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Octupolar order and Ising quantum criticality tuned by strain and dimensionality:
Application to d-orbital Mott insulators
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Recent experiments have discovered multipolar orders in a variety of d-orbital Mott insulators. Motivated by
uncovering the exchange interactions which underlie octupolar order proposed in osmate double perovskites,
we study a two-site model using exact diagonalization on a five-orbital Hamiltonian, incorporating spin-orbit
coupling and interactions, and including both intraorbital and interorbital hopping. Using an exact Schrieffer-
Wolff transformation, we then extract an effective pseudospin Hamiltonian for the non-Kramers doublets,
uncovering dominant ferrooctupolar coupling driven by the interplay of two distinct intraorbital hopping terms.
Using classical Monte Carlo simulations on the face-centered cubic lattice, we obtain a ferrooctupolar transition
temperature which is in good agreement with experiments on osmate double perovskites. We also explore the
impact of uniaxial strain and dimensional tuning via ultrathin films, which are shown to induce a transverse field
on the Ising octupolar order. This suppresses Tc and potentially allows one to access octupolar Ising quantum
critical points. We discuss possible implications of our results for a broader class of materials which may host
such non-Kramers doublet ions.

DOI: 10.1103/PhysRevB.104.174431

I. INTRODUCTION

Multipolar orders have been extensively studied in f -
electron compounds [1–16] where spin-orbit coupling and
interactions dominate over weaker crystal-field effects. How-
ever, there is growing evidence for such exotic higher
multipoles in a wide range of heavy d-orbital metals such
as LiOsO3 and Cd2Re2O7, which may exhibit odd-parity ne-
matic orders [17,18] or quadrupolar orders as proposed in
A2OsO4 (with A = K,Rb,Cs) [19].

Recent work from various groups have also begun to ex-
plore such orders in the Mott insulator regime, where a local
picture provides a useful starting point. For d orbitals in an
octahedral crystal field, the t2g single-particle levels are split
by SOC, resulting in a fourfold degenerate, jeff =3/2, ground
state and a doubly degenerate, jeff =1/2, excited state. These
levels can realize interesting multipolar phases at different
electron fillings. For instance, d1 Mott insulators can realize
the magnetism of jeff = 3/2 spins. Theoretical studies of such
moments on the fcc lattice have shown that they can lead to
wide regimes of quadrupolar order [20–22] which may coexist
with conventional dipolar magnetic order or valence bond
orders [23]. Experiments on 5d1 oxides, Ba2NaOsO6 with
Os7+ [24,25] and Ba2MgReO6 with Re6+ [26], have found
evidence for two phase transitions, with a higher temperature
quadrupolar ordering transition followed by dipolar ordering
at a lower temperature.

In this paper, we focus on d2 Mott insulators, where
Refs. [20,21,27,28] have argued for a local J =2 spin moment,
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which can lead to various exotic orders including quadrupo-
lar phases. We have recently reexamined this issue [29,30]
and shown that virtual excitations into the high energy eg

orbitals split the fivefold degeneracy of the J =2 moment as
2(Eg) ⊕ 3(T2g), resulting in a ground state non-Kramers Eg

doublet carrying quadrupolar and octupolar moments. We had
proposed, on phenomenological grounds, that ferro-octupolar
(FO) order of these local moments provides a compre-
hensive understanding [29,30] of the time-reversal breaking
phase transition observed in cubic-ordered double perovskite
Mott insulators, Ba2ZnOsO6, Ba2CaOsO6, and Ba2MgOsO6,
which host a 5d2 configuration on Os [31–35]. It is tempting
to speculate that this Ising FO order might provide a template
for storing information. Interestingly, our theory of octupolar
order is reminiscent of, but distinct from, an old proposal by
van den Brink and Khomskii [36] of complex eg orbital order
in the colossal magnetoresistive manganites, which explored
time-reversal breaking in the single-particle eg orbitals.

Despite the seeming success of our proposal, our previ-
ous work did not fully identify the microscopic origin of
the octupolar exchange, although it did correctly identify
the mechanism by which quadrupolar exchange can get sup-
pressed. In particular, there was no theoretical basis starting
from a model of interacting spin-orbit coupled electrons. This
gap has been partially filled by a very recent study which com-
bines density functional theory (DFT) and dynamical mean
field theory (DMFT) calculations [37], and finds unequivo-
cal evidence of FO exchange-however, it is still desirable to
clarify the origin of FO order using a model tight-binding
Hamiltonian. Meanwhile, several competing theories have
emerged for the phase transition observed in these osmates.
One proposal argues for antiferro-octupolar (AFO) order-
ing of the Eg doublets [38]. Other studies have argued for
antiferro-quadrupolar (AFQ) orders based on a second-order
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perturbation theory calculation of the exchange interactions
between non-Kramers doublets, while also including coupling
to Jahn-Teller active phonons [39,40]. However, the latter
results do not naturally explain the time-reversal symmetry
breaking observed in experiments. Motivated by these de-
velopments, we consider here a five-orbital model for two
neighboring sites, which we solve using numerical exact di-
agonalization (ED) to extract the exchange interactions. We
find dominant FO exchange, in qualitative agreement with the
DFT and DMFT study [37], and identify a combination of
two distinct intraorbital hoppings as the driving force for FO
exchange. Our results for the weaker quadrupolar terms do not
precisely match the DFT and DMFT study [37]; we attribute
these differences to differences in methodology. However, our
ED results are strikingly different from the simple second-
order perturbation projected to the Eg doublets which finds
dominant quadrupolar exchange [39,40]. We show that this
discrepancy arises from the strong influence of the energet-
ically close T2g triplets, which necessitates including higher
order terms. Armed with our ED results, we use Monte Carlo
(MC) simulations to explore the phase diagram as we vary
the interorbital and intraorbital hoppings. Over a wide regime
of parameters, we find robust FO order with high Tc, thus
providing an explanation for experimental observations on the
double perovskite osmates. We also investigate the impact of
uniaxial strain and dimensionality, showing that this leads to
a transverse field on the Ising octupolar order, allowing one
to tune Tc and potentially access octupolar Ising quantum crit-
ical points. Our paper extends previous work showing strain
tuning of nematic (quadrupolar) order and its transverse field
quantum criticality [41].

