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A series of recent experiments has demonstrated robust superconductivity in magic-angle twisted trilayer
graphene (TTG). In particular, a recent work by Cao et al. [Nature (London) 595, 526 (2021)] studies the
behavior of the superconductor in an in-plane magnetic field and an out-of-plane displacement field, finding
that the superconductor is unlikely to have purely spin-singlet pairing. This work also finds that at high magnetic
fields and a smaller range of dopings and displacement fields, the superconductor undergoes a transition to
a distinct field-induced superconducting state. Inspired by these results, we develop an understanding of the
superconductivity in TTG using a combination of phenomenological reasoning and microscopic theory. We
describe the role that an in-plane field plays in TTG, and we use this understanding to argue that the reentrant
transition may be associated with a quantum Lifshitz phase transition, with the high-field phase possessing
finite-momentum pairing. We argue that the superconductor is likely to involve a superposition of singlet and
triplet pairing, and we describe the structure of the normal state. We also draw lessons for twisted bilayer
graphene (TBG), and we explain the differences in the phenomenology with TTG despite their close microscopic
relationship. We propose that a singlet-triplet superposition is realized in the TBG superconductor as well, and
that the ν = −2 correlated insulator may be a time-reversal protected Z2 topological insulator obtained through
spontaneous spin symmetry breaking.
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I. INTRODUCTION

A remarkable series of developments have brought two-
dimensional graphene-based moiré materials to the spotlight
of condensed-matter physics. Many of these systems host a
fascinating array of strongly correlated insulating and mag-
netic states [1–15], and twisted bilayer graphene (TBG) in
particular displays robust unconventional superconductivity
[16–20]. Recently, another moiré system, twisted trilayer
graphene (TTG), was also predicted and subsequently found
to exhibit robust superconductivity [21–24]. A very recent
work [25] studies superconductivity in near-magic angle TTG
in the presence of an in-plane magnetic field B and an out-
of-plane electric displacement field D, and some striking
phenomena are found, as we review below. In the present
paper, we will synthesize the existing experimental results
into a coherent theoretical picture of the superconductivity
in TTG. We will explain the differences with the closely
related TBG, and will show how comparing phenomena in
TTG and TBG can give us important clues to understand both
systems.

We begin with a discussion of some of the salient experi-
mental results on superconductivity in near magic-angle TTG
[23–25]. Our focus will be on the robust superconductivity
found for moiré lattice fillings in the range −3 < ν < −2.

(i) The “normal” state out of which the superconductivity
emerges has a carrier density that is set by the deviation from
ν = −2. This normal state has a Landau fan degeneracy of
2, rather than the fourfold degeneracy naively expected on
the basis of the available flavor degrees of freedom (spin and
valley). Furthermore, the strength of the superconductivity

does not seem to correlate with the single-particle density of
states inferred from indirect measurements.

(ii) The superconductivity occurs even without the external
perturbations of the perpendicular displacement field D or the
in-plane magnetic field B‖. Weak D and B‖ have contrast-
ing effects on the superconductivity—the former enhances it
while the latter suppresses it. Strikingly, Ref. [25] finds that
the superconducting state in a range of fillings survives in B‖
fields far in excess of the Pauli limit, suggesting that the pair-
ing is not spin-singlet in nature. This behavior is also notably
different from that seen in TBG, where the superconductivity
is suppressed by a B‖ roughly at the Pauli limit.

(iii) Near optimal doping and displacement field strength,
the superconductivity is seen to exhibit a “reentrant” phe-
nomenon at large magnetic fields, with a phase transition that
separates two distinct superconductors occurring at a field
Breentrant ∼ 8 T. Interestingly, while the temperature TBKT at
which superconductivity occurs goes to zero at Breentrant, the
temperature Tonset at which the resistance reaches a fixed frac-
tion of its normal-state value is smooth across the transition,
and decreases monotonically with B.

In what follows, by combining the input from experiments
with a Ginzburg-Landau analysis, together with the insights
from simple microscopic theory, we will provide an under-
standing of these phenomena and make predictions for future
experiments. We will be naturally led to the conclusion that
the pairing in the superconductor is neither spin singlet nor
spin triplet, but rather a linear combination of the two. We
examine the role that the B and D fields play in the physics
of TTG, and highlight differences with TBG. This will enable
an explanation of the striking differences in the stability of

2469-9950/2021/104(17)/174505(22) 174505-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.174505&domain=pdf&date_stamp=2021-11-08
https://doi.org/10.1038/s41586-021-03685-y
https://doi.org/10.1103/PhysRevB.104.174505


ETHAN LAKE AND T. SENTHIL PHYSICAL REVIEW B 104, 174505 (2021)

the superconductor to in-plane fields in the two systems. We
propose that interpreting the reentrant transition as arising
from a Lifshitz critical point, where one or both components
of the superfluid stiffness vanish and where the pairing in the
high-field phase occurs at finite momentum, is particularly
natural in light of the existing experimental data.

Along the way, we also discuss the nature of the normal-
state near filling ν ≈ −2. We propose that at ν = −2 the
ground state is a time-reversal protected topological insula-
tor (obtained through spontaneous spin symmetry breaking)
coexisting with the massless Dirac fermions corresponding to
a decoupled graphene sector.

At D = 0, B = 0, the physics of TTG is very closely
related to that of TBG [21], as will be reviewed shortly. This
leads us to propose that our conclusions about the nature of
the pairing in the superconductor and the nature of the normal
state at ν = −2 hold in TBG as well, with minor but important
modifications. This allows for experiments in TTG, which in
some respects are easier to interpret than those in TBG, to
improve our understanding about both systems.

What we do not attempt to do in this paper is a full-blown
microscopic theory of TTG superconductivity. The questions
we are interested in involve very complicated strongly inter-
acting systems where the understanding from theory is only
partially complete. Thus we view our semiphenomenological
approach as the safest way of proceeding, since it allows us
to avoid committing to any particular calculational schemes
of specific microscopic models, both of which come with
uncertainties at present.

II. BASIC MODEL

Let us first review the basic theoretical description of TTG
[21]. We will take the graphene layers to lie normal to the ẑ
axis, and we will gauge-fix the in-plane vector potential so that
Al = (2 − l )A on layer l = 1, 2, 3, where A = δB × ẑ, with δ

the interlayer separation. The displacement field D enters the
Hamiltonian through an on-site potential of +U/2, 0,−U/2
on layers 1, 2, and 3, respectively, where U ∝ 2δD/ε0. The
exact proportionality constant depends on details of how the
screening works, and will not be important for the present
discussion.

To proceed, it is most convenient to work in a basis of
fields that have definite eigenvalues under the action of mirror
M [21,26], which exchanges layers 1 and 3 and which is a
symmetry when U = B = 0. In the basis (ψ+, ψ2, ψ−)T with
ψ± = 1√

2
(ψ1 ± ψ3), where ψl annihilate electrons on layer l ,

the single-particle Hamiltonian is

H0 =
⎛⎝−ivDσv · ∇ √

2T V√
2T † −ivDσv · ∇ 0
V † 0 −ivDσv · ∇

⎞⎠+ HZ ,

(1)

where the Zeeman energy HZ = −μBg
2 B · s. Here vD is the

monolayer Dirac velocity, T is the hopping matrix famil-
iar from the bilayer problem (see Appendix E), V ≡ U/2 −
vDσv · A, and we have used the notation σv ≡ (τ zσ x, σ y),
with τ a, σ a, sa Pauli matrices for valley, sublattice, and phys-
ical spin, respectively. For simplicity, we have also ignored a

rotation of the σv on layers 1 and 3 by the twist angle, since
its effects are small [27,28]. Typical orbital magnetic energies
are on the order of a few meV, with Zeeman energies smaller
by a factor of ∼3.

We note in passing that the Hamiltonian (1) is the correct
starting point only when the top and bottom graphene layers
are not displaced relative to one another in the xy plane. A
nonzero relative displacement r breaks mirror symmetry, and
can have strong effects on the flat band physics [29]. However,
a vanishing relative displacement is likely to be favored ener-
getically [30], and at B = 0 the data of Ref. [25] appear to be
mirror-symmetric to a good approximation. We will therefore
set r = 0 in the following.

From (1), we see that in the absence of U or B, H0 de-
couples into a TBG Hamiltonian for the mirror-even fields
ψ+, ψ2, which form a set of flat bands near the magic angle,
together with a decoupled Dirac cone formed by the mirror-
odd field ψ− [21]. Given that U plays a crucial role in the
observed superconductivity, the physics of the superconduc-
tivity is likely to be closely related to effects caused by the
mirror-odd ψ− Dirac cone.

The mirror symmetry of the U = B = 0 Hamiltonian has
other important consequences for how B affects the single-
particle physics, as both U and Borb are odd under mirror
(here Borb denotes the orbital field). In particular, at U = 0
the spectrum at each momentum must be an even function of
Borb. This means that unlike in TBG, at U = 0 there will be
no field-induced depairing of intervalley Cooper pairs due to
misalignment of the Fermi surfaces in the two valleys [11], as
here the single-particle energy satisfies εK (k) = εK ′ (−k) even
when Borb 	= 0. The fact that the leading effects are at order
B2

orb also means that at small U, B, the orbital effects of the
magnetic field are rather weak. Diagonalizing H0 at realistic
values of U, B, one finds two Dirac cones at the moiré K point
at energies separated by an amount that increases with U, B,
as well as a Dirac cone located very near the K ′ point. Details
on the single-particle physics can be found in Appendix E.

One observation from Ref. [25] is that despite the sen-
sitivity of the observed superconductivity to U and B,
superconductivity near optimal doping is seen even when U =
B = 0. Therefore, the mirror-even fermions ψ+, ψ2 must be
superconducting on their own, independent of their coupling
to the mirror-odd ψ−.1 We are therefore prompted to analyze
the system by considering the Lagrangian (suppressing all
indices)

L = LSC[ψ+, ψ2,�] + L−[ψ−,�] + L±[ψ+, ψ−],

L− = ψ
†
−(∂τ + vDk · σv )ψ− + λ(ψ−�†ψ− + ψ

†
−�ψ

†
−)

− μBg

2
ψ

†
−B · sψ−,

L± = ψ
†
+V ψ− + ψ

†
−V †ψ+,

(2)

1One possibility is that dissipation from the ψ− fermions promotes
superconductivity in the mirror-even sector, along the lines of the
mechanism in Ref. [31]. In what follows, however, we will assume
that the dominant effects of the ψ− fermions arise from the terms
written in (2).
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where � is the superconducting order parameter, and
LSC[ψ+, ψ2,�] is some unknown Lagrangian capturing the
physics of the U = B = 0 superconductor, together with the
Zeeman energy for the mirror-even fermions. The term pro-
portional to λ arises from a mean-field decoupling of an
interaction of the form ψ

†
+/2ψ

†
+/2ψ−ψ− + H.c. Such a term

does not arise from a standard density-density interaction, but
as it is allowed by symmetries, we will keep it.

Importantly, the modifications to the superconductivity by
U, Borb can be reliably addressed by integrating out the ψ−
fermions perturbatively, as it is only through the mixing with
these fermions that these perturbations have any effect.

III. THE NORMAL STATE NEAR ν = −2

Before attempting to obtain an effective action for � by
integrating out the fermions in (2), it is helpful to think about
constraints on the matrix structure of � by considering the
likely nature of the D = 0, B = 0 normal state near ν = −2.
As we will see, known properties of the superconductor will
help us place nontrivial constraints on the nature of the normal
state. Because this discussion takes place at D = 0, B = 0, we
may temporarily ignore the mirror-odd ψ− fermions: this is
because in this limit the leading coupling of the ψ− fermions
to the mirror-even ψ+, ψ2 fields vanishes,2 rendering the prob-
lem equivalent to that of TBG [21]. This simplification is quite
useful, as it allows us to draw on insights gained in the study of
TBG. Aspects of the physics particular to TTG will arise when
we turn on nonzero D, B, which is discussed in the following
sections.

