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Modern problems in magnetization dynamics require more and more the numerical determination of the
spin-wave spectra and dispersion in magnetic systems where analytic theories are not yet available. Micro-
magnetic simulations can be used to compute the spatial mode profiles and oscillation frequencies of spin waves
in magnetic system with almost arbitrary geometry and different magnetic interactions. Although numerical
approaches are very versatile, they often do not give the same insight and physical understanding as analytical
theories. For example, it is not always possible to decide whether a certain feature (such as dispersion asymmetry,
for example) is governed by one magnetic interaction or the other. Moreover, since numerical approaches
typically yield the normal modes of the system, it is not always feasible to disentangle hybridized modes. In
this paper, we build a bridge between numerics and analytics by presenting a methodology to calculate the
individual contributions to general spin-wave dispersions in a fully numerical manner. We discuss the general
form of any spin-wave dispersion in terms of the effective (stiffness) fields produced by the modes. Based on a
special type of micromagnetic simulation, the numerical dynamic-matrix approach, we show how to calculate
each stiffness field in the respective dispersion law, separately for each magnetic interaction. In particular, it
becomes possible to disentangle contributions of different magnetic interactions to the dispersion asymmetry in
systems where nonreciprocity is present. At the same time, dipolar-hybridized modes can be easily disentangled.
Since this methodology is independent of the geometry or the involved magnetic interactions at hand, we believe
it is attractive for experimental and theoretical studies of magnetic systems where there are no analytics available
yet, but also to aid the development of new analytical theories.

DOI: 10.1103/PhysRevB.104.174414

I. INTRODUCTION

Within the research field of magnonics, which studies the
dynamics of spin waves (magnons) [1] in magnetically or-
dered media, one of the key interests is to determine the
dispersion and spatial mode profiles of spin waves with
wavelengths in the nanometer to micrometer regime. Since
the second half of the 1960s, a lot of works have been
devoted to developing analytical theories, which allow the
dipole-exchange spectrum in ferromagnetic films [2–7], with
arguably one of the most successful and, because of its
convenience, one of the most widely used theories being
the model developed by Kalinikos and Slavin based on
magnetostatic Green’s functions [8]. From thin films, the lit-
erature of spin-wave propagation has since been expanded to
more complicated geometries, such as magnetic bilayers [9],
waveguides with rectangular cross section [10,11], systems
with Dzyaloshinskii-Moriya interactions (DMIs) [12,13],
magnetic nanotubes [14–16] or nanowires [17–19], and many
more [20,21].

With the recent advancements in high-performance com-
puting, full numerical approaches like time-domain micro-
magnetic simulations or dynamic-matrix approaches are used
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more and more to calculate spin-wave spectra in complex sys-
tems where analytical (or semianalytical) theories are not yet
available. Such systems include, in particular, more complex
geometries as well as systems with sufficiently inhomoge-
neous equilibrium magnetization.

Typical time-domain simulations rely on the numerical
time integration of the nonlinear Landau-Lifshitz-Gilbert
equation of motion and, due to their free availability, are
the most commonly used numerical method in magnetization
dynamics [22–24]. The spin-wave spectra can be obtained
from such simulations by means of Fourier analysis. As an
alternative method, numeric dynamic-matrix approaches di-
rectly yield the mode profiles and frequencies by solving
the linearized equation of motion with a numerical eigen-
solver [25,26]. Over the last two decades, dynamic-matrix
approaches have been developed for various classes of prob-
lems and geometries, including confined magnetic structures
[25–27], rectangular waveguides, extended slabs and mul-
tilayers [28], and recently, waveguides with arbitrary cross
section [29].

