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We propose a mechanism for opening a full bulk energy gap and inducing vortex Majorana zero modes
(MZMs) in nodal superconductors (SCs). We show that this becomes possible by coupling the nodal SC of
interest to a magnetic texture crystal. The latter consists of superpositions of magnetic textures which repeat
periodically in space according to suitable wave vectors that enable spin-flip scattering between all pairs of
nodes of the SC, and thus open a full gap in its bulk energy spectrum. In this event, MZMs can be trapped in
spin or shift vortices introduced in the magnetic texture crystal. Our approach is generic and applies to nodal
SCs of spin-singlet, -triplet, or -mixed type of pairing. Therefore it promises to find application in a variety of
nodal SCs, where the magnetic textures appear either spontaneously due to electron-electron interactions or are
imposed by nanomagnets or become induced by coupling to a lattice of localized magnetic moments.
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I. INTRODUCTION

The experimental study of bound states in superconductors
(SCs) has recently witnessed a reheated interest. This came
after a series of pioneering theory proposals which designated
a plethora of pathways to induce non-Abelian anyons in both
intrinsic [1–6] and engineered [7–14] topological SCs. The
so-called Majorana zero modes [15,16] (MZMs) are so far
the most sought-after excitations of this genre, since they
constitute the simplest type of non-Abelian anyons. MZMs
are charge-neutral, spatially localized, pinned to zero en-
ergy, and enjoy a topological protection. In addition, they
adhere to Ising exchange statistics, which open perspectives
for fault-tolerant quantum computing [17–19]. The charge
neutrality of MZMs brings SCs forward as ideal candidates
to look for them, since their quasiparticle excitations arise
from hybridized electrons and holes [20–28]. Experimental
fingerprints that can be associated with MZMs have been
already captured in a variety of experimental platforms, these
including nanowire [29–37], topological insulator [38–41],
magnetic adatom [42–49], and FeTeSe [50–54] systems.

It has been theoretically demonstrated that MZMs can be
trapped at various types of 0D defects [1–7,55–60]. About
three decades ago, it was theoretically shown by Read and
Green [1], and by Volovik [2] in parallel, that a vortex induced
in a chiral px + ipy SC traps a single MZM. More recently, Fu
and Kane [7] proposed that a single MZM appears in a vortex
of a conventional SC in proximity to the helical surface states
of a 3D time-reversal (TR) invariant topological insulator.
However, the vortex defects involved, need not to be intro-
duced in the superconducting order parameter. Indeed, MZMs
are also accessible if vortex defects are introduced in the phase
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of another complex field or the angle of a two-component
vector entering the Hamiltonian. For instance, MZMs have
already been predicted to emerge in vortices of the complex
order parameter of superfluid [55] and axion-string [61] con-
densates, as well as in the angle of a two-component spin-orbit
coupling (SOC) vector field [62]. Notably, the scenario of a
SOC vortex has been recently invoked as a possible mecha-
nism to reconcile the experimental observations of a pair of
MZMs in a platform of magnetic adatoms deposited on the
surface of a conventional SC [48].

An additional crucial feature that a MZM platform is re-
quired to possess in order for its arising MZMs to be robust
and long-lived, is to be characterized by a fully gapped bulk
energy spectrum. In order to meet this stringent requirement,
the vast majority of the abovementioned proposals have relied
on the presence of a gapful pairing gap, i.e., of the s- and
px + ipy types. Concomitantly, this constraint has also almost
exclusively discouraged the pursuit of vortex MZMs in an
equally abundant class of SCs, namely the nodal SCs [63].
Obviously, what hinders nodal SCs from joining the MZM
pursuit at full speed, is that the following pressing question
has remained so far unanswered, i.e., what is the suitable
physical mechanism that gaps out the nodes of the nodal SC
and simultaneously enables non trivial topological phases and
vortex MZMs in particular.

In this paper, we show that MZMs become accessible in
nodal SCs which are under the influence of magnetic texture
crystals (MTCs). The MTC is exchange-coupled to the spin
of the electrons of the nodal SC and can be either driven by
an attractive interaction in the magnetic channel, or, imposed
externally to the system. MTCs recently got in the spotlight
of both theoretical [64–85] and experimental [27,36,44,47]
studies. Here, we consider MTCs which consist of a superpo-
sition of magnetic helices and/or stripes. The nth helix/stripe
repeats periodically in space according to a wave vector Qn.
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FIG. 1. (a) Typical bulk energy spectrum for a nodal supercon-
ductor discussed here. The nodes come in pairs, and the n-th pair
is dictated by opposite momenta ±kn and spin projections ↑, ↓.
Thus the nodes of a given pair carry the same helicity ζ = ±1
({⊗, �}). The nodes are assumed to be subsequently gapped out by
the presence of a magnetic helix/stripe texture with a wave vector
Qn, which may either appear spontaneously due to interactions or be
externally imposed. (b) Sketch of a magnetic helix crystal with a spa-
tial profile M ∼ cos[Q · r + η(r)]ẑ + sin[Q · r + η(r)]x̂. The wave
vector is chosen as Q = (2π/3, 0). The texture additionally contains
a discrete shift defect with vorticity υshift = ∑

C �η/2π = 1.

Each Qn needs to have a length comparable to 2|kn|, so that
it couples and gaps out a pair of nodes of the underlying SC
at momenta ±kn. In Fig. 1, we depict a representative nodal
bulk energy spectrum where our theory finds application, and
we additionally sketch the spatial profile of a MTC containing
a shift vortex defect.

Within our proposal, MZMs can be trapped in spin or shift
vortices induced in the MTC. In fact, our topological analysis
proves that MZMs appear in vortices of the MTC only when
the underlying SC is nodal. Our theory applies to generic
nodal SCs with spin-singlet, -triplet or -mixed [86] pairing,
thus covering a broad range of quantum materials and hybrid
structures. Remarkably, for systems featuring a Rashba SOC,
MZMs can be even trapped by inducing vortices in MTCs
which are as mundane as magnetic stripes.

Our upcoming analysis provides a detailed study of the
various topological scenarios that become possible in both 2D
and 3D nodal SCs, for all the Majorana symmetry classes, i.e.,
BDI, D, and DIII. This is achieved by first constructing the
topological invariant quantities which predict the emergence
of Majorana quasiparticles in two fundamental situations,
with these concerning systems belonging to class BDI in 2D
and to class D in 3D. Notably, as we discuss here, nodal SCs
coupled to MTCs which belong to class D harbor chiral vortex
Majorana modes in 3D. Even more remarkably, we demon-
strate that, despite the fact that MTCs break the standard
TR symmetry (T ), symmetry class DIII SCs, and Majorana
Kramers pair solutions are still accessible in both 2D and 3D
when a generalized TR symmetry � with �2 = −1 appears
[68]. Such a symmetry emerges, for instance, when we con-
sider two-band systems, with the electrons of the two bands
feeling identical nonmagnetic terms, but opposite MTC terms.

The remainder of this manuscript is organized as follows.
Section II contains the details of our theoretical model and
sets the stage for our upcoming analysis. Section III gives
an account of the various types of topological phases and
Majorana excitations which become accessible. In Sec. IV,
we derive a low-energy model which describes the physics
stemming from the nodes of the SC. Based on this low-energy
mode, we proceed in Sec. V with the construction of the
topological invariant for a class BDI system in 2D, which

predicts the emergence of multiple vortex MZMs protected
by chiral symmetry. Section VI presents a series of numerical
investigations of BDI, D, and DIII models in 2D. In Sec. VII,
we focus on 3D systems and, in particular, we construct
the topological invariant for the class D case. Section VIII
presents numerical results for the emergence of chiral vortex
Majorana modes. Section IX gives an account of possible
routes to experimentally realize our proposal, while Sec. X
concludes this work with a summary and outlook.