Existing experiments on TTG [23,24] indicate that the
normal state at ν = −2 is likely highly resistive (and pre-
sumably would be insulating in the absence of the ψ− Dirac
cone). Additionally, the doped state at ν = −2 − δ is seen to
possess a Landau level degeneracy reduced from that of the
charge-neutrality point by a factor of 2. The simplest way to
produce a ground state in accordance with these observations
is to polarize a flavor, and then to open an interaction-induced
gap in the remaining polarized subspace. We will be making
the assumption that the superconductor pairs fields are related
by time reversal, implying that both K, K ′ valleys participate
in the superconducting state. We will also be assuming (at
least at small B, T ) that the superconductor inherits the flavor
polarization of the ν = −2 − δ normal state. This implies that
the normal state is not valley-polarized, and in what follows
we will assume that the polarized flavor is spin. Spin polar-
ization here means that the ground state is spin-valley locked
(SVL), with the spins in a given valley fixed to lie along some
(valley-dependent) direction.

The assumption of spin-valley locking is reasonable from
a theoretical point of view, as polarizing spin (as opposed to
valley) allows the system to take advantage of the intervalley
Hund’s coupling. This assumption is also motivated by exper-

2In principle, there are also higher-body interactions between the
ψ− fermions and the mirror-even sector—in what follows, we will
assume that these interactions do not qualitatively change the nature
of the normal state, which seems reasonable on account of the low
density of the ψ− fermions.

iment, as SVL allows the superconductor to achieve the strong
Pauli limit violation observed in Ref. [25].

The simplest way to open up a gap is to give some fermion
bilinear c†

αQαβcβ a nonzero expectation value, where the in-
dices α, β run over the states in the low-energy SVL subspace.
To determine what we should take for the form of Q, we
will borrow results from the strong-coupling picture proposed
for twisted bilayer graphene in Refs. [32,33]. In this picture,
the four flat bands in the SVL subspace can be labeled as
|K, A, ξ 〉, |K ′, B, η〉 and |K ′, A, η〉, |K, B, ξ 〉, where |ξ 〉 , |η〉
denote normalized spinors determining the directions along
which the spins are locked in the K, K ′ valleys, respectively,
and where A/B is the sublattice index (which is a good index
for the flat bands in the strong-coupling limit [32]). The first
set of two bands have Chern number C = σ zτ z = +1, and the
second set of two have C = −1. The strong-coupling analysis
indicates that Q must mix the two valleys, and must be pro-
portional to σ y in sublattice space, this being the only matrix
structure that allows the ordered state at ν = −2 to completely
fill two of the Chern bands and minimize the kinetic and
potential energy in the strong-coupling limit (see [32] for the
full logic). Any Q that fulfills these properties and survives
projection onto the occupied SVL subspace may be written as

Q = σ y

( |η〉〈ξ |eiϕ

|ξ 〉〈η|e−iϕ

)
, (3)

where the matrix written out explicitly is in valley space and
where the phase ϕ is arbitrary. A nonzero expectation value for
c†
αQαβcβ breaks time-reversal symmetry T = syτ xK unless

the spins in each valley are antiferromagnetically aligned.
At zero magnetic field, the relative orientation of |ξ 〉 , |η〉

is dictated by the sign of the intervalley Hund’s coupling JH .
The sign of JH is not known a priori, and is determined by
a delicate competition between various effects, e.g., Coulomb
interactions and coupling to phonons [34]. However, as we
will see momentarily, the fact that the superconductor seen in
experiment has a nonzero BKT transition temperature at zero
field means that JH must favor antiferromagnetic alignment
of the spins in the two valleys (for the case without SVL;
see Appendix B). For definiteness, we will take the zero-field
normal state to have |ξ 〉 = |↑〉 , |η〉 = |↓〉, so that

Q = σ y(τ+s+eiϕ + τ−s−e−iϕ ). (4)

There are two important things to note about Q. The first is
that it is invariant under time-reversal symmetry, as the spins
are aligned antiferromagnetically. Given that the zero-field
state at ν = −2 contains two filled bands with Chern numbers
±1, this antiferromagnetic SVL state is, remarkably, therefore
a topological insulator protected by the unbroken U (1) and
T symmetries.3 The second is that SO(2)s rotations of the
spin about ẑ act on Q in the same way as the group U (1)o

3This should be contrasted with the analysis of the spinless model
of Ref. [32], where the proposed K − IVC state is also topological,
protected by U (1), and a T ′ symmetry, which combines time reversal
with a valley rotation. Such a symmetry is not sufficient to protect
gapless edge states as the valley symmetry is broken at the edge. In
contrast, the spinful state discussed in this paper will have protected
edge states.
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of opposite phase rotations in the two valleys. Therefore,
the order-parameter manifold of the insulator is [U (1)o ×
SO(3)s]/U (1)o+s = SO(3). As π2(SO(3)) = 0, there are no
skyrmions in this state (only Z2 vortices), complicating a
skyrmion-driven mechanism for superconductivity along the
lines of that proposed in Refs. [33,34] (although depending
on the strength of JH , a description in terms of skyrmions that
exist at intermediate scales may still be useful).

IV. GINZBURG-LANDAU THEORY

We now turn to discussing the general features that we ex-
pect any Ginzburg-Landau (GL) free energy for the observed
superconductor should satisfy.

As mentioned above, we are operating under the assump-
tion that � is off-diagonal in the valley index. Interaction
effects similar to those mentioned above then mandate
[33,35,36] that � be proportional to the identity in sublattice
space (so that pairing takes place between opposite Chern
sectors). For the present discussion, we will further assume
that over the full temperature range of interest, the spin-valley
locking which likely occurs in the normal state is inherited
by the superconductor (the case in which this assumption is
relaxed is treated in Appendix B).

With these assumptions, we may write the order parameter
as

� = |�|
2

( −|η〉〈ξ ∗|
|ξ 〉〈η∗|

)
= |�|

23/2
(iτyd · s + τ xd0)isy, (5)

where the matrix on the first line is in valley space, and the d
4-vector has components

dμ = 1√
2
〈ξ ∗|isysμ|η〉. (6)

Note that in writing down this form for the order parameter,
we have assumed that the pairing occurs in an even angular
momentum channel. None of the analysis to follow is affected
by this choice, and odd angular momentum pairing can be
treated simply by interchanging τ x and τ y in the above ex-
pression for �.

A general expression for the GL free energy in the SVL
subspace can be written in terms of � and the vectors ξ =
〈ξ |s|ξ 〉, η = 〈η|s|η〉 as

f = c

2
|∂�|2 + r|�|2 + u

2
|�|4 + w|�|2η · ξ

+ κ|�|2[B · (ξ − η)]2 − ζ |�|2B · (ξ + η), (7)

where −r, u, κ > 0, the coefficient w determines whether the
spins in each valley prefer to align ferromagnetically or an-
tiferromagnetically, and where all of the coefficients in the
above expression contain an implicit dependence on U and
B, with this dependence determined from the Lagrangian (2)
(to be discussed shortly).

Suppose first that w < 0, so that the spins in each
valley prefer to align ferromagnetically along some direc-
tion n, which is chosen spontaneously when B = 0. The
order parameter is then invariant under the combined ac-
tion of U (1)g gauge rotations and SO(2)s spin rotations

(a)
(b)

FIG. 1. (a) A schematic of the phase diagram in the B ‖ -T
plane. SC denotes the low-field superconductor, and SC′ denotes
the reentrant finite-momentum pairing phase. The inset (b) shows a
schematic of how the pairing evolves in the field: the electrons in the
Cooper pair have their spins oppositely aligned in the K, K ′ valleys
in zero field, with the spins smoothly rotating to point along the field
at large B ‖ .

about n. The order-parameter manifold for the zero-field
superconductor is therefore [U (1)g × SO(3)s]/U (1)o+s =
SO(3). Consequently, this phase does not have a finite-T BKT
transition at B = 0. Furthermore, since this phase only has Z2

vortices, the critical current in zero field vanishes [37], and
when ζ 	= 0 the free energy of this state decreases linearly in
the presence of a small in-plane field. All of these features are
in disagreement with experiment.

When w > 0, on the other hand, the spins align antifer-
romagnetically in the plane normal to the field direction at
small B, and then gradually cant to point along the field at
larger B (see Fig. 1). This canting process happens without
breaking apart the Cooper pair, allowing the superconduc-
tor to survive at fields above the Pauli limit. Unlike in the
w < 0 case, the free energy and condensate fraction do not
evolve linearly with B near B = 0 (Appendix B contains
the details). Furthermore, since � is invariant under SO(2)s

spin rotations about the ordering direction when B = 0, the
order-parameter manifold in the zero-field limit is [U (1)g ×
SO(3)s]/[Z2 × SO(2)s] = U (1) × S2/Z2. Then there are vor-
tices with integer-valued charge that cost logarithmic energy,
leading to a nonzero TBKT at zero field. All of these features
are in agreement with experiment.

We are therefore forced to conclude that the zero-field
superconductor favors antiferromagnetic alignment. This pro-
vides the justification for our assumption in the previous
section that the normal state has antiferromagnetic spin-valley
locking (see Ref. [35] for a similar argument).

It now remains to understand the mechanism producing the
reentrant phenomenon seen in experiment, as well as to under-
stand the dependence of Tonset and TBKT on the applied fields.
This can be done by understanding the U, B dependence of
the coefficients appearing in the free energy, which we now
turn to discussing.
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V. QUANTUM LIFSHITZ CRITICALITY AND
FINITE-MOMENTUM PAIRING

As mentioned in the Introduction, a particularly notewor-
thy aspect of the experiment is that Tonset decreases more
or less smoothly all the way until superconductivity is com-
pletely killed, while TBKT shows nonmonotonic behavior [25].
The temperature Tonset is set by the T = 0 condensate frac-
tion 〈|�|2〉. By contrast, TBKT is set by the T = 0 superfluid
stiffness K , viz. the coefficient of the (∂φ)2 term in the free
energy, where φ is the phase mode of �.

A natural explanation for the observed reentrant phe-
nomenon is therefore that ρ decreases monotonically with B
by a factor ∝√

1 − B2, while K decreases faster with B, and
goes to zero when B = Breentrant, where the phase transition
occurs (see the schematic phase diagram in Fig. 1).

The ir physics of the superconductor is dominated by the
phase mode φ,4 with a Lagrangian capturing the essential
physics being

L = 1
2 ((∂τφ)2 + K (∂φ)2 + ς (∇2φ)2), (8)

where ς > 0 is included for stability. The proposed reentrant
transition is a Lifshitz point, where K vanishes.

Whether or not a Lifshitz transition can occur is determined
by the field dependence of the coefficients in the GL free
energy, which can be calculated by integrating out the ψ−
fermions in the Lagrangian (2). The important point here is
that U, B only enter (2) in the coupling of ψ+ to ψ−, and since
ψ− is simply a free Dirac cone, the field dependence of the
terms in the free energy can be calculated in a perturbatively
controlled way. We find that to quadratic order in U and
B, the coupling between the ψ−, ψ+ fermions results in the
parameter r and the stiffness K appearing in the free energy
(7) being renormalized by amounts

δr = −aU 2 + bB2,

δK = cU 2 − dB2,
(9)

where a, b, c, d are all positive coefficients, whose detailed
form is not important for the present discussion. The upshot
is that (at least at small fields) the displacement field tends to
promote superconductivity, while the orbital field leads to a
suppression in both the condensate fraction and spin stiffness.
The fact that the orbital and displacement fields have opposite
effects on the superconductor (at least at small U, B) origi-
nates from the different ways in which they couple the ψ+, ψ−
fermions together. Importantly, this is exactly the behavior
seen in experiment, with the superconductivity strengthened
(suppressed) with increasing U (increasing B), at least in the
range of displacement fields for which the re-entrant transition
occurs. The details of the calculation leading to (9) are stan-
dard, and are relegated to Appendix A. A rough estimate of
the critical in-plane field for the superconductor at U = 0 in
terms of the microscopic parameters that enter the coefficients

4For nonzero field strengths which are not strong enough to fully
lock the spins along B, there is an additional neutral spin mode
coming from U (1) spin rotations about the field direction. However,
it is not important for the following discussion, and will be ignored.

appearing in (9) is given in Appendix D. Our estimate is of
the same order of magnitude as the critical field observed
in experiment, and we will be satisfied with this consistency
check, leaving a more detailed calculation to future work.

