and (b)] Amplitude and [(c) and (d)] phase of two
(coupled) modes as defined in Eq. (28) and Eq. (31). For the left
column (a) and (c), the two oscillators are coupled with g = 1 but
only the first oscillator is driven with F1 = 1 and F2 = 0. For the
right column (b) and (d), the two oscillators are uncoupled with g = 0
but both oscillators are driven with F1 = F2 = 1. The frequencies are
ω1 = 1, ω2 = 2 and the dampings γ1 = γ2 = 0.01.

with x̂T (t ) = ÂT (�)ei�t and ÂT = AT (�)e−φT (�). One ob-
tains for the complex amplitudes

Â1 = P̃1F1 − gP1P̃2F2, (32a)

Â2 = P̃2F2 − gP1P̃2F1, (32b)

ÂT = P̃1F1 + P̃2F2 − gP1P̃2(F1 + F2). (32c)

In Fig. 4, we show a numerical evaluation of the individual
and total amplitudes Ai and phases φi for two distinct cases
(see Appendix C for the exact expressions). In the first col-
umn, the two oscillators are coupled, i.e., g �= 0, but only the
first oscillator is driven F2 = 0. In the second column, the two
oscillators are uncoupled, i.e., g = 0, but both oscillators are
driven Fi �= 0.

The first scenario (left column) corresponds to the usual
definition of the antiresonance, namely a destructive inter-
ference between the driving force and the force from the
second oscillator due to the coupling. The dip between the two
resonance peaks and the negative π phase change, is clearly
visible for the first oscillator (red curve). The energy of the an-
tiresonance ωA is determined by P̃1 = 0, which leads to ωA =
ω2, i.e., the antiresonance occurs at the energy of the other
undriven mode. The total response AT and φT (blue curve)
also shows this behavior resulting from the antiresonance of
the first oscillator. Yet, the energy of the antiresonance is
shifted as a result of the second superposition scenario.

We can further see that the finite coupling shifts the
resonances frequency with respect to the uncoupled eigenfre-
quencies ωi. The resonance frequency for the lower modes

is decreases, while the resonance frequency of the higher
mode is increased. The energies are given by the poles of the
renormalized propagators

ω̃i = 1√
2

√
ω2

1 + ω2
2 ±

√(
ω2

1 − ω2
2

)2 + 4g2. (33)

For the shown parameters, this results in a resonance peak
below ω1 = 1 and a resonance peak above ω2 = 2.

The total response (blue curve) of the second scenario
(right column) shows a very similar behavior, namely a dip
in between the two resonance peaks and a negative π phase
change. However, in this case the negative phase jump does
not result from an individual oscillator, both individual oscil-
lators (red and green curve) do not show this behavior. It rather
results from the superposition of the two oscillations where
the sum of both cancel out in an intermediate position between
the resonances. This energy is determined by P1 + P2 = 0
leading to ωA = 1√

2

√
ω2

1 + ω2
2 . As the sum of both undergoes

a sign change from negative to positive a negative π phase
change occurs naturally. The resonance frequencies in this
scenario are not changed and still occur at ωi.

To summarize, the antiresonance behavior of the total re-
sponse of two oscillators can have different origins. It can be
either controlled by the coupling between the oscillators or the
interference if both modes are driven.

B. Microscopic theory

Let us now investigate whether this behavior is observable
in a microscopic model as well. For now, we will make some
general arguments assuming that there are two modes 1 and
2 in the system, for example the Higgs mode and a second
collective mode. In Secs. IV and V, we will consider specific
examples.

Taking into account the general form of the effective action
and the analysis of the classical oscillator system, we are
anticipating the results of the next sections and postulate the
general structure of the response. The fourth order effective
action for two modes reads

S(4) = 1

2

1

β

∑
iωm

b
(−iωm)M−1(iωm)b(iωm)

= 1

2

1

β

∑
iωm

K (4)(iωm)A2(−iωm)A2(iωm), (34)

where

M−1 =
(

P̃1 χ1,2P1P̃2

χ2,1P1P̃2 P̃2

)
, (35a)

b =
(

χ1,A2

χ2,A2

)
A2. (35b)

Hereby, Pi stands for the propagator of mode i, χi, j for
different coupling susceptibilities and A the vector poten-
tial, where the polarization indices are not included. The
tilde denotes a renormalization due to the other mode. This
can be understood as an RPA series renormalization of the
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FIG. 5. Diagrammatic representation of effective action for a
system with Higgs and another mode assuming diamagnetic cou-
pling to light. [(a) and (b)] Excitation of renormalized mode 1 or 2.
(c) Mixed contribution term, where light couples to both modes and
the modes to each other. (d) Renormalization of both modes as RPA
series due to interaction with each other. The wiggly lines represent
the vector potential A, the solid lines the BCS Green’s function
G0, the double dashed line the Higgs propagator H and the double
zigzag line the propagator of another mode. Red lines represent the
renormalized propagators. The filled square vertex corresponds to
fkτ1, the filled circle vertex to ∂2

i jεkτ3 and the filled triangle vertex
represent the interaction with the other mode.

propagators shown in Fig. 5(d) and expressed as

P̃1 = P1 + χ2
1,2P1P2P̃1, (36a)

P̃2 = P2 + χ2
1,2P1P2P̃2, (36b)

which leads to

P̃1 = 1

P−1
1 − χ2

1,2P2
, (37a)

P̃2 = 1

P−1
2 − χ2

1,2P1
. (37b)

The fourth-order kernel K (4) explicitly reads

K (4) = χ1 + χ2 + χ12 (38)

with

χ1 = χ2
1,A2 P̃1, (39a)

χ2 = χ2
2,A2 P̃2, (39b)

χ12 = P1P̃2(χA2,1 χ1,2 χ2,A2 + χA2,2 χ2,1 χ1,A2 ). (39c)

These terms are diagrammatically shown in Figs. 5(a)–5(c)
and can be understood in the following way. First of all,
both modes may couple individually to light represented by

FIG. 6. Collective modes in the picture of the free energy.
(a) Higgs and CDW mode. The Higgs mode is the amplitude fluc-
tuation of the superconducting order parameter and the CDW mode
the amplitude fluctuation of the CDW order parameter corresponding
to the renormalized CDW phonon. (b) Higgs and Bardasis-Schrieffer
mode. The Bardasis-Schrieffer mode is the amplitude oscillation of
the subleading pairing channel orthogonal to the amplitude (Higgs)
oscillation of the dominant pairing channel.

Eqs. (39a) and (39b). If there is a coupling between the modes,
a mixed term Eq. (39c) occurs, where light couples to both
modes and the modes to each other.

A comparison with the classic coupled oscillator model of
the previous sections in Eq. (32) reveals the exact same struc-
ture except that there, all susceptibilites are constant without
frequency dependence.

