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Collapse of a region of the magnetic phase diagram of elemental terbium
under a strain-induced Lifshitz transition
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AC susceptibility and neutron scattering measurements are used to study the magnetic field-temperature
magnetic phase diagram of a Tb single crystal under uniaxial tension along its hexagonal c axis. An external
magnetic field is applied in the basal plane. We focus on the region in the phase diagram that corresponds to
the helical antiferromagnetic phase and find that this region collapses when the uniaxial tension is increased
beyond a critical value as low as 600 bar. There are strong reasons to associate this collapse with an underlying
Lifshitz transition in the Fermi surface of Tb’s valence electrons. We use a finite-temperature ab initio theory to
analyze our measurements, obtaining a pressure-temperature magnetic phase diagram in very good agreement
with experiment. Our calculations indicate that short- and long-range magnetic order has a crucial effect on the
Fermi surface nesting and consequent magnetism of Tb.
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I. INTRODUCTION

The helical long-periodic antiferromagnetic (HAFM)
structure, characteristic of several elemental rare-earth metals
with hexagonal close-packed (hcp) crystalline structure and
comprising a spiral staircase of the magnetic moments [1],
remains perhaps one of the most elegant objects in solid state
magnetism. The discovery of this structure in hcp elemental
Ho, Dy and Tb was one of the first triumphs of the neu-
tron scattering technique [2–4]. Immediately afterwards, a
successful attempt to suppress the HAFM structure by the
application of a magnetic field within the basal plane [5] led to
the emergence of complex temperature-magnetic field phase
diagrams. These uncovered a plethora of complex physics
issues for the investigation of critical points and magnetic
phase transitions in the rare earth elements. Today, despite
continuous and extensive experimental and theoretical studies,
many questions of fundamental interest still remain concern-
ing the features of these diagrams.

The critical magnetic field values H∗ required to suppress
the HAFM phase turn out to be of the order of 10 000–
20 000 Oe for Dy and Ho [5,6], which correspond to ener-
gies much lower than the exchange energy. Straightforward
phenomenological analysis [7], as well as finite-temperature
ab initio calculations carried out by us [8], agree that this
suppression by magnetic field application takes two stages.
A first transition occurs at H∗ when the HAFM state col-
lapses into an intermediate “near ferromagnetic” fan state,

*Present address: Peter Grünberg Institut and Institute for Ad-
vanced Simulation, Forschungszentrum Jülich and JARA, 52425
Jülich, Germany.

also long-periodic, where magnetic moments oscillate close to
the magnetic field direction. The second one happens at Hsat

when these oscillations vanish and a single-domain collinear
ferromagnetic (FM) state is formed [1]. These transitions have
been clearly observed in Dy, Ho, and their alloys with Y by
various techniques, including magnetic measurements [9,10],
neutron diffraction [5,11,12], magnetoresistance [13], acous-
tic studies [14–16], and x-ray diffraction [17–19].

Terbium appears to be a difficult object for such a study, as
its HAFM state is delicate when compared to that in Dy and
Ho and the associated anomalies are weak. The range of tem-
peratures where the HAFM state occurs in Tb is remarkably
narrow, less than 5% of the magnetic ordering temperature
(hereafter referred to Tord for both TC or TN ). Tb is therefore
poised right on the edge of being able to support helical
magnetic order making its study interesting in its own right.
Various studies report the magnitude of H∗ to be around
100–500 Oe depending on the temperature and experimental
technique used [20–24].

The relation between the stabilizing magnetic phase and
the topology of the Fermi surface (FS) is an essential factor
in the understanding of the magnetism of the hcp rare-earth
metals. Namely, it is well established that the existence of the
HAFM phase in these metals is directly governed by the shape
of the FS through the “magnetic nesting” phenomenon, pro-
posed for Cr by Lomer [25] and extended to rare-earth metals
by Dzyaloshinski [26], see review [1]. As a consequence, the
HAFM phase corresponds to the one plausible “yttriumlike”
geometry of the FS, while the simple collinear ferromagnetic
order is associated with the alternative “gadoliniumlike” ge-
ometry, see Refs. [8,27–34] for details.