This dependence of δr, δK on B2 is precisely of the form
required for the proposed Lifshitz transition to work, with the
Lifshitz transition occurring if d is large enough to drive K
to zero before r. Furthermore, the fact that the condensate
fraction increases with U to quadratic order provides an expla-
nation for why, at moderate values of U , the superconductivity
is seen to be stronger with increasing D. That the reentrant
transition occurs only at moderate values of D can be un-
derstood in the same way, as the Lifshitz transition can only
occur if 〈|�|2〉 remains nonzero at the field strength where
K is driven to zero. In this scenario, at small values of D it
is 〈|�|2〉 which goes to zero first with increasing B, while at
larger values of D it is K that goes to zero first.

Note that due to the rotational symmetry breaking by the
in-plane field, it is possible that the stiffnesses along and
normal to the field direction differ, so that

L = 1
2 [K‖ (∂ ‖ φ)2 + K⊥(∂⊥φ)2] + · · · , (10)

where ∂ ‖ (∂⊥) denote derivatives along (normal to) the field
direction. One could therefore consider a situation in which
only one of K‖ , K⊥ is driven to zero at the Lifshitz tran-
sition. However, the isotropic case in which K‖ , K⊥ go to
zero simultaneously seems more likely to be realized. Indeed,
consider the case in which only one component vanishes at
Breentrant. The critical point is an anisotropic Lifshitz model. In
Appendix C, we show that this model orders at T = 0, and
displays quasi-long-range order (QLRO) up to some nonuni-
versal nonzero temperature. Thus in this scenario we would
not expect the observed TBKT to go all the way to zero at
Breentrant (although the temperature at which the anisotropic
model loses QLRO is likely very small, and may well be
below the current experimental resolution).

On the other hand, consider the isotropic case, where both
K‖ and K⊥ vanish at Breentrant. In this case, the critical point
has no QLRO at any temperature [38], so that TBKT = 0 at the
critical point, as seems to be the case experimentally. Another
reason for favoring the isotropic case is that to leading order
in B, K‖ and K⊥ are renormalized by the same amount. Our
prior is therefore that near the critical point, K⊥ = K‖ to a
good approximation. However, it may well be the case that in
narrow field regimes only one of K⊥, K‖ is negative, possibly
explaining the rather broad nature of the transition and the ob-
served small pockets of potentially distinct superconducting
phases [25].

On the other side of the Lifshitz phase transition, the
pairing occurs at finite momentum. Note that this scenario is
very different in spirit from the usual Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) mechanism [39,40], since the latter
relies on Pauli pair breaking being the dominant mechanism to
suppress superconductivity. This is contrary to the case of the
superconductor currently under consideration, which strongly
violates the Pauli limit and in which the main effects of the
field are orbital in nature. Because the present mechanism
differs from that of FFLO, in order to minimize the conden-
sation energy, the order parameter will presumably live at a
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single nonzero wave vector q 	= 0, so that �(r) ∼ eiq·r has a
spatially uniform magnitude.

The first indications from Ref. [25] are that the reentrant
transition is first-order. As written down in (8), the transition
is second-order, but in general it may be driven to first-order
by other higher-order terms not included in (8) [41,42]. One
example is the term λ(∇φ · ∇φ)2, which is marginally rele-
vant if λ < 0 [42].5

VI. LESSONS FOR TBG

As was emphasized above, in the absence of external fields,
the ψ− fermions decouple from the mirror-even sector, ren-
dering the system nearly identical to TBG together with a
decoupled Dirac fermion. In particular, this means that the
physics of the superconductor and the normal state near ν =
−2 are likely to be the same in both TBG and TTG. As we
have argued that at D = 0, B = 0 the superconductor near
ν = −2 in TTG has antiferromagnetic spin-valley locking
and pairing, which involves a superposition of spin singlet
and spin triplet, the same should be true in TBG (see also
Ref. [35]).

How should we reconcile this conclusion with the strik-
ing differences between TBG and TTG in the presence of
a nonzero in-plane magnetic field? In TBG, the critical in-
plane field in the superconducting state at optimal filling is
B ‖ ,c ≈ 1T [19], which is much smaller than in TTG, and
it is much closer to the Pauli limit. Since we claim that the
pairing in TBG also involves a combination of spin singlet
and spin triplet, the comparatively small value of B ‖ ,c in TBG
cannot be due to Zeeman effects. Instead, the critical field
is set by orbital effects. Indeed, unlike in TTG, the single-
particle energies in TBG do not satisfy εK (k) = εK ′ (−k) in
a nonzero orbital field, allowing orbital pair-breaking effects
to produce a relatively lower value for B ‖ ,c [11]. The sup-
pression of superconductivity at roughly the Pauli limit in an
in-plane field was interpreted early on as evidence of a spin-
singlet superconductor. This interpretation was first called into
question by the observation that the in-plane critical field is
strongly angle-dependent [11]. Such angle dependence cannot
arise from Zeeman effects. Within the present picture, the
superconductor is a superposition of singlet and triplet, its
suppression by an in-plane field is entirely orbital, and the
rough agreement with the Pauli limit is a coincidence coming
from the rough equality of the orbital Zeeman g-factor and the
spin g-factor.

Turning to the normal state of TBG, a striking consequence
of the antiferromagnetic spin-valley locking is that, within
the strong-coupling theory, the correlated insulating state at
ν = −2 is an interaction-driven Z2 TI. This state will have

5The cubic term ∂xφ(∂xφ − √
3∂yφ)(∂xφ + √

3∂yφ) also renders
the critical point first order, but is not invariant under the C6 sym-
metry of the theory, which sends ψ (x) �→ τ xσ xe2π iτ zσ z

ψ (Rπ/3x) and
B �→ Rπ/3B [43]. Also note that nonzero B permits us to write down
other relevant cubic terms like UBi∂iφ(∂φ)2 (with the U included to
preserve mirror symmetry). These terms, however, are not generated
in the context of our model, as the effects of the orbital coupling only
enter at order B2 (see Appendix A).

time-reversal protected edge states, which will be interesting
to look for in future experiments.

Finally, a puzzle that we do not resolve is that the insulating
state at ν = −2 in TBG is also suppressed by an in-plane
magnetic field [1,18] (while in TTG the suppression seems to
be mostly absent [45]). There are conflicting reports [9,18,44]
on the details of how the insulating gap evolves with a field
(linear in some experiments, quadratic in others), and we leave
the understanding of this phenomenon to the future.

VII. DISCUSSION AND SUMMARY

In this paper, we have used a combination of phenomeno-
logical and microscopic theoretical reasoning to build a
coherent picture of the superconductivity and related phe-
nomena in TTG. We argued that the superconducting state is
a superposition of spin-singlet and spin-triplet pairings. We
showed how this explains the contrasting effects of small
displacement and B‖ fields, even though both break mirror
symmetry. We also showed that the mirror symmetry ex-
plains the striking difference between the stability of TTG
and TBG superconductors to in-plane fields despite their close
microscopic relationship. We proposed that the reentrant su-
perconductivity recently observed in twisted trilayer graphene
[25] can be explained by a spin-valley locked superconduc-
tor which undergoes a quantum Lifshitz transition into a
finite-momentum pairing state in the presence of an in-plane
magnetic field. The close relationship between TBG and TTG
when the displacement field and magnetic field are turned off
enables insights from the bilayer system to contribute to the
study of the trilayer case, and vice versa. One consequence
of this is our conclusion that the normal state near ν = −2 in
twisted bilayer graphene may be a Z2 TI.

A possible test of our proposal for the reentrant supercon-
ductor in TTG is to measure the Josephson current between
two neighboring TTG regions maintained at different dis-
placement fields. Due to the dependence of Breentrant on the
displacement field D, it is possible to tune between the
low-field and high-field phases in constant magnetic field
by varying D alone. Therefore, one could imagine engi-
neering a Josephson tunneling experiment between the low-
and high-field superconducting states simply by varying the
applied electric field in space. If the high-field state has finite-
momentum pairing, the Josephson current should vanish, due
to the spatially oscillating phase of the high-field phase’s order
parameter [46]. Of course, a vanishing current could also oc-
cur by virtue of the high- and low-field phases having different
pairing symmetries. However, if the pair momentum in the
high-field state is a continuously varying function of U (as in
our analysis), the Josephson current between two high-field
superconducting regions maintained at different displacement
fields should also vanish, providing a stronger test of the
proposed Lifshitz scenario.

In the case in which the high-field state is obtained through
an (anisotropic) Lifshitz transition, one could also simply
measure whether or not the critical current is direction-
dependent, as near the phase transition the critical current
should be highly direction-dependent (see Appendix C).

Finally, the conclusion that the normal state near ν = −2 is
a Z2 TI is also interesting from an experimental perspective,
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as it will have symmetry protected gapless edge states in a
single domain sample. In TTG, this TI coexists with the mass-
less Dirac fermions of the mirror-odd sector. Complications
caused by the mirror-odd Dirac cone could potentially be
avoided in a setup where the sample edge is mirror-symmetric,
and electrical contact is made only with the middle layer,
enabling the transport properties of the mirror-even sector to
be isolated. It may also be interesting to study the effects of
induced spin-orbit coupling in this system, along the lines of
Ref. [47], to explicitly lock in the symmetry breaking leading
to the TI sector.

The proposed Z2 TI at ν = −2 may be more readily acces-
sible to experiments in TBG, where there are no extra gapless
mirror-odd fermions.
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APPENDIX A: MICROSCOPIC DERIVATION OF THE
TERMS IN THE GINZBURG-LANDAU FREE ENERGY

In this Appendix, we describe how the B and U depen-
dence of the coefficients appearing in GL free energy (B19)
can be obtained microscopically, starting from the Lagrangian

L=LSC[ψ+, ψ2,�]+L−[ψ−,�]+L±[ψ+, ψ−],

L−[ψ−,�]=ψ
†
−(∂τ +vDk · σv )ψ−

+ λ(ψ−�†ψ−+ψ
†
−�ψ

†
−)

− μBg

2
ψ

†
−B · sψ−,

L±[ψ+, ψ−] = ψ
†
+V ψ− + ψ

†
−V †ψ+, (A1)

where, as in the main text, V = U/2 − vDA · σv [recall that
σv = (τ zσ x, σ y)], and where LSC[ψ+, ψ2,�] contains the
physics of the mirror-even flat band fermions and the U =
B = 0 superconductor. As in the main text, we will as-
sume even angular momentum pairing and write the order
parameter as

� = iτ y d · s isy + τ x d0 isy. (A2)

The fact that � is proportional to the identity in the sublattice
index and off-diagonal in the valley index is important, with
this matrix structure being responsible for several important
minus signs in what follows. However, the assumption of even
angular momentum pairing is not important, and odd angular
momentum pairing can be treated simply by exchanging τ x

and τ y in the above expression.
In what follows, we will treat the mirror-even fermions

ψ+, ψ2 by assuming that they form a flavor-unpolarized Fermi
liquid. Situations in which flavor polarization occurs can

be easily dealt with by inserting appropriate projectors into
traces. In particular, if the polarized flavor is spin, with the
spins being locked to valley (which, as we have argued in
the main text, is likely the case relevant for experiment), the
effects of the polarization only enter when dealing with the
Zeeman couplings, and they can be dealt with in the manner
described near (B8).

1. Orbital effects

We begin by examining the orbital effects of the magnetic
field. The only place where the orbital coupling enters into the
above Lagrangian is in the L± term, which couples the sym-
metric and antisymmetric sectors. This allows the effects of
U, B to be treated within a controlled perturbative expansion.