This paper is organized as follows. In Sec. II, we discuss
the single-site and two-site ED results for the full five-orbital
model, and show how we extract the pseudospin exchange
model using an exact Schrieffer-Wolff transformation. Our
results yield large swaths of parameter space with dominant
FO exchange interactions on the face-centered cubic (fcc)
lattice. In Sec. III, we discuss MC simulations of this pseu-
dospin model and show that it leads to a phase transition into
the FO ordered state with Tc in reasonable agreement with
experiments on Ba2ZnOsO6, Ba2CaOsO6, and Ba2MgOsO6.
Section IV studies the impact of uniaxial strain and dimen-
sional tuning via thin films, showing that it leads to an
effective transverse field on the Ising FO order, suppressing
Tc and driving the system toward an Ising quantum critical
point. Section V presents the summary and outlook.

II. PSEUDOSPIN HAMILTONIAN

A. Single-site exact diagonalization study

The single-site model for the d2 configuration incorporat-
ing both crystal-field effects, electron-electron interactions,
and spin-orbit coupling has been carefully explored in our pre-
vious work. To keep our discussion self-contained, we sketch
the main results. We employ a single-site (local) Hamiltonian,

Hloc = HCEF + HSOC + Hint, (1)

which includes t2g − eg crystal field splitting, SOC,
and electronic interactions, written in the orbital basis
({yz, xz, xy}, {x2−y2, 3z2−r2}) ↔ ({1, 2, 3}, {4, 5}), where

α ≡ {1, 2, 3} label t2g orbitals and α ≡ {4, 5} label eg orbitals.
The CEF term is given by

HCEF = VC

∑
α=4,5

∑
s

nα,s, (2)

where s is the spin. The SOC term is

HSOC = λ

2

∑
α,β

∑
s,s′

〈α| L |β〉 · 〈s| σ |s′〉 c†
αscβs′ , (3)

where σ refers to the vector of Pauli matrices and L are orbital
angular momentum matrices. The operators cαs, c†

αs, and nαs

destroy, create, and count the electrons with spin s in orbital
α. The Kanamori interaction is given by

Hint = U
∑

α

nα↑nα↓+
(

U ′ − JH

2

) ∑
α>β

nαnβ

− JH

∑
α 
=β

Sα · Sβ + JH

∑
α 
=β

c†
α↑c†

α↓cβ↓cβ↑, (4)

where U and U ′ are the intra- and interorbital Hubbard inter-
actions, JH is the Hund’s coupling, and Sα = (1/2)c†

αsσs,s′cαs′ .
The operator nα ≡ nα↑ + nα↓ counts the total number of
electrons in orbital α. Assuming spherical symmetry of the
Coulomb interaction, we set U ′ = U − 2JH [42]. In this cal-
culation, we use VC = 2.2 eV, λ = 0.4 eV, U = 2.5 eV, and
JH = 0.3 eV to obtain a spin gap (described below) which
matches values obtained by neutron studies [35].

When the crystal-field splitting VC → ∞, it leads to a
fivefold degenerate ground state corresponding to a spin-orbit
coupled J = 2 quantum spin. For realistic finite VC , this J = 2
manifold is split, leading to a non-Kramers pseudospin dou-
blet, with wave functions given in terms of Jz eigenstates as

|ψg,↑〉 = |0〉; |ψg,↓〉 = 1√
2

(|2〉 + | − 2〉) (5)

and an excited state triplet separated from the doublet by a
gap ∼20 meV. The states |ψg,↑〉, |ψg,↓〉 are individually time-
reversal invariant. The angular momentum operators (J2

x −
J2

y )/2
√

3 and −(3J2
z − J2)/6, restricted to this basis, act as

Pauli matrices (τx, τz ), forming the two components of an XY-
like quadrupolar order parameter, while −JxJyJz/3 (with the
overline denoting symmetrization) behaves as τy, and serves
as the Ising-like octupolar order parameter. We will define the
corresponding pseudospin-1/2 operators as S̃α = τα/2. The
FO order discussed later corresponds to all pseudospins being
in the state |ψoct

± 〉 = |ψg,↑〉 ± i|ψg,↓〉, with the signs reflecting
the Z2 Ising character of octupolar order, and the factor of i
reflecting time-reversal symmetry breaking.