II. MODEL HAMILTONIAN

To model the physical situations of interest in a general
manner, we employ the Hamiltonian operator:

Ĥ = 1

2

ˆ
dr �†(r)Ĥ( p̂, r)�(r), (1)

which acts in the basis defined by the Nambu spinor:

�†(r) = (ψ†
↑(r), ψ†

↓(r), ψ↓(r),−ψ↑(r)). (2)

Here, ψ↑,↓(r) annihilates an electron at position r with the
spin projection indicated, while p̂ = −i∇ with h̄ = 1. In 3D
coordinate space, we define r = (x, y, z), tan φ = y/x, cos θ =
z/r, r =

√
ρ2 + z2 and ρ =

√
x2 + y2.

The matrix Ĥ( p̂, r) defines the Bogoliubov - de Gennes
(BdG) Hamiltonian operator:

Ĥ( p̂, r) = Ĥ0( p̂) +
∑

n

{2Mn cos[Qn · r + ηn(r)]ên · σ

− 2M ′
n sin[Qn · r + ηn(r)]ê′

n · σ}e−iωn (r)σz , (3)

and is represented using the τ (σ) Pauli matrices defined in
Nambu (spin) spaces, supplemented with the respective unit
matrix 1τ (1σ ). For simplicity, we omit writing unit matrices
throughout from now on. In the above, we consider that the
two contributing magnetization terms always feature orthog-
onal orientations in spin space, i.e., their orientation vectors
satisfy ên · ê′

n = 0 for all n.
The nonmagnetic part of the BdG Hamiltonian takes the

general form:

Ĥ0( p̂) = τz[εs( p̂) + εt ( p̂)σz] + τx[�s( p̂) + �t ( p̂)σz]

+ τy[�′
s( p̂) + �′

t ( p̂)σz], (4)

where the appearing terms satisfy the relations:

εs,t (−p̂) = ±εs,t ( p̂), (5)

�s,t (−p̂) = ±�s,t ( p̂), (6)

�′
s,t (−p̂) = ±�′

s,t ( p̂). (7)

The above properties imply that Ĥ0( p̂) is invariant un-
der translations and z-axis spin rotations, associated with the
phases ηn(r) and angles ωn(r), respectively. Vortices can be
independently introduced in all ωn angles and ηn phases, at
the same or different positions.

For a shift [spin] vortex defect with vorticity υshift [υspin]
we set η(r) = υshiftφ [ω(r) = υspinφ]. In Fig. 1(b), we depict
the spatial profile of a magnetic helix crystal with a discrete
shift vortex. A shift vortex defect in η(r) implies that this
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phase shows discontinuous jumps by an integer multiple of
2π after traversing a closed path C encircling the defect’s
core, which is identified with the region where the magnetic
texture vanishes. A similar behavior emerges for ω(r) in the
presence of a spin vortex. The above properties are reflected
in the definitions of the shift υshift and spin υspin vorticities:

υshift =
˛
C

dη

2π
∈ Z and υspin =

˛
C

dω

2π
∈ Z. (8)

III. ACCESSIBLE TOPOLOGICAL PHASES

To infer the emergence of Majorana quasiparticles in
our model, we employ standard classification methods, cf
Refs. [58,59]. The topological classification of the system in
the presence of defects is carried out using the BdG Hamil-
tonian in combined momentum-coordinate space Ĥ(k, r),
which is obtained by assuming that the defect builds up in
a sufficiently smooth manner in space, so that the momentum
p̂ �→ k and the position r appearing in η(r) and ω(r) commute.
This approach suffices to predict the appearance of MZMs
but generally fails to accurately describe the complete bound
state spectrum that we observe in our numerics using abrupt
defects.

The relevant Majorana symmetry class, i.e., BDI, D or
DIII, is inferred in the presence of the defect-containing vari-
ables. The effective classification dimension δ is obtained by
the spatial dimensionality of the system d , after subtracting
the dimension of the surface that can enclose the defect, i.e.,
here δ = d − 1 since a circle S1 can enclose a vortex. To
construct the topological invariants, we view φ as a synthetic
momentum which extends the base space to (k, φ).

Based on the tenfold classification tables [87–89], we
find the topologically-nontrivial scenarios {BDI, D, DIII} �→
{Z,Z2,Z2} in 2D, and {D, DIII} �→ {Z,Z2} in 3D. For the
topological description of the cases of relevance in 2D (3D)
coordinate space, it suffices to examine the structure of the
class BDI (D) Z topological invariant, which is identified
with the winding number w3 (2nd Chern number C2). Here,
we obtain general expressions for w3 and C2, which become
particularly transparent in the limit of a weak strength for the
magnetization of the MTC.

IV. LOW-ENERGY MODEL HAMILTONIAN - DERIVATION

Similar to Ref. [60], which discusses MZMs trapped in
superconducting vortices, also here, the outcome of the var-
ious topological invariants is tied to the local, instead of the
global, k-space topology of Ĥ0(k). Therefore, to facilitate
the calculation of the various topological invariants, we rely
on low-energy models obtained after expanding the original
Hamiltonian about pairs of nodes with momenta ±kn.

To simplify our upcoming analysis, we momentarily drop
the terms �′

s,p( p̂) from the Hamiltonian in Eq. (4), and restore
them for the discussion of 3D models in Sec. VIII. Under
the above simplification, the various pairs of nodes are de-
termined by Ĥ0(k) = 0̂, which boils down to satisfying the
condition:

εs(kn) ± σzεt (kn) = �s(kn) ± σz�t (kn) = 0̂. (9)

Since {εt (−k),�t (−k)} = −{εt (k),�t (k)} we find that
nodes at opposite momenta ±kn carry opposite spins σz =
±1, i.e., possess the same helicity. See Fig. 1(a).

We now expand the Hamiltonian about the nth pair of
nodes by setting k ≈ ±kn + q with |q| 
 |kn|. By introducing
the ρ Pauli matrices in {kn,−kn} nodes space, the defect-free
Hamiltonian in the vicinity of ±kn reads

Ĥ(n)(q, φ = 0) = Mnρx ên · σ − M ′
nρyê′

n · σ

+τz
[
ε(n)

s + v(n)
εt

· qσz
] + ρzτz

[
v(n)

εs
· q + ε

(n)
t σz

]
+τx

[
�(n)

s + v
(n)
�t

· qσz
] + ρzτx

[
v

(n)
�s

· q + �
(n)
t σz

]
, (10)

where we used the shorthand expressions for f = ε,�:

f (n)
s,t = fs,t (kn) and v

(n)
fs,t

= ∇k fs,t (k)
∣∣
k=kn

. (11)

The nonmagnetic part of Eq. (10), that we denote Ĥ(n)
0 (q),

is invariant under arbitrary φ-dependent shifts and spin rota-
tions generated by the operators L̂(n)

shift = ρz and L̂(n)
spin = σz.

Thus the defects are added as follows:

Ĥ(n)(q, φ) = eiφL̂(n)/2Ĥ(n)(q, φ = 0)e−iφL̂(n)/2, (12)

where we introduced

L̂(n) = υ
(n)
shiftL̂

(n)
shift + υ

(n)
spinL̂

(n)
spin. (13)

For Mn = M ′
n = 0, one defines the four states |ρz =

±1; σz = ±1〉 in ρ ⊗ σ space. Two of these give rise to the
pair of nodes at ±kn, while the remaining two lie energetically
away from zero. These two pairs of states can be distinguished
by their helicity eigenvalue ζ = ρzσz = ±1. Hence, to obtain
a Hamiltonian describing only the states related to the nodes,
we project Eq. (10) onto a given helicity subspace which
fulfills:

ε(n)
s + ζε

(n)
t = �(n)

s + ζ�
(n)
t = 0,

and end up with the following effective Hamiltonian for the
nth pair of nodes

Ĥ(n)
ζ (q, φ = 0) = λzq · [

v
(n)
ε,ζ τz + v

(n)
�,ζ τx

] + M (n)
ζ · λ, (14)

where we introduced the velocities

v
(n)
ε,ζ = ζv(n)

εs
+ v(n)