These HAFM and ferromagnetic states are, therefore, sep-
arated by a Lifshitz transition in the conductive subsystem—
i.e., the qualitative change in the shape [35] of the FS of
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the valence electrons. Consequently, this Lifshitz transition
induced by external action—for example, by application of
pressure—should change the type of magnetic order that sta-
bilizes. The easiest way to induce this Lifshitz transition in
the hcp rare-earth metal is to apply uniaxial strain along the
hexagonal axis c, while isotropic hydrostatic pressure has a
much smaller effect on the FS shape, see Ref. [32].

In Ref. [36], we demonstrated the total suppression of
the HAFM ordering in favor of the simple ferromagnetic
one under a critical uniaxial tension as low as 700 bar,
which we associated with a Lifshitz transition in the FS
of Tb. In parallel our progress with an ab initio electronic
structure theory study of the heavy rare earth elements [8]
has enabled us to determine the main features of the magnetic
phase diagrams of the heavy lanthanide elements and to
link a major component of the experimental features to the
common valence electronic structure (5d1 6s2) that these
elements share. The effect of stress, however, to date has
not been explicitly calculated and presented. In this work,
we report an experimental study for the magnetic phase
diagram of Tb under uniaxial tension and the suppression of
the HAFM phase via a Lifshitz transition. We show how the
temperature-magnetic field phase diagram, critical magnetic
field, and helical wave vector change with application of this
pressure. We also compare our experimental results with our
finite-temperature ab initio theory applied to Tb.

II. EXPERIMENTAL APPROACH

A. Experimental setup and neutron scattering study

As in Ref. [36], we measured the ac magnetic susceptibility
χac, by mutual inductance of two probe coils surrounding the
sample—a reliable noncontact technique that directly reflects
the magnetic state of the sample. In this study. we compared
χac dependencies for terbium that orders magnetically into
the HAFM phase (at tensions below p∗) with those for the
very same terbium sample that orders ferromagnetically (at
tensions above p∗). This approach allows to highlight the
apparently weak anomaly associated with the transition at H∗,
which is the magnetic field necessary to suppress the HAFM
phase at a given temperature.

The same single-crystalline sample and the same uniaxial
tension cell as in Ref. [36] were employed in the present
study, with now the addition of the permanent magnetic field;
see detailed description and sample characterization in this
reference. Both the ac and the permanent magnetic fields were
parallel to each other and to the sample face, orthogonal to
the hexagonal c axis, see Fig. 1(a). Uniaxial tension p was
produced by a calibrated spring.

We also performed a neutron scattering study of the depen-
dence of the helical wavevector q of the HAFM phase on the
tension applied in the absence of an external magnetic field.
These measurements were carried out on the DN-2 time-of-
flight diffractometer of the IBR-2 pulse reactor [37] (Dubna,
JINR) in 2θ = 90◦ geometry employing a two-dimensional
position-sensitive detector, and the same experimental cell
in the close-cycle refrigerator. The hexagonal c axis of the
sample was about 1.5◦ inclined to the sample face. Therefore
it was possible to observe the (002) reflection and nearby
magnetic satellites with the neutron beam illuminating the

FIG. 1. Sketch of the experimental cell, side and top views. The
probe ac magnetic field, parallel to the permanent magnetic field H ,
is orthogonal to the hexagonal c axis and parallel to the sample face.

sample face under this small angle, see sketch in Fig. 2 (angle
exaggerated).

Owing to this unfavorable geometry, the effective sample
surface was as low as ≈0.1 mm2, and exposures about 10
hours were required to obtain the diffraction patterns. Patterns
for the tensions p = 0 (without the loading cell), 160 bar
(8 hours exposure), and 310 bar (12 hours exposure) were
obtained at temperatures 2.2 K below the respective TN , i.e.,
at T = 0.99TN (see Sec. II B). These patterns are presented
in Fig. 3 with 0.8 of the central (nuclear) peaks subtracted to
highlight the magnetic satellites. Lines correspond to the fits
“Gaussian central peak and two equal symmetrical Gaussian
satellites.” The width of these satellites increases rapidly with
an increase of tension p, so no reliable patterns were obtained
at higher values of p. The decline in satellite q values with
tension increase is nevertheless evident.

FIG. 2. Sketch of the neutron diffraction geometry, side (inclina-
tion exaggerated) and top views.
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FIG. 3. Resulting diffraction patterns, each obtained 2.2 K below
the respective Néel temperature, for the three tension values. 0.8 of
the (002) central peak subtracted to highlight the (002)+ and (002)−

magnetic satellites (marked by arrows). Fitted by “Gaussian central
peak and two symmetrical Gaussian satellites” functions (dashed and
solid lines).