Integrating out ψ+ produces the term

δL = −1

2
(ψ†

− ψ−)

(
V †

−V T

)
G+

(
V

−V ∗

)(
ψ−
ψ

†
−

)
,

(A3)

where G+ is the ψ+ propagator. Since we are remaining
largely agnostic about the physics of the symmetric flat bands,
we do not know what G+ looks like, other than that it involves
�’s on the off-diagonals. In what follows, we will simply
assume that the most important effects of δL can be captured
by the term

δL ⊃ h(ψ†
−V †�V ∗ψ†

− + ψ−V T �†V ψ−), (A4)

where h is a constant. Here and below, the notation A ⊃ B is
to be read as “B is a term appearing in A.”

We now integrate out ψ− and examine the structure of
the resulting terms generated in the effective action S[�]
for �. Thus the remaining task is to compute the functional
determinant

S[�] ⊃ −Tr ln

[
1 +

( 1
−iω+ε

1
−iω−εT

)(
H

H†

)]

=
∑
n>0

1

2n
Tr

{[(
Gp

Gh

)(
H

H†

)]2n}

=
∑
n>0

1

n
Tr[(GpHGhH†)2n], (A5)

where

H = hV †�V ∗ + λ� (A6)

and where the particle/hole Green’s functions are

Gp = 1

−iω + ε
, Gh = 1

−iω − εT
. (A7)

We will assume that integrating out ψ+ leaves the ψ−
fermions as continuing to be well-described by a Dirac cone,
albeit one with a renormalized (possibly anisotropic) Dirac
velocity and a nonzero chemical potential. Therefore, we take
ε to be (ignoring for now the Zeeman coupling)

ε = vxkxτ
zσ x + vykyσ

y − μ, (A8)
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so that

Gp = iω + μ + vxkxτ
zσ x + vykyσ

y

−(−iω − μ)2 + (vxkx )2 + (vyky)2
,

Gp = iω − μ + vxkxτ
zσ x − vykyσ

y

−(−iω + μ)2 + (vxkx )2 + (vyky)2
. (A9)

In the following, we will use the notation

L[�] =
∑
n>0

L2n[�], (A10)

with L2n containing 2n powers of �. We will first turn to
examining the quadratic piece L2[�].

a. Quadratic terms

We will work at μ = 0 for now, as the effects of a small nonzero μ do not qualitatively modify the structure or field
dependence of the terms that are generated. We will also only focus on the behavior of L2[�] in the zero-frequency limit
by taking � = �(0, q). After rescaling momenta by kx �→ kx/vx, ky �→ ky/vy, we have

L2[�(0,qx/vx, qy/vy)] ⊃ + 1

vxvy
T
∑

n

∫
k

Tr

[
iωn + k · σv

ω2
n + k2

(hV †�V ∗ + λ�)
iωn + (k + q) · σ∗

v

ω2
n + (k + q)2

(hV T �†V + λ�†)

]
. (A11)

To perform the trace, we can use the explicit expression for V to write

Tr[k · σv�(k + q) · σ∗
v�

†] = −k · (k + q)|�|2,
Tr[V †�V ∗�†] = �|�|2,

Tr[k · σvV
†�V ∗(k + q) · σ∗

v�
†] = −�(k + q) · k|�|2,

Tr[V †�V ∗V T �†V ] = �2|�|2,
Tr[k · σvV

†�V ∗(k + q) · σ∗
vV

T �V ] = −�2k · (k + q)|�|2,

(A12)

where in this Appendix |�|2 = Tr[�†�], we have defined

� ≡ U 2

4
− v2

DA2, (A13)

and we have used σv� = −�σ∗
v as well as

Tr[a · σb · σc · σd · σ] = [(a · b)(c · d) − (a × b) · (c × d)]Tr[1]

= [(a · b)(c · d) − (a · c)(b · d) + (a · d)(b · c)]Tr[1]. (A14)

The fact that A and U enter in � with opposite signs is important for the physics of the Lifshitz transition, and is a consequence of
the fact that � pairs opposite valleys, and hence anticommutes with the τ z contained in σv . Note that this physics is independent
of our assumption of even angular momentum pairing, since it only relies on the fact that � is off-diagonal in the valley index.

Performing the trace, we then find

L2[�(0,qx/vx, qy/vy)] ⊃ −|�|2
vxvy

T
∑

n

∫
k

1(
ω2

n + k2
)[

ω2
n + (k + q)2

] (ω2
n(λ + h�)2 + (k + q) · k(λ2 + h�)2

)
. (A15)

Introducing a Feynman parameter x (integrated from 0 to 1),

L2[�(0,qx/vx, qy/vy)] ⊃ −|�|2(λ + h�)2

vxvy
T
∑

n

∫
k,x

ω2
n + k2 − q2y(

ω2
n + k2 + q2y

)2 , (A16)

where y = x(1 − x).
Doing the sum over Matsubara frequencies,

L2[�(0,qx/vx, qy/vy)] ⊃ −|�|2(λ + h�)2

2T vxvy

∫
k,x

(
q2y sech2(

√
k2 + q2y/2T )

k2 + q2y
+ 2k2T

(k2 + q2y)3/2
tanh(

√
k2 + q2y/2T )

)
. (A17)

The exact expression for this integral is not so important for the present purposes, as we are mostly just interested in the signs of
the order q0, q2 terms. We find

L2[�(0,qx/vx, qy/vy)] ⊃ |�|2(λ + h�)2

2vxvy
(−C1 + C2q2), (A18)
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where C1,C2 are positive (temperature-dependent) coefficients. Selecting out the contribution that depends on the displacement
and magnetic fields U and A by using the definition of �, and dropping terms of order A4, we then have

L2[�(0, q)] ⊃ 2λh
(
U 2/4 − v2

DA2
)+ h2

(
U 4/16 − U 2v2

DA2/2
)

2vxvy

(−C1|�|2 + C2
(
v2

x |∂x�|2 + v2
y |∂y�|2)). (A19)

b. Quartic terms

We now examine how the orbital field affects the the quartic terms u, v in the GL free energy. Using V †�V ∗ = ��, we have
(now restricting to zero momentum transfer)

L4[�] ⊃ +T
∑
ωn

∫
k

Tr{[(hV †�V ∗ + λ�)(iωn + k · σv )(hV T �†V + λ�†)(iωn + k · σ∗
v )]2}(

ω2
n + k2

)4
= T (h� + λ)4

∑
ωn

∫
k

Tr[(��†)2](
ω2

n + k2
)2 = (h� + λ)4 Tr[(��†)2]

16πT
= (h� + λ)4 2|�|4 − �2(�∗)2

16πT
. (A20)

c. Summary

To understand the consequences of the terms derived so far, consider the simplified free energy fs = c
2 |∂�|2 + r|�|2 + u

2 |�|4,
where the phase stiffness K is related to c as K = |�|2c. The effects derived in (A19) and (A20) lead to renormalizations of
K, r, u by amounts

δr = −C1
2λh
(
U 2/4 − v2

DA2
)+ h2

(
U 4/16 − U 2v2

DA2/2
)

2v2
,

δK = 2|�|2C2
2λh
(
U 2/4 − v2

DA2
)+ h2

(
U 4/16 − U 2v2

DA2/2
)

2v2
,

δu =
[
h
(
U 2/4 − v2

DA2
)+ λ

]4
4πT

,

(A21)

where we have assumed vx = vy ≡ v for simplicity.
The condensate fraction 〈|�|2〉 = −r/u is renormalized by

δ〈|�|2〉 = −δr
1

u0
+ δu

r0

u2
0

, (A22)

where r0, u0 are the values of r, u in the absence of any coupling between the mirror-even and mirror-odd fermions.
The exact field dependence of δ〈|�|2〉 depends on the magnitude of λ and the sign of hλ, which are not things that can be

derived microscopically within the current approach. First consider the case in which λ is small enough so that terms of order λh
may be dropped compared to those of order h2, and the contribution from the δu term can be ignored. This very well may be the
case microscopically, as the interaction which produces the λ term does not appear in the (presumably dominant) density-density
interaction [see the discussion following (2)]. In this case, we have

δ〈|�|2〉 ≈ C1h2

2v2u0

(
U 4/16 − U 2v2

DA2/2
)
. (A23)

Therefore, the displacement field increases the condensate fraction, while the magnetic field decreases it. The same dependence
also holds for K . Note in particular that in this limit, the condensate fraction is unchanged by the magnetic field when U = 0 (at
least to order B2), implying that to this order the critical in-plane magnetic field Bc is infinite.

When λh is not small compared to h2, it is possible to engineer a situation in which the behavior of the condensate fraction
is reversed from the discussion above (provided that λh < 0). This, however, can be ruled out from experiment, given that the
condensate fraction is seen to increase with U at B = 0 (at least for the range of displacement fields in which we are interested).
Therefore, in this case the leading shifts of the condensate fraction and of K are both proportional to U 2/4 − v2

DA2, with positive
constants of proportionality. Note that this gives a finite value of Bc even when U = 0, as in experiment. This could either be
because the experimental system has a nonzero (though possibly small) value of λ, or because the mirror symmetry is not perfect.

Summarizing, we conclude that the displacement field and (orbital) magnetic field have opposite effects: the displacement
field U increases both the condensate fraction and the superfluid stiffness, while the magnetic field decreases both the condensate
fraction and the superfluid stiffness. Because K and r are renormalized by different amounts, it is reasonable to consider a
scenario in which the superfluid stiffness goes to zero with increasing B before the condensate fraction does.
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2. Zeeman effects

We now turn to examining contributions to the effective action for � arising from the Zeeman coupling of the magnetic field
to the microscopic fermions. These contributions come from the term

LZ = −g(ψ†
+B · sψ+ + ψ

†
2 B · sψ2 + ψ

†
−B · sψ−), (A24)

where for brevity we have defined g ≡ μBg/2.

a. Response from a Fermi liquid

Modeling the mirror-even fermions as a Fermi liquid as described at the beginning of this Appendix, we can incorporate the
Zeeman effects they induce by using the propagators

Gp = iω − ξk − gB · s
−(−iω + ξk )2 + g2B2

, Gh = iω + ξk + gB · s∗

−(−iω − ξk )2 + g2B2
, (A25)

where ξk is the energy measured relative to the Fermi energy. This then provides the term

L2[�(0, q)] ⊃ Tr[Gp�Gh�
†] = T

∑
ωn

∫
k

Tr[(iωn − ξk − gB · s)�(iωn + ξk+q + gB · s∗)�†]

[−(−iωn + ξk )2 + g2B2][−(−iωn − ξk+q)2 + g2B2]
. (A26)

At linear order in B, this gives the contribution

L2[�(0, q)] ⊃ gT
∑
ωn

∫
k

Tr

[
B · s��†

(−iωn + ξk )2(−iωn − ξk+q)
− �B · s∗�†

(−iωn + ξk )(−iωn − ξk+q)2

]

= gT
∑
ωn

∫
k

Tr[B · s��† + �B · s∗�†]

(−iωn + ξk )2(−iωn − ξk+q)
, (A27)

where we shifted the momentum integration and used the fact that the response will only be a function of q2, so that ξk−q can be
replaced with ξk+q. Evaluating the trace, we find

L1[�(0, q)] = −8gB · M I (q), (A28)

where as before M = d1 × d2, and where

I (q) = T
∑
ωn

∫
k

1

(−iωn + ξk )2(−iωn − ξk+q)
. (A29)

For simplicity, we will only explicitly evaluate the O(q0) term. In the limit where we can replace
∫

k with N (0)
∫ �

−�
dξ , this term

vanishes due to particle-hole symmetry about the Fermi level. The leading contribution is thus proportional to N ′(0) [48], giving

I (0) ≈ −N ′(0)

4

∫
dξ

ξ
tanh(ξ/2T ) ≈ N ′(0)

4
ln

(
�

T

)
. (A30)

Due to the smallness of N ′(0) in a generic Fermi liquid scenario, this term would normally be neglected. However, it is possible
that the displacement field modifies the density of states significantly enough to make this term important at moderate U .