Our next goal is to uncover the interaction between these
pseudospins on neighboring sites.

B. Two-site exact diagonalization calculation

We consider a two-site model, with each site housing a
non-Kramers doublet as described above. Two sites lying in
the γ plane (where γ ∈ {xy, yz, zx}) are coupled via a hopping
Hamiltonian of the form

Hγ
T =

∑
αβs

(
T γ

αβc†
2βsc1αs + T γ †

βα c†
1αsc2βs

)
, (6)
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FIG. 1. Schematic top view of orbitals in the xy plane showing
different nearest-neighbor hoppings in the xy plane. The correspond-
ing hoppings in the xz, yz planes are determined by the cubic point
group symmetry.

where T γ is the hopping matrix in the γ plane. In the xy plane,
the sites are coupled via four hopping channels, as described
in Fig. 1. The matrix in this plane takes the form

T xy =

⎛
⎜⎜⎜⎝

tyz-yz tyz-zx 0 0 0
tzx-yz tzx-zx 0 0 0

0 0 txy-xy 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠. (7)

With cubic symmetry, the corresponding matrices in the other
planes can be obtained via C3 transformations about the [111]
direction. The dominant hopping in the xy plane is txy-xy,
which is larger than tyz-zx = tzx-yz, which in turn is larger than
tyz-yz = tzx-zx. The two-site model can be studied in the Fock
space sector with four d electrons having access to 20 distinct
states (ten on each site). The dimension of the resulting Hilbert
space is thus (20

4 ) = 4845. The two-site Hamiltonian

Hγ = Hloc ⊗ I + I ⊗ Hloc + Hγ

T (8)

consists of two copies of the single-site Hamiltonian presented
in Eq. (1), in addition to Hγ

T . The symbol I denotes the iden-
tity operator for the Hilbert space in the single-site problem.

C. Exact Schrieffer-Wolff transformation to obtain the
pseudospin Hamiltonian

We compute the effective pseudospin Hamiltonian in the
presence of intersite couplings using an exact Schrieffer-Wolff
(SW) transformation [43,44]. SW transformations, in general,
are used to obtain effective low-energy description of a per-
turbed Hamiltonian in terms of the low-energy eigenstates of

the original unperturbed Hamiltonian. This is accomplished
by defining a so-called direct rotation [44] that connects
the low-energy subspaces of the unperturbed and perturbed
Hamiltonians.

For our two-site model, the intersite hoppings in Eq. (6)
will serve as the source of the perturbation. Therefore, we
consider the two-site decoupled Hamiltonian [Eq. (8) with-
out Hγ

T ] as the unperturbed Hamiltonian H0 and the coupled
model Hγ [Eq. (8)] as the perturbed Hamiltonian. As already
discussed (Sec. II A), the low-energy subspace of the single-
site Hamiltonian has a twofold degeneracy, which translates
to a four-dimensional degenerate subspace for the decoupled
two-site Hamiltonian H0. We refer to this subspace for the de-
coupled (unperturbed) Hamiltonian as P0. Upon introducing
intersite couplings, the subspace P0 gets modified perturba-
tively to a different four-dimensional subspace P . This new
subspace P is by definition the low-energy eigenspace for the
coupled two-site Hamiltonian Hγ .

The SW transformation that rotates the subspace P to P0

is defined as the unitary transformation

UP→P0 =
√

(2P0 − 1)(2P − 1), (9)

where P = ∑
φ∈P |φ〉 〈φ|, P0 = ∑

ψ0∈P0
|ψ〉〈ψ | are the pro-

jection operators onto the subspace P and P0, respectively,
and 1 is the identity operator. The square root in Eq. (9) is
defined using a branch cut on the complex plane such that√

1 = 1. The states {|φ〉} denote a choice of basis spanning P
and {|ψ〉} is a basis for P0. The operator UP→P0 by construc-
tion maps a state |φ〉 ∈ P to a unique state |ψ〉 ∈ P0, such that
UP→P0 |φ〉 = |ψ〉. Consequently, U †

P→P0
does the opposite,

i.e., U †
P→P0

|ψ〉 = |φ〉. Furthermore, UP→P0 is guaranteed to
be unique iff U 2

P→P0
, i.e., (2P0 − 1)(2P − 1), does not have

any eigenvalues that reside on the negative real axis of the
complex plane. It has been shown [44] that this is indeed
the case when the corrections arising from the perturbation
are sufficiently small compared with the spectral gap 	 sepa-
rating the low-energy subspace P0 from the excited states of
the unperturbed Hamiltonian H0. For our two-site model, as
discussed below, we have checked that the perturbative level
shifts are weak compared with the spectral gap 	 separating
the non-Kramer’s doublet [Eq. (5)] from the rest of the spec-
trum, justifying a pseudospin-1/2 model of the low-energy
two-site spectrum.