B. Magnetic susceptibility

The temperature dependence of χac(T ) in zero magnetic
field, obtained on cooling, is presented in Fig. 4(a) for zero
tension p = 0 (Tb orders magnetically into HAFM phase at
TN = 231.2 K and turns into the FM phase at T1 = 226.5 K)
and for p = 720 bar, the highest tension applied (Tb orders di-
rectly into the FM phase at TC = 232.3 K). The characteristic
anomaly associated with the occurrence of the HAFM phase
at zero tension is clear, as is its absence at p = 720 bar where
the HAFM phase is completely suppressed by applied tension,
see Ref. [36] for the details.

The anomaly associated with the HAFM phase, the main
interest of our study, is as weak as 5% of the total χac value
near TN . It is less than the χac hysteresis with both the mag-
netic field and temperature (up to 15%), which could mask
the studied transitions. To avoid such hysteresis effects, all
the χac(T ) dependencies were obtained on cooling from the
paramagnetic state with the same rate 0.7 K/min. For the same
reason, all the χac(H ) dependencies were obtained on the field
increase after zero field cooling. All these dependencies are
completely reversible with respect to the tension applied.

χac(T ) data in the various magnetic field H values are
presented in Fig. 4(b) both for ambient pressure p = 0 and for
the applied uniaxial tension p = 720 bar. Each pair of χac(T )
dependencies was obtained at the same H value, labeled on
the curves, and plotted against reduced temperature T/Tord.
This comparison highlights the anomaly associated with the

FIG. 4. (a) Temperature dependence of the magnetic suscepti-
bility χac(T ) for the Tb single crystal in zero magnetic field under
ambient pressure p = 0 (open dots) and under uniaxial tension
p = 720 bar (solid dots). TC = 232.3 K is the Curie temperature,
TN = 231.2 K is the Néel temperature, and T1 = 226.5 ± 0.5 K is
the temperature of the “helical antiferromagnet-ferromagnet” tran-
sition. (b) Dependencies of the magnetic susceptibility χac on the
reduced temperature T/Tord, obtained under zero tension (open dots,
magnetic ordering into the helical phase) and under tension p =
720 bar (solid dots, magnetic ordering into the ferromagnetic phase).
Each pair of the dependencies are obtained in the same permanent
magnetic field H , labeled over the curves. The curves are shifted
vertically by an amount proportional to the applied field H for the
sake of clarity. All dependencies were obtained on cooling from
the paramagnetic phase with the same rate. Arrows mark T1, the
temperature of the “helical antiferromagnet-ferromagnet” transition.
Abbreviations: PM-paramagnetic, HAFM-helical antiferromagnetic,
and FM-ferromagnetic phases.

HAFM phase and its suppression caused by increasing the
magnitude of the applied magnetic field. Unexpectedly, T1
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FIG. 5. Typical magnetic field dependencies of the magnetic sus-
ceptibility χac(H ), obtained at zero tension (open dots, magnetic
ordering into a helical antiferromagnetic phase) and under tension
p = 720 bar (solid dots, magnetic ordering into a ferromagnetic
phase). At temperatures (a) T = 0.99Tord (229.3 and 230.5 K, re-
spectively, shifted vertically for clarity) the initial magnetic states
are HAFM and FM respectively, and at (b) T = 0.96Tord (222.2
and 221.9 K respectively) the sample is always ferromagnetic. All
measurements were taken in increasing magnetic field after zero
field cooling. Arrows mark the transition from the helical to the
ferromagnetic phase for p = 0 at H∗ and saturation at Hsat (approx-
imate values). Abbreviations: HAFM-helical antiferromagnetic and
FM-ferromagnetic phases.

appeared to be almost field independent. For H field values
above 800 Oe the dependencies for p = 0 and 720 bar co-
incide within experimental accuracy, while at the lower H
values the anomaly associated with the transition at T1 for
p = 0 is clear. An inspection of the figure allowed us to
associate a threshold value of H∗ ≈ 800 ± 100 Oe.