εt
and v

(n)
�,ζ = ζv

(n)
�s

+ v
(n)
�t

(15)

along with the parameters

M (n)
ζ = (

ên,xMn + ζ ê′
n,yM ′

n, ên,yMn − ζ ê′
n,xM ′

n, 0
)
, (16)

which quantify the influence of the MTC on the given pair of
nodes. The unit 1λ and Pauli λ matrices act in a given helicity
subspace. The choice of basis for both ζ = ±1 is such, so that
the spin Pauli matrix σz coincides with λz. Note that the terms
ên · ẑ and ê′

n · ẑ drop out after the projection. Projecting the
operator generating the vortices yields

L̂(n)
ζ = [

ζυ
(n)
shift + υ

(n)
spin

]
λz. (17)

Notably, the emergence of MZMs is guaranteed by the
structure of Eqs. (14) and (17), which allow mapping our
model to the Jackiw-Rossi model [90]. The latter is known
to support zero-energy solutions in vortices, and also lies at
the core of the Fu-Kane MZM proposal [7,91].
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V. LOW-ENERGY MODEL HAMILTONIAN - BDI CLASS
TOPOLOGICAL INVARIANT IN 2D

In this paragraph, we prove in a detailed fashion that
MZMs become accessible in the model of Eq. (14). The
Hamiltonian in Eq. (14) possesses a chiral symmetry effected
by the operator � = λzτy. As a result of it, the Hamiltonian
resides in class BDI and is classified by the winding number
[58] w

(n)
3 ∈ Z defined in (qx, qy, φ) space. This invariant is

calculated using the upper off-diagonal block ĥ(n)
ζ (q, φ) of

Ĥ(n)
ζ (q, φ), in a basis where the latter is block off-diagonal.

The winding number is defined as

w3 =
ˆ 2π

0

dφ

2π

ˆ
dq
2π

Tr
{
ĥ−1

ζ (q, φ)[∂qx ĥζ (q, φ)]

× ĥ−1
ζ (q, φ)[∂qy ĥζ (q, φ)]ĥ−1

ζ (q, φ)[∂φ ĥζ (q, φ)]
}
, (18)

where we momentarily drop the (n) index for simplicity. Us-
ing the relation ĥζ ĥ−1

ζ = 1 ⇒ ∂h−1
ζ = −ĥ−1

ζ (∂ ĥζ )ĥ−1
ζ and the

cyclic property of the trace, we find the equivalent expression:

w3 = −
ˆ 2π

0

dφ

2π

ˆ
dq
2π

Tr
{
[∂qx ĥζ (q, φ)]

ĥ−1
ζ (q, φ)[∂qy ĥζ (q, φ)]∂φ ĥ−1

ζ (q, φ)
}
. (19)

Since the following relation also holds

ĥζ (q, φ) = eiφL̂/2ĥζ (q, φ = 0)e−iφL̂/2, (20)

the winding number obtains the simplified form:

w3 =
ˆ

dq
2π i

Tr

{
L̂
4

{
[∂qx ĥζ (q, φ = 0)]

[
∂qy ĥ

−1
ζ (q, φ = 0)

]

− [
∂qx ĥ

−1
ζ (q, φ = 0)

]
[∂qy ĥζ (q, φ = 0)]

} − qx ↔ qy

}

=
ˆ

dq
2π

Tr

{ L̂
2
����qxqy i ln[ĥζ (q, φ = 0)]

}
, (21)

where we introduced the shorthand notation:

����qxqy = ∂qx ∂qy − ∂qy∂qx ,

for the differential operator defining vorticity in q space.
The above expression is nonzero even in the limit of a

vanishing strength for the MTC, in which case, ĥ(q, φ =
0) �→ ĥ0(q). When [L̂, ĥ0(q)] = 0̂, we evaluate the trace by
introducing the eigenstates of L̂, in which basis, ĥ0(q) is block
diagonal. Hence, by further making use of

ĥ(n)
ζ (q, φ) = eiφL̂(n)

ζ /2ĥ(n)
ζ (q, φ = 0)e−iφL̂(n)

ζ /2 (22)

and taking into account that the upper off-diagonal block
ĥ(n)

0;ζ (q) of Ĥ(n)
0;ζ (q) commutes with L̂(n), we obtain

w
(n)
3;ζ =

∑
λ=±1

ζυ
(n)
shift + υ

(n)
spin

2
λ

ˆ
dq
2π

����qxqy itr ln
[
ĥ(n)

0;ζ ,λ(q)
]
,

(23)

where we employed the eigenstates |λ〉 of L̂(n)
ζ , which here

coincide with the eigenstates of λz = ±1. In addition, we
accordingly restricted the trace Tr, to a trace tr over the

remaining degrees of freedom. By now making use of the
identity tr ln [ĥ(n)

0;ζ ,λ(q)] = ln det [ĥ(n)
0;ζ ,λ(q)], we write

det
[
ĥ(n)

0;ζ ,λ(q)
] = ∣∣ det

[
ĥ(n)

0;ζ ,λ(q)
]∣∣e−iϕ(n)

ζ ,λ(q). (24)

The above implies that Eq. (23) is nonzero only when the
arguments ϕ

(n)
ζ ,λ(q) contain q-space vortex defects, i.e., only

when the underlying SC contains point nodes.
The node with helicity ζ and z-axis spin projection σz =

±1, carries vorticity υ
(n)
ζ ,λ=±1, which is defined through the

relation

����qxqyϕ
(n)
ζ ,λ(q) = 2πυ

(n)
ζ ,λδ(q) (25)

and leads to the expression:

w
(n)
3;ζ =

∑
λ=±1

ζυ
(n)
shift + υ

(n)
spin

2
λυ

(n)
ζ ,λ. (26)

To evaluate the above, it is required to determine the vorticities
of the nodes. For this purpose, we consider the unitary trans-
formation (� + τz )/

√
2 onto the projected Hamiltonians, and

obtain the upper off-diagonal blocks:

ĥ(n)
ζ (q, φ = 0) = [

M (n)
ζ × ẑ

] · λ − q · [v(n)
�,ζ λz + iv(n)

ε,ζ

]
. (27)

We use the eigenstates of λz �→ λ = ±1 and diagonalize
ĥ(n)

0;ζ (q) as h(n)
0;ζ ,λ(q) = −q · [λv

(n)
�,ζ + iv(n)

ε,ζ ]. Therefore, as long

as v
(n)
ε,ζ × v

(n)
�,ζ �= 0, the vorticities of the nodes at q = 0 are op-

posite and of a single unit, hence, they satisfy υ
(n)
ζ ,−λ = −υ

(n)
ζ ,λ

and |υ (n)
ζ ,λ| = 1.

Under the above conditions, we obtain our main result:

w
(n)
3;ζ = sgn

[
υ

(n)
ζ ,λ=+1

][
ζυ

(n)
shift + υ

(n)
spin

]
, (28)

which implies that both spin and shift vortex defects can
independently induce a Z number of MZMs. Notably, the
number of MZMs arising due to the simultaneous emergence
of shift and spin vortices at the same position in coordinate
space, are obtained by adding (for ζ = 1) or subtracting (for
ζ = −1) the number of MZMs that would independently arise
for each different type of defect.

VI. NUMERICAL CALCULATIONS IN 2D

In this section, we numerically verify our above predictions
for a variety of models in symmetry classes BDI, D, and DIII.
Our starting point for all these investigations is the lattice
model defined by the following functions:

εs(k) = −2t (cos kx + cos ky) − μ, εt (k) = α sin ky,

�s(k) = � and �t (k) = dz sin ky. (29)

In the absence of magnetism and for a suitable window of
parameters, this model supports a nodal energy spectrum of
the form depicted in Fig. 1(a). For our upcoming numerical
simulations we consider a 40 × 40 square lattice with the
lattice constant set to unity. Moreover, all the energy scales
are expressed in units of t , which from now on is set to unity.