After these general remarks, let us now consider specific
examples of two microscopically coupled modes in the next
sections.

IV. HIGGS AND CHARGE DENSITY WAVE

As a first example of two coupled collective modes, we
will consider a coexisting superconducting and charge density
wave (CDW) system. The amplitude modes are schematically
shown in Fig. 6(a) in the picture of the free energy. An ex-
ample for such a scenario is NbSe2, where the coupling of
the Higgs mode to a CDW phonon was observed in Raman
response [34,35] and theoretically investigated by several au-
thors [24,36,37]. Another relevant system are cuprates, where
superconductivity and fluctuating charge order has been re-
ported in the underdoped regime [38,39]. This scenario might
be a possible explanation of the antiresonance behavior ob-
served in recent THG experiments [3].

To model the system, we follow [24] and start from the
BCS Hamiltonian in Eq. (8) where we add a phonon of
momentum Q responsible for creating the charge order and
a coupling to electrons with strength g. The Hamiltonian is
given by

H = HBCS + HCDW (40)
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with

HCDW =
∑

q=±Q

ωqb†
qbq + g

∑
k,q=±Q,σ

gkc†
k+q,σ

ckσ (bq + b†
−q). (41)

Hereby, b†
q or bq are the phonon creation or annihilation op-

erators and ωQ the energy of the CDW phonon. The electron
phonon coupling is controlled by g · gk with strength g and
momentum dependence gk.

To simplify the calculation, we will make the follow-
ing assumptions. We consider a 2d square lattice with
a tight-binding dispersion and nearest-neighbor hopping t
at half-filling, namely εk = −2t (cos kx + cos ky). As it was
shown in Ref. [24], a finite chemical potential leads to a
qualitative similar result. Choosing Q = (π, π ) we have
perfect nesting and a commensurate CDW with k + 2Q=̂k
where εk+2Q = εk and εk+Q = −εk. We assume an s-wave
superconductor with fk = 1 and an anisotropic s-wave CDW
with gk = | cos kx − cos ky|.

We start from the action of the system, where we introduce
a CDW order parameter Dk = Dgk with D = g 〈bQ + b†

−Q〉
and the superconducting order parameter � using a Hubbard-
Stratonovich transformation. Details of the calculation can be
found in Appendix D. Please note that we neglect here the
Coulomb interaction and phase fluctuations as we have shown
in Sec. II D that they do not affect the phase signature. Further-
more, in the half-filled case, as considered here, its influence
vanishes completely as the system has perfect particle-hole
symmetry [24].

After integration of the fermions and expansion of the
action at Gaussian level for amplitude fluctuations �(t ) =
� + δ�(t ) and D(t ) = D + δD(t ), the effective fourth order
action reads

S(4) = 1

2

1

β

∑
iωm

(φT (−iωm)M(iωm)φ(iωm)

+ φT (−iωm)b(iωm) + b
(−iωm)φ(iωm)) (42)

with

φT (−iωm) = (δ�(−iωm), δD(−iωm)), (43a)

M(iωm) =
(

H−1(iωm) χ�D(iωm)

χD�(iωm) − 1
g2 P−1(iωm)

)
, (43b)

b(iωm) = −
∑

i j

A2
i j (iωm)

(
χ

i j
�A2 (iωm)

χ
i j
DA2 (iωm)

)
, (43c)

where H is the Higgs propagator and P the renormalized
Phonon propagator. It is defined as

P−1(iωm) = P−1
0 (iωm) − g2χDD(iωm) (44)

with the bare phonon propagator P0 = −2ωQ/(ω2
Q − (iωm)2)

and χDD the susceptibility describing the influence of the
CDW. The susceptibility on the off-diagonal in M leads to
a coupling between Higgs and CDW and the expression is
equivalent to the coupled oscillator system Eq. (29) in the
previous section. An integration of the amplitude fluctuations

finally leads to

S(4) = 1

2

1

β

∑
iωm

b
(−iωm)M−1(iωm)b(iωm) (45)

with

M−1 =
(

H̃ g2χ�DPH̃
g2χD�P̃H −g2P̃

)
(46)

where we identify the renormalized Higgs and phonon propa-
gator as shown diagrammatically in Fig. 5(d)

H̃ = 1

H−1 + g2χ�DχD�P
, (47a)

P̃ = 1

P−1 + g2χ�DχD�H
. (47b)

The expression of the action follows exactly the general
structure as shown in the previous section and the resulting
diagrams are the ones shown in Figs. 5(a)–5(c).

Let us analyze the result in more detail. First, we evaluate
the expression for the bare Higgs propagator. One finds

H (ω) ∝
√

4�2 + 4D2 − ω2

4�2 − ω2
. (48)

For D = 0, we would retain expression Eq. (17). However,
for finite CDW gap D, the Higgs mode energy 2� no longer
coincidences with the quasiparticle excitation gap � + D and,
as already pointed out by Ref. [24], the Higgs mode becomes
stable as its energy is below the gap. This has consequences
for the pole structure, as the Higgs mode now has a simple
pole without square root such that we can expect a π phase
shift when varying the driving frequency ω from below to
above the Higgs mode energy.

The CDW phonon propagator can be evaluated and reads

P(iωm) = − 2ωQ

�2
Q − (iωm)2

(49)

with

�2
Q = 4g2ωQ

∑
k

g2
k

4D2
k − (iωm)2

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2). (50)

The phonon propagator has a simple pole leading to a phase
change of π .

Assuming linear polarized light in x direction as in
Sec. (II C), we can write the action as

S(4) = 1

2

∫
dω K (4)(ω)A2(−ω)A2(ω), (51)

where the kernel is given by K (4) = χH + χP + χM with the
Higgs (H), phonon (P), and mixed (M) contributions

χH = χ2
A2�H̃, (52a)

χP = −g2χ2
A2DP̃, (52b)

χM = g2H̃P(χA2�χA2Dχ�D + χ�A2χDA2χD�). (52c)

It has the same structure as Eq. (39c) introduced as the general
response for coupled modes. With the insight of the previous
sections, we can expect an antiresonance behavior with a
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FIG. 7. Intensity (top) and phase (bottom) of THG signal in the
coexisting superconducting and CDW state as function of temper-
ature and frequency. The first column shows the full temperature
and frequency dependence. The second column shows the frequency
dependence for selected temperatures (vertical cuts). The third col-
umn shows the temperature dependence for selected frequencies
(horizontal cuts).

negative phase change of π in between the two resonances
where a phase change of positive π should occur.