In Fig. 5, the typical dependence of the susceptibility,
χac(H ), on increasing magnetic field after zero field cooling, is
presented for zero uniaxial tension p = 0 and for p = 720 bar.
The figure, therefore, highlights the anomaly associated with
the HAFM phase in comparison with the ferromagnetically
ordered one. The pair of curves (a) (both shifted up for clar-
ity), obtained at T = 0.99Tord, clearly differ at H < H∗ ≈
800 Oe and coincide above this field value. In contrast, the pair
of curves (b), obtained at T = 0.96Tord well below T1, corre-
spond to the FM phase and coincide within experimental ac-
curacy over the whole magnetic field range. Therefore we con-
clude that the observed difference in case (a), subtle but clear,
corresponds to the presence of the HAFM phase for p = 0,
while this phase is absent for p = 720 bar. The H∗ = 800 Oe
critical value agrees well with that obtained from the χac(T )
data in Fig. 4. We highlight the absence of additional anoma-
lies associated with any presumed intermediate fan state.

C. Temperature-magnetic field phase diagrams
and demagnetizing field

The resulting experimental H-T magnetic phase diagrams
are presented in Fig. 6(a) for p = 720 bar and in Fig. 6(b)

(a)

(b)

(c)

FIG. 6. Temperature-magnetic field phase diagrams for Tb with
the magnetic field H orthogonal to the hexagonal axis: (a) for tension
p = 720 bar, (b) for zero tension p = 0, (c) for zero tension p = 0 af-
ter correction for demagnetization. Squares: Tord (either Néel or Curie
temperature), circles: T1, horizontal line: H∗; obtained from χac(T )
data. Triangles: H∗, diamonds: Hsat ; obtained from χac(H ) data.
Abbreviations: PM-paramagnetic, HAFM-helical antiferromagnetic,
and FM-ferromagnetic (saturated and unsaturated) phases. Lines are
guides for the eye.

for zero tension p = 0. The region associated with the HAFM
phase is unexpectedly rectangular in shape and consequently
it may be characterized by a single value of H∗. This shape
persists within the entire tension range of p < p∗, where p∗ is
the critical value of the tension at which the HAFM state is
fully suppressed.

The values of the demagnetizing magnetic field, even in
this favorable geometry, are comparable to H∗, so a correction
for demagnetization is necessary. The uniform magnetization
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M in this geometry produces a demagnetizing field −D ×
4πM with demagnetizing factor D = 0.07 in the center of
the sample, while ellipsoid of the same proportions as our
sample provides D = 0.10. Figure 6(c) presents the magnetic
phase diagram shown in Fig. 6(b) for the zero tension p =
0, corrected for demagnetization employing D = 0.10 value
and magnetization data from [24]. The values of H∗ that we
have obtained behave similarly to other experimental studies
[20–24] but are slightly higher. It would require the unreal-
istically high demagnetizing factor D ≈ 0.2 to reach a better
agreement.

Figure 6 also shows the value of the magnetic field at which
the magnetization saturates, Hsat. The dependence of Hsat on
temperature for p = 0 exhibits no anomalies near T1 and
coincides with its peer for p = 720 bar within experimental
accuracy, as well as for all the other values of the tension
studied. An additional set of χac(T ) dependencies over the
whole tension range was obtained at H = 1100 Oe, just above
the highest value of H∗. All these dependencies, both below
and above p∗, coincide within the experimental accuracy up
to a regular shift in temperature with the rate 1.0 K/kbar.
There is no sign of additional anomalies associated with the
stabilization of an intermediate phase. We thus identify the
magnetic phase between H∗ and Hsat as an unsaturated FM
state and conclude that a fan phase does not stabilize.

D. Magnetic phase diagrams for the pressure and role of the
Fermi surface topology

Figure 7 summarizes the dependence on uniaxial tension
p of our experimental results. Panel (a) presents the T -p
magnetic phase diagram of Tb at zero magnetic field. Tord and
T1 are obtained from χac(T ) dependencies shown in Fig. 4(b)
for different values of the tension. The HAFM phase is clearly
suppressed by a critical value with an approximate magnitude
of p∗ = 580 bar. For tensions larger than p∗ we observe the
complete elimination of the HAFM phase, in agreement with
Ref. [36]. Interestingly, we have obtained a linear behavior
for the ordering temperature (Tord) at which the paramagnetic
state becomes unstable to the formation of both the ferromag-
netic and the HAFM states, i.e., at Tc and TN , respectively. On
the other hand, the HAFM-ferromagnetic transition tempera-
ture (T1) shows a deviation from linearity with tension p.