A. Symmetry class BDI models

We begin with the study of MZMs in a BDI class model
in 2D. We consider that the two pairs of nodes emerging in
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FIG. 2. (a) 50 lowest eigenvalues in the absence (black asterisks)
and presence (green dots) of a single shift vortex in the MTC with
υshift = 1. When considering open boundary conditions, see inset in
(a), we find a single MZM pair along with an edge Majorana flat band
(MFB). To uncover the MZMs which are energetically buried inside
the MFB, we employ instead periodic boundary conditions. [(d) and
(e)] The 50 lowest eigenvalues in the absence (black asterisks) and
presence (orange dots) of a composite spin-shift vortex defect with
{υshift, υspin} = {1,±1}, respectively. In accordance to Eq. (28) only
the latter leads to MZMs. (b), (c), and (f) depict the spatial distribu-
tion of the MZM eigenvectors. For extracting the above numerical
results, we considered the following values for the parameters of
the model in Eq. (29): � = 1/

√
2, μ = −5�, dz = α = 1, and

{M1,2, M ′
1,2} = {0.5, 0.1}.

the energy spectrum of the model in Eq. (29) get gapped out
by a MTC which consists of two helices M1,2(r), with wave
vectors Q1,2. In Fig. 2, we present results for helices with
{ê1,2, ê′

1,2} = {x̂, ŷ}, when only one of these two magnetic he-
lices harbors a shift vortex defect of a single unit of vorticity.

In accordance with the analytical predictions of Eq. (28),
our numerical results presented in Figs. 2(a)–2(c) confirm
the emergence of a single MZM pair. One of the MZMs is
trapped at the shift defect’s core, while the other appears at
the system’s edge. Moreover, the MZM pair comes along with
an edge Majorana flat band (MFB). The latter results from the
nodal character of the SC and would anyhow be present at
the edge of the system independently of the presence of the
vortex.

We remark that the vortex MZM and the MFB do not cou-
ple since their wave functions have negligible spatial overlap.
Panels (b) and (c) of Fig. 2 depict the spatial distribution of
the eigenvectors for the two MZMs found in (a). We denote
the electron (hole) column component of the eigenvectors
with u (v). One observes that finite-size effects introduced a
weak inter-MZM coupling, which in turn leads to a small but
nonzero MZM weight at the defect in (c).

Furthermore, in Figs. 2(d)–2(f), we numerically confirm
the predictions of Eq. (28) in the case of simultaneous spin and

shift vortex defects appearing at the same location in real coor-
dinate space r. According to Eq. (28), the final outcome for the
winding number w3;ζ for the pair of nodes experiencing the
combined vortex defects is given by adding or subtracting the
independent contributions of each vortex to the winding num-
ber. Whether these add up or subtract solely depends on which
helicity eigenvalue ζ = +1 or for ζ = −1 characterizes the
nodes of interest. Specifically, for the model of Eq. (29) and
the parameter values employed, we conclude that ζ = −1.
This is directly inferrable from the energy spectra shown in
Figs. 2(d) and 2(e) for {υshift, υspin} = {1, ±1}, where we find
that only the latter composite vortex configuration leads to
MZMs. In fact, one obtains a total of four MZMs, with two
of these being located at the center of the defect, and two
more near the edge. This becomes further transparent from
Fig. 2(f) where we depict the spatial weights of the MZM
eigenvectors. We observe once again that the four MZMs
appearing in Fig. 2(e) are weakly coupled due to finite-size
effects.

The two MZMs comprising the MZM pair appearing at the
core of the composite spin-shift vortex with {υshift, υspin} =
{1, −1} do not couple to each other by virtue of the chiral
symmetry which dictates the system. Notably, multiple uncou-
pled MZMs trapped at the core of the vortex are also expected
to appear for a single shift/spin vortex when this carries a
higher value of vorticity. To further verify this prediction, we
study various cases numerically, by implementing the same
lattice Hamiltonian defined by Eq. (29). In Figs. 3(a) and 3(c),
we confirm that υshift = 2 results into two pairs of MZMs,
with two at the center of the defect, and their two partners
on the edge. Additionally we confirm that spin defects also
lead to MZMs. See Fig. 3(d) with three pairs of MZMs now
appearing at the vortex core for υspin = 3.

B. Class D models in 2D

The result of Eq. (28) obtained earlier is valid only as long
as also the full Hamiltonian resides in class BDI. In fact, it is
straigthforward to verify that the full Hamiltonian possesses
a chiral symmetry effected by τyσz, only when en and e′

n lie
in the same spin plane for all n. When at least one of εt (k) or
�t (k) is present, this is identified with the xy spin plane. As
long as the above condition is met, Eq. (28) remains valid.

For a full Hamiltonian belonging to class D instead, solely

the parity of the winding number (−1)w
(n)
3;ζ ∈ Z2 is well de-

fined, and allows for only up to a single MZM to be trapped
at the core of a vortex defect.

The above conclusions further imply that particular caution
needs to be paid on the possible node degeneracies which can
trivialize the Z2 invariant. This takes place, for instance, when
only εs(k) and �s(k) enter Ĥ0(k). In this case, both helicities
contribute, i.e., w

(n)
3 = ∑

ζ=±1 w
(n)
3;ζ . This case is trivial in

class D, since we find |w(n)
3 | = 2|υ (n)

spin|, while in class BDI
it predicts spin-degenerate MZM pairs only for spin vortices,
as a consequence of the spin-singlet character of the pairing.
Analogous results with |w(n)

3 | = 2|υ (n)
shift| are obtained when

only εs(k) and �t (k) are considered.
We now proceed with scenarios where a symmetry class

transition BDI �→ D takes place by explicitly breaking the
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FIG. 3. [(a) and (b)] The 50 lowest eigenvalues in the absence (black asterisks) and presence (green dots) of a shift vortex defect with a
two units of vorticity υshift = 2 for a class BDI and D model, respectively. In (b), we observe that a class D model does not support MZMs
for υshift = 2, in agreement with the invariant defined as the parity of w

(n)
3;ζ . As indicated by the arrow, we show in (c) the weight of the MZM

wavefunctions, where we clearly see two states located at the defect and their charge-conjugate counterparts at the edge of the system. [(d)–(f)]
Same as in (a)–(c) but in the case of a single spin defect with three units of vorticity υspin = 3. For the class D model in (e), we expect a single
MZM pair, in agreement with the parity of w

(n)
3;ζ , yet we observe four zero energy states. The additional two states, see the two last panels in

(f), are an artifact of the phase jump at the edges of the system, and are therefore not located at the defect. For our numerics, we employed the
same parameter values as in Fig. 2. For the class D cases, we considered an additional magnetic field of strength Bz = 0.4.

chiral symmetry of Eq. (3), which is effected by τyσz. In
the simplest case, this can be achieved by either applying
a magnetic field in the z direction, or, by considering spin-
orientation vectors en and e′

n which lie in different spin planes.
By virtue of the symmetry class reduction, it is only the parity

(−1)w
(n)
3;ζ which can protect MZMs.

This is confirmed in Fig. 3(b) where we display the en-
ergy spectrum for υshift = 2 in the presence of a magnetic
field in the z direction, here denoted Bz, which enters in the
Hamiltonian of Eq. (3) through the term Bzσz. For this case

(−1)w
(n)
3;ζ = 1, ultimately resulting into the hybridization of the

MZMs, thus lifting them away from zero energy. In stark con-

trast, if we have an odd number of MZMs, i.e., (−1)w
(n)
3;ζ = −1,

a single pair of MZM persists in the presence of a magnetic
field in z direction, as seen in Figs. 3(e) and 3(f). We wish
to clarify that despite the fact that in Fig. 3(e) we find four
in-gap states, only a single pair corresponds to topologically
protected MZMs, with only one of these MZMs having its
wave-function weight localized at the defect, as one confirms
from Fig. 3(f).

C. Class DIII Models in 2D

Despite the fact that MTCs break the standard time reversal
(T ) symmetry, Majorana Kramers pairs are still accessible
when a generalized TR symmetry � with �2 = −1 appears
instead [68]. In this event, the Hamiltonian is of the DIII type
and is classified by a Z2 topological invariant which now
predicts the emergence of a single Majorana Kramers pair in
a shift/spin vortex.