To confirm, we calculate numerically the total THG
response as function of frequency and temperature. The
temperature dependence is necessary to compare with exper-
imental results where only the temperature can be varied for
fixed driving frequency. The calculation for a set of parame-
ters � = 2.5 meV, ω0 = 15 meV, D = 3 meV, t = 10 meV,
ω → ω + i0.1 meV is evaluated on a 2d grid with 2000 ×
2000 points and shown in Fig. 7. Hereby, the CDW phonon
energy is above the Higgs mode energy. The top row shows the
THG intensity, and the bottom row the THG phase. The first
column is a 2d plot of the THG signal as function of frequency
and temperature. Thus vertical cuts in this plot, shown in the
second column, correspond to varying the frequency for fixed
temperature and horizontal cuts, shown in the third column,
correspond to varying the temperature for fixed frequency.

The result fulfills our expectation of the previous general
analysis. Looking at the 2d plot in the first column, we can
see the Higgs mode as a sharp resonance peak which follows
the temperature dependence of the gap. However, due to the
coupling to the CDW, the energy of the Higgs mode is renor-
malized and shifted to lower frequencies. This resonance peak
is accompanied by a positive phase jump of π as the Higgs
mode is a stable mode below the total gap as discussed before.
At a slightly higher energy, we observe an antiresonance be-
havior with a dip in the amplitude and a negative phase jump
of π . At higher energy, we observe a second resonance peak at
the renormalized CDW phonon frequency with an associated
positive phase jump of π . This resonance peak follows the
temperature dependence of the CDW gap. Please note, due
to the residual broadening, the positive phase change at the
Higgs mode and the negative change at the antiresonance is
slightly lower than π .

The temperature dependence of both modes are similar
and follow roughly a quarter circle as can be seen in the left
column in Fig. 7. Thus vertical cuts along the frequency and
horizontal cuts along the temperature reveal, in principle, the
same information. Resonance peaks and phase changes are
visible in both signals. Yet, obtaining single cuts at unfavor-
able positions, e.g., in between the modes, or limited variation
range of parameters might miss several features. Experiments
with a large variation of temperature and frequency are there-
fore necessary to reveal the full information.

V. HIGGS AND BARDASIS-SCHRIEFFER MODE

As a second example, we consider a superconducting sys-
tem where the ground state is dominated by one symmetry,
yet fluctuations in a subleading pairing channel are allowed.
These fluctuations are known as Bardasis-Schriefer modes
[40,41] and might exist for example in iron-based supercon-
ductors [42–44], where multiple pairing instabilities occur on
different bands. While most studies investigated the signature
of a Bardasis-Schrieffer mode in Raman spectra, recent work
has shown that such modes can also be excited with THz light
[23]. This mode is schematically shown in Fig. 6(b) and will
be discussed in the following.

Here, we will consider an s-wave ground state and allow
fluctuations in the d-wave channel. We use the BCS Hamilto-
nian in Eq. (8) with a sum of separable pairing interactions

Vk,k′ = Vs f s
k f s

k′ + Vd f d
k f d

k′ (53)

with the (anisotropic) s-wave symmetry f s
k = (cos kx +

cos ky)/2 and d-wave symmetry f d
k = (cos kx − cos ky)/2.

Choosing εk = −2t (cos kx + cos ky) − μ with t = 6 meV, we
solve the gap equations

�i = Vi

∑
k

f i
k

�k

2Ek
(54)

with �k = ∑
i �i f i

k for i = s, d for varying Fermi level μ

and symmetry ratio Vd/Vs. This phase diagram is shown in
Appendix in Fig. 10. In the following, we choose parameters
μ = −12 meV, Vd = Vs and � = 2 meV, where the ground
state is s-wave but still close to the d-wave transition. The
residual broadening is ω → ω + i0.05 meV. Please note, for
the chosen parameters, i.e., the anisotropic s-wave and the
energy dispersion, the maximum of the gap at the Fermi level
is �max ≈ 1 meV, such that the Higgs mode energy is at
ωH ≈ 2�max and not at ωH = 2�.

If the system is excited, we allow fluctuations in both
symmetry channels

�s(t ) = �s + δ�s(t ), (55a)

�d (t ) = iδ�d (t ). (55b)

Hereby, δ�s(t ) corresponds to the usual Higgs mode of the
dominant symmetry channel, while δ�d (t ) are amplitude
fluctuations of the subleading channel orthogonal, i.e., in
the imaginary axis direction. This is the Bardasis-Schrieffer
mode. As shown in [41], subleading fluctuations in the parallel
or real channel do not lead to a finite energy mode.

After integrating out the fermions (see Appendix E), we
obtain the same structure of the effective action as Eq. (42)
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with

φT (−iωm) = (δ�s(−iωm), δ�d (−iωm)), (56a)

M(iωm) =
(

H−1(iωm) −χ�B(iωm)

−χB�(iωm) B−1(iωm)

)
, (56b)

b(iωm) =
∑

i j

A2
i j (iωm)

(
−χ

i j
�A2 (iωm)

χ
i j
BA2 (iωm)

)
, (56c)

where H (iωm) is the usual Higgs propagator and B(iωm) the
Bardasis-Schrieffer propagator defined as

B−1(iωm) = 2

Vd
+ χBB(iωm). (57)

The susceptibilities are defined as

χBB(iωm) =
∑

k

(
f d
k

)2
X22(k, iωm), (58a)

χ�B(iωm) =
∑

k

f s
k f d

k X12(k, iωm), (58b)

χ
i j
BA2 (iωm) =

∑
k

1

2
f d
k ∂2

i jεkX23(k, iωm). (58c)

with Xαβ defined in Eq. (13). In analogy to the previous
sections, the fluctuations are integrated out which leads to

S(4) = 1

2

1

β

∑
iωm

(
b
(−iωm)M−1(iωm)b(iωm)

+
∑
i jkl

A2
i j (−iωm)A2

kl (iωm)χ i jkl
A2A2 (iωm)

⎞
⎠ (59)

with

M−1 =
(

H̃ χ�BH̃B
χB�H̃B B̃

)
(60)

and the renormalized propagators

H̃ = 1

H−1 − χ�BχB�B
, (61a)

B̃ = 1

B−1 − χ�BχB�H
. (61b)

For monochromatic, linear polarized light with polariza-
tion angle θ , the THG current parallel to the light polarization
is given by (see Appendix E)

j (3)
‖ ∝ (cos4 θ + sin4 θ )Kxx(2�)

+ 2 sin2 θ cos2 θKxy(2�) (62)

with the kernel K (4)
i j = χH + χB + χM + χQ and the suscepti-

bilities for the Higgs (H), Bardasis-Schrieffer (B), mixed (M),

and quasiparticle (Q) contribution

χH = χ ii
�A2 (−ω)χ j j

�A2 (ω)H̃ (ω), (63a)

χB = χ ii
BA2 (−ω)χ j j

BA2 (ω)B̃(ω), (63b)

χM = −H̃ (ω)B(ω)
[
χ ii

A2�(ω)χ�B(ω)χ j j
BA2 (ω)

+χ ii
A2B(ω)χB�(ω)χ j j

�A2 (ω)
]
, (63c)

χQ = χ
ii j j
A2A2 (ω). (63d)

The response has again the same structure of coupled modes
as discussed before.