Before moving on, we note that the above B · M term was derived by performing an expansion in powers of �, using the
normal state form of the fermion propagators. In the limit where T � �, we should instead perform an expansion about the
B = 0 superconductor. In this case, the B · M term simply vanishes, as there is no magnetization for the field to couple to.

Now we look at effects from (A26) which enter at order B2. Using

Tr[B · s�B · s∗�†] = −2|B · d|2 + B2(|d|2 − |d0|2), (A31)

the contribution at order B2 is

L2[�(0, q)] ⊃ g2T
∑
ωn

∫
k

[
2|B · d|2 − B2(|d|2 − |d0|2)

(−iωn + ξk )2(−iωn − ξk+q)2
+ B2|�|2

(−iωn + ξk )(−iωn − ξk+q)

(
1

(−iωn + ξk )2
+ 1

(−iωn − ξk+q)2

)]

= g2T
∑
ωn

∫
k

[
2|B · d|2 − B2(|d|2 − |d0|2)

(−iωn + ξk )2(−iωn − ξk+q)2
+ 2B2|�|2

(−iωn + ξk )3(−iωn − ξk+q)

]
, (A32)

where the second term in the first line comes from the expansion of the B2’s in the denominators of the propagators, and we have
again used the fact that the response is only a function of q2 when going to the second line.
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The general expressions that appear after doing the frequency sum are rather complicated. For our purposes, it suffices to
expand in q2, and we write

L2[�(0, q)] ⊃ g2(|B · d|2(F1 − F2q2) + B2|d|2(G1 − G2q2) + B2|d0|2(H1 − H2q2)), (A33)

where the Fi, Gi, Hi are all positive functions of T , with all but F1, H1 vanishing in the limit where we may perform the k integrals
as N (0)

∫∞
−∞ dξ .

b. Response from a Dirac cone

We now compute the Zeeman effects induced by the mirror-odd Dirac fermion ψ− (these are expected to be smaller, but we
include the discussion for completeness). To do this, we need to compute the propagator for ψ− in the absence of hybridization
with �. To this end, consider the matrix

M = a1 + b · s + c · σv. (A34)

One can show that the inverse is

M−1 = a(a2 − b2 − c2) + (b2 − a2 − c2)b · s + (c2 − a2 − b2)c · σv + 2ab · s ⊗ c · σv

a2(a2 − b2 − c2) + b2(b2 − a2 − c2) + c2(c2 − a2 − b2)
. (A35)

If we apply this to the case of a = −iω − μ, b = −gB, c = k, we expand to order B2 and get

Gp = iω− + k · σv

ω2− + k2
+ gB · s

−ω2
− + k2 + 2iω−k · σv

(ω2− + k2)2
− g2B2 iω3

− − 3iω−k2 + (3ω2
− − k2)k · σv

(ω2− + k2)3
,

Gh = iω+ + k · σ∗
v

ω2+ + k2
− gB · s∗ −ω2

+ + k2 + 2iω+k · σ∗
v

(ω2+ + k2)2
− g2B2 iω3

+ − 3iω+k2 + (3ω2
+ − k2)k · σ∗

v

(ω2+ + k2)3
,

(A36)

where ω± = ω ± iμ. We then use these propagators to integrate out ψ− and compute the resulting terms in the effective action
for �, following the same approach as when considering orbital effects.

The linear contribution in gB vanishes if μ = 0 due to particle-hole symmetry, but it is nonzero otherwise. To leading (linear)
order in μ,

L2[�(0, q)] = g(λ + h�)2T
∑
ωn

∫
k

[
Tr[B · s(−ω2

− + k2 + 2iω−k · σv )�(iω+ + k · σ∗
v )�†]

(ω2− + k2)2(ω2+ + k2)

− Tr[(iω− + k · σv )�B · s∗(−ω2
+ + k2 + 2iω+k · σ∗)�†]

(ω2− + k2)(ω2+ + k2)2

]
= −Lμ(λ + h�)2gTr[B · s��† + �B · s∗�†]

= 4Lμ(λ + h�)2gB · M, (A37)

where L is a positive constant.
Contributions at order (gB)2 give the term (now dropping the chemical potential for simplicity)

L2[�(0, q)] ⊃ −g2(λ + h�)2T
∑
ωn

∫
k

[
Tr
{
B · s

[− ω2
n + (k + q)2 + 2iωn(k + q) · σv

]
�B · s∗(− ω2

n + k2 + 2iωnk · σ∗
v

)
�†
}

[ω2
n + (k + q)2]2(ω2

n + k2)2

+ 2B2 Tr
{
[iωn + (k + q) · σv]�

[
iω3

n − 3iωnk2 + (3ω2
n − k2

)
k · σ∗

v

]
�†
}[

ω2
n + (k + q)2

](
ω2

n + k2
)3

]

= −g2(λ + h�)2T
∑
ωn

∫
k

[
−2|B · d|2 + B2(|d|2 − |d0|2)[
ω2

n + (k + q)2
]2(

ω2
n + k2

)2 ([− ω2
n − (k + q)2

](− ω2
n + k2

)+ 4ω2
n(k + q) · k

)
− 2B2|�|2

(
ω4

n − 3k2ω2
n + (k + q) · k

(
3ω2

n − k2
)[

ω2
n + (k + q)2

](
ω2

n + k2
)3

)]
. (A38)

Evaluating the integrals gives

L2[�(0, q)] ⊃ (λ + h�)2g2(|B · d|2(P1 − P2q2) − B2|d|2(Q1 − Q2q2) + B2|d0|2(R1 − R2q2)), (A39)

where as usual Pi, Qi, Ri are positive (temperature-dependent) constants.

174505-11



ETHAN LAKE AND T. SENTHIL PHYSICAL REVIEW B 104, 174505 (2021)

APPENDIX B: DETAILS ON THE
GINZBURG-LANDAU THEORY

In this Appendix, we detail the phases described
by the Ginzburg-Landau theory discussed in the main
text. See [49] for a similar analysis in a more general
context.

1. Fully spin-valley locked limit

We will first consider the case in which the spin is fully
locked to the valley, so that the order parameter is allowed to
be nonzero only in a subset of the Hilbert space.

As was discussed above near (B22), in the case of full spin-
valley locking, we have det(�KK ′ ) = 0 and we may write the
order parameter as

� = |�|
2

( −|η〉〈ξ ∗|
|ξ 〉〈η∗|

)
, (B1)

where as before |�| =
√

Tr[�†�], the matrix written out
explicitly is in valley space, and where ξ, η are normalized
spinors which determine the directions along which the spins
in the K, K ′ valleys are polarized.

By decomposing the outer products appearing in � in
terms of Pauli matrices, we may write (assuming even angular
momentum pairing for concreteness, as in the main text)

� = |�|
4

(iτ y(s isy) · 〈ξ |s|η〉 + τ xisy〈ξ |η〉)

= |�|
23/2

(iτyd · s + τ xd0)isy, (B2)

where the d four-vector is defined in terms of |ξ 〉 , |η〉, and has
components

dμ = 1√
2
〈ξ |sμ|η〉, (B3)

where we have defined the adjoint spinor6

|ξ〉 = −isy |ξ 〉∗ . (B5)

In what follows, it will be helpful to define, for any spinor
|ς〉, the 3-vector

ς = 〈ς |s|ς〉 ⇒ |ς〉〈ς | = 1
2 (1 + ς · s). (B6)

Taking the adjoint in the manner above simply reverses the
direction of the 3-vector, so that ς = −ς. This notation lets us
write the magnitudes of d and d0 as

|d|2 = 1
2 〈ξ |s j |η〉〈η|s j |ξ〉 = 1

4 (3 + η · ξ),

|d0|2 = 1
4 |〈ξ |η〉|2 = 1

4 (1 − ξ · η). (B7)

6The adjoint of a given spinor is obtained by inverting the spinor
through the Bloch sphere and changing the handedness used to define
its overall phase. In terms of the Euler angle parametrization

|ξ〉 = eiγ /2

(
eiφ/2 cos(θ/2)
e−iφ/2 sin(θ/2)

)
, (B4)

the adjoint |ξ〉 can be obtained by sending γ �→ −γ + π, φ �→ φ +
π, θ �→ −θ + π.

The norm of the full d vector is thus |dμ|2 = 1, giving
Tr[�†�] = |�|2 as required. Also as expected for a spin-
polarized state, we see that the weight of the triplet part
|d|2 is always nonzero, being minimal for antiferromagnetic
alignment between the valleys and maximal for ferromagnetic
alignment, with the opposite being true for the weight of the
singlet part |d0|2.

When deriving the coefficients in the GL free energy mi-
croscopically, spin-valley locking can be taken into account
simply by replacing the particle and hole propagators by

Gp �→ PGpP, Gh �→ PT GhPT , (B8)

where we have defined the projector

P = |η〉 〈η| ⊕ |ξ 〉 〈ξ | , (B9)

with the ⊕ in valley space. Note that P satisfies

P� = �, �PT = �. (B10)

The form of terms not involving the Zeeman coupling
of the magnetic field is not modified by the projection. For
terms involving the Zeeman coupling, we simply make the
replacement

B · s �→ PB · sP = B ·
(

η |η〉 〈η|
ξ |ξ 〉 〈ξ |

)
≡ PB. (B11)

The structure of the Zeeman terms that are quadratic in
the magnetic field are determined by following the analysis
of Appendix A, and using the traces

Tr[PB��† + �P∗
B�†] = 2|�|2B · (η + ξ),

Tr
[
�†P2

B� + �†�(P∗
B )2
] = 2|�|2[(B · η)2 + (B · ξ)2],

Tr[�†PB�P∗
B] = 2|�|2(B · η)(B · ξ). (B12)

For example, for a spin-valley locked Fermi liquid, the contri-
butions to the free energy from the Zeeman couplings are, to
quadratic order in � and B,

ζ |�|2B · (ξ + η) + κ|�|2[B · (ξ − η)]2, (B13)

where ζ is small in N ′(0)/N (0) and κ > 0 (see Appendix A).
As expected, we may avoid Pauli suppression of the pairing
either by having the spins in each valley align in the plane
normal to B, or by having the two spins ferromagnetically
align along B, both of which prevent pair-breaking by the field
from occurring.

The free energy in general may be written as a function of
|�|, ξ, η as (ignoring derivatives of ξ, η for simplicity)

f = K|∂�|2 + r|�|2 + u

2
|�|4 + w|�|2η · ξ

+ κ|�|2[B · (ξ − η)]2 − ζ |�|2B · (ξ + η), (B14)

where the coefficient w determines whether the spins in each
valley prefer to align ferromagnetically or antiferromagnet-
ically. The explicit B dependence arises from the Zeeman
coupling terms, while the orbital effects of the field provide
an implicit dependence of the various coefficients on B2 in the
manner described in Appendix A.

As discussed in the main text, the system observed in
experiments likely has w > 0. When B = 0, the minimum
of f occurs for ξ = −η. � is now invariant under SO(2)
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(a) (b) (c)

FIG. 2. (a) Condensate fraction in the spin-valley locked case [normalized by |�(B = 0, T = 0)|2] for a typical choice of parameters, and
ignoring the dependence of K on B. TSC marks the BKT transition temperature for the superconductor. (b) Expected value of the component
of the magnetization along the field direction, normalized to Mz(B = 0, T = 0). (c) The same as (a), but taking into account a downward
renormalization of K by a term proportional to B2, leading to a field-induced Lifshitz transition. Here we have taken ζ < 2w/Bc, where Bc is
the critical field for the superconductor; as such, the system never reaches the fully magnetized regime.

rotations about ξ, and hence the order-parameter manifold is
[U (1) × S2]/Z2.