Usually, a direct computation of UP→P0 [see Eq. (9)] is
extremely difficult in a many-body setting, since a full com-
putation of the perturbed subspace P , spanning all orders of
perturbation, is hard due to the exponential complexity of the
many-body problem. Therefore, a series expansion for UP→P0

in powers of perturbation strength is often used as an approx-
imation. However, for our two-site problem the dimension of
the many-body Fock space is 4845 [see discussion above (8)],
and well within reach of ED techniques. This allows us to
solve for the low-energy subspace P (P0) for the perturbed
(unperturbed) Hamiltonian exactly, and obtain UP→P0 using
Eq. (9) to all orders of perturbation in intersite couplings.

We then use the computed SW transformation UP→P0 to
obtain the effective low-energy form of the perturbed Hamil-
tonian Hγ in the original subspace P0 of the unperturbed
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problem, as follows:

Hγ

eff = (
P0UP→P0

)
Hγ

(
U †
P→P0

P0
)
. (10)

Since we use the exact SW transformation UP→P0 to compute
Hγ

eff, the resulting 4 × 4 Hamiltonian is also exact in the sense
that it has contributions from all orders of perturbation. By
construction, the eigenvalues of Hγ

eff are precisely equal to the
lowest four eigenvalues of Hγ .

Having proposed the strategy to extract Hγ

eff, we need to
compute the effective 4 × 4 Hamiltonian in a basis that will
naturally allow us to interpret Hγ

eff in the form of a valid
pseudospin Hamiltonian. Therefore, we carry out the entire
computation discussed above, using a basis spanning P0 in
which the operators (J2

x − J2
y ), −JxJyJz, (3J2

z − J2) on sites
i = 1, 2, admit the Pauli matrix representations τx ⊗ τ0, τy ⊗
τ0, τz ⊗ τ0, and τ0 ⊗ τx, τ0 ⊗ τy, τ0 ⊗ τz, respectively, where
τ0 is the 2 × 2 identity matrix. The steps that go into selecting
such a basis for P0 are discussed in Appendix A. The resulting
pseudospin Hamiltonian of the γ plane in this basis takes the
general form

Hγ

spin = S̃�
1 Kγ S̃2 + hγ

1 · S̃1 + hγ

2 · S̃2, (11)

where the symbols S̃i=1,2 ≡ [S̃ix, S̃iy, S̃iz] represent the pseu-
dospin operators for the two sites i = 1, 2. The effective
spin-spin interactions are encoded in the 3 × 3 Kγ tensor and
hγ

i are effective time-reversal even Zeeman fields acting on
the pseudospins. Both the Kγ tensor and the components of
the fields hγ

i can be obtained from the exactly computed Hγ

eff
as follows:

Kγ

αβ = Tr
[
Hγ

eff(τα ⊗ τβ )
]
,(

hγ

1

)
α

= Tr
[
Hγ

eff(τα ⊗ τ0)
]
/2,(

hγ

2

)
α

= Tr
[
Hγ

eff(τ0 ⊗ τα )
]
/2.

While the Zeeman fields appear to break the cubic symmetry
of the lattice, they appear precisely because we consider one
bond at a time (Fig. 1, for example, shows only the bond in the
xy plane), a process which does not respect cubic symmetry.
When summed over all the neighbors of the fcc lattice, the net
field vanishes exactly, i.e.,∑

γ∈{xy,yz,zx}
hγ

i = 0 ,

thus restoring the full symmetry. In Sec. IV, we will consider
the impact of uniaxial strain or crystal surfaces, which will
give rise to situations where the net Zeeman field on the
pseudospin does not vanish (which is to be expected, since
the strain explicitly breaks cubic symmetry and intersite cou-
plings can then lift the pseudospin degeneracy).

D. Exchange couplings

The symmetry considerations outlined in Appendix B dic-
tate that the pseudospin Hamiltonian in the xy plane is an XY Z
model,

Hxy
spin = KQxS̃1xS̃2x + KQzS̃1zS̃2z + KOS̃1yS̃2y, (12)

where KQx and KQz are the quadrupole-quadrupole couplings,
and KO is the octupole-octupole coupling. For bonds in other

FIG. 2. Evolution of couplings in xy plane as a function of the
intraorbital yz-yz and zx-zx hopping. The dashed lines show the
phases based on the most dominant couplings. This cut was made
for txy-xy =−150 meV and tyz-zx =30 meV.

planes, the exchange couplings may be obtained using C3

rotations about the (111) axis and they involve off-diagonal
symmetric couplings of the form (S̃1xS̃2z + S̃1zS̃2x ). In this
section, we will drop the Zeeman field terms from Eq. (11),
since they cancel out upon summing over all neighbors as
outlined at the end of Sec. II C. Keeping the dominant txy-xy

hopping fixed at −150 meV, we vary tyz-zx and tyz-yz = tzx-zx in
the ranges 0−30 meV and 0−10 meV, respectively, to study
the dominant order hosted by the pseudospin models. We do
so by analyzing the dependence of the couplings, KQx, KQz,
and KO on the hopping terms tyz-yz and tyz-zx. Figure 2 shows a
representative example of this analysis when tyz-zx = 30 meV.
As a first pass at identifying the phases in the model, we
simply assign phases based on the dominant coupling in the
XY Z model—an approach that will be corroborated below by
classical MC simulations in Sec. III. The three phases that
appear in this phase diagram spanned by the subdominant
hoppings are

