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The discovery of spontaneous magnetism in van der Waal (vdW) magnetic monolayers has opened up an
unprecedented platform for investigating magnetism in purely two-dimensional systems. Recently, it has been
shown that the magnetic properties of vdW magnets can be easily tuned by adjusting the relative composition of
halides. Motivated by these experimental advances, here we derive a model for a trihalide CrClBrI monolayer
from symmetry principles and we find that, in contrast to its single-halide counterparts, it can display highly
anisotropic nearest- and next-to-nearest neighbor Dzyaloshinskii-Moriya and Heisenberg interactions. Depend-
ing on the parameters, the DM interactions are responsible for the formation of exotic chiral spin states, such
as skyrmions and spin cycloids, as shown by our Monte Carlo simulations. Focusing on a ground state with a
two-sublattice unit cell, we find spin-wave bands with nonvanishing Chern numbers. The resulting magnon edge
states yield a magnon thermal Hall conductivity that changes sign as a function of temperature and magnetic
field, suggesting chromium trihalides as a candidate for testing topological magnon transport in two-dimensional
noncollinear spin systems.

DOI: 10.1103/PhysRevB.104.174434

I. INTRODUCTION

While spin phenomena in two dimensions have been sub-
jected to intense scrutiny for decades, only recently have
vdW magnets emerged as a concrete platform for the ex-
ploration of two-dimensional (2d) magnetism [1–4]. In most
of these compounds, a long-range order is stabilized by an
in-plane or out-of-plane magnetic anisotropy that circumvents
the restrictions of the Mermin-Wagner theorem [2,3,5–10].
Monolayers of chromium halides CrX3 (X=Cl,Br,I) have
been proposed as a testbed for the Berezinskii-Kosterlitz-
Thouless universality class that has been long sought in
magnetic systems [11–15]. Their honeycomb lattice struc-
ture has opened up opportunities to investigate Dirac bosons,
whose statistics and interactions drastically differed from their
far more scrutinized electronic counterpart [16]. With strong
spin-orbit coupling (SOC) and an edge-sharing octahedra
structure, vdW ferromagnets can display a bond-directional
anisotropic exchange interaction, i.e., the Kitaev interaction
[17–19], providing a route for the investigation of spin liquid
states with spin S = 3/2 [20]. Furthermore, the lattice struc-
ture symmetry allows for next-to-nearest neighbor (NNN)
out-of-plane Dzyaloshinskii-Moriya (DM) interactions. NNN
DM interactions on a honeycomb ferromagnetic lattice play
a role analogous to SOC in graphene: Magnons accumulate
an additional phase upon propagation between NNN sites and
topologically nontrivial edge states can emerge [21–23].

The variety of magnetic regimes displayed by vdW mag-
nets can be further enriched by tuning their properties through
electric fields, proximity effects, or chemical doping [24–31].
Recently, Tartaglia et al. [32] have shown that the mag-
netic anisotropy of chromium halides can be continuously
tuned by adjusting the relative composition of halides. Impor-

tantly, varying the ratio of ligands not only affects the overall
anisotropy but also leads to a crystalline structure with a lower
symmetry group than its stoichiometric counterpart.

Motivated by these experimental advances, in this work we
investigate the magnetic properties of a chromium trihalide
CrClBrI layer, shown in Fig. 1. We show that the richness
of spin-spin interactions can lead, depending on the param-
eters, to topological magnon phases and to a wide array of
noncollinear spin states and magnetic defects.

This work is organized as follows: In Sec. II, we establish
a Hamiltonian spin model for a chromium trihalide CrClBrI
layer. In Sec. III, we explore a set of system parameters
corresponding to a two-sublattice ground state. In this regime,
we show that the spin-wave bands can have nonvanishing
Chern number, which signals the presence of topologically
protected edge states. We investigate the contribution of these
edge states to the magnon thermal Hall effect [33–36]. Finally,
in Sec. IV, we demonstrate using Monte Carlo techniques that
our model can support exotic noncollinear ground states such
as spin cycloids and Bloch and Néel skyrmions.