To get a first insight into the Bardasis-Schrieffer mode,
we evaluate the expression for the propagator analytically
for T = 0 and assuming a constant density of states at the
Fermi level. One obtains for continuum implementation (see
Appendix E)

B(ω) =
√

4�2 − ω2(
2

Vd
− 2

Vs

)√
4�2 − ω2 − 2ωλ sin−1

(
ω

2�

) . (64)

Using these simplification, one can see that for Vd → Vs the
pole of the propagator shifts to zero, while for Vd → 0 the pole
approaches 2�. Furthermore, due to the

√
4�2 − ω2 term

in the numerator, the expression is always zero at ω = 2�,
which leads to a negative phase change of π/2. Thus we
expect a positive phase change of π at the Bardasis-Schrieffer
mode energy below 2� and a negative phase change of π/2
at 2�.

As the coupling term χ�B contains the product of the two
symmetry functions f s

k f d
k , which are orthogonal, the term

vanishes and the Higgs and Bardasis-Schrieffer modes are
not coupled but contribute individually to the response. How-
ever, for strong pulses beyond the Gaussian level, as used
in pump-probe experiments, a finite coupling between Higgs
and Bardasis-Schrieffer mode can exist [23]. In addition, due
to the symmetry function f d

k in χ
i j
BA2 , the coupling strength

of light to the Bardasis-Schrieffer mode will depend on the
polarization. For our band structure, θ = π/4 will correspond
to the A1g symmetry, such that we expend a vanishing of
the d-wave (B1g) Bardasis-Schrieffer mode. This polarization
sensitivity has also been discussed in Ref. [23].

Next, we evaluate the THG response at T = 0 numerically
for two different polarization angles θ = 0, π/4 and show the
individual contributions in Fig. 8. As we have anticipated,
there is no coupling between Higgs and Bardasis-Schrieffer
mode and the mixed contribution is zero (not shown). Thus
the quasiparticle (blue curve) and Higgs (red curve) response
is the same as in the pure system discussed in Sec. II C.
The Higgs contribution is polarization independent, while
the quasiparticle contribution gets reduced for θ = π/4. The
Bardasis-Schrieffer (green curve) mode has a strong polar-
ization dependence. For θ = 0, the expected phase behavior
originating from the Bardasis-Schrieffer propagator B(ω) is
visible. At the resonance energy a positive π phase change
occurs and at the energy of the Higgs mode a negative π/2
phase change occurs. The intensity shows a strong peak at the
Bardasis-Schrieffer resonance. The small peak at the Higgs
mode energy is a result of the susceptibility χBA2 . For θ =
π/4, the Bardasis-Schrieffer mode is not excited.
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FIG. 8. THG intensity (top) and phase (bottom) for Higgs and
Bardasis-Schrieffer mode system for two light polarizations θ = 0
(left) and θ = π/4 (right). The individual contributions are shown
separately as quasiparticles (Q), Higgs (H), Bardasis-Schrieffer
mode (B), and total response (T). The Higgs and Bardasis-Schrieffer
modes are scaled to be visible.

Having no coupling between the modes, the resulting phase
signature is influenced only by the interference of the pure,
individual contributions. The total THG signal (yellow curve)
consists of two resonance peaks at the original, unrenor-
malized frequencies each accompanied by a positive phase
change. In between we see an antiresonance behavior with a
dip in the intensity and a negative phase change.

In analogy to the previous section, we also calculate the
frequency and temperature dependence of the total THG sig-
nal. The result is shown in Fig. 9. As before, the temperature
dependence follows roughly a quarter circle (left column).
Thus both vertical and horizontal cuts along the frequency or
temperature axis show a similar result and the resonance and
antiresonance behavior is visible in both cases.

VI. CONCLUSION

In this paper, we investigated the phase signatures of the
third-harmonic (TH) signal generated by driving supercon-
ductors with THz light. Hereby, the phase of the oscillatory
TH signal is measured with respect to the phase of the first-
harmonic. While it is well known that resonances in the
intensity of the signal occur if the driving frequency matches
with the energy of intrinsic modes, in this paper we showed for
the first time that the phase change is a robust feature as well
and additionally encodes intrinsic properties of the system.

From a classical point of view, the resonance peak of a
driven oscillator is accompanied by a positive phase change
of π . This phase signature is more robust against damping
than the peak itself, as it is still observable even if the peak
is heavily suppressed. Coupled modes lead to antiresonance
behavior where the interference of driving force and coupling
leads to a dip in the oscillation amplitude and a negative phase
change of π . Usually, the antiresonance is understood as a

FIG. 9. Intensity (top row) and phase (bottom row) of total THG
signal for Higgs and Bardasis-Schrieffer mode scenario as func-
tion of temperature and frequency with a polarization angle θ = 0
analogous to Figs. 8(a) and 8(b). The first column shows the full
temperature and frequency dependence. The second column shows
the frequency dependence for selected temperatures (vertical cuts).
The third column shows the temperature dependence for selected
frequencies (horizontal cuts).

feature of a single oscillator which is externally driven and
coupled to an undriven second oscillator. Yet, for oscillators
which are both driven but uncoupled a similar feature also
occurs in the superposition of the oscillation amplitudes as
a destructive interference of two oscillations.

In a microscopic BCS model for superconductors, the am-
plitude (Higgs) mode can be driven by a nonlinear, quadratic
process such that the effective driving frequency is doubled
which leads to an induced third-harmonic current. This driv-
ing of the Higgs mode is similar to a classical oscillator, yet,
the microscopic details lead to a modification of the phase
signature.

First of all, as the energy of the Higgs mode coincidences
with the quasiparticle excitation energy at the gap 2� it is
intrinsically damped. This leads to a propagator with a square
root pole structure such that the phase change across the
pole is reduced to π/2. Secondly, in the microscopic theory,
frequency-dependent susceptibility terms occur which govern
the coupling of light to the condensate. These terms are miss-
ing in the classical theory and can, in principle, modify the
phase signature of the observed signal. In the clean limit, the
influence of the diamagnetic coupling terms is negligible as
they only contribute a small drift above 2� such that the total
phase response is dominated solely by the propagator. Yet,
in the dirty limit, the paramagnetic coupling terms modify
the phase signature and approximately restore the π phase
change. Finally, in addition to the Higgs mode response,
quasiparticles contribute to the TH signal as well which also
show a π/2 phase signature.

Considering long-ranged Coulomb interaction, the TH re-
sponse of Higgs and quasiparticles is renormalized. Yet, one
finds that these modifications do not change the phase signa-
ture. Thus, in a BCS superconductor, one can expect a π/2
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phase change in the clean limit and a π phase change in the
dirty limit at the resonance frequency.