(1) FO: KO <0
(2) AFO: KO >0
(3) AFQ:KQα>0 (α∈{x, z}).
In Fig. 3(a), we lay out the full phase diagram in the

tyz-yz − tyz-zx plane and label the phases appropriately by iden-
tifying the dominant coupling. Interestingly, we see that the
FO phase forms the largest and most robust swath of the phase
diagram centered around Fig. 3(a). Previous proposals have
argued for the stabilization of both AFO and AFQ phases, and
while these phases do exist in our model, we will show in
Sec. III that for the reasonable choice of hopping parameters
used, they have critical temperatures that are incompatible
with experimental evidence. The specific quadrupolar order-
ing patterns coming from these frustrated interactions have
been explored in previous works [38,39].

E. Comparison of exact and second-order
perturbation theory results

One might reasonably wonder why it is necessary to use
the ED and SW method to extract the exchange couplings
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FIG. 3. (a) Phase diagram in subdominant hopping parameter
space, using a fixed txy−xy = −150 meV. The solid black phase
boundaries t◦ and t
 denote the AFO-AFQ and AFQ-FO phase tran-
sition boundaries calculated simply by considering the dominant
coupling (as outlined in Sec. II D). The colored lines (represented
with symbols – •, �) denote the phase boundaries obtained from
MC simulations (as outlined in Sec. III). The MC predictions of the
t
 boundary occur at smaller values of tyz−zx , likely because the frus-
tration of the quadrupoles on the fcc lattice causes the unfrustrated
ferro-octupolar (FO) order to be preferentially stabilized despite the
coupling having a smaller magnitude. (b) Representative cuts along
the y-axis of the phase diagram (denoted as dashed-horizontal lines
in (a)), showing the evolution of the critical temperature Tc with
tyz−yz. Three piecewise regions, representing the indicated phases,
can be observed. It can be seen that the values of Tc for the AFO
(0 < Tc < 3K) and AFQ (0 < Tc < 1K) phases are far lower than
the Tc values of 30-50K reported in experiments, while the Tc for the
FO phase fits well with experiments.

between the non-Kramers doublets, which goes beyond the
standard second-order perturbation theory [39,40]. To un-
derstand this, we note that while the charge gap is indeed
much larger than the hopping energy scale, there is a small
scale corresponding to the splitting between the non-Kramers
ground-state doublet and the excited triplet. Due to this small
scale, hopping processes which involve an intermediate hop-

FIG. 4. Comparison of the exchange couplings computed using
the Schrieffer-Wolff (SW, solid lines) method and second-order per-
turbation theory (PT, dashed lines). It can be seen that a second-order
treatment agrees with the SW results for small txy−xy but would lead
to the erroneous conclusion that the antiferromagnetic quadrupolar
interactions would prevail, while in reality it gets suppressed and
causes the ferro-octupolar interaction to dominate. We have fixed
tyz−zx = 18 meV and tyz−yz = tzx−zx = 10 meV.

ping to the triplet before returning to the doublet become
significant. In perturbation theory, such processes occur at
fourth order; a simple second-order treatment completely
misses these effects. As the energy splitting becomes smaller,
it is conceivable that even higher order processes may be-
come significant. To illustrate this point, we show in Fig. 4
the evolution of the coupling constants as a function of the
dominant hopping txy−xy. It is clear that the second-order per-
turbation theory agrees with the exact calculation for small
txy−xy, but a further increase of txy−xy leads to a suppres-
sion of the quadrupolar interactions which is not captured by
second-order perturbation theory; this suppression leads to the
dominance of the FO exchange.

III. MONTE CARLO SIMULATIONS ON THE
FACE-CENTERED CUBIC LATTICE

In this section, we discuss the phase diagram of the
pseudospin-1/2 Hamiltonian in Eq. (12), with coupling con-
stants derived from microscopics, by treating the pseudospins
as classical moments and using MC simulations to extract
their ordering and thermal phase transitions. Such an approach
is expected to qualitatively capture the phase diagram on the
3D fcc lattice of the ordered double perovskites; quantum
fluctuations may lead to quantitative corrections to the phase
boundaries and transition temperatures.

The simulations were conducted using the SPINMC pack-
age [45] on a cluster of 1331 spins (11 × 11 × 11 primitive
fcc cluster) with periodic boundary conditions over a tem-
perature range of 0.01 to 10 meV (corresponding to 0.116 to
116 K). To construct a phase diagram, pseudospin Hamiltoni-
ans were generated using a fixed dominant hopping txy−xy =
−150 meV, and varying tyz−zx and tyz−yz in the ranges 0−
30 meV and 0−20 meV, respectively (DFT studies on these
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FIG. 5. Representative example of MC simulation, for the hop-
ping parameters corresponding to the ferro-octupolar (FO) phase. It
can be seen that there is a single phase transition, marked by a peak
in the specific heat (CV ) and the emergence of a ferro-octupolar order
parameter 〈τy〉.

and other 5d double perovskites have shown that these are
reasonable choices [40,46]). We observe, in each case, a single
thermal phase transition marked by a sharp peak in the specific
heat CV and accompanied by the development of a nonzero
order parameter as illustrated for a FO transition in Fig. 5. This
representative plot was generated using hopping parameters
close to those recently obtained using ab initio electronic-
structure calculations [40] on the osmate double perovskites.