II. MODEL

Let us consider a monolayer of chromium trihalide
CrClBrI. The magnetic Cr atoms are arranged on a hon-
eycomb lattice and each ith site ri carries a spin moment
Si = (Sx

i , Sy
i , Sz

i ). The spin-spin interactions between Cr atoms
are mediated by the nonmagnetic ligands (Cl, I, and Br) lying
out of the Cr plane, as shown in Fig. 2(a). The distribution
of ligands breaks the C3 symmetry of the honeycomb lattice
and allows interactions to be bond dependent. The nearest-
neighbor (NN) Heisenberg exchange term can be generally
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FIG. 1. Lattice structure of a chromium trihalide monolayer. The
magnetic atoms (Cr) are arranged in a honeycomb lattice. The Cr-Cr
coupling is mediated by I, Cl, and Br ligands. Solid colored dots
refer to atoms above the Cr plane and open dots refer to atoms below
the Cr plane. In this work, we explore the emergence of topologi-
cally protected magnon edge states that yield a thermal Hall flow,
transverse with respect to the direction of an applied temperature
gradient �T .

(a) (b)

(c)

FIG. 2. (a) The bond geometry is shown. A and B label the two
magnetic sublattices of the honeycomb lattice, while αn and βn label,
respectively, the NN and NNN bond vectors, with n = 1, 2, 3. The
length of the NNN bond is a, i.e., |βn| = a. On the α1 bond, the
mirror plane is shown in purple, along with the NN DM vector
(red arrow). The NNN DM vector is shown in red on the β2 vector.
(b) The NN bond geometry along the hopping direction defined by
α1, mediated by a Cl below the plane and Br above the plane. The
purple plane containing both Cr atoms and the two mediating halides
is a mirror plane: By Moriya’s rules, the DM vector D1 (red arrow)
is constrained to be perpendicular to this plane. (c) The NNN bond
geometry along the hopping direction defined by β2. The red arrow
represents the NNN DM vector D′

2,A.

written as

HNN
J = −

∑
〈i, j〉

Ji jSi · S j, (1)

where 〈..〉 denotes summation over the nearest neighbors and
Ji j is the bond-dependent ferromagnetic exchange coupling.
Here, Ji j takes the values J1, J2, or J3 for the NN bond along
α1, α2, and α3, respectively. The bond geometry is shown in
Fig. 2(a).

In addition, the SOC allows for an antisymmetric ex-
change, i.e., a Dzyaloshinskii-Moriya (DM) interaction be-
tween both NN and NNN atoms. The NN DM interaction
contribution to the Hamiltonian reads

HNN
DM = −

∑
〈i, j〉

Di j · (Si × S j ). (2)

The DM vectors are determined by Moriya’s rules [37]
according to the local symmetry of the bond. Similar to the
NN Heisenberg interaction (1), the DM strength is bond de-
pendent, i.e., Di j = Dn, with n = 1, 2, 3. On the αn bond,
the plane containing the Cr atoms and mediating ligands is
a mirror plane of the bond; thus, Dn is perpendicular to this
mirror plane:

Dn = Dnγ̂n, (3)

where γ̂1(2) = (− 1√
6
,± 1√

2
, 1√

3
), and γ̂3 = (

√
2
3 , 0, 1√

3
) are the

unit vectors perpendicular to the mirror plane, depicted in
Fig. 2(b).

The SOC also allows for a NN Kitaev interaction [38],
which can be written as

HNN
K = −

∑
〈i, j〉

Ki jS
γn
i Sγn

j , (4)

where Sγn
i = Si · γ̂n and Ki j = Kn. We can combine Eqs. (1),

(2), and (4) by writing

HNN = HNN
J + HNN

DM + HNN
K =

∑
〈i, j〉

ST
i �nS j, (5)

where

�n =

⎡
⎢⎣

−Jn −Dz
n Dy

n

Dz
n −Jn −Dx

n

−Dy
n Dx

n −Jn

⎤
⎥⎦ − Knγ̂n ⊗ γ̂n (6)

is the NN interaction matrix, and n is understood to index the
〈i, j〉 bond type. The NNN Heisenberg and DM interactions
can be included as