Now we will examine what happens to this state at nonzero
B. Taking B to lie along ẑ in spin space, upon minimizing f
we find

ξ = Rz(ϕ)

⎛⎝ 0
sin θ

cos θ

⎞⎠, η = Rz(ϕ)

⎛⎝ 0
− sin θ

cos θ

⎞⎠, (B15)

where Rz(ϕ) represents a rotation by an arbitrary angle ϕ

about ẑ, and where

θ =
{

arccos(|ζB|/2w), |ζB|/2w � 1,

0, |ζB|/2w > 1.
(B16)

Thus for 0 < |ζB|/2w < 1 the spins are partially magne-
tized and there is a U (1)’s worth of degenerate minima, and
as in the partially polarized phase of the following subsec-
tion, the order-parameter manifold is [U (1) × U (1)]/Z2. For
|ζB|/2w > 1, the spins are ferromagnetically aligned and
fully magnetized, and the order-parameter manifold is U (1).
Given this solution for ξ, η, the magnitude of the order param-
eter is consequently determined to be

〈|�|〉=
√

−̃r/u, r̃ =r + w[2 cos2(θ ) − 1] − 2|ζB| cos(θ ).
(B17)

The condensate fraction and its first derivative with respect
to B are continuous across the transition into the high-field
ferromagnetic state, and (∂〈|�|〉/∂B)|B=0 = 0, implying that
unlike in the nonlocked case to be discussed in the next sub-
section, TSC will not increase linearly with B at small B.

Figure 2 shows the condensate fraction (left panel) and
magnetization (center panel) for a typical choice of parame-
ters (here ζ is small enough so that the system never reaches
the fully magnetized regime). The right panel is the same as
the left, but it shows the BKT temperature after taking into
account orbital effects which suppress K .

2. No spin-valley locking

Now we consider the slightly simpler case in which there
is no spin-valley locking (SVL), with the order parameter
allowed to have components in the entire fermionic Hilbert
space. This discussion will therefore only be germane for the
problem considered in this paper at values of T and/or B
large enough to eliminate any SVL, which occurs in the T = 0
normal state near ν = −2.

We start by breaking the order parameter up into triplet and
singlet parts as

� = iτ y d · s isy + τ x d0 isy, (B18)

where dμ = (d0, d) is a complex 4-vector. Up to quartic order
in the order parameter, the free energy can be written as

f = ft + fs + fts,

ft =
∑
i=1,2

(
K (∂di )

2 + rd2
i + u

2
d4

i + κ (B · di )
2
)

+ (u + v)d2
1 d2

2 − v(d1 · d2)2 + ζB · (d1 × d2),

fs = K ′(∂d0)2 + r′|d0|2 + u′

2
|d0|2 + κ ′B2|d0|2,

fts = q|d0|2
(
d2

1 + d2
2

)+ w
∣∣d2

0 − d2
∣∣2, (B19)

where we have used the standard notation d = d1 + id2.
As usual, the terms that depend explicitly on the magnetic
field arise from Zeeman effects, while orbital effects are re-
sponsible for giving the remaining coefficients an implicit
dependence on B2.

When minimizing f in the presence of the couplings to the
magnetic field, it is often helpful to write the d vector in terms
of components that diagonalize the B · (d1 × d2) coupling
[50]. Taking the magnetic field to point in the ẑ direction in
spin space, this is done through the unitary transformation⎛⎝dx

dy

dz

⎞⎠ = 1√
2

⎛⎝1 1
i −i√

2

⎞⎠⎛⎝d+
dz

d−

⎞⎠. (B20)
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In this representation, the ft and fts components of the free
energy are now

ft = K
∑

σ=+,−,z

(|∇dσ |2 + r|dσ |2) + u + v/2

2
(|d+|2

+ |d−|2 + |dz|2)2 − v
∣∣d+d− + d2

z /2
∣∣2

+ κB2|dz|2 − ζB

2
(|d+|2 − |d−|2),

fts = q|d0|2(|d+|2+|d−|2+|dz|2)+p
∣∣d2

0 − (2d+d− + d2
z

)∣∣2.
(B21)

The effects of the p term can be understood as a way
of softly implementing SVL. Indeed, if we write the order
parameter as

� =
( −�T

KK ′
�KK ′

)
(B22)

(where the 2 × 2 matrix is in valley space), we see that we
may write∣∣d2

0 − d2
∣∣2 = ∣∣d2

0 − (d2
z + 2d+d−

)∣∣2 = | det(�KK ′ )|2.
(B23)

Therefore, large positive p enforces that the determinant of
�KK ′ vanishes. In this case, we may write

�KK ′ ∝ |ξ 〉〈η∗| (B24)

for two spinors |ξ 〉 , |η〉, which have the interpretation as the
directions along which the spins in the K, K ′ valleys are polar-
ized. For simplicity of the analytical results, and because the
fully spin-valley locked case was discussed in the preceding
subsection, in what follows we will simply set p = 0.

Extremizing the free energy for uniform solutions then
gives

rd+ + (u + v/2)d+d2 − vd∗
−
(
d+d− + d2

z /2
)

− ζBd+/2 + q|d0|2d+ = 0,

rd− + (u + v/2)d−d2 − vd∗
+
(
d+d− + d2

z /2
)

+ ζBd−/2 + q|d0|2d− = 0,

rdz + (u + v/2)dzd
2 + vd∗

z

(
d+d− + d2

z /2
)

+ κB2dz + q|d0|2dz = 0,

[r′ + κ ′B2 + u′|d0|2

+ q(|d+|2 + |d−|2 + |dz|2)]d0 = 0. (B25)

One can show that when κ > 0, which is the case in which
we are interested, when B 	= 0 the global minima of the free
energy always have dz = 0, while when B = 0 we have SO(3)
spin symmetry and may fix dz = 0 without loss of generality.
Setting dz = 0 then, when d0 	= 0 we just have to solve

r̃d+ + (̃u + v/2)d+d2 − vd+|d−|2 − ζBd+/2 = 0,

r̃d− + (̃u + v/2)d−d2 − vd−|d+|2 + ζBd−/2 = 0,
(B26)

where

r̃ = r − q

u′ (r′ + κ ′B2), ũ = u − q2/u′ (B27)

and7

|d0|2 = −r′ − κ ′B2 − q(|d+|2 + |d−|2)

u′ . (B28)

There are now two types of solutions. The first is with d+ =
0 or d− = 0, corresponding to fully spin-polarized triplets.
Choosing ζB > 0, the favored solution will be the one with
d− = 0. This gives the fully polarized solution

dfp =
(

ei(φ+γ )
√

ζB−2̃r
2̃u+v

, 0, 0
)
, (B29)

where φ (γ ) shifts under U (1)g gauge transformations
[SO(2)s spin rotations about ẑ]. This order parameter is
therefore invariant under combined U (1)g and SO(2)s rota-
tions. As a result, when B = 0 the order parameter manifold
is M = [U (1)g × SO(3)s]/U (1)g+s = SO(3) [37], since the
U (1)g subgroup can be absorbed into the SO(3) part. As
discussed in the main text, this means that at B = 0 there are
only Z2 vortices and that TBKT = 0, which is incompatible
with experiment. When B 	= 0, the order-parameter manifold
is instead M = [U (1)g × U (1)s]/U (1)g+s = U (1), so that Z
vortices (and a nonzero TBKT) occur at finite fields.

When both d+ and d− are nonzero, we find the partially
polarized solution

dpp = 1√
2

(ei(φ+γ )
√

ζB/v − r̃/̃u, 0, ei(φ−γ )
√

− ζB/v − r̃/̃u),

(B30)

which is only a solution provided that the field is less than the
critical value Bc, where

Bc = v|̃r|
ζ ũ

, (B31)

which only implicitly determines Bc due to the implicit
B2 dependence of the coefficients on the right-hand side.
When B = 0, dpp is invariant under SO(2)d spin rota-
tions about d, but unlike the fully polarized case, the
only SO(3) rotation that acts in the same way as a gauge
transformation is a spin flip, which acts in the same way
as a gauge rotation by π . The order-parameter manifold
when B = 0 is therefore M = [U (1)g × SO(3)s]/[SO(2)d ×
Z2] = [U (1) × S2]/Z2. Since π1([U (1) × S2]/Z2) = Z, the
B = 0 phase has vortices and a nonzero TBKT [51].
When B 	= 0, the order-parameter manifold is instead
[U (1)g × U (1)s]/Z2.

When v < 0, the fully polarized solution is favored re-
gardless of B, while when v > 0 the partially polarized
solution is favored as long as B < Bc. The transition at Bc

occurs when vortices in the spin mode γ condense, and is
of BKT type within the context of the present discussion.
Since we know from experiments that the low-field phase is
not fully polarized, we may therefore assume v > 0 in what
follows.

Figure 3 shows the condensate fraction 〈|�|2〉 and mag-
netization 〈Mz〉 for a typical choice of parameters. Panels

7When the right-hand side of (B28) becomes negative, the mini-
mum of f has d0 = 0. The solutions in this case are obtained simply
by replacing r̃, ũ with r, u.
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(a) (b) (c)

FIG. 3. (a) Condensate fraction with no spin-valley locking [normalized by |�(B = 0, T = 0)|2] for a typical choice of parameters, and
ignoring the dependence of K on B. TS denotes the transition temperature when the singlet component of the order parameter becomes zero,
the line TP denotes the transition from the partially to the fully polarized state, and TSC marks the superconducting transition temperature.
(b) Expected value of the component of the magnetization M = d1 × d2 along the field direction, normalized to Mz(B = 0, T = 0). (c) The
same as (a), but taking into account a downward renormalization of K by a term proportional to B2, leading to a field-induced Lifshitz transition.
These types of phase diagrams are obtained by taking −r, −r′, u, u′, κ, κ ′ > 0, v, q � 0, and ζ small and nonzero.

(a) and (b) show the condensate fraction and magnetization,
with the lines drawn at the locations of the BKT transitions
separating the various phases. Panel (c) shows where the
transitions occur upon accounting for a further suppression of
the stiffness K by orbital effects (see Appendix A), with the
Lifshitz transition occurring at the field where TSC first goes
to zero.

Note that for any nonzero magnetic field, the transition into
the fully polarized state always occurs before superconductiv-
ity is killed altogether (TP < TSC in Fig. 3). This is because
the fully polarized state is favored by a term that is linear
in |�|2 [the B · (d1 × d2) term], while the partially polarized
state is favored by a term quadratic in |�|2 (the v term); hence
when |�|2 is small, the fully polarized solution always wins.
This means that in the w = 0 limit, near the boundary of the
superconducting dome, the superconductor will always be in
the fully polarized phase, regardless of the strength of the
magnetic field. As a result, TSC increases linearly with B at
small B by an amount that is small in ζ . Since in the context
of magic-angle TTG we expect ζ to be small, especially so
at small U (again, see Appendix A), this may or may not be
incompatible with experiment.

APPENDIX C: NATURE OF THE LIFSHITZ CRITICAL
POINTS

In this Appendix, we elaborate on the nature of the Lifshitz
critical points discussed in Sec. V. Throughout we will write
down free energies that involve only the phase mode φ, with
the fluctuations in the spin part of the order parameter ignored
on the grounds that they flow to zero coupling in the ir.

a. Isotropic case

We first review the isotropic case, where the Lagrangian at
the T = 0 critical point contains no quadratic derivative terms:

L = 1
2 ((∂τφ)2 + ς (∇2φ)2). (C1)

A complete discussion of the finite-temperature physics of
this model can be found in [38]; here we will review the results
of [38], which are relevant for the present discussion.

The spatial correlator 〈φ(x)φ(0)〉 calculated from (C1) is
logarithmically divergent in the ir at T = 0, and the model has
QLRO. At nonzero T the divergence is a power law, so that the
correlation functions of eiφ are ultra-short-ranged. This latter
fact does not mean that the model is necessarily disordered at
all T > 0, however, since, as stressed in [38], irrelevant terms
will generate a nonzero stiffness [i.e., a nonzero (∇φ)2 term],
allowing the eiφ correlators to decay as power laws at T > 0.

Accounting for these effects at T > 0 is done by starting
instead with the Lagrangian

L = 1
2 ((∂τφ)2 + K0(∇φ)2 + ς (∇2φ)2 + η(∇φ)4), (C2)

where the marginally irrelevant η term is responsible for gen-
erating a nonzero stiffness at T > 0, and K0 is a counterterm
ensuring that the renormalized stiffness K vanishes at T = 0.