To identify phase boundaries shown in the full phase dia-
gram in Fig. 3(a), we look at the development of the critical
temperature Tc as a function of the hoppings tyz−zx and tyz−yz

[see Fig. 3(b)] and identify kinks, suggesting a change in
the underlying analytic form of the dependence. The phase
boundaries [shown with solid lines and symbols in Fig. 3(a)]
obtained using this method match well with the naïve method
of computing the phase boundaries [t◦, t
 in Fig. 3(a)] de-
scribed in Sec. II D, where we simply looked at the dominant
term in the pseudospin Hamiltonian.

IV. TUNING OCTUPOLAR ORDER VIA UNIAXIAL
STRAIN OR DIMENSIONALITY

The multipolar orders we have obtained above are highly
sensitive to the nature of the interorbital and intraorbital hop-
pings as discussed above. In addition, we have seen that the
full cubic point group symmetry leads to a cancellation of the
time-reversal even field terms acting on the (τx, τz ) pseudospin
components, leaving us with only two-spin exchange terms.
Motivated by tuning the multipolar orders, we next consider
the impact of breaking cubic symmetry via strain or interfaces
on the pseudospin Hamiltonian.

A. Uniaxial strain

Let us consider uniaxial strain along the (001) axis (z
axis), which we take into account by rescaling all the intersite
hoppings for neighbors in the xz and yz planes by a factor

FIG. 6. Evolution of the ferro-octupolar transition temperature,
Tc, as a function of the hopping distortion δ induced by uniax-
ial strain. The cubic hopping parameters used here are txy−xy =
−150 meV, tyz−zx = 18 meV, and tyz−yz = 10 meV.

(1 − δ), with δ > 0 corresponding to tensile strain and δ < 0
corresponding to compressive strain. Given the typical strong
dependence of the hopping amplitudes on the lattice con-
stants [47,48], we expect the lattice strain εzz � δ. A careful
account of strain effects must rely on experiments and ab
initio electronic-structure calculations to relate δ to changes
in lattice constants and to examine changes in the relative
strengths of the interorbital and intraorbital terms; we defer
this to a future study. We repeat the two-site ED and SW
procedure as a function of δ and find that δ 
= 0 leads to a
noncancelling field acting on the (τx, τz ) pseudospin compo-
nents due to loss of cubic symmetry. This field is transverse
to the octupolar ordering direction τy, and can thus induce
quantum fluctuations which can suppress 〈τy〉, and potentially
reveal a three-dimensional (3D) octupolar Ising quantum crit-
ical point.

Figure 6 shows the Tc computed using MC simulations
with the modified exchange couplings and induced Zeeman
field in the presence of strain. We find that tensile strain (δ >

0) leads to a strong suppression of Tc, due to the combined
effect of the weakening of octupolar exchange interactions in
the yz, zx planes and the generated transverse field. On the
other hand, for compressive strain (δ < 0), Tc first increases,
since the enhancement of the octupolar exchange coupling is
initially more significant than the generated transverse field
before it begins to drop. For tensile strain, we find that the
(mean-field) 3D Ising quantum critical point is at δc ≈ 0.8,
beyond which the octupolar ordering is suppressed. While this
critical point δc may not be accessible in experiments, the δ

dependence of Tc at smaller strain may be more easily tested.
We note again that the strain εzz � δ.

Previous work has shown that shear strain can act as a
transverse field on Ising nematic order and drive a nematic
quantum phase transition [41]. Our paper generalizes this idea
to the case of octupolar order. Our paper also goes beyond
previous studies which have explored the interplay of weak
magnetic field and strain for probes of octupolar ordering or
octupolar susceptibility [16,49].
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FIG. 7. Evolution of the ferro-octupolar phase transition as a
function of film thickness Nz. The specific heat peak marking the
transition indicates that Tc decreases with film thickness, eventually
vanishing for Nz � 2; see text for details.

B. Ultrathin films

The generation of Zeeman fields when symmetry is
lowered from cubic also happens naturally at surfaces or inter-
faces. In particular, let us consider an ultrathin (001) epitaxial
film where the top and bottom faces experience a field ∝τz due
to reduced symmetry. If this surface field is sufficiently strong
and the film thickness is sufficiently small, the transverse
surface field can kill the octupolar order in the entire film.