HNNN = −
∑
〈〈i, j〉〉

J ′
i jSi · S j −

∑
〈〈i, j〉〉

D′
i j · (Si × S j ), (7)

where 〈〈..〉〉 denotes summation over next-to-nearest neigh-
bors. Here, J ′

i j and D′
i j are, respectively, the bond-dependent

NNN Heisenberg and DM interaction strength. There are
three distinct NNN bonds on each of the two sublattices
for a total of six possible NNN exchange parameters. For
the sublattice s = A, B, the bond along the hopping direc-
tion ±βn, sketched in Fig. 2(a), mediates a Heisenberg
exchange J ′

i j = J ′
n,s and a DM interaction D′

i j = ±D′
n,s. The

lack of point-group symmetries provides no restriction on the
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NNN DM vectors according to Moriya’s rules. Thus, the NNN
DM vector D′

n,s can be generally written in terms of the local
bond geometry as

D′
n,s = (D′

n,s sin θ̃n,s)Rz(φ̃n,s)β̂n + τs(D
′
n,s cos θ̃n,s)ẑ, (8)

where β̂n = βn/|βn|, Rz(φ̃n,s) describes a right-handed rota-
tion by an angle φ̃n,s about the ẑ axis and τA(B) = ±1. The
angles θ̃n,s and φ̃n,s are the spherical coordinates of D′

n,s with
azimuthal angle measured relative to the βn bond on the
s sublattice; this geometry is shown in Fig. 2(c). When
the mediating halides are of the same type, the axis bisect-
ing the bond vector through the mediating Cr is a two-way
rotation axis, which constrains φ̃n,B = 0.

We can rewrite Eq. (7) in a compact form as

HNNN =
∑
〈〈i, j〉〉

ST
i �n,sS j, (9)

with

�n,s =

⎡
⎢⎣

−J ′
n,s −D′z

n,s D′y
n,s

D′z
n,s −J ′

n,s −D′x
n,s

−D′y
n,s D′x

n,s −J ′
n,s

⎤
⎥⎦. (10)

Further, we include a single-ion anisotropy term, HA, and a
Zeeman interaction, HB, due to a uniform external magnetic
field B = Bẑ as

HA + HB = −A
∑

i

(
Sz

i

)2 − gμBB
∑

i

Sz
i , (11)

where A > 0 parametrizes the strength of the easy-axis
anisotropy [32], g is the g factor, and μB is the Bohr magneton.

At each magnetic site, we can orient a spin-space Cartesian
coordinate system such that the new ẑ axis locally lies along
the classical orientation of the onsite spin operator S̃i. The
latter can be related to the spin operator Si in the global frame
of reference via the transformation

Si = Ri(θi, φi )S̃i. (12)

Here, Ri(θi, φi ) = Rz(φi )Ry(θi ), where Rz(y)(ζ ) describes a
right-handed rotation by an angle ζ about the global ẑ (ŷ) axis,
and θi and φi are, respectively, the polar and azimuthal angles
of the classical orientation of the spin Si. Equations (5), (9),
and (11) can be combined into the full Hamiltonian in local
coordinates as

H =
∑
〈i, j〉

S̃T
i �̃nS̃ j +

∑
〈〈i, j〉〉

S̃T
i �̃n,sS̃ j

− A
∑

i

(RiS̃i )
2
z − μBB

∑
i

(RiS̃i )z, (13)

where (·)μ is the μ component of a vector. Here, we have
introduced the rotated interaction matrices �̃n = RT

i �nR j and
�̃n,s = RT

i �n,sR j .