If in addition to the Higgs mode other modes exist, the
coupled mode scenario with the antiresonance behavior is
applicable. Yet, again, microscopic details may modify the
classical analysis. To get some insight, we investigated two
specific scenarios in this paper: A coupling of the Higgs
mode to a charge density wave (CDW) and a superconducting
system which additionally hosts a Bardasis-Schrieffer mode,
an amplitude fluctuation of a subleading pairing channel.

In the superconductor-CDW scenario, the propagator of
the Higgs mode itself is modified as the energy of the Higgs
mode no longer overlaps with the total energy gap of the
system which consists of the superconducting and CDW gap.
Therefore the propagator obtains a proper pole and the Higgs
mode becomes stable. This restores the usual π phase change
at the Higgs mode energy. In this system, both modes are
driven by light and additionally couple to each other such
that an antiresonance effect is expected both from the usual
scenario but also due to the interference of the individual con-
tributions. The structure of the analytically evaluated response
exactly corresponds to the classic coupled oscillator system.
An evaluation of the response as function of frequency and
temperature shows the antiresonance behavior and thus, acts
as fingerprint of the existence of two modes.

The second scenario with the Bardasis-Schrieffer mode
serves as an example of two uncoupled modes. As the
Bardasis-Schrieffer mode is a fluctuation of a subleading pair-
ing channel orthogonal to the dominant pairing channel, the
coupling element vanishes. Nevertheless, the superposition of
the individual contributions leads to an antiresonance behavior
where a dip in the intensity and a negative phase change
occurs.

The considered scenarios are of course not exhaustive but
serve as a proof-of-principle how a careful examination of the
THG signal phase gives insight about the existence and nature
of collective modes. Furthermore, these scenarios may be ap-
plicable in real systems. The superconductor-CDW scenario is
relevant for example for NbSe2, where superconductivity and
CDW coexists [24,35] but might also be relevant for cuprates,
where an antiresonance behavior was observed in recent
THG experiments [3]. On the other hand, Bardasis-Schrieffer
modes might exists in iron-based superconductors. As our
study shows, this coupled mode scenario in a microscopic the-
ory is as generally applicable as in the classic theory. Thus we
expect that it can describe any other collective mode including
Leggett modes in multiband systems [19], Josephson-Plasma
modes in layered systems [22], Carlson-Goldman modes close
to the transition temperature [26–28], or generally phonon and
magnon excitations in the THz regime.

One issue one should investigate in more detail in future,
is the influence of impurities in the coupled modes scenario.
We generally expect that impurities will not modify the an-
tiresonance behavior, i.e., the negative phase change, as this
seems to be an universal feature independent of the exact
properties of the involved modes. As the paramagnetic cou-
pling terms may modify the usual, positive phase change
of the individual modes, a quantitative change might be ex-
pected. One feature we expect to change is the polarization
dependence. It was shown in previous studies [31–33] that the
polarization dependence of the Higgs mode and quasiparticles
is changed by varying the impurity strength. However, as
this effect is model dependent, one cannot make a general
prediction for different modes. A detailed calculation in this
matter is beyond the scope of the paper and reserved for future
studies.

So far, THG experiments on superconductors have only
been performed in a setup where the temperature was varied
to reach the resonance condition [2,3,45]. As our calcula-
tion shows, the resonance and antiresonance signature of the
coupled modes is also visible in this case. Yet, to obtain a
full picture, it would be necessary to obtain full temperature
and frequency data to map out the temperature and frequency
dependence of the modes. A further experimental difficulty
in this case is the extraction of the phase from the measured
signal. As the screening of the THz light is temperature de-
pendent, the first-harmonic signal might be shifted such that
a comparison of the relative TH phase could be unreliable.
While the phase change is generally more robust than reso-
nance peaks as a signature, strong damping may decrease or
wash out the antiresonance behavior, especially if a resonance
and antiresonance are positioned close to each other.

To conclude, we have shown that the phase of the THG sig-
nal is an interesting quantity to study as it serves as a signature
of microscopic details and coupled modes in superconductors.
It is a further step in the new field of Higgs spectroscopy and
extracting phase information in future experiments will help
to reveal more details of the investigated systems.
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APPENDIX A: EFFECTIVE ACTION FOR HIGGS MODE

We use the BCS Hamiltonian coupled to light

H (t ) =
∑
k,σ

εkc†
k,σ

ck,σ −
∑
k,k′

Vk,k′c†
k,↑c†

−k,↓c−k′,↓ck′,↑ + 1

2

∑
k,σ

∑
i, j

∂2
i jεkAi(t )Aj (t )c†

k,σ
ck,σ (A1)

with electron dispersion εk = ξk − εF measured relative to the Fermi level and c†
k,σ

or ck,σ the electron creation or annihilation
operators. We assume that the system is parity symmetric, i.e., εk = ε−k. The separable BCS pairing interaction is given by
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Vk,k′ = V fk fk′ with pairing strength V and symmetry function fk. The coupling to light is obtained by the expansion of the
minimal coupling term in powers of the vector potential A up to second order

εk−A(t ) = εk −
∑

i

∂iεkAi(t ) + 1

2

∑
i, j

∂2
i jεkAi(t )Aj (t ) + O(A(t )3). (A2)

Hereby, the paramagnetic term linear in A vanishes due to parity symmetry, i.e., ∂iε−k = −∂iεk, while only the diamagnetic term
quadratic in A remains due to ∂2

i jε−k = ∂2
i jεk. The partition function of the system is given by

Z =
∫

D(c†, c)e−S(c†,c) (A3)

with the action in imaginary time τ

S(c†, c) =
∫ β

0
dτ

(∑
k,σ

c†
k,σ

(τ )∂τ ck,σ (τ ) + H (τ )

)
. (A4)

We decouple the pairing interaction with the help of a Hubbard-Stratonovich transformation. Furthermore, we allow amplitude

fluctuations via �(τ ) = � + δ�(τ ). Introducing the Nambu spinor ψ
†
k =

(
c†

k,↑
c−k,↓

)
, the action can be written in the compact form

S(ψ†, ψ, δ�) =
∫ β

0
dτ

(
|�(τ )|2

V
−
∑

k

ψ
†
k (τ )G−1(k, τ )ψk(τ )

)
(A5)

with the inverse Green’s function

G−1(k, τ ) = −∂τ τ0 − εkτ3 + �kτ1 − 1

2

∑
i j

∂2
i jεkAi(t )Aj (t )τ3 + δ�(τ ) fkτ1. (A6)

After integration of the fermions, one obtains in frequency representation

S(δ�, θ, ρ) = β
�2

V
+ 1

β

∑
iωm

δ�(−iωm)
1

V
δ�(iωm) − tr ln(−G−1), (A7)

where the trace include summation over momentum and frequency and

G−1(k, iωm, iωn) = G−1
0 (k, iωm, iωn) − �(k, iωm − iωn), (A8)