Both methods, time-domain and dynamic-matrix ap-
proaches, can be extremely powerful and, due to their flexibil-
ity, applicable to almost arbitrary geometries, inhomogeneous
equilibrium states, and involved magnetic interactions. How-
ever, as a major disadvantage, both numerical approaches
output the oscillation frequencies ω as plane numerical values,
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FIG. 1. (a) Schematics of an avoided level crossing of the MSSW
and the second PSSW in a magnetic slab which are hybridized due
to dynamic dipolar fields. The mode profiles below represent a dy-
namical component of the mode along the thickness or out-of-plane
(OOP) direction of the slab. (b) Exemplary spin-wave dispersion
relation ω(k) composed of the different stiffness fields A, B, C, and
D. The magnetochiral stiffness field A is resolved in terms of the
different magnetic interactions in (c).

providing no insight into the functional structure of the disper-
sion ω = ω(k). For example, without an (even approximate)
analytical form of the dispersion, it can be hard to disentangle
asymmetric contributions to the spin-wave dispersion at hand
or even to uncover whether a certain effect is dominated by
one magnetic interaction (such as exchange) or the other (such
as dipolar interaction). Sometimes, qualitative statements can
be found by switching off certain interactions or fields in the
simulations. However, often times, the physical interpretation
of a calculated spectrum solely based on the numerical values
of the oscillation frequencies—or on the shape of the disper-
sion curves—is up to the experience of the scientist.

As a more subtle disadvantage, full numerical approaches
do not allow us to easily disentangle hybridized modes. In
the field of magnonics, common terminology is to denote
different propagating spin-wave modes at a given wave vector
k by their spatial profile. For example, in magnetic films,
the spin waves with a certain in-plane wave vector k‖ are
often divided into a magnetostatic surface wave (MSSW) and
several perpendicular-standing spin waves (PSSWs) [30,31].
Similarly, in thin rectangular waveguides, the modes with a
given wave number k along the waveguide can by divided by
their standing-wave character along the width of the waveg-
uide [10,32]. However, due to dynamic dipolar fields, these
modes are often not actual eigenmodes (or normal modes) of
the magnetic systems but are rather mixed by what is com-
monly referred to as dipole-dipole hybridization. Typically,
hybridization removes certain points of accidental degenera-
tion and produces avoided level crossings [see Fig. 1(a)]. For
example, in thick magnetic slabs, it is well known that dy-
namic dipolar fields may lead to mixing/hybridization of the
MSSW and different PSSWs [33–35], schematically shown in
Fig. 1(a).

Typical micromagnetic simulations, which have not been
designed in a problem-specific way, always output the al-
ready dipole-dipole-hybridized normal modes of the system.
When categorizing different modes in a numerically obtained
spin-wave dispersion, knowledge about which modes are hy-
bridized can be paramount.

In this paper, we present a fully numerical methodology
to solve both of the aforementioned issues at the same time
using dynamic-matrix approaches. As a theoretical ground-
work, based on effective spin-wave tensors, we discuss that
any spin-wave dispersion can be written in the form [36]

ω

ωM
= A +

√
BC − D2 (1)

with ωM = μ0γ Ms, where γ is the gyromagnetic ratio, Ms

is the saturation magnetization of the material at hand, and
A, B, C, and D are the (unitless) dynamic stiffness fields.
Specifically, A is the magnetochiral stiffness field which is
responsible for any dispersion asymmetry (upon reversal of
the wave vector). We will show that each of these terms
can be obtained separately in a fully numerical fashion [see
Fig. 1(b)], both in terms of hybridized and nonhybridized
modes. Moreover, contributions of different magnetic inter-
actions can be easily disentangled. For example,

A = A(dip) + A(DMI) + · · · (2)

with A(dip) and A(DMI) being contributions of the dipolar
interaction and the Dzyaloshinskii-Moriya interaction (DMI)
to the dispersion asymmetry [Fig. 1(c)]. Note that the fully
numerical approach does not require any a priori knowledge
about the geometry of the magnetic element or about the
involved magnetic interactions. We believe that our method is
of particular interest to theoretically study spin-wave propaga-
tion in systems where there is no analytical model available. It
may help in interpreting both experiments and micromagnetic
simulations in complex geometries, but also aid the develop-
ment of new analytical theories.