The χac(T ) and χac(H ) curves have been used to obtain
the critical magnetic field H∗(p), shown in Fig. 7(b). H∗(p)
decreases from roughly 800 Oe at p = 0 and becomes zero at
p∗. The solid line in this panel is a guide for the eye. The neu-
tron diffraction measurements presented in section II A have
been used to obtain the tension dependence of the reduced
helical wave vector q(p) right below the magnetic ordering
temperature, which we show in Fig. 7(c). For increasing val-
ues of tension the wave vector decreases, i.e., p causes an
increase of the period in real space of the HAFM state until
the FM state is eventually stabilized above p∗. The dashed
line in Fig. 7(c) follows a characteristic behavior of the nesting
vector against pressure, which links to q(p), in the vicinity of a
Lifshitz transition. This corresponds to a qualitative change of
the FS geometry and a continuous change of this wavevector
from a finite to a vanishing value at p∗. p∗ is, therefore, the

(a)

(b)

(c)

(d)

FIG. 7. (a) Uniaxial tension-temperature magnetic phase dia-
gram for Tb in zero magnetic field. Squares: magnetic ordering
temperature Tord, triangles: T1. Curve is a guide for the eye. p∗ is
a critical value. (b) Uniaxial tension dependence of the critical mag-
netic field H∗ (a single value is assumed for the each tension applied).
Triangles: obtained from χac(H ), circles: from χac(T ) dependencies.
Curve is a guide for the eye. (c) Uniaxial tension dependence of
the helical wave vector q at 0.99TN . The dashed curve follows an
expected behavior of the nesting vector Q of the Fermi surface
undergoing a Lifshitz transition at p∗. (d) Sketches of the expected
Fermi surface behavior in the vicinity of the Lifshitz transition at
p∗ in the paramagnetic state (double zone presentation). Q is a
nesting vector, assumed equal to the magnetic helical wave vector q.
Abbreviations: PM-paramagnetic, HAFM-helical antiferromagnetic,
and FM-ferromagnetic phases.
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value of the tension at which the Lifshitz transition occurs.
Figure 7(d) represents a schematic of the corresponding evo-
lution of the FS in the paramagnetic state of Tb under tension
increase around this transition [32,35,36]. Here Q is a nesting
vector that is roughly equal to the magnetic wave vector q
and the origin for the helical magnetic ordering. The observed
behavior of the transition temperature T1, critical field H∗, and
magnetic wave vector q in Tb under uniaxial tension follow
the rootlike dependence characteristic of a Lifshitz transition.

III. THEORETICAL APPROACH

We now compare our results with an analysis from the den-
sity functional theory (DFT)-based disordered local moment
(DLM) theory of finite temperature dependent magnetism
[38–40]. Within this framework we model thermal fluctu-
ations of the orientations of the local magnetic moments,
referred to {ên} at sites n, fully from first-principles by pictur-
ing them as slowly evolving classical parameters that robustly
emerge from the underlying and faster many-electron inter-
actions [38]. In Tb they are predominantly set up by the
occupied f -electron states. The interactions among the highly
localized 4 f electrons are treated by implementing the local
self-interaction correction (LSIC) [41,42]. Statistical averages
over different disordered magnetic configurations {ên} provide
the magnetic Gibbs free energy of materials [40],

G = E ({mn}, H, p) − T Smag({mn}), (1)

where E is an internal magnetic energy that is available from
magnetically constrained DFT calculations and contains the
effect of an applied external magnetic field H and an applied
mechanical stress p. Smag is the entropy associated with the
disorder of the local moment orientations {ên}. G naturally
depends on magnetic order parameters

{mn ≡ 〈ên〉}, (2)

which follows from the statistical averages over {ên}, denoted
by 〈. . . 〉, that are required to obtain the thermal properties.

We have shown that using Gd as a magnetic prototype
for other heavy rare earth elements (HREs) with contracted
lattice parameters consistent with the lanthanide contraction
and applying the DFT-DLM theory results in a very good
description of their magnetism [8,30] as well as that of their
alloys and compounds [43–46]. This is due largely to the
common valence electronic structure [8,30]. In this work, we
build on this treatment and use again Gd as the magnetic
prototype of Tb. One advantage of this strategy is that crystal
field and spin-orbit effects are very small for Gd and so can be
neglected.