BdG Hamiltonian

Far below the magnetic ordering temperature Tc, i.e., for
T � Tc, we can access the magnon spectrum by linearizing
the Holstein-Primakoff transformation [39] in the local frame

of reference, i.e.,

S̃+
i = S̃x

i + iS̃y
i =

√
2S

√
1 − d†

i di

2S
di ≈

√
2Sdi,

S̃z
i = S − d†

i di, (14)

where S is the classical spin (in units of h̄) and di (d†
i ) the

magnon annihilation (creation) operator at the ith site, obey-
ing the bosonic commutation relation [di, d†

j ] = δi j . We plug
Eq. (14) into Eq. (13) and truncate the Hamiltonian beyond
the quadratic terms in the Holstein-Primakoff boson operators
since interactions between magnons can be neglected in the
temperature regime of interest. We group terms constant in
magnon operators in the classical energy term ECl ({θi, φi}|i )
[40]. Minimization of ECl with respect to {θi, φi}|i gives the
ground-state spin configuration. Here, we focus on a ground
state with two-sublattice translational symmetry, i.e.,

Si = S(cos φs sin θs, sin φs sin θs, cos θs), (15)

where s = A, B. The classical energy then takes the form

ECl ({θi, φi}|i )/N = ECl (θA, φA, θB, φB)/N

= −gμBBS(cos θA + cos θB)

− AS2(cos2 θA + cos2 θB) + S
3∑

n=1

�̃zz
n ,

(16)

where N is the total number of Cr atoms in the sample.
Equation (16) can be minimized by gradient descent or Monte
Carlo methods.

In what follows, we relabel the operator di as ai (bi) on
the A (B) sublattice. We can introduce the magnon operators
in momentum space, i.e., ak and bk, by performing a Fourier
transformation:

ai =
√

2

N

∑
k

eik·ri ak, bi =
√

2

N

∑
k

eik·ri bk, (17)

where k = (kx, ky) is the 2d wave vector and the summation
is taken over the first Brillouin zone. Substituting Eq. (17) into
the Hamiltonian (13) yields

H = 1

2

∑
k

ψ
†
kHBdG(k)ψk, (18)

where ψ
†
k = [a†

k, b†
k, a−k, b−k] and

HBdG(k) =
[

h(k) �(k)

�∗(−k) h∗(−k)

]
(19)

is a 4 × 4 Bogoliubov de Gennes (BdG) Hamiltonian. Here,
h(k) and �(k) are 2 × 2 matrices satisfying h†(k) = h(k) and
�T (k) = �(−k). Introducing

�̃±
n = �̃xx

n ± �̃yy
n + i

(
�̃yx

n ∓ �̃xy
n

)
,

�̃±
n,s = �̃xx

n,s ± �̃yy
n,s + i

(
�̃yx

n,s ∓ �̃xy
n,s

)
, (20)
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the submatrices h and � can be written explicitly as

h11(k) = gμBB cos θA + 6AS

2
cos2 θA − AS

− S
3∑

n=1

[
�̃zz

n + 2�̃zz
n,A − Re

(
�̃+

n,Aeik·βn
)]

,

h22(k) = gμBB cos θB + 6AS

2
cos2 θB − AS

− S
3∑

n=1

[
�̃zz

n + 2�̃zz
n,B − Re

(
�̃+

n,Beik·βn
)]

,

h12(k) = S

2

3∑
n=1

�̃+
n e−ik·αn , h21(k) = h∗

12(k), (21)

and

�11(k) = −AS sin2 θA, �22(k) = −AS sin2 θB, (22)

�12(k) = S

2

3∑
n=1

�̃−
n e−ik·αn , �21(k) = �12(−k). (23)

Since the system is bosonic, the Hamiltonian HBdG(k)
must be diagonalized by a paraunitary BdG transformation
[41–43]. In other words, one should diagonalize the effective
Hamiltonian

H̃(k) = �zHBdG(k), �z = σz ⊗ 12×2, (24)

where we have introduced the third Pauli matrix σz and the
2 × 2 identity matrix 12×2. We label the M = 2 positive eigen-
values and associated eigenvectors of H̃(k) as, respectively,
Em(k) and |m(k)〉. The remaining M states with negative
eigenvalues −Em(−k) are an artifact of doubling the degrees
of freedom and can be discarded.