Such a symmetry emerges in the previously examined
models when we consider, for instance, two bands labeled
by a and b. After introducing the κ Pauli matrices in band
space, the MTC terms contributing to the BdG Hamiltonian
get promoted to matrices in band space, allowing for intra- and
interband magnetic scattering terms proportional to 1κ , κz

and κx, respectively. In the remainder, we consider solely
intraband magnetic scattering, with the magnetic texture term

being proportional to κz. Hence, the two bands feel opposite
contributions from the MTCs.

After considering that the two bands are dictated by iden-
tical nonmagnetic terms given by Eq. (4), we end up with the
following Hamiltonian for a two-band system:

Ĥ′( p̂, r) = Ĥ0( p̂) +
∑

n

{2Mn cos[Qn · r + ηn(r)]ên

− 2M ′
n sin[Qn · r + ηn(r)]ê′

n} · κzσe−iωn (r)σz . (30)

Since the above bands are completely decoupled, they yield
pairs of Majorana solutions in the defect’s core. Specifically,
we find that the pair of MZMs is protected by the time-
reversal symmetry � = κxT . Notably, the above Hamiltonian
possesses an additional U(1) symmetry with generator κz,
which enlists the present system in class BDI ⊕ BDI, instead
of DIII. Hence, in order to obtain true Majorana Kramers pairs
protected by � it is required to include band mixing terms
which are simultaneously invariant under the action of �.

In order to numerically study class DIII models in 2D, we
consider the lattice extension of the two band Hamiltonian in
Eq. (30), in the additional presence of the weak band mixing
term δτzκx which preserves �. We focus on the two-band
extension of the 2D BDI model in Eq. (29) where, here, we set
εa

t (k) = εb
t (k) = α sin ky, �a

s (k) = �b
s (k) = 0 and �a

t (k) =
�b

t (k) = dz sin kx. Our numerics confirm the emergence of
a MZM Kramers pair when considering a single shift/spin
vortex defect, as seen in Fig. 4(a) where we observe four
MZMs. The spatially resolved MZM wave-function weights
in Fig. 4(c) show that one MZM Kramers pair is localized at
the defect and another at the outer edge of the system.

Similarly to the BDI models in 2D, we can also here reduce
the symmetry of the system by adding a homogeneous exter-
nal magnetic field. In Fig. 4(b), we indeed see that the MZM
Kramers pair is lifted away from zero energy by adding a
magnetic field in the z direction, which forces the TR-invariant
system to undergo a symmetry-class transition to class D. The
latter supports a Z2 invariant and cannot sustain the MZM
Kramers pair.
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FIG. 4. Numerical investigation of a 2D class DIII model and its
transition to a class D model. [(a) and (b)] The 50 lowest eigenvalues
in the absence (black asterisks) and presence (green dots) of a shift
vortex with υshift = 1, for the two-band extension of the BDI model
in 2D, ultimately resulting into a class DIII. (c) displays the resulting
four zero energy states from the MZM Kramers pair, and (b) shows
how these get lifted in the presence of a magnetic field of a strength
Bz = 0.4, entering through the term Bzσz. For the DIII model numer-
ics we used: μ = −2

√
2, α = 2 + μ, dz = 1, {M1, M ′

1} = {1, 0.2},
{M2, M ′

2} = {0.5, 0.5}, and the band mixing term δ0 = 0.2
√

2. Note
that finite-size effects, and inter MZM coupling result into weights at
the defect in the second and fourth panels of (c).

To this end, we clarify that while � appears to be a fine-
tuned symmetry which crucially depends on the here-assumed
structure of the MTC, it may actually constitute a robust
symmetry in realistic materials. This is, for instance, the case
when the MTC develops spontaneously due to interactions.
In such a scenario, a MTC changing sign on the two bands
which is self-generated by the electrons of the SC is expected
to be thermodynamically stable, since its emergence leads to
a global minimum of the free energy the system.

VII. LOW-ENERGY MODEL HAMILTONIAN - D CLASS
TOPOLOGICAL INVARIANT IN 3D

Having examined 2D systems in detail, we now proceed
with exploring topological scenarios in 3D. Based on our
topological analysis in Sec. III, 3D allows for two possibil-
ities. Chiral/helical Majorana edge modes dispersing along
a vortex line arising from a class D/DIII Hamiltonian. The
construction of a class DIII Hamiltonian is possible by putting
together two class D Hamiltonians following the prescrip-
tion of the previous section. Since DIII class systems can be
understood using an even number of class D copies, in the
remainder we focus on the topological aspects of a single class
D Hamiltonian.

The emergence of a chiral vortex Majorana mode is now
predicted by a second Chern number C2 which is defined in
4D (qx, qy, φ, qz ) ≡ (p1, p2, p3, p4) space and it is given by
the following expression [58]:

C2 = −
ˆ

d4 p

32π2
εnm�sTr[F̂nmF̂�s], (31)

with εnm�s denoting the fully antisymmetric tensor, where
n, m, �, s = 1, 2, 3, 4. We also note that repeated index sum-
mation was employed. The above formula is given in terms of

the non-Abelian field strength tensor:

F̂nm = ∂pn Âm − ∂pm Ân − i[Ân, Âm], (32)

which is defined in terms of the Berry vector potential:

Aαβ
n (p) = i〈�α (p)|∂pn |�β (p)〉, (33)

which is a matrix in the occupied eigenstates |�α (p)〉 sub-
space, which are enumerated by the index α.

The second Chern number can be equivalently expressed
as a surface integral over the Chern-Simons 3 form. Here, we
choose a surface S = S2 × T 1 which contains a S2 sphere in
q space. We thus find

C2 = −
˛
S

d3 p

8π2
εnm�Tr

(
Ân∂pm Â� − i

2

3
ÂnÂmÂ�

)
, (34)

with n, m, � = 1, 2, 3. When the following holds:

Ĥ(q, φ) = eiφL̂/2Ĥ(q, φ = 0)e−iφL̂/2, (35)

we find the relation: |�(q, φ)〉 = eiφL̂/2|�(q, φ = 0)〉, which
implies Âq(q, φ) = Âq(q, φ = 0) and

Aαβ

φ (q, φ) = −1

2
〈�α (q, φ = 0)|L̂|�β (q, φ = 0)〉. (36)

The above lead to the simplified expression:

C2 =
‹

S2

dq
2π

· Tr

[ L̂
2

	̂(q, φ = 0)

]
, (37)

where we introduced the matrix Berry curvature 	̂(q, φ = 0).
The second Chern number is here generally nonzero also for a
vanishing MTC strength. Under the assumption [L̂, Ĥ0(q)] =
0̂, we evaluate the trace by introducing the eigenstates of L̂,
i.e., L̂|λ〉 = υdefectλ|λ〉, in which basis, Ĥ0(q) and the respec-
tive Berry curvature matrix 	̂0(q) of the nonmagnetic system
are block diagonal. Thus we conclude with the expression

C2 = υdefect

∑
λ

λ

2

‹
S2

dq
2π

· tr[	̂0;λ(q)], (38)

with the trace acting in a given λ block. Under the assump-
tion that the SCs under examination possess a zero first
Chern number, the second Chern number above becomes
nonzero only in the presence of monopoles in the Berry cur-
vature of the SC. These monopoles correspond to q-space
nodes in 3D space, which carry a topological charge defined
through tr[	̂0;λ(q)] = Qλq/(2|q|3). For a 2 × 2 λ block, these
monopoles define Weyl points, which carry a topological
charge given by

	0;λ(q) = Qλ

q
2|q|3 . (39)

From the above relation, we obtain the conclusive expres-
sion for the invariant, which takes the following form:

C(n)
2;ζ =

∑
λ=±1

ζυ
(n)
shift + υ

(n)
spin

2
λQ(n)

ζ ,λ, (40)

with Q(n)
ζ ,λ defining the monopole charge for the nodes of the

nth pair with helicity ζ and z-axis spin projection λ = ±1.
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FIG. 5. Chiral Majorana modes in a class D model in 3D. (a) Edge spectrum for the 3D model with a single shift vortex defect υshift = 1.
The spectrum is obtained with periodic (open) boundary conditions in the z (x and y) direction, and clearly displays chiral Majorana modes.
The spatially-resolved weight of the two chiral branches are displayed in (b) and (c), and reveals a single Majorana mode at the vortex defect’s
core, and its counterpart located at the edge of the system. Note that the nonzero wave-function weight at the defect in (c), is a consequence
of inter-Majorana mode coupling and finite-size effects. The figures were obtained with the parameters: � = 1, μ = −2

√
2, α = 2(

√
2 − 1),

� = 8 and {M1,2, M ′
1,2} = {0.5, 0.1}, all in units of t .