G−1
0 (k, iωm, iωn) = [iωmτ0 − εkτ3 + �kτ1]βδωm,ωn , (A9)

�(k, iωm − iωn) =
[

1

2

∑
i j

∂2
i jεkA2

i j (iωm − iωn)τ3 − δ�(iωm − iωn) fkτ1

]
. (A10)

Expanding the logarithm for small �, one obtains

S(δ�) = Smf + Sfl(δ�), (A11)

Smf = β
�2

V
− tr ln

(−G−1
0

)
, (A12)

Sfl(δ�) = 1

β

∑
iωm

δ�(−iωm)
1

V
δ�(iωm) + tr

∞∑
n=1

(G0�)n

n
. (A13)

Relevant for THG is the fourth order action. Thus we consider the second order term in the sum 1
2 tr G0�G0� which leads to

S(4)(δ�)=1

2

1

β

∑
iωm

[
δ�(−iωm)H−1(iωm)δ�(iωm)−2δ�(−iωm)

∑
i j

χ
i j
�A2 (iωm)A2

i j (iωm) +
∑
i jkl

A2
i j (−iωm)A2

kl (iωm)χ i jkl
A2A2 (iωm)

]
.

(A14)

with the inverse Higgs propagator

H−1(iωm) = 2

V
+ χ��(iωm) =

∑
k

f 2
k

4�2
k − (iωn)2

Ek
(
4E2

k − (iωn)2
) tanh(βEk/2) (A15)
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and the susceptibilities

Xαβ (k, k′, iωm) = 1

β

∑
iωn

tr[G0(k, iωn)ταG0(k′, iωm + iωn)τβ], (A16a)

χ��(iωm) =
∑

k

f 2
k X11(k, k, iωm) = −

∑
k

f 2
k

4ε2
k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (A16b)

χ
i j
�A2 (iωm) =

∑
k

fk
1

2
∂2

i jεkX13(k, k, iωm) = −1

2

∑
k

fk
∂2

i jεk4εk�k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (A16c)

χ
i jkl
A2A2 (iωm) =

∑
k

1

4
∂2

i jεk∂
2
klεkX33(k, k, iωm) = −1

4

∑
k

∂2
i jεk∂

2
klεk4�2

k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2). (A16d)

Finally, integrating the fluctuations using∫
D(φ
, φ) e− 1

2
1
β

∑
iωm

φ
(−iωm )M(iωm )φ(iωm )+φ
(−iωm )b(iωm )+b
(−iωm )φ(iωm ) = e
1
2

∑
iωm b
(−iωm )M−1(iωm )b(iωm ) (A17)

and after analytic continuation iωm → ω + i0+, one obtains

S(4) = 1

2

∫
dω
∑
i jkl

(
χ

i j
�A2 (−ω)χ kl

�A2 (ω)H (ω) + χ
i jkl
A2A2 (ω)

)
A2

i j (−ω)A2
kl (ω). (A18)

For the following, we will only consider linear polarized light in x direction A(t ) = A0êx cos(�t ), such that we can neglect all
polarization indices and the action reads

S(4) = 1

2

∫
dωK (4)(ω)A2(−ω)A2(ω) (A19)

where the kernel is given by

K (4) = χ�A2 (−ω)H (ω)χ�A2 (ω) + χA2A2 (ω). (A20)

The third-order current is computed via

j (3)(3�) = − dS(4)

dA(−ω)

∣∣∣∣
3�

∝ K (4)(2�) (A21)

and is proportional to the fourth-order kernel evaluated at 2�. To analytically evaluate the momentum sums, we assume T = 0,
s-wave symmetry, i.e., fk = 1, and a constant density of states at the Fermi level such that we can write

∑
k → λ

∫
dε. We use

F (ω) :=
∫

dε
1√

ε2 + �2(4ε2 + 4�2 − ω2)
= 2 sin−1

(
ω

2�

)
ω

√
4�2 − w2

(A22)

and expand the derivative term
∑

k ∂2
i jεk = ∑

k α0 + α1εk, which is valid for our band structure. We obtain

H (ω) = λ
ω

2
√

4�2 − ω2 sin−1
(

ω
2�

) , (A23)

χ�A2 (iωn) = −λ
�

4
α1

(
2

V
− 2

ω

√
4�2 − ω2 sin−1

( ω

2�

))
, (A24)

χA2A2 (iωn) = −λ
�2

2
α2

0

2 sin−1
(

ω
2�

)
ω

√
4�2 − w2

− λ
�2

8
α2

1

(
2

V
− 2

ω

√
4�2 − ω2 sin−1

( ω

2�

))
. (A25)

APPENDIX B: EFFECTIVE ACTION WITH COULOMB INTERACTION

The susceptibilities for the effective action in Eq. (20) are given in Eq. (A16) and

χ�ρ (iωn) =
∑

k

X13(k, k, iωn) = −�
∑

k

4εk

Ek
(
4E2

k − (iωn)2
) tanh(βEk/2), (B1a)

χρρ (iωn) =
∑

k

X33(k, k, iωn) = −4�2
∑

k

1

Ek
(
4E2

k − (iωn)2
) tanh(βEk/2), (B1b)
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χ
i j
ρA2 (iωn) =

∑
k

1

2
∂2

i jεkX33(k, k, iωn) = −
∑

k

1

2
∂2

i jεk
4�2

Ek
(
4E2

k − (iωn)2
) tanh(βEk/2). (B1c)

APPENDIX C: COUPLED OSCILLATOR

The explicit expressions for the complex amplitudes Âi defined in Eq. (32) are given by

Â1 = F1P−1
2 − gF2

P̃−1
1 P̃−1

2 − g2
= F1

(
ω2

2 − �2 + iγ2�
)− gF2(

ω2
1 − �2 + iγ1�

)(
ω2

2 − �2 + iγ2�
)− g2

, (C1)

Â2 = F2P−1
1 − gF1

P̃−1
1 P̃−1

2 − g2
= F2

(
ω2

1 − �2 + iγ1�
)− gF1(

ω2
1 − �2 + iγ1�

)(
ω2

2 − �2 + iγ2�
)− g2

. (C2)

We define

V1 = F1
(
ω2

2 − �2
)− gF2, V2 = γ2�F1, (C3)

V3 = F2
(
ω2

1 − �2
)− gF1, V4 = γ1�F2, (C4)

V5 = (
ω2

1 − �2
)(

ω2
2 − �2

)− γ1γ2�
2 − g2, V6 = γ1�

(
ω2

2 − �2
)+ γ2�

(
ω2

1 − �2
)

(C5)

to split the nominator and denominator in the real and imaginary parts

Â1 = V1 + iV2

V5 + iV6
, Â2 = V3 + iV4

V5 + iV6
. (C6)

Extracting absolute value and phase and using the definition Âi = Aie−iφi , finally yields for the real amplitudes Ai and phases φi