The renormalized stiffness K can be computed within the
framework of an RPA (large-N) approximation. In this ap-
proximation, K is given by the bare value K0 in addition to
a contribution coming from a geometric sum of one-loop dia-
grams involving the η interaction. Writing the renormalized φ

propagator as (ω2 + Kk2 + ςk4)−1, we have

K = K0 + 4ηT
∑
ωn

∫
k

k2

ω2
n + Kk2 + ςk4

= 2η

∫
k

k2

(
1√

Kk2 + ςk4
− 1√

ςk2

+ 2
1√

Kk2 + ςk4

1

e
√

Kk2+ςk4/T − 1

)
, (C3)

where we have used the requirement that Ky = 0 at T = 0 to
solve for K0

y .
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Performing this integral and solving for K at low T gives
[38]

K ≈ 4T
√

ς
ln2(�2/T )

ln(�2/T )
, (C4)

so that K/T
√

ς � 1 at low T .
The value of K determines TBKT by way of the Kosterlitz-

Thouless criterion Kπ/2 = T . Since in the present case
K/T → 0 at low T , there will not be a BKT transition at finite
T , and the theory is disordered for all nonzero temperatures
[38].

b. Anisotropic case

Let us now apply a similar analysis to the anisotropic case,
where only one component of the stiffness vanishes at the T =
0 critical point. At T = 0, we may work with the Lagrangian

L = λ

2

(
(∂τφ)2 + Kx(∂xφ)2 + ς

(
∂2

y φ
)2)

, (C5)

where ς is needed for stability. We take φ to be dimensionless,
with the dimensionful factor of λ out front having dimensions

of ∂y. At zero temperature, the φ correlator along, e.g., the x̂
direction goes as

〈φ(x)φ(0)〉 = 1

λ

∫
ω,k

eikxx

ω2 + Kxk2
x + ςk4

y

= 1

λ

2�(5/4)2

π3/2(ςKx )1/4

∫
dkx

2π

eikxx

√
kx

, (C6)

which is ir-finite. The theory, therefore, orders at T = 0, un-
like in the isotropic case [52]. However, like the isotropic case,
the finite-T correlator calculated using the above Lagrangian
(C5) has a power-law divergence in the system size: for exam-
ple, at large T ,

〈φ(x)φ(0)〉 = T

25/2K3/4
x λ

∫
dkx

2π

eikxx

k3/2
x

, (C7)

which diverges as
√

L, with L the system size.
As in the isotropic case, this divergence does not rule out

the existence of a finite-T phase with QLRO, as we must
account for the presence of other terms that generate a nonzero
y component of the stiffness at T > 0.

At T > 0, the correct starting point is therefore instead,
analogously to (C2),

L = λ

2

(
(∂τφ)2 + Kx(∂xφ)2 + K0

y (∂yφ)2 + ς
(
∂2

y φ
)2 + η(∂yφ)4

)
. (C8)

The renormalized y stiffness Ky can be computed using the same one-loop diagram as before. We have

Ky = K0
y + 4ηT

λ

∑
ωn

∫
k

k2
y

ω2
n + Kxk2

x + Kyk2
y + ςk4

y

= 2η

λ

∫
k

k2
y

(
1√

Kxk2
x + Kyk2

y + ςk4
y

− 1√
Kxk2

x + ςk4
y

+ 2
1√

Kxk2
x + Kyk2

y + ςk4
y

1

e
√

Kxk2
x +Kyk2

y +ςk4
y /T − 1

)
. (C9)

Assuming Ky � √
ςT , we can ignore the Ky dependence

of the third term in the integral. We then solve for Ky, finding

Ky ≈ ϒT 3/2, ϒ = C

ς3/4
√

Kx(2π2λ/η + 2�/
√

Kxς )
,

(C10)
where C ≈ 11. At small T we indeed have Ky � √

ςT , justi-
fying our earlier assumption. Note that unlike in the isotropic
case, here we are not in the upper critical dimension of the
T = 0 theory, and the term η which generates Ky is not
marginal. Therefore, there is no logarithmic dependence of Ky

on T , and the dependence of Ky on the value of η cannot a
priori be neglected at low T .

In the anisotropic case, the stiffness that determines the
location of a possible BKT transition is set by Keff = λ

√
KxKy.

Since Keff ∝ T 3/4, Keff will always be larger than 2T/π

at low enough T , meaning that there will always be a
finite-temperature BKT transition. Explicitly, in the present
approximation the transition occurs at

TBKT ≈
(

λπ

2

√
Kxϒ

)4

. (C11)

The value of TBKT is of course nonuniversal, and depending
on the microscopics it may very well be small enough to be
essentially indistinguishable in experiments from zero.

c. Critical currents

In this section, we compute the critical current in the region
of parameter space near the Lifshitz transition.

First consider the normal phase where the pairing occurs at
zero momentum. In this case, we may examine the free-energy
density

f [∇φ] = ρ

2
(γx(∂xφ)2 + γy(∂yφ)2) + rρ + u

2
ρ2, (C12)

where γx, γy, u,−r > 0. To determine the critical current, we
follow the standard procedure [53] of Legendre transforming
to a thermodynamic potential g, which is a function of the
current I, satisfying (working in units where 2e = 1)

g[I] = −∇φ · I + f [∇φ],
δg

δI
= −∇φ,

δ f

δ∇φ
= I.

(C13)
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Therefore,

g[I] = − I2
x

2ργx
− I2

y

2ργy
+ rρ + u

2
ρ2. (C14)

Minimizing over ρ gives

I2
x

2γx
+ I2

y

2γy
= |r|ρ2 − uρ3. (C15)

Maximizing the right-hand side, we then see that the critical
currents along the x and y directions are given by

Ic,x =
√

8γx

27

|r|3
u

, Ic,y =
√

γy

γx
Ic,x. (C16)

Now we consider a situation that favors finite-momentum
pairing along the ŷ direction. We consider the free-energy
density

f [�] = 1

2

(
γx|∂x�|2 − γy|∂y�|2 + κ

2

∣∣∂2
y �
∣∣2)

+ r|�|2 + u

2
|�|4, (C17)

with γy, κ > 0. We then consider an FF state, with

� = √
ρeiq0y+iφ, q0 = √γy/κ, (C18)

and we assume that φ varies on scales much longer
than 1/q0. We can then consider the approximate free
energy

f [∇φ] ≈ ρ

2

(
γx(∂xφ)2 + γy

2
(∂yφ)2

)
+ (r − γ 2

y /4κ

)
ρ + u

2
ρ2. (C19)

Repeating the same steps as above leads to critical currents of

Ic,x =
√

8γx

27u2

∣∣r − γ 2
y /4κ

∣∣3, Ic,y =
√

γy

2γx
Ic,x. (C20)

Consider finally the scenario in which both quadratic
derivatives in the free-energy density have negative coeffi-
cients [54,55], with

f [�] = 1

2

(
− γx|∂x�|2 − γy|∂y�|2 + κx

2

∣∣∂2
x �
∣∣2

+ κy

2

∣∣∂2
y �
∣∣2 + κxy|∂x∂y�|2

)
+ r|�|2 + u

2
|�|4,

(C21)

with all coefficients except r positive. Consider again an FF
state � = √

ρeiq0y+iφ , with finite momentum in the ŷ di-
rection. Assuming γyκxy/κy − γx � 0 and making the same
approximations as above, this leads to the critical currents

Ic,x =
√

8(γyκxy/κy − γx )

27u2

∣∣r − γ 2
y /4κy

∣∣3,
Ic,y =

√
γy

2(γyκxy/κy − γx )
Ic,x. (C22)

APPENDIX D: ESTIMATE OF THE IN-PLANE CRITICAL
FIELD Bc

In this Appendix, we provide a crude estimate of the
critical in-plane field Bc of the superconductor at zero
displacement field and optimal doping. Given the phenomeno-
logical nature of our analysis and the fact that Bc may very
well not be small enough for leading-order perturbation theory
in B to be reliable, this calculation is not meant to be taken as
a sharp prediction—rather it is meant simply as a consistency
check to make sure that our proposal is not grossly incompat-
ible with experiment.

From Eq. (A21) of Appendix A, the stiffness at zero
displacement field and small B is given by8 (assuming for
simplicity that the velocity of the mirror-odd Dirac cone after
integrating out the mirror-even fermions is isotropic and equal
to the monolayer value of vD)

Keff = K0 − 2C2|�|2λhv2
Dδ2B2 + · · · , (D1)

where · · · are terms higher order in B, δ ≈ 0.3 nm is the
interlayer separation, K0 is the B = 0 phase stiffness, and
where the definitions of C2, λ, h will be recapitulated shortly.
Estimating the zero-field stiffness as K0 ≈ 2TBKT,0/π , where
TBKT,0 ≈ 1.5 K [25] is the zero-field transition temperature,
we have

Bc ≈ 1

vDδ

√
TBKT,0

πC2|�|2λh
≈ 1.2

√
E

1 meV
T, (D2)

where the energy scale E is defined as

E ≡ 1

πC2|�|2λh
. (D3)

We now need to estimate the quantities appearing in E .
The coupling h is associated with the pairing terms for

the mirror-odd fermions that arise upon integrating out the
mirror-even sector [see (A4)], and it has a dimension of
inverse energy squared. While we are not in a position to
calculate h exactly, on general grounds we expect h ∼ 1/ε2

F ,
where εF is the Fermi energy of the mirror-even bands which
become superconducting. εF is not known exactly, and its
determination depends on knowledge of what happens to the
correlated insulator at ν = −2 upon hole doping, but a value
in the ballpark of a few tens of meV seems appropriate.

C2 can be read off from an expansion of (A17), giving

C2 = − 3

T

∫
k,x

y sech2(k/2T )
k − T sinh(k/T )

2k3
= 1

8πT
,

(D4)
where x is integrated from 0 to 1 and y = x(1 − x). For the
present purposes of estimating Bc, we will take T → TBKT,0 ∼
Tonset in the above.

8Note that we are ignoring contributions to the stiffness that arise
from Zeeman effects. Within the framework of Appendix A, Zeeman
effects in the mirror-even sector do not contribute to the stiffness
at leading order, while contributions from the mirror-odd sector are
small [being suppressed by a factor of λ(μB/vDδ)2 � 1], and they
will be ignored.
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The appropriate value to take for � (equal to the super-
conducting gap in our mean-field treatment) is not currently
known experimentally. We will leave � as a free parameter
for now, and note only that due to the strong-coupling nature
of the problem and the energy scales involved, a value of
� ∼ 1 meV does not seem unreasonable.

Finally, we need to estimate the dimensionless parameter
λ, which appears in our Lagrangian as λψ−�†ψ− + H.c. and
originates from a mean-field decoupling of interactions of
the form ψ

†
−ψ

†
−ψ+ψ+ + H.c. (all indices suppressed). These

interactions only conserve the number of mirror-even and
mirror-odd fermions modulo 2, and they do not appear di-
rectly in the regular density-density interaction, as the total
fermion density is δρ = δρeven + δρodd, which separately con-
serves the number of mirror-even and mirror-odd fermions.
These interactions furthermore do not arise at first order
upon projecting the density-density interaction to the active
bands, since at D = 0, B = 0 the form factors of the active
bands do not mix the mirror-even and mirror-odd sectors
(by symmetry). Therefore, after projecting the interaction
to the active bands, λ can only arise from an interaction
corresponding to a second-order process involving tunneling
to remote bands. The strength of these higher-order inter-
actions is roughly U 2/�E , where �E is the gap to the
remote bands and U is the Coulomb interaction strength; λ

is accordingly λ ∼ (U 2/�E )/U = U/�E . Estimating U ∼
e2/(4πε0εr

√
Amoire) ∼ 30 meV (with the relative dielectric

constant εr ∼ 5) and �E ∼ 50 meV (based on a naive reading
of the band structure [21,56]) gives λ ∼ 3/5.