III. TOPOLOGICAL MAGNONS

A. Topological classification

The topological classification of the Hermitian ma-
trix HBdG(k) reduces to the classification of the effective
Hamiltonian H̃(k), which is generally non-Hermitian [41,44].
However, the Hermiticity of the physical system guarantees
that the effective matrix H̃(k) has a built-in pseudo-
Hermiticity symmetry, i.e.,

η−1H̃†(k)η = H̃(k), η = �z. (25)

Furthermore, the Hamiltonian H̃(k) obeys particle-hole
symmetry (PHS), i.e.,

CH̃T (k)C−1 = −H̃(−k), C = σy ⊗ 12×2. (26)

However, as discussed in detail by Refs. [41,44,45], for
free bosons, particle-hole symmetry should be regarded as a
built-in constraint of the Bogoliubov-de-Gennes Hamiltonian
(19), rather than as a physical symmetry that can be selectively
broken. Thus, the topological classification of H̃(k) should
effectively neglect Eq. (26).

When �̃
xy
n,s = �̃

yx
n,s = 0 and �̃

xy
n = �̃

yx
n = 0, the magnon

Hamiltonian obeys time-reversal symmetry, i.e.,

T H̃∗(k)T −1 = H̃(−k), T = 14×4. (27)

Generally, Eq. (27) holds in the absence of Kitaev or DM
interactions, i.e., when D′

n,s = Dn = Kn = 0 for each n. In this
case, the Hamiltonian belongs to the symmetry class AI + η+
[41], which corresponds to a topologically trivial phase.

In the presence of finite Kitaev or DM interaction, the
relevant symmetry class is A + η [41], which supports a topo-
logically nontrivial phase characterized by a nonvanishing
Chern number [42]. The (bosonic) Chern number of the mth
band can be written as

cm = 1

2π

∫
BZ

d2k �z
m(k), (28)

where

�m(k) = ∇k × i 〈m(k)| ∇k |m(k)〉 (29)

is the Berry curvature on the mth band.

B. Topological edge states

Using the values in Table I, the minimization of Eq. (16) by
direct gradient descent yields the spin equilibrium positions
θA ≈ 0.41, θB ≈ 0.39, φA ≈ 0.18, and φB ≈ 0.18. The bands
acquire a nonzero Chern number, i.e., cm = ±1 for m = 1(2).

We find that NN, NNN DM, and Kitaev interactions can
break time-reversal symmetry and open Chern-insulating gaps
in the magnon spectrum. Figure 3(a) shows the gapped spec-
trum for the parameters of Table I. Due to the lack of C3

rotation symmetry, the Dirac nodes are not globally stable
and the local maxima of the Berry curvature are shifted off
the high symmetry point K and K′, as shown in Fig. 3(b). By
varying the anisotropy of our parameters, we find that the two
Dirac nodes can meet up and annihilate at the M point.

The open boundary condition spectrum that results from
exact diagonalization of Eq. (24) in a ribbon geometry with
zigzag and armchair edges are presented in Figs. 3(c) and 3(d).
Two topologically-protected dispersive magnon modes, local-
ized at the edges of the ribbon [see Figs. 3(e) and 3(f)], emerge
as a consequence of the topologically nontrivial character of
the magnon bands.

C. Thermal Hall effect

It is well known that a temperature gradient can induce
a magnon transverse heat current in systems with topologi-
cally nontrivial magnon bands [33,36,46–50]. The (intrinsic)
magnon thermal Hall conductivity can be calculated as [35]

κxy(T ) = − T

4π2

2∑
m=1

∫
BZ

d2k �z
m(k)c2[gT (Em(k))], (30)

where kB = h̄ = 1, gT (x) = (ex/T − 1)−1 is the Bose-Einstein
distribution function and

c2(x) = (1 + x)

[
log

(
1 + x

x

)]2

− (log x)2 − 2Li2(−x).

(31)

Here, Lis(z) is the polylogarithm of order s and argument z.
Figure 4(a) shows that, at low temperature, κxy(T ) displays a
surprising change of sign. The sign change can be understood
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TABLE I. Parameters used in the numerical diagonalization of H̃(k) (24). All energy scales are in meV and angles are in radians.