A1(�) =
√

V 2
1 + V 2

2

V 2
5 + V 2

6

, φ1(�) = tan−1

(
V6

V5

)
− tan−1

(
V2

V1

)
, (C7)

A2(�) =
√

V 2
3 + V 2

4

V 2
5 + V 2

6

, φ2(�) = tan−1

(
V6

V5

)
− tan−1

(
V4

V3

)
. (C8)

The total complex amplitude ÂT is defined as

ÂT = AT e−iφT = A1e−iφ1 + A2e−iφ2 . (C9)

Thus it follows for the real amplitude AT and phase φT

AT =
√

A2
1 + A2

2 + 2A1A2 cos(φ1 − φ2), φT = tan−1

(
A1 sin φ1 + A2 sin φ2

A1 cos φ1 + A2 cos φ2

)
. (C10)

APPENDIX D: HIGGS-CDW MODEL

The action for the BCS and phonon Hamiltonian Eq. (40) reads

S(c†, c, b†, b) =
∫ β

0
dτ

(∑
kσ

c†
k,σ

(τ )∂τ ck,σ (τ ) +
∑

q=±Q

b†
q(τ )∂τ bq(τ ) + H (τ )

)
. (D1)

Rewriting the phonon operator as bq = 1√
2
(Qq + iP−q), integrating over the momentum variable Pq, introducing the CDW field

Dk = Dgk with D = −√
2gQq and performing a Hubbard-Stratonovich transformation to decouple the superconducting pairing

interaction, one obtains

S(c†, c,�∗,�, D∗, D) =
∫ β

0
dτ

(∑
kσ

c†
k,σ

(∂τ + εk)ck,σ − 1

g2
DP−1

0 (τ )D∗

+ �2

V
−
∑

k

�c†
k↑c†

−k↓ −
∑

k

�∗c−k↓ck↑ −
∑
kσ

Dkc†
k+Q,σ

ckσ −
∑
kσ

D∗
kc†

k−Q,σ
ckσ

)
(D2)

where the bare phonon propagator is defined as

P−1
0 (τ ) = −ω2

Q − ∂2
τ

2ωQ
. (D3)
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FIG. 10. Phase diagram showing ground state symmetry for sys-
tem with two possible pairing channels described in Sec. V as
function of chemical potential and ratio Vd/Vs. In the blue region,
the s-wave channel is dominant and in the red region the d-wave
channel.

We rewrite the expression with the four-component Nambu
spinor ψ

†
k = (c†

k,↑, c†
k+Q,↑, c−k,↓, c−(k+Q),↓) and introduce am-

plitude fluctuations of both fields via �(t ) = � + δ�(t ) and
D(t ) = D + δD(t ). We obtain in frequency representation
(see also Ref. [16])

S(ψ†, ψ, δ�, δD)

= β
�2

V
+ β

D2wQ

2g2
+ 1

β

∑
iωm

δ�(−iωm)
1

V
δ�(iωm)

− 1

g2

1

β

∑
iωm

δD(−iωm)P−1
0 (iωm)δD(iωm)

− 1

β2

∑
iωm,iωn

∑
k

ψ
†
k (iωm)G−1(k, iωm, iωn)ψk(iωn)

(D4)

with

G−1(k, iωm, iωn) = G−1
0 (k, iωm, iωn) − �(k, iωm − iωn),

(D5a)

G−1
0 (k, iωm, iωn) = (iωmτ0 ⊗ σ0 − εkτ3 ⊗ σ3 + �τ1 ⊗ σ0

+ Dgkτ3 ⊗ σ1)βδωm,ωn , (D5b)

�(k, iωm − iωn) = 1

2

∑
i, j

∂2
i jεkA2

i j (iωm − iωn)τ3 ⊗ σ3

− δ�(iωm − iωn)τ1 ⊗ σ0

− δD(iωm − iωn)gkτ3 ⊗ σ1, (D5c)

where τi are Pauli matrices in Nambu space and σi Pauli
matrices in the CDW channel. The saddle point equations
are

� = V
∑

k

�

Ek
tanh(βEk/2), (D6a)

D = 4g2

ωQ

∑
k

g2
k

D

Ek
tanh(βEk/2). (D6b)

A diagonalization of the Hamiltonian yields the quasipar-
ticle energy Ek =

√
ε2

k + �2 + |Dk|2 . After integration of the
fermions and expansion of the logarithm as in Appendix A,
the action is split into a mean-field part and a fluctuation
part

S(δ�, δD) = Smf + Sfl(δ�, δD) (D7)

with

Smf = β
�2

V
+ β

D2wQ

2g2
− tr ln

(−G−1
0

)
, (D8a)

Sfl(δ�, δD) = 1

β

∑
iωm

δ�(−iωm)
1

V
δ�(iωm)

− 1

g2

1

β

∑
iωm

δD(−iωm)P−1
0 (iωm)δD(iωm)

+ tr
∞∑

n=1

(G0�)n

n
. (D8b)

After evaluating the sum to second order, one obtains the
fourth-order action (42). The Higgs propagator is defined as

H−1(iωm) = 2

V
+ χ��(iωm)

= 2
∑

k

4�2 − (iωm)2

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2). (D9)

Analogously, the renormalized phonon propagator is defined
as

P−1(iωm) = P−1
0 (iωm) − g2χDD(iωm) = −�2

Q − (iωm)2

2ωQ

(D10)

with

�2
Q = ω2

Q + 2ωQg2χDD(iωm)

= 4g2ωQ

∑
k

g2
k

4D2
k − (iωm)2

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2). (D11)

Hereby, the susceptibilities are defined as

Xαβγ δ (k, iωn) = 1

β

∑
iωn

tr [G0(k, iωn)τα ⊗ σβG0(k, iωm + iωn)τγ ⊗ σδ], (D12a)

χ��(iωm) =
∑

k

X1010 = −8
∑

k

D2
k + ε2

k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (D12b)
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χ�D(iωm) =
∑

k

gkX1031 = 8
∑

k

gk
�Dk

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (D12c)

χ
i j
�A2 (iωm) =

∑
k

1

2
∂2

i jεkX1033 = −4
∑

k

∂2
i jεk

εk�

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (D12d)

χDD(iωm) =
∑

k

g2
kX3131 = −8

∑
k

g2
k

�2 + ε2
k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (D12e)

χ
i j
DA2 (iωm) =

∑
k

gk
1

2
∂2

i jεkX3133 = −4
∑

k

gk∂
2
i jεk

εkDk

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2). (D12f)

Integration of the amplitude fluctuations finally leads to Eq (45).