VIII. NUMERICAL CALCULATIONS FOR
A D CLASS 3D MODEL

The topological invariant C2 obtained in the previous para-
graph predicts the number of chiral Majorana modes emerging
in the core of a vortex line. We first pursue gaining insight
regarding the emergence of such dispersive chiral vortex Ma-
jorana modes using the following simple continuum model:

Ĥ0(k) = −k2
y τz + α(kyτz + kxτx − kzτy)σz, (41)

which constitutes an anisotropic p-wave SC variant of the
model in Eq. (29). The combination of spatial anisotropy and
SOC yields two helical branches and two pair of nodes at
ky = 0 and ky = ±α. Here, the inner helical branch at ky = 0
can be gapped out by a Zeeman field which is oriented or-
thogonally to the SOC vector [10,11]. The two nodes of the
outer helical branch can get gapped out by a magnetic stripe
M(r) = M cos(2αy)x̂. In analogy to Eq. (28), here we find that
a number of

|C2| = |υshift + υspin| (42)

chiral Majorana modes emerge in a vortex line extending
along the z axis.

We now provide a numerical investigation of the above
class D model in 3D, after considering a proper lattice exten-
sion. For this purpose, we consider that the bare Hamiltonian
of Eq. (4) is given by

Ĥ3D
0 (k) = τz[εs(k) + εt (k)σz] + [�p(k)τx + �′

p(k)τy]σz

(43)

and consists of the anisotropic 3D dispersion

εs(k) = −2t (cos kx + cos ky) − �(1 − cos kz )/2 − μ

in the additional presence of the anisotropic SOC term εt (k) =
α sin ky, and the chiral p-wave pairing which is defined in
terms of the components:

�p(k) = � sin kx and �′
p(k) = −� sin kz. (44)

We consider the limit � � t , in which, the pairs of nodes
in the nonmagnetic phase are located only in the kz = 0 plane.
After including the magnetic terms of the Hamiltonian and

considering a vortex line which extends uniformly along the
z axis, we observe that kz is a good quantum number since
tan φ = y/x. In fact, for small kz, we can linearize the above
Hamiltonian and see that for kz = 0 it possesses a chiral sym-
metry with � = τyσz similar to the model of Eq. (29). The
preservation of � gives rise to a pair of zero energy states.

Away from kz = 0 the chiral symmetry is broken, lifting
the states away from zero energy, ultimately resulting into
dispersive chiral Majorana modes, as seen Fig. 5(a). Here, a
single mode is dispersing along the vortex core while the other
one resides on the outer edge of the system, see Figs. 5(b) and
5(c), respectively.

IX. EXPERIMENTAL IMPLEMENTATION

We now proceed with the discussion of potential can-
didate systems and mechanisms that may allow observing
our theoretical predictions in realistic systems. As mentioned
above, nodal superconducting materials are abundant in na-
ture [63], e.g., unconventional spin-singlet (-triplet) d-wave
(p-wave) SCs [92], noncentrosymmetric [93–96] SCs, and
certain Fe-based SCs which can also exhibit nodal pairing
[97,98]. Below, we discuss three distinct pathways involving
MTCs, which lead to a fully gapped bulk energy spectrum and
open perspectives for vortex MZMs.

A. MTCs engineered by nanomagnets

The first possibility is to actually impose the desired
MTC externally with the help of tunable magnets. Such
a direction has recently picked up substantial theoretical
[64,66,78,81,82,84,85] and experimental [36,99] attention in
the field of engineered topological superconductivity. Further-
more, in a different context, recent experiments [100] have
found evidence for colossal magnetic anisotropy for CoFe2C
magnets with a characteristic dimension of the order of few
nanometers. Since the wave vectors controlling the spatial
periodicity of the MTC are required to roughly match those
connecting pairs of nodes, it may be currently challenging for
these state-of-the art nanomagnetic technologies to be appli-
cable in most of the above listed SCs. This is because most

174502-8



TRAPPING MAJORANA ZERO MODES IN VORTICES OF … PHYSICAL REVIEW B 104, 174502 (2021)

of these are metals and thus the arising nodes are expected to
be connected by wave vectors with a length which relates to
the Fermi wave number. Hence, we conclude that the present
route for engineering vortex MZMs, by means of imposing
MTCs induced by magnets, appears more relevant for very
low-density and bad-metal SCs, with Fermi wave numbers in
the few nanometer regime.

B. Spontaneously induced MTCs

Another possibility is the interaction-driven MTCs, which
can become stabilized in the presence of attractive interac-
tions in the magnetic channel, in order to minimize the free
energy of the system. In analogy to 1D spin-density waves
[101], which are promoted by the perfect nesting of the two
points comprising the Fermi surface, here we expect a MTC to
spontaneously appear and gap out the nodes. This is under the
condition that other competing instabilities are subdominant
to the MTC. The tendency of the system towards the spon-
taneous development of a magnetic helix crystal which gaps
out a single pair of nodes can be here inferred by evaluating
the respective spin susceptibility. In fact, the latter can be
calculated using the low-energy model of Eq. (14).

For this purpose, we restrict to the nth pair of nodes and
consider a magnetic helix crystal with projected components
M (n)

ζ = (M (n)
ζ ;x, M (n)

ζ ;y, 0). Moreover, we assume that the mag-
netic helix crystal is governed by a periodicity given by a
wave vector which is equal to the wave vector 2kn connecting
the nodes of the pair of interest. We note that, when the wave
vector of the magnetic helix matches the one connecting the
nodes, a gap opens on these with an infinitesimally weak
strength of |M (n)

ζ |. Nonetheless, a full gap is accessible also for
detuned wave vectors, but in that event, a threshold strength
of |M (n)

ζ | has to be reached. In the following, we restrict to the
ideal scenario of perfectly matched wave vectors, since this
is the configuration that yields the highest susceptibility and
thus minimizes the free energy of the system.

In the upcoming analysis, we suppress the (n) index from
the various variables to simplify the notation. Since in the ab-
sence of magnetism the Hamiltonian in Eq. (14) is dictated by
an emergent U(1) symmetry generated by λz, we can evaluate
the desired susceptibility by considering that only one of the
components of the magnetic helix texture, either Mζ ,x or Mζ ,y,
is nonzero. Under the above conditions, straightforward cal-
culations in the zero temperature limit yield the susceptibility
expression:

χ =
ˆ

dq
(2π )2

1√
[q · υε,ζ ]2 + [q · υ�,ζ ]2

. (45)

By transferring to polar coordinates q = q( cos γ , sin γ ),
and after introducing a cutoff wave number qc, we end up with
the expression

χ =
ˆ 2π

0

dγ

2π

νc√
1 + cos γ0 cos(2γ ) + δ sin γ0 sin(2γ )

, (46)

where we introduced the density of states νc = qc/(2πῡ )
which depends on the cutoff qc and the average velocity

defined as ῡ =
√

(|υε,ζ |2 + |υ�,ζ |2)/2. The final outcome for

χ is decided by the precise values of the parameter δ =
(|υε,ζ |2 − |υ�,ζ |2)/(|υε,ζ |2 + |υ�,ζ |2) which encodes the ve-
locity mismatch, and the relative angle γ0 = γε − γ�, which is
defined in terms of the orientation angles γε,� given by υε,ζ =
|υε,ζ |( cos γε, sin γε ) and υ�,ζ = |υ�,ζ |( cos γ�, sin γ�). We
note that the final form of Eq. (46) was obtained after the
redefinition γ �→ γ + (γε + γ�)/2, which does not influence
the result.