S = 3/2 gμBB = 0.25 A = 0.22 J1 = 1.2 J2 = 1.5 J3 = 1.8

K1 = 0.7 K2 = 0.5 K3 = 1.1 D1 = 0.2 D2 = 0.3 D3 = 0.6
J ′

1,A = 0.2 J ′
2,A = 0.4 J ′

3,A = 0.2 J ′
1,B = 0.1 J ′

2,B = 0.3 J ′
3,B = 0.4

D′
1,A = 0.4 D′

2,A = 0.2 D′
3,A = 0.25 D′

1,B = 0.5 D′
2,B = 0.15 D′

3,B = 0.05
θ̃1,A = −0.17 θ̃2,A = −0.07 θ̃3,A = 0.22 θ̃1,B = −0.37 θ̃2,B = −0.47 θ̃3,B = −0.57
φ̃1,A = 0.3 φ̃2,A = −0.8 φ̃3,A = 0.2 φ̃1,B = 0 φ̃2,B = 0 φ̃3,B = 0

by rewriting Eq. (30) as

κxy(T ) = − T

4π2

2∑
m=1

∫
BZ

d2k κ̃m(k),

κ̃m(k) = �z
m(k)c2[gT (En(k))]. (32)

Here, κ̃m(k) is proportional to the contribution to κxy(T )
from the mth band at the momentum k. Since c2 is positive
and monotonically increasing, the sign of κ̃m(k) depends only
on �z

m(k). For the lower magnon band, the Berry curvature

�z
1(k) has a negative sign in the neighborhood of the � point,

while it is positive around the gap-closing points near K
and K′. At lower temperatures, only states in the lower band
in the vicinity of the � point are populated. The factor of
c2[gT (En(k))] suppresses finite contribution to κ̃1(k) at recip-
rocal lattice points except those close to �. As T increases,
the states at the gap-closing points near K and K′ become
populated and, due to their large negative Berry curvature,
come to dominate κ̃1(k). This leads to the sign change of
the thermal Hall conductivity κxy(T ) at T ≈ 0.7 meV, shown
in Fig. 4(b).

FIG. 3. (a) Spin-wave dispersion. (b) The z-component �z
1(k) of the Berry curvature (29). The first Brillouin zone is indicated by a white

hexagon. The local maxima of the Berry curvature are shifted off of the high symmetry points K and K′ of the Brillouin zone due to C3

symmetry breaking. (c),(d) Exact diagonalization of Eq. (19) in a ribbon geometry with zigzag and armchair terminations, respectively, and
30 unit cells width. In both cases, the spectrum displays two topologically protected edge states (blue and red line). Two bulk states are also
highlighted in orange. (e),(f) The eigenstates of the highlighted modes in (c),(d) are shown. The edge states are exponentially confined to the
top and bottom of the sample, whereas the bulk states are delocalized Bloch states.
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FIG. 4. (a) Thermal Hall conductivity (30) as a function of temperature. (b) The contribution of the lower band to the thermal Hall
conductivity along a path of high symmetry in the BZ at various temperatures. In the subplots (c)–(f) the temperature is set at T = 0.86 meV
and the x axis of each subplot is a ratio of a parameter value to its initial value obtained in Table I, indicated by the superscript (0). The
spins equilibrium positions are recalculated for each data point. Dependence of the thermal Hall conductivity (30) on the (c) magnetic field B;
(d) NN DM magnitude Dn (Dn is increased for n = 1, 2, 3, i.e., Dn/D(0)

n is equal for each bond); (e) NNN DM magnitude D′
n,s; (f) NN

Heisenberg exchange strength J1.

Another sign change in the thermal Hall conductivity κxy

occurs when the magnitude of the magnetic field is increased,
as depicted in Fig. 4(c). Increasing the magnetic field yields
to an overall shift of the bands to higher energies. As a result,
states that once populated the region near K become energet-
ically unfavorable while states near � remain populated, thus
causing the sign of κxy to change.