To properly take into account the effective fields that may
appear at the surfaces, it is important to ensure that all the
possible interactions which break cubic symmetry on a single
bond are taken into account. In the preceding sections, we
had not included intersite Coulomb interactions; as we have
explicitly checked, their inclusion has a negligible impact on
the exchange couplings. However, we find that these interac-
tions have a large effect on the effective fields hγ in Eq. (11);
while the Coulomb-induced terms cancel in the bulk when
we add up the contributions from the 12 nearest neighbors,
this cancellation does not occur at surfaces. In what follows,
we incorporate these residual inter-site Coulomb interactions
and extract the transverse fields at the surface; the calculation
of these Coulomb matrix elements for the osmate double
perovskites is described in Appendix C.

With the above consideration in place, we consider a 12 ×
12 × Nz lattice, with periodic boundary conditions along the x
and y directions and open boundary conditions along the z di-
rection. Here Nz represents the film thickness. We incorporate
the microscopically computed effective transverse fields on
the top and bottom faces of the film. For illustrative purposes,
we fix two hopping parameters, txy−xy = −150 meV, tyz−zx =
18 meV, and vary tyz−yz. Figure 7 shows (for tyz−yz = 10 meV)
the evolution of the specific heat, CV , as we decrease the film
thickness Nz. Figure 8 shows how Tc, extracted from the peak
in the specific heat, changes as we vary Nz for various values
of tyz−yz. It can be seen that for a wide range of values of
this hopping parameter, we are able to completely suppress Tc

for bilayer samples. We thus see that as we decrease the film

FIG. 8. Evolution of the critical temperature, Tc, as a function of
the film thickness, Nz, for various values of tyz-yz.

thickness, we will tune the system through a 2D Ising quan-
tum critical point. This provides another promising avenue to
suppress Tc and to look for signatures of octupolar quantum
criticality.

V. DISCUSSION

We have discussed a simple tight-binding model with spin-
orbit coupling and interactions which lead to FO order in the
ordered double perovskite osmates Ba2ZnOsO6, Ba2CaOsO6,
and Ba2MgOsO6. Our calculations, which use ED and an ex-
act SW transformation and MC simulations, show that we can
capture the octupolar order and its high transition temperature
as observed in experiments. In addition, we have shown how
strain and thin-film geometries can induce transverse fields
which suppress the octupolar ordering temperature, poten-
tially revealing an Ising quantum critical point. Our paper has
implications for a broad class of materials, including d-orbital
transition metal oxides and f -orbital heavy fermion systems,
where such multipolar orders may be accessible. For instance,
NpO2 is a well-known example of an fcc lattice material
which hosts higher-rank multipolar order with time-reversal
symmetry breaking [1–6]. Octupolar order of the Txyz type ex-
plored here has also been proposed in Pr(Ti, V, Ir)2(Al, Zn)20

compounds where Pr moments live on the diamond lattice
[15,16]. In future work, it would be important to extend our
paper to understand the origins of multipolar order in these
materials. Indeed, there may be a large set of lattice geome-
tries where such physics of multipolar order in d2 transition
metal compounds would be worth exploring, as highlighted
by Khaliullin et al. [39]. More broadly, our paper shows that
understanding the impact of thin-film geometries, surfaces,
and interfaces in promoting or suppressing multipolar orders
in non-Kramers doublet systems may be a fruitful research
direction.
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APPENDIX A: CHOOSING P0 BASIS STATES IN THE
SCHRIEFFER-WOLFF (SW) PROCESS

An important step in the SW process is ensuring that we
use basis states for P0 which can be interpreted as direct prod-
ucts of (pseudo)spin states on the two sites. This enables us
to interpret the extracted pseudospin Hamiltonian as a direct-
product-type interaction between the multipole moments in
the doublet manifold. While there are many ways to do this,
the simplest is to leverage the fact that the P0 Hamiltonian is
decoupled, meaning that the basis states can be constructed
out of the single-site states.

At a single-site level, we can ensure that the up and down
pseudospin states from Sec. II A correspond to eigenstates of
τz (∝3J2

z − J2), by adding a term to the Hamiltonian which
couples an infinitesimal magnetic field to this operator. This
weakly breaks the twofold degeneracy and the basis states
of P0 can simply be built using the direct product of the
aforementioned states.

APPENDIX B: SYMMETRY CONSIDERATIONS FOR THE
PSEUDOSPIN HAMILTONIAN

As stated in the main text, the following correspondence
exists between J = 2 angular momentum multipole moments
and the Pauli matrices in the low-energy non-Kramers doublet
manifold:

1

2
√

3

(
J2

x − J2
y

) → τx

−1

3
JxJyJz → τy (B1)

−1

6

(
3J2

z − J2
) → τz.

Therefore, the most general spin-1/2 Hamiltonian takes the
form (sites are numbered 1 and 2)

Hspin = 1
4Kab(τa ⊗ τb). (B2)

For a bond in the xy plane, the following symmetry consider-
ations heavily constrain the form of K:

(1) Inversion symmetry about the center of the bond ex-
changes the site indices, implying that K is symmetric, i.e.,

Kxy = Kyz,

Kyz = Kzy (B3)

Kzx = Kxz.,

(2) Under the Mz mirror transformation (the mirror plane
is z = 0), we have

Jz → −Jz

Jx → −Jy

Jy → −Jx

⎫⎬
⎭ ⇒

⎧⎨
⎩

τx → −τx

τy → −τy

τz → τz

. (B4)

For the above to be a symmetry of the system, we must have
that Kzx = Kyz = 0.