From Eq. (46), we infer that in contrast to 1D spin-density
waves, here, the 2D dimensionality does not generally al-
low for a logarithmically divergent susceptibility. In fact, for
velocity vectors oriented at right angles (γ0 = π/2) which
additionally feature equal lengths (δ = 0), the susceptibility
reaches its minimum value χ0 = νc. Away from this highly
symmetric configuration, the ratio χ/χ0 increases monoton-
ically. Notably, the susceptibility becomes maximized as the
system tends to the extreme anisotropic cases with γ0/π → Z
for arbitrary δ, or, |δ| → 1 for arbitrary γ0. Thus the appear-
ance of a MTC generally requires a threshold strength for the
interaction which drives magnetism. Noteworthy, this critical
strength depends strongly on the cutoff qc, since χ scales
linearly with qc. Finally, this threshold interaction strength
becomes reduced by enhancing the anisotropy of the energy
dispersion in the vicinity of the nodes.

Out of the various candidates mentioned earlier, Fe-SCs
can support nodal phases, exhibit single- and double-Q
magnetic stripe order [102–112], and can harbor the mi-
croscopic coexistence of magnetism and superconductivity
[102,113–118]. Moreover, recent theoretical studies [119]
predict single- and double-Q MTCs in doped 122 and 1111
compounds. While the theoretical investigation and exper-
imental support regarding the microscopic coexistence of
nodal Fe-SCs and MTCs is still lacking, these systems ap-
pear as potential candidates to observe the phenomenology
discussed in this section.

C. MTCs induced by localized magnetic moments

The last possible physical realization of our theory relies
on nodal SCs coupled with lattices of localized magnetic
moments. Here, the MTC required for gapping out the nodes
of the SC is considered to result from the magnetization of
the localized moments. This third mechanism that we propose
for engineering MZMs bears similarities to the ones pro-
posed [67,69–75,79,80,120–123] for MZM platforms relying
on magnetic chains [42–49]. However, here, the dimension of
the lattice of the magnetic impurities needs to coincide with
the dimension of the lattice defined by the nodal SC, akin to
the picture that holds for Kondo lattice systems [124], which
are typical scenarios for rare-earth [65] and heavy-fermion
SCs [63,92]. Moreover, we remind the reader that within our
proposal MZMs are trapped by vortices of the MTCs instead
of termination edges or domain walls. Interestingly, employ-
ing MTC vortices for trapping MZMs appears particularly
attractive in the case of hybrid systems involving magnetic
adatoms, since MTC vortices can be in principle tailored
using spin-polarized scanning tunneling microscopy [45,47–
49]. The latter technique, further allows for the spin-sensitive
detection of the vortex MZMs [123].
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In a similar fashion to proposals for self-organized MZM
platforms using magnetic adatom chains [70–72], also here,
we expect for the magnetization of the magnetic moment
lattice to exhibit a spatial profile which reflects the structure
of the nodes of the host SC. This profile is determined by the
spin susceptibility χαβ

nm which couples the magnetic moments
through the Ruderman-Kittel-Kasuya-Yosida (RKKY) type of
energy term:

ERKKY = −J2

2

∑
n,m

∑
α,β

Sα
n χαβ (Rn − Rm)Sβ

m, (47)

where the indices n, m label the impurity lattices sites Rn,m,
while α, β = x, y, z label the spin components of the mo-
ments. J denotes the strength of the magnetic exchange
coupling between the moment and the electron spin. For a
homogeneous nodal SC of a spatial dimension d , the spin
susceptibility depends only on the difference R = Rn − Rm of
the position vectors of the coupled magnetic moments and is
defined by the expression

χαβ (R) = −1

2

ˆ +∞

−∞

dε

2π
Tr[σαĜ0(ε, R)σβĜ0(ε,−R)], (48)

where we introduced the bare matrix Green function

Ĝ0(ε, R) =
ˆ

dk
(2π )d

eik·R Ĝ0(ε, k), (49)

with its momentum space counterpart being defined through:
Ĝ−1

0 (ε, k) = iε − Ĥ0(k), where Ĥ0(k) is given by Eq. (4). We
introduced a factor of 1/2 in Eq. (48) to prevent the double
counting of the electronic degrees of freedom since we use
the four-component basis of Eq. (2).

To further elaborate on this aspect, we explore a concrete
example for a nodal SC with two pairs of nodes. Specifically,
we consider the d = 2 model with υ� > 0:

Ĥ0( p̂) = τz

(
p̂2

y

2m
− α p̂yσz − μ

)
+ υ� p̂xτxσz, (50)

which is obtained by means of dimensional reduction of the
3D model described in Eq. (41) to the 2D (x, y) plane, and
harbors two pairs of nodal points located along the kx = 0
high-symmetry line. The above model constitutes a paradig-
matic model for the entire category of systems discussed here,
since all nodes are situated along the same axis, thus allowing
the generalization of some of our results to nodal SCs har-
boring multiple pair of nodes, with the various pairs of nodes
been situated on lines with generally nonparallel orientation.

Before carrying out the calculation of the spin suscep-
tibility, it is convenient to gauge away the SOC term by
performing a spatially dependent unitary transformation:

Ĥ0( p̂) = O(y)

(
p̂2

y − k2
F

2m
τz + υ� p̂xτxσz

)
O†(y), (51)

with k2
F /(2m) = μ + mα2/2 and the kinetic energy term

ε(ky) = (k2
y − k2

F )/(2m). Moreover, the unitary transforma-
tion matrix reads as O(y) = Exp(imαyσz ). Within this
framework, the bare Green function in coordinate space
becomes Ĝ0(ε, R) = O(Y )Ĝα=0

0 (ε, R), where we introduced

R = (X,Y ), and the Green function for α = 0:

Ĝα=0
0 (ε, R) =

ˆ
dk

(2π )2
eik·R iε + ε(ky)τz + υ�kxτxσz

(iε)2 − (υ�kx )2 − [ε(ky)]2
.

(52)

We now proceed with the evaluation of the spin suscep-
tibility. For this purpose, we also consider a semiclassical
approach in which kF is substantial, thus allowing to approx-
imate the kinetic energy as ε(ky) ≈ ±υF (ky ∓ kF ), with the
latter being expanded about the two Fermi points ky = ±kF

with υF = kF /m. Moreover, due to the presence of the strong
anisotropy, it is preferable to integrate over the kx variable
first. Since the integrand peaks at kx = 0, we can safely
consider that the integration is over (−∞,+∞), without wor-
rying about the possible necessity to introduce a cutoff. In this
case, employing standard residue theory provides

Ĝα=0
0 (ε, R) = −

ˆ
dky

4πυ�

eikyY −
√

[ε(ky )]2+ε2|X |/υ�

×
{

iε + ε(ky)τz√
[ε(ky)]2 + ε2

+ isgn
(
X

)
τxσz

}
. (53)

By now exploiting the assumed semiclassical limit, we
introduce the variable ξ = ±υF (ky ∓ kF ) which allows us to
carry out the substitution ky = ±(kF + ξ/υF ). After taking
the limit kF → ∞, we obtain for X,Y �= 0:

Ĝα=0
0 (ε, R) = cos

(
kFY

)
υF υ�

ˆ +∞

−∞

dξ

2π
eiξY/υF −

√
ξ 2+ε2|X |/υ�

×
{
− iε√

ξ 2 + ε2
− isgn(X )τxσz

}
− sin(kFY )

υ�

× d

dY

ˆ +∞

−∞

dξ

2π

eiξY/υF −
√

ξ 2+ε2|X |/υ�√
ξ 2 + ε2

τz.