APPENDIX E: HIGGS-BARDASIS-SCHRIEFFER MODEL

The phase diagram for varying Fermi level μ and symmetry ratio Vd/Vs, as described in Sec. V, is shown in Fig. 10. Using
the ansatz in Eq. (53) for Vkk′ including the two pairing channels, the action in imaginary time τ after decoupling of the quartic
interaction is given by

S(c†, c, δ�l ) =
∫ β

0
dτ

(∑
l

|�l (τ )|2
Vl

−
∑

k

ψ
†
k (τ )G−1(k, τ )ψk(τ )

)
(E1)

with

G−1(k, τ ) = −τ0∂τ − hk(τ ), (E2)

hk(t ) =
(

εk + 1

2

∑
i, j

∂2
i jεkAi(t )Aj (t )

)
τ3 − (�s + δ�s(t )) f s

k τ1 + δ�d (t ) f d
k τ2. (E3)

The usual Higgs mode lives in the τ1 channel, while the Bardasis-Schrieffer mode lives in the τ2 channel.
In analogy to the previous sections, the fermions can be integrated out which leads to

S(δ�l ) = β
�2

s

Vs
+ 1

β

∑
iωm

δ�s(−iωm)
1

Vs
δ�s(iωm) + 1

β

∑
iωm

δ�d (−iωm)
1

Vd
δ�d (iωm) − tr ln(−G−1) (E4)

with

G−1(k, iωm, iωn) = G−1
0 (k, iωm, iωn) − �(k, iωm − iωn), (E5)

G0(k, iωm, iωn) = (
iωmτ0 − εkτ3 + �s f s

k τ1
)
βδωm,ωn , (E6)

�(k, iωm − iωn) =
(

1

2

∑
i, j

∂2
i jεkA2

i j (iωm − iωn)τ3 − δ�s(iωm − iωn) f s
k τ1 + δ�d (iωm − iωn) f d

k τ2

)
. (E7)

After expansion of the logarithm for small �, it follows:

S(δ�l ) = Smf + Sfl(δ�l ), (E8)

Smf = β
�2

s

Vs
− tr ln

(−G−1
0

)
, (E9)

Sfl(δ�l ) = 1

β

∑
iωm

δ�s(−iωm)
1

Vs
δ�s(iωm) + 1

β

∑
iωm

δ�d (−iωm)
1

Vd
δ�d (iωm) + tr

∞∑
n=1

(G0�)n

n
. (E10)

The second-order term in the sum of the logarithm leads to the fourth-order action S(4)

S(4) = 1

2

1

β

∑
iωm

[
φ
(−iωm)M(iωm)φ(iωm) + φ
(−iωm)b(iωm) + b
(−iωm)φ(iωm)

+
∑
i jkl

A2
i j (−iωm)A2

kl (iωm)χ i jkl
A2A2 (iωm)

⎤
⎦ (E11)
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with M, φ, and b given in Eq. (56c). The susceptibilities read

χ��(iωm) =
∑

k

(
f s
k

)2
X11(k, iωm) = −

∑
k

(
f s
k

)2 4ε2
k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (E12)

χBB(iωm) =
∑

k

(
f d
k

)2
X22(k, iωm) = −

∑
k

(
f d
k

)2 4E2
k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (E13)

χ�B(iωm) =
∑

k

f s
k f d

k X12(k, iωm) =
∑

k

f s
k f d

k
2iεk(iωm)

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (E14)

χ
i j
�A2 (iωm) =

∑
k

1

2
f s
k ∂2

i jεkX13(k, iωm) = −
∑

k

1

2
f s
k ∂2

i jεk
4εk�s f s

k

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (E15)

χ
i j
BA2 (iωm) =

∑
k

1

2
f d
k ∂2

i jεkX23(k, iωm) = −
∑

k

1

2
f d
k ∂2

i jεk
2i�s f s

k (iωm)

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2), (E16)

χ
i jkl
A2A2 (iωm) =

∑
k

1

4
∂2

i jεk∂
2
klεkX33(k, iωm) = −

∑
k

1

4
∂2

i jεk∂
2
klεk

4�2
s

(
f s
k

)2

Ek
(
4E2

k − (iωm)2
) tanh(βEk/2). (E17)

After integration of the fermions and analytic continuation iωm → ω + i0+, the action reads

S(4) = 1

2

∫
dω
∑
i jkl

K (4)
i jkl (ω)A2

i j (−ω)A2
kl (ω) (E18)

with the fourth-order kernel

K (4)
i jkl (ω) = χH + χQ + χB + χM, (E19)

where the Higgs (H), quasiparticle (Q), Bardasis-Schrieffer (B), and mixed (M) susceptibilities are given in Eq. (63).
We consider monochromatic, linear polarized light with polarization angle θ , i.e., A(t ) = A0ê cos �t with ê
 =

(cos θ, sin θ ). For the chosen tight-binding band dispersion εk = −2t (cos kx + cos ky) − μ, the derivative ∂2
i jεk = 0 for i �= j

such that we can reduce the four polarization indices i jkl to two indices i j, where only ∂2
iiεk terms occur. Thus the action reads

S(4) = 1

2

∫
dω
∑

i j

A2
i (−ω)A2

j (ω)K (4)
i j (ω). (E20)

The THG current is calculated as

j (3)
α (3�) = − δS(4)

δAα (−ω)

∣∣∣∣∣
3�

= −
∫

dω′∑
j

Aα (−ω′ + 3�)A2
j (ω

′)K (4)
α j (ω′) ∝

∑
j

e2
j eαK (4)

α j (2�) (E21)

or

j (3)(3�) ∝
(

cos3 θK (4)
xx (2�) + sin2 θ cos θK (4)

xy (2�)

cos2 θ sin θK (4)
yx (2�) + sin3 θK (4)

yy (2�)

)
. (E22)

Thus it follows for the current parallel to the light polarization

j (3)
‖ (3�) =

(
cos θ

sin θ

)
j (3)(3�) = cos4 θK (4)

xx (2�) + sin4 θK (4)
yy (2�) + sin2 θ cos2 θ

(
K (4)

xy (2�) + K (4)
yx (2�)

)
= (cos4 θ sin4 θ )K (4)

xx (2�) + 2 sin2 θ cos2 θK (4)
xy (2�), (E23)

where we used K (4)
xy = K (4)

yx and K (4)
xx = K (4)

yy .
We evaluate the Bardasis-Schrieffer propagator analytically for T = 0, and in the limit of constant density of state at the

Fermi level. We assume f s
k = 1 and f d

k = cos(2ϕ) and rewrite the sum over momentum as integral
∑

k( f d
k )2 = λ

∫
dε

B−1(ω) = 2

Vd
− λ

∫
dε

4�2 + 4ε2

Ek
(
4E2

k − ω2
) . (E24)

Using Eq. (A22), one finds

B−1(ω) = 2

Vd
− 4�2λF (ω) − 2

V
+ (4�2 − ω2)λF (ω) = 2

Vd
− 2

V
− ω2λF (ω). (E25)
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