The influence of the NNN and NN DM interaction on
the thermal Hall flow is depicted, respectively, in Fig. 4(d)
and Fig. 4(e). The NN (NNN) DM interaction change both
the matrix elements of �n (�n,s) as well as the ground state
configuration, which in turn modifies the overall structure
of �m and Em. The result is that κ̃1 near �, which is the
primary contribution to κxy, increases with D′

n,s/D′(0)
n,s and de-

creases with Dn/D(0)
n . Increasing either DM magnitude further

causes the ground state to leave the uniform regime and our
earlier assumption of two-sublattice translational symmetry
breaks down.

In Fig. 4(f), the NN Heisenberg exchange along α1 is
increased. Initially, this leads to κxy increasing, but around
J1/J (0)

1 ≈ 3, the anisotropy becomes high enough to push the
Dirac nodes together at M, where they annihilate, and the
system enters a topologically trivial phase.

IV. MONTE CARLO SIMULATIONS

Throughout our discussion, we have focused on a ground
state with a two-sublattice translational symmetry and we
have shown that the symmetry-breaking interactions, i.e., NN
and NNN DM and Kitaev, can give rise to topologically
nontrivial spin-wave bands. In this last section, we show that
changing the strength and/or the anisotropy of the symmetry-
breaking spin interactions can yield spin textures that have
a nontrivial real-space topology. The large parameter space
allows for a wide variety of noncollinear ground states that can
be accessed by Markov-Chain Monte Carlo (MCMC) [51,52],
which we have used to verify that the values given in Table I
correspond to a two-sublattice ground state.

Taking a 20 × 20 lattice subject to periodic boundary con-
ditions, we perform annealed Metropolis MCMC followed by
gradient descent, guaranteeing that the solution is at least a
local minima (metastable state), if not the true ground state.
In Fig. 5(a), we show the ground state using values obtained
in Table I has a two-sublattice periodicity; the polar and az-
imuthal angles of the spin moments agree to within 1% of
those obtained by gradient descent. In the remaining figures,
we explore other parameter regimes. Figure 5(b) shows a
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FIG. 5. Ground state spin textures obtained by MCMC. Each plot
shows the classical spin moments projected onto the xy plane, where
blue lines indicate a positive z component and red lines indicate
a negative z component. (a) The ground state for the values given
in Table I. (b) A spin cycloid. (c),(d) Bloch and Néel skyrmions,
respectively.

spin cycloid, while Figs. 5(c) and 5(d) show Bloch and Néel
skyrmions, which emerge when there is a strong enough NNN
or NN DMI, respectively [53–56].

V. CONCLUSIONS

In this work, we have constructed a model for a CrClBrI
monolayer, though an appropriate choice of parameters re-

duces our model to a generic two-sublattice translationally
symmetric CrCl3−x−yBrxIy monolayer. Focusing on a linear
spin-wave regime and on a ground state with a sublattice
unit cell, we have shown that (both NN and NNN) DMI and
the Kitaev interactions can drive the system into a magnon
Chern insulating phase. The topologically protected magnon
edge states associated with nonvanishing Chern numbers yield
a thermal Hall effect. We find that the sign of the thermal
Hall conductivity can be controlled by tuning temperature and
external magnetic fields.

Finally, we show that our spin model can support a vari-
ety of ground states depending on the choice of parameters,
including magnetic topological defects. Chromium trihalides
have also been proposed as possible hosts of quantum spin
liquids (QSL) [18,20]. However, the experimental results of
Tartaglia et al. [32] show that CrClBrI has a frustration index
of f ∼ 2, which suggests that the magnetic interactions are
not sufficiently frustrated to support a QSL ground state. It is
also worth noting that, while it may be possible in principle
for the model presented in the present work to support a QSL
ground state, our Monte-Carlo simulations show that—for the
parameters considered in this analysis—the ground state spin
arrangement is not frustrated. We hope that our results will
stimulate systematic ab initio and experimental investigations
of the coupling strengths introduced in our model.
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