(3) The system is time-reversal symmetric. Under the
time-reversal operation, we have the following transforma-
tions:

τy → −τy, τx, τz → τx, τz. (B5)

This implies that Kxy = Kyz = 0.
The above points, when considered together, lead to the

vanishing of all the off-diagonal elements in K. This leaves us
with an XY Z Hamiltonian of the form

K =
⎛
⎝Kxx 0 0

0 Kyy 0
0 0 Kzz

⎞
⎠. (B6)

In the main text, we have renamed Kxx → KQx, Kyy → KO,
and Kzz → KQz. The exchange Hamiltonian in the zx and yz
planes can be conveniently obtained using C3 rotations about
the cubic (111) direction.

APPENDIX C: INTERSITE COULOMB MATRIX
ELEMENTS

To evaluate matrix elements for the intersite direct
Coulomb interaction, we must compute integrals of the form

Vab = e2

4πκε0

∫
dr

∫
dr′

∣∣ψa
1 (r)

∣∣2 ∣∣ψb
2 (r′)

∣∣2

|r − r′| , (C1)

where κ is the dielectric constant (we set κ = 10) and ψa
1

(ψb
2 ) refers to the wave function of an electron in orbital

a(b) centered on site 1(2). We use hydrogen-type d orbital
wave functions of the form ψa(r) = R(r)T a(θ, φ), where
R(r) refers to the radial part of the wave function, and T a is the
tesseral harmonic associated with the a orbital. The detailed
form of these functions for the osmate double perovskites are
given in Appendix C of Ref. [30].

To compute Vab in Eq. (C1), we use a MC integration
method. We interpret the integral as a random-walk in a
six-dimensional (6D) space; each point x in the 6D space is
defined as x = (rx, ry, rz, r′

x, r′
y, r′

z ) in terms of the original
position vectors appearing in Eq. (C1). The random walk is
performed obeying the rules of a Markov process guided by
the joined probability distribution:

pab(x = (r, r′)) = ∣∣ψa
1 (r)

∣∣2∣∣ψb
2 (r′)

∣∣2
. (C2)
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Starting from a randomly chosen xn=0, a sequence of points
{x0, . . . , xn} is generated by taking steps dx of a sufficiently
small length in a randomly-chosen direction, so upon ac-
ceptance of the step we get xn+1 = xn + dx. A proposed
step dx is directly accepted if pab(xn + dx)/pab(xn) � 1. If
pab(xn + dx)/pab(xn) < 1, a random number r is picked from
the uniform distribution defined on the interval [0,1]. The step
dx is accepted if the number r � pab(xn + dx)/pab(xn), oth-
erwise the process is repeated for a new step dx′. We allow the
random walk to proceed for a large number [O(106)] of MC
steps. The value of the integral in Eq. (C1) is then estimated
using

Vab ≈ e2

4πκε0

1

Nsteps − Nskip

Nsteps∑
n=Nskip

1

|rn − r′
n|

, (C3)

where rn (r′
n) is the obtained from the first (last) three compo-

nents of xn and Nsteps is the number of MC steps. We also skip
the first Nskip steps to neglect transient contributions due to the
choice of the initial point x0. We used Nskip ∼ O(103) for our
calculations. The total number of Nsteps were determined by
monitoring when the fluctuations of Vab in Eq. (C3), resulting
from the random walk, reduced to less than 1% of the average
value.

For a pair of nearest-neighbor sites in the xy plane, and
working in the basis {yz, zx, xy, x2−y2, 3z2−1}, we obtain the

Coulomb interaction matrix (in eV):

V =

⎛
⎜⎜⎜⎝

0.231 0.237 0.244 0.239 0.233
0.237 0.231 0.244 0.239 0.233
0.244 0.244 0.261 0.260 0.245
0.239 0.239 0.260 0.254 0.239
0.233 0.233 0.245 0.239 0.232

⎞
⎟⎟⎟⎠. (C4)

We note that this matrix has an orbital-independent value
∼0.25 eV and orbital-dependent parts on the scale of
∼30 meV. Adding this Coulomb term to the two-site Hamil-
tonian as

∑
αβ Vαβn1,αn2,β , where niα is the total electron

number in orbital α at site i, we use ED and the SW method
to recompute the exchange interactions and effective fields.
We find that the two-site exchange interactions are nearly
unaffected since the scale of Vαβ is much smaller than the
on-site Hubbard interaction U = 2.5 eV. However, the orbital-
dependent part of Vαβ results in an extra effective field ∝τz

on the non-Kramers doublet. To see this, we note that mean-
field theory yields an on-site term at site i = 1 given by∑

αβ Vαβn1,α〈n2β〉. Upon projection to the non-Kramers dou-
blet, this acts as an extra effective field. Our computations
show that the scale of this field is ∼8 meV, which is larger
than the field produced by two-site exchange interactions
alone. Thus, while these fields cancel in the cubic bulk,
the Coulomb-enhanced surface fields are strong enough to
overcome the FO exchange and kill the octupolar order for
sufficiently thin films as shown in the paper.
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