In this theoretical model, we have found that Tb passes
from the PM to a HAFM phase at TN and then undergoes
a first order transition to a FM phase at T1 just below TN

[8,30]. We extend this study here. In the absence of an ex-
ternal magnetic field, the HAFM phase is not distorted. For
this situation, we calculate the temperature dependence and
stability of the HAFM and ferromagnetic states, and the effect
of an applied tension p, by introducing two order parameters,
mHAFM and mFM. These describe arrangements of the local or-
der parameters {mn} characterising helical antiferromagnetic
and ferromagnetic order respectively. Since the {ên} are unit

vectors, from Eq. (2) one can see that mHAFM = 1 (mFM = 1)
occurs when {ên} do not thermally fluctuate, i.e., the system is
at the absolute zero temperature and a fully ordered HAFM
(FM) state is stable. Decreasing values of mHAFM or mFM

describe larger and more frequent thermal fluctuations of the
local moment orientations. The fully disordered, paramag-
netic, limit thus corresponds to mHAFM = mFM = 0.

Our DFT-DLM theory [38,39] for the HREs provides the
internal magnetic energy in the following form [8] for both
the HAFM and FM states:

EFM = −S (2)
FMm2

FM − S (4)
FMm4

FM,

EHAFM = −S (2)
HAFMm2

HAFM − S (4)
HAFMm4

HAFM,
(3)

and the corresponding Gibbs free energies are then given by
applying Eq. (1),

GFM = EFM(mFM) − T Smag(mFM),

GHAFM = EHAFM(mHAFM) − T Smag(mHAFM). (4)

{S (2)
FM,S (4)

FM,S (2)
HAFM,S (4)

HAFM} are material-dependent free en-
ergy coefficients [40]. We point out that analytical expressions
for the entropy terms in Eq. (4) are directly provided by
a mean-field treatment in our theory [40]. We calculate
{S (2)

FM,S (4)
FM,S (2)

HAFM,S (4)
HAFM} for different lattice parameters

that directly follow the effect of uniaxial tension that we have
measured experimentally, i.e., for different crystal structures
corresponding to different uniaxial tensions. Once all the co-
efficients and parts of Eq. (4) have been obtained, each of
these equations is minimized with respect to mFM and mHAFM

at different temperatures and lattice parameters. The magnetic
state with the lower free energy is considered as the more sta-
ble one. Further details of our Gibbs free energy calculations
from the DFT-DLM framework are given in Refs. [8,40].

The calculations for p = 0 use hcp lattice parameters that
result in a temperature span of TN − T1 ≈ 5 K, to align with
the experimental measurements. We then model the effect of
increasing values of p by applying an uniaxial strain to these
lattice parameters such that there is a match with the exact ex-
perimental lattice distortion. In particular, a = b decreases by
0.03% and c increases by 0.07% after applying p = 700 bar.
The free energy coefficients that we have computed for our
model of Tb following this prescription and characterizing the
internal magnetic energy in Eq. (3) are

S (2)
FM = 35.26 [meV] + 0.20

[meV

kbar

]
× p,

S (2)
HAFM = 35.36 [meV] + 4 × 10−3

[meV

kbar

]
× p,

(5)

and

S (4)
FM = 2.0 [meV] + 5 × 10−4

[meV

kbar

]
× p,

S (4)
HAFM = −1.4 [meV] + 2 × 10−3

[meV

kbar

]
× p. (6)

Equation (5) confirms how close the two magnetic phases
are in energy and that these leading quadratic terms have
a positive dependence on p, in agreement with our experi-
mental diagram in Fig. 7(a). We point out that S (2)

FM shows
a much larger dependence on p. On the other hand, the
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FIG. 8. Ab initio calculation of the temperature and tension
dependence of the magnetic order parameters and transition temper-
atures between paramagnetic, ferromagnetic, and HAFM phases of
Tb obtained by computing and minimizing the Gibbs free energy.
[(a) and (b)] mFM and mHAFM, the magnetic order parameters for
the ferromagnetic and HAFM phases, as functions of temperature.
The dotted black line indicates the more stable magnetic phase.
(c) Tension-temperature magnetic phase diagram. The vertical dotted
red line indicates the predicted critical value of the tension p∗ at
which the HAFM is fully suppressed. Axis for the temperature are
given normalized to Tord at p = 0, i.e., TN .

quartic coefficients in Eq. (6) are very small for both the
ferromagnetic and HAFM states, which is in sharp contrast
with heavier rare earth elements, such as Dy and Ho [8].
However, their presence is still the fundamental origin of the
HAFM-ferromagnetic phase transition at T1.