With the above estimates in hand, we may plug in numbers
and write

Bc ≈ 28
1 meV

|�|
εF

20 meV

√
3/5

λ

√
C−1

2

8πTBKT,0
T. (D5)

The value of Bc at zero displacement field and optimal doping
is experimentally determined to be around 12 T [25]. This
is rather close to the value we would read off from (D5)
given the estimates for the parameters on the right-hand side
as discussed above, and given the crudeness of the present
estimate (especially in the determination of, e.g., h and C2),
this is really the best we may hope to do. A more careful
analysis is left to future work, but we find it encouraging
that the rough estimate here at least seems to be in the right
ballpark.

APPENDIX E: SINGLE-PARTICLE PHYSICS

In this Appendix, we provide a few details on the single-
particle properties of TTG in the presence of an in-plane field.

1. Hamiltonian and symmetries

In the basis (ψ1, ψ2, ψ3), with ψl the annihilation operator
for fermions on layer l , the single-particle Hamiltonian is

H0 =
⎛⎝−ivDσv,θ/2 · (∇ − iA1) + U/2 T

T † −ivDσv,−θ/2 · (∇ − iA2) T †

T −ivDσv,θ/2 · (∇ − iA3) − U/2

⎞⎠+ HZ , (E1)

where σv,θ/2 denotes a rotation of σv = (τ zσ x, σ y) by θ/2,
where θ is the twist angle. Al and HZ are as in the main text.

We will use the form of the T matrix given in, e.g., [28],
which we take to be

T (x) =
3∑

i=1

e−iτ zqi·xTi, (E2)

with the tunneling matrices

Ti = wAA1 + wAB{σ x cos[2π (i − 1)/3]

+ τ zσ y sin[2π (i − 1)/3]} (E3)

and where

q1 = kθ (0,−1), q2 = kθ (
√

3/2, 1/2),

q3 = kθ (−
√

3/2, 1/2), (E4)

with

kθ ≡ 2kD sin(θ/2), kD ≡ 4π

3a0
, (E5)

and with a0 ≈ 0.246 nm the graphene lattice constant. We
will work in conventions where the moiré K and K ′ points
are given as K = −q2 and K ′ = q3. In the limit where the
graphene layers are decoupled, the band structure then con-
sists of two Dirac cones at K , and one at K ′.

In the limit wAA = 0, the rotations of the σv matrices in
(E1) can be removed by a unitary transformation [28], but
even away from this limit their effects can usually be ignored
on the grounds that θ is small [27,28]. We will therefore
simply ignore the rotations in what follows.

The symmetries of the U = B = 0 problem include
[21,26]9

C2z = σ xτ xRπ ,

C3 = e2π iσ zτ z/3R2π/3,

C2x = Mσ xRy,

T = τ xK,

(E6)

where the right-hand sides are the matrices that appear in the
adjoint action on the ψl fields, and K is complex conjugation.
Here Rφ is a rotation through φ acting in the xy plane, Ry

implements a reflection of the y coordinate, and the mirror
symmetry M acts in layer space as

M =
⎛⎝ 1

1
1

⎞⎠. (E7)

9C2x is technically only a symmetry in the limit where the ±θ/2
rotations of σv can be ignored.
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FIG. 4. The structure of the central bands for several values of U and B (here B ‖ x̂). The color scale denotes the extent to which the wave
functions are mirror-even, with �+ = (1 + M )/2.

When written in terms of fields which diagonalize M, the
above expression for H0 in (E1) reduces to the form given in
the main text (1).

As in the bilayer case, in the wAA = U = 0 limit we have
{σ z, H} = 0. Unlike in TBG, away from this limit there is
no unitary chiral symmetry that arises if we ignore the ±θ/2
rotations of σv (which in TBG acts as iσ xμyK, with μy in
layer space).

Turning on a nonzero U breaks M and C2x, and turning
on a nonzero B breaks C3, T , M, and C2z, and breaks C2x

unless B ‖ x̂. Any direction of field preserves C2zM, C2zT ,

and MT . The combination of C2x and one of T , M,C2z is also
preserved if B ‖ ŷ. As in the bilayer case, C2zT is unbroken for
any choices of U, B, and it prevents the innermost bands from
separating from one another [43].

2. Band structure

We now briefly discuss the band structure obtained
from (E1). For concreteness, we will fix θ = 1.57◦, wAB =
110 meV, and wAA = 0.8wAB. Since we are mainly interested
in the orbital effects of the field, we will ignore the Zeeman
energy.

Similarly to U , the main orbital effects of B on the band
structure are to hybridize the mirror-odd Dirac fermion ψ−
with the mirror-even flat bands. Examples of the band struc-
ture in the graphene K valley for various values of U, B ‖ x̂
are shown in Fig. 4, where the color denotes the magnitude of
the mirror-even component of the band wave functions.

The orbital effects of the magnetic field are rather different
from the case of TBG [57]. First, when U = 0, mirror sym-
metry implies that the spectrum at each k point is an even
function of B. This means that at small U and small B, the
orbital effects on the band structure are rather weak. Secondly,
despite the explicit breaking of C3 by the magnetic field, Dirac
points remain at the moiré K, K ′ points to an extremely good
approximation for all experimentally relevant field strengths.

3. Effects of the field near the K and K ′ points

In this section, we adopt the approach used in [27] to make
some simple statements about the effects of the field on the
band structure near the moiré K and K ′ points, at small values
of U, B. Throughout, we will focus on the graphene K valley,

and we will neglect the physical spin degree of freedom. We
will also find it convenient to follow [28] and use the notation
α ≡ wAB/vDkθ and κ ≡ wAA/wAB.

a. K ′ point

We can understand the (lack of) effects of the field at the
K ′ point in a rather pedestrian manner as follows. We follow
[27] and introduce a minimal model for the modes right at K ′
by writing down the Hamiltonian

HK ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 T1 T2 T3 T †
1 T †

2 T †
3

T †
1 h1

T †
2 h2

T †
3 h3

T1 −h1

T2 −h2

T3 −h3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (E8)

where we are in the basis (ψ2, ψ
1
1 , ψ2

1 , ψ3
1 , ψ1

3 , ψ2
3 , ψ3

3 )T ,
with the lower index denoting the layer index, the upper index
denoting a reciprocal space lattice index, and where (working
in units where vD = 1)

hi = (qi − A) · σ + U/2. (E9)

As in the analysis of the analogous bilayer problem, there
are two zero modes in this simplified 14-band problem. Let
ψ

↑
2 = (1, 0)T and ψ

↓
2 = (0, 1)T . We will then have a zero

mode provided we take

ψ
j

1 = −h−1
j T †

j ψ2
σ , ψ

j
3 = +h−1

j Tjψ
2
σ , (E10)

and that ∑
j

(
Tjh

−1
j T †

j − T †
j h−1

j Tj
)
ψσ

2 = 0, (E11)

with this last equation trivially satisfied as our Tj matrices are
Hermitian.

For simplicity, we will now work perturbatively in A. At
A = 0, the zero modes |ψzm;σ 〉 have the norm

〈ψzm;σ |ψzm;σ 〉 = 1 + 2
∑

j

Tj
(
h−1

j

)2
Tj = 1 + 6α2� (κ2 + 1),

� ≡ 1 + (U/kθ )2/4

[1 − (U/kθ )2/4]2
. (E12)
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After correctly normalizing the wave functions, the effective Hamiltonian in the zero-mode subspace near the K ′ point then reads

Heff,K ′+k = 1

1 + 6α2� (κ2 + 1)

(
σ · k +

∑
j

[
Tjh

−1
j σ · (k − A)h−1

j Tj + Tjh
−1
j σ · (k + A)h−1

j Tj
])

= 1 − 6α2

1 + 6α2� (κ2 + 1)
σ · k,

(E13)

with the Fermi velocity out front confirming that when U = 0, θ3
1 = √

2θ2
1 , with θ l

i the ith magic angle for twisted l-layer
graphene [27,28]. As expected from symmetry considerations, Heff,K ′+k is independent of the magnetic field to this order.

b. K point

The effects of the magnetic field near the K point are slightly more interesting, due to the hybridization between the flat bands
and the mirror-odd Dirac cone.

We proceed as above: near K , the analogous minimal model operates in the space (ψ1, ψ3, ψ
1
2 , ψ2

2 , ψ3
2 ), where again the

upper index is the layer index and the lower index is the reciprocal-lattice index. Right at K , the Hamiltonian is

HK =

⎛⎜⎜⎜⎜⎝
0 T †

1 T †
2 T †

3
0 T †

1 T †
2 T †

3
T1 T1 h1

T2 T2 h2

T3 T3 h3

⎞⎟⎟⎟⎟⎠. (E14)

There are now four zero modes. We write the first four components of each zero mode (in the above basis) as the vector (ψσ
1 , ψ

ρ
3 )

(σ, ρ = ↑/ ↓ as before). To have a zero mode, the ψ i
2 components must satisfy

ψ i
2 = −h−1

i Ti
(
ψσ

1 + ψ
ρ
3

)
(E15)

and ∑
i

T †
i ψ2

i = −
∑

i

T †
i h−1

i Ti
(
ψσ

1 + ψ
ρ
3

) = 3α2U

2

1 + κ2

1 − (U/kθ )2/4

(
ψσ

1 + ψ
ρ
3

) = 0. (E16)

Evidently we only have zero modes if U = 0 (which we already know to be the case by looking at the band structure).
To isolate the effects of the magnetic field on the Dirac cones, we will accordingly now set U = 0. Treating k and A as

perturbations, the effective Hamiltonian in the zero mode subspace works out to be

Heff,K+k = 1

1 + 3α2(1 + κ2)

(
σ · [k(1 − 3α2) + A] −3α2σ · k

−3α2σ · k σ · [k(1 − 3α2) − A]

)
. (E17)

When k = 0, we solve for the spectrum and find two doubly degenerate states at energies (as before, δ is the interlayer separation)

εK = ±δ|B|. (E18)

These doubly degenerate states form Dirac cones which live at the K point above/below zero energy.
By computing the band structure numerically (see Fig. 5), one finds that when θ � θ1 (with θ1 the first magic angle), two

Dirac cones split off from the K point and move along the direction normal to B. To demonstrate this within the context of the
present ten-band model, we can consider, e.g., A, k ‖ x̂, for which the effective Hamiltonian is

Heff,K+k ∝ σ x ⊗
(

k(1 − 3α2) + δB −3α2k
−3α2k k(1 − 3α2) − δB

)
. (E19)

The determinant of this matrix vanishes at k = ±k∗, where

k∗ =
√

2

1 − 6α2
δ|B|, (E20)

which evidently is only a solution provided that 1 − 6α2 > 0, i.e., if α < 1/
√

6, which in this approximation is the same as
θ > θ1. Therefore, when θ > θ1 we have two Dirac cones located at the K point at energies ±δB, and two at zero energy at the
momenta (k∗, 0). Since the orbital magnetic energy is much smaller than kθ , this shift is rather small at experimentally relevant
field strengths.

On the other hand, when θ � θ1, one finds that the two Dirac cones that split off of the K point move off parallel to B̂. To
demonstrate this, we may take k ‖ x̂, A ‖ ŷ. The Hamiltonian is then

Heff,K+k ∝ σ x ⊗
(

k(1 − 3α2) −3α2k
−3α2k k(1 − 3α2)

)
+ δB σ y ⊗ σ z. (E21)
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FIG. 5. Field effects of the band structure near the K point, shown in the limit wAA = U = 0. The plots in the first row are at angles slightly
less than the magic angle θ1, while the plots in the second row are slightly above. For θ < θ1 (θ > θ1), two Dirac cones move off from K along
(normal to) the field direction (note that the momentum cut is along ŷ). The color coding indicates mirror projection, as in Fig. 4.

Taking the determinant, one finds two doubly degenerate zero modes when k = ±k∗, where now

k∗ = δ|B|√
6α2 − 1

. (E22)

This is only a solution if α > 1/
√

6, i.e., if θ < θ1. Note that the square-root dependence of k∗ on 1/|1 − 6α2| and the linear
dependence on B hold on both sides of the magic angle.
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