(54)

By further restricting to situations where |X | is small
with � = |X/Y | 
 1, we manage to obtain approxi-
mate closed-form expressions by replacing the exponen-
tial term Exp(−

√
ξ 2 + ε2|X |/υ�) by its factorized form

Exp(−|ξ ||X |/υ�)Exp(−|ε||X |/υ�) when evaluating the term
∝ τxσz, and by completely discarding it when evaluating the
remaining two terms. These approximations lead to the ex-
pression

πυF υ�Ĝα=0
0 (ε, R)

≈ sin(kF |Y |)|ε|K1(|ε||Y |/υF )τz − cos(kFY )

×
[

iεK0(|ε||Y |/υF ) + iυ2
F Xe−|ε||X |/υ�

υ�Y 2
τxσz

]
. (55)

With the Green function at hand, we now determine the
elements of the spin-susceptibility tensor. We find that for
α = 0, the only nonzero elements are χα=0

xx (R) = χα=0
yy (R) ≡

χα=0
in (R) = I1(R) − I2(R) + I3(R) and χα=0

zz (R) = I1(R) −
I2(R) − I3(R), which consist of the three non-negative con-
tributions presented below:

I1(R) = 1 + cos(2kFY )

2π (πυ�Y )2

υF

|Y |
ˆ +∞

−∞
du u2K2

0 (|u|), (56)
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I2(R) = 1 − cos(2kFY )

2π (πυ�Y )2

υF

|Y |
ˆ +∞

−∞
du u2K2

1 (|u|), (57)

I3(R) = cos2(kFY )

π (πυ�Y )2

υF

|Y |
υF

υ�

�. (58)

After the evaluation of
´ +∞

−∞ du u2K2
0 (|u|) = π2/16 and´ +∞

−∞ du u2K2
1 (|u|) = 3π2/16, we find the following result:

χα=0
in,zz (R) ≈ 2 cos(2kFY ) − 1 ± �υF

υ�

[
4
π

cos(2kFY )
]2

16π (υ�Y )2|Y |/υF
. (59)

From the above, we conclude that when α = 0 and two
magnetic moments are placed along a line which is parallel
to the y direction, the RKKY coupling is spin-isotropic since
� = 0. This is to be expected since, in this case, the kx = 0
momentum is involved in the calculation of the Green func-
tion, which coincides with the line, along which, the pairs
of nodes appear for the Hamiltonian of Eq. (50). From the
Y dependence of the spin susceptibility, we find that both
ferromagnetic (FM) and antiferromagnetic (AFM) solutions
are accessible. In contrast, when the vector connecting the
positions of two magnetic moments forms an angle with the
y axis, then an easy plane/axis spin anisotropy sets in, and
can be traced back to the spin-dependent p-wave pairing term
in Eq. (50). For � 
 1, we find that when the distance be-
tween two moments is such so that it favors FM ordering,
the spin anisotropy tends to align the magnetic moments in
the plane, since in this case χα=0

in > χα=0
zz . On the other hand,

for an intermoment distance favoring AFM ordering, the spin-
anisotropy forces the magnetic moment to point out-of-the
plane, i.e., along the z axis.

Let us now consider the effects of nonzero α which implies
that the Rashba SOC in non-negligible. For a perfectly ordered
array of localized magnetic moments with a spacing |Y | in the
y direction, we find that the z axis susceptibility is unaltered
and the components χxz,zy remain zero. Nonetheless, there is
now a modification of the strengths of the in plane suscep-
tibilities. In addition to the above, the in-plane off diagonal
elements χxy(R) = −χyx(R) become now nonzero. These re-
sults are reflected in the expressions

χin(R) = cos(2mαY )χα=0
in (R), (60)

χxy(R) = sin(2mαY )χα=0
in (R). (61)

Notably, a similar susceptibility structure has been dis-
cussed previously in Ref. [122] in connection to MZM
platforms with magnetic chains. Here, the obtained spin-
susceptibility transforms the emergent in plane FM order
into an in-plane magnetic helix texture, while it leaves the
out-plane AFM order unaffected. Since the z components of
the magnetization become projected out in the low-energy
model of Eq. (14) only the in-plane ordering of the magnetic
moments can gap out the nodes. However, in the absence
of additional sources of spin anisotropy, the arising FM-like
magnetic helix texture cannot gap out the outer-helical branch
nodes of the model in Eq. (50), since its winding compensates
that of the Rashba SOC. A possible escapeway is to impose
or engineer additional in-plane spin-anisotropies, which can
allow to the magnetic moments to either develop in-plane

magnetic helix textures with a different pitch than the one
characterizing the Rashba SOC, or enable in plane AFM
phases.

For example the addition of terms such as (Sx
n )

2
generally

opens the door for the above scenarios, as it has been already
demonstrated in Ref. [122]. So far, we have not made any
mentioning in connection to the pair of nodes associated with
the inner helical branch arising due to the Rashba SOC. In
analogy to Sec. VIII, also here, we can assume the presence
of a weak Zeeman field in order to lift the inner helical branch
[10,11]. Finally, we wish to remind the reader that the present
platforms appear attractive for pinning MZMs in vortices of
the arising in-plane magnetic helix texture or AFM order,
since the spin-orientation of the magnetic moments is in prin-
ciple locally tunable using scanning tunneling microscopy.

X. SUMMARY AND OUTLOOK

We provide a novel pathway to engineer Majorana zero
modes (MZMs), which relies on nodal superconductors (SCs)
and at the same time does not require the presence of super-
conducting vortices. In contrast, we show that MZMs become
accessible in nodal SCs which are under the influence of
magnetic texture crystals (MTCs). At this point, we wish to
clarify that our approach is distinct to Refs. [48,125–129].
There, isolated magnetic skyrmions, and not crystals as we
consider here, have been employed as smooth defects which
pin various types of bound states in fully-gapped SCs, these
including MZMs [48,126–128]. Instead, within our proposal,
MZMs are pinned by spin and/or shift vortices induced in the
MTC, which constitute singular defects.

Our analysis provides a detailed study of various topolog-
ical scenarios in both 2D and 3D nodal SCs, which cover all
three Majorana symmetry classes, i.e., BDI, D, and DIII. We
present in detail the construction for two topological invariant
quantities, which predict vortex MZMs in class BDI in 2D
and chiral Majorana modes in class D in 3D. Topological
invariants for the remaining cases can be constructed using
these two fundamental invariants. Even more, we show how
to render Majorana Kramers pair solutions still accessible, in
spite of the violation of the standard time-reversal symmetry
by the MTC. As an example we discuss a two-band model
in 2D which harbors a single vortex Kramers pair of MZMs
in 2D. Our analytical approach and predictions based on the
various topological invariants are backed by our numerical
simulations on the lattice.

The last part of our investigation concerns the experimental
realization of our proposals in connection to intrinsic nodal
SCs. We discuss the following three different possible paths to
engineer the required MTCs and concomitant vortex MZMs:
(i) MTCs which are engineered using nanomagnets, (ii) MTCs
that arise spontaneously by virtue of the interactions dic-
tating the electrons of the SC, and (iii) MTCs which are
harbored by a lattice of localized magnetic moments which
are exchange-coupled to the nodal SC. We provide insight
in the above possibilities and discuss their advantages and
possible limitations. Regarding the stabilization of vortices
in MTCs, we note that certain types of topological defects
in MTCs, e.g., disclinations [130,131], have already been
experimentally observed in helimagnets [132–136]. Similarly,
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shift/spin vortices can arise spontaneously, get pinned by dis-
order or engineered with nanomagnets, or scanning tunneling
microscopy (STM) tips.

Apart from quantum materials, our idea may also be rele-
vant for artificial platforms, such as a 2D electron gas (2DEG)
in proximity to a conventional SC with strong Rashba SOC.
Here, one wishes to harness the proximity effect to induce a
mixed-spin type nodal pairing term in the 2DEG. This appears
particularly promising for superconductor-semiconductor de-
vices for which a strong debate has been raised recently
[28,137–144]. We hope that our theory inspires the develop-
ment of new platforms which take advantage of the advanced

fabrication and measurement techniques which currently exist
for semiconductor hybrids, and combine them with the control
over MTCs and vortex MZMs using spin-polarized STM.
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