Figures 8(a) and 8(b) show the corresponding magnetic or-
der parameters associated with the ferromagnetic and HAFM
states, mFM (continuous red line) and mHAFM (dashed blue
line), respectively. We obtain them by minimizing the in-
dividual Gibbs free energies given in Eq. (4) at different
temperatures normalized to Tord at p = 0, i.e., TN . The dot-
ted black line is used to indicate the magnetic phase with
the lower free energy, which corresponds to the more stable
one. In good agreement with the experimental measurements,
our calculations demonstrate that the change of the crystal
structure induced by p ≈ 600 bar is sufficient to cause a
suppression of the HAFM state. Furthermore monitoring how
T1 and Tord (either Tc or TN ) vary provides a first-principles es-
timation of the corresponding magnetic phase diagram, which
we show in Fig. 8(c). It agrees very well with the experimental

M K

HL

M K

HL

mFM = 0 mFM = 0.1

(a) (b)

FIG. 9. The Bloch spectral function for the HKLM plane at the
Fermi energy calculated in (a) the paramagnetic state and (b) the FM
state (for mFM = 0.1), of Tb using Gd as its magnetic prototype when
p = 0. The second figure indicates the effect of strong short-range
FM correlations on the FS reducing the nesting.

one shown in Fig. 7(a). We correctly find that the change of the
HAFM-FM transition temperature with p is positive, giving
a value of dT1/d p = 10 K/kbar (dT1/d p ≈ 7.5 K/kbar for
low tensions in experiment). However, we compute an almost
constant Néel temperature while experimentally an increase is
evident.

A discrepancy between the ab initio theory model and
the experimental measurements arises, however, from the
pressure dependence of the wave vector which describes the
helical magnetic order of the HAFM phase. In the theory
as in the experiment, the wave vector is set by nesting in
the paramagnetic (mFM = mHAFM = 0) Fermi surface of the
valence electrons. In our calculations, this value is approxi-
mately equal to q ≈ 0.19 2π

c as shown in Fig. 9(a), although
nesting is already fairly weak for the case of Tb. However, we
have found that q shows negligible decrease for the values of
p that suppress the HAFM phase. Indeed our calculations find
a Lifshitz FS transition to occur at a higher tension [30,32].
The theory shows instead a discontinuous change of q at p∗
where the free energy for the FM phase drops below that of
the HAFM state. Increasing p weakens the incommensurate
HAFM magnetic correlations relative to the FM ones but does
not remove them entirely at p∗. In Ref. [8], we showed how
magnetic field application or growing long-range ferromag-
netic order destroys the FS nesting in the HREs and triggers
the first order transition from HAFM to FM via a fan phase.
In the case of Tb, where the region between the phases is so
narrow and the separation between T1 and TN rather small,
it is likely that the Lifshitz FS transition not being coinci-
dental with the HAFM-FM transition with applied tension is
a shortcoming of our mean field treatment of the magnetic
correlations. Close to Tord both FM and HAFM correlations
are strong and the former large enough in extent to affect
the valence electronic structure and weaken the FS nesting.
Figure 9(b) illustrates this point by showing how the FS
changes when an overall small FM magnetic order mFM = 0.1
is present.

IV. CONCLUSION

The temperature-magnetic field phase diagram and
wave vector characterizing the helical incommensurate
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antiferromagnetic state of a terbium single crystal have been
studied as functions of applied uniaxial tension along the
hexagonal c axis, with a magnetic field applied within the
basal plane. The region associated with the helical antiferro-
magnetic phase has been tracked to its collapse under tension
p∗ ≈ 600 bar. No evidence of an intermediate “fan phase”
has been observed. The dependencies of the characteristic
temperature, critical magnetic field and helical wave vector on
tension are consistent with the occurrence of a strain-induced
Lifshitz transition at p∗, being responsible for this collapse.
A finite-temperature ab initio theory using a Gd prototypical
model of the heavy rare earth metals adapted for Tb has
been applied to analyze the results. The theory provides a
temperature-tension magnetic phase diagram which agrees

very well with our experimental measurements. It does not,
however, find a Lifshitz transition in the FS at the critical
tension p∗ although nesting of Tb’s FS is weak but evident.
This discrepancy highlights how it is important to account for
the effects of both short- and long-range ferromagnetic order
on the valence electrons in Tb close to Tord.
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