For this purpose, in Sec. II, we quickly review the basics of
linear magnetization dynamics, and introduce the numerical
dynamic-matrix approach. Moreover, we briefly derive the
general form Eq. (1) based on effective spin-wave tensors.
Following, in Sec. III, we present how to recover unhybridized
spin-wave dispersions as well as the individual terms in the
respective dispersion using fully numerically obtained mode
profiles. Finally, in Sec. III, we demonstrate this methodol-
ogy by recovering the unhybridized dispersion in a standard
magnonic waveguide, as well as by obtaining the individual
stiffness fields in two further examples. The second example
consists of a system which combines dipolar with bulk-DMI-
induced dispersion asymmetry.

II. THEORETICAL MODEL

A. Linearized equation of motion and dynamic matrix

The problem of determining the spin-wave dispersion
and spatial mode profiles for wavelengths far greater than
the lattice parameter in a given magnetic specimen comes
down to solving the linearized Landau-Lifshitz equation of
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motion [31]

d

dt
(δm) = −ωM[δm × h0 + m0 × δh], (3)

which describes the linear dynamics of the unitless small-
amplitude variation δm(r, t ) of the magnetization around
some stable equilibrium direction m0(r). The full magnetiza-
tion of the sample is given as M(r, t ) ≈ Ms[m0(r) + δm(r, t )].
In the absence of surface anisotropy, the linearized equation
must be equipped with the exchange boundary condition

n · ∇m = 0 (4)

and the orthogonality condition

δm · m0 = 0; (5)

the latter is a consequence of the micromagnetic constraint
[37] |M| = Ms. In Eq. (3), the vectors h0 and δh are the
unitless static and dynamic effective fields, respectively. Both
fields can be expressed as

h0 = hext − N̂ · m0, δh = −N̂ · δm, (6)

with hext = Hext/Mext being the unitless static external mag-
netic field and N̂ being the magnetic tensor which is a
certain self-adjoint integro-differential operator describing
the magnetic self-interactions, such as uniaxial magnetocrys-
talline anisotropy, isotropic exchange, dipolar interactions, or
Dzyaloshinskii-Moriya interactions (DMIs),

N̂ = N̂(uni) + N̂(exc) + N̂(dip) + N̂(DMI) + · · · . (7)

For expressions, see for example Refs. [29,38]. The con-
tributions to the magnetic tensor relevant for this paper
are summarized in Appendix A. Note that the affine lin-
ear relationship Eq. (6) between magnetization and effective
field is not possible for example for cubic magnetocrys-
talline anisotropy, which can, however, be considered using
a linearization. By expressing the effective fields using the
magnetic tensor N̂ and expanding the dynamic magnetization
into linear waves ∝ exp(iωνt ) with angular frequency ων and
some mode index ν, the linearized equation can be brought to
the form [39–41]

ων

ωM
mν = i[m0 × �̂]mν (8)

with the mν ≡ mν (r) being the (complex-valued) unitless spa-
tial mode profiles. The operator �̂ is given as

�̂ = h0Î + N̂ (9)

with h0 = h0 · m0 and Î being the identity operator. For mode
profiles which satisfy the exchange and orthogonality condi-
tions in Eqs. (4) and (5), the linearized equation (8) takes the
form of a standard Hermitian eigenvalue problem, which, in
general, can be solved numerically. This is exactly the idea
behind the so-called dynamic-matrix approach. In contrast to
standard micromagnetic simulations, which rely on a time in-
tegration of the initial (nonlinearized) Landau-Lifshitz-Gilbert
equation of motion, the dynamic-matrix approach directly
yields the spin-wave frequencies and mode profiles of the
magnetic eigenmodes (or normal modes) without any addi-
tional postprocessing.

For numerical applications, it proves useful to encode the
two aforementioned constraints already into the mathematical
form of the eigenvalue equation itself. For example, in the
finite-element method, the exchange boundary condition is
already satisfied by a proper choice of basis functions. The
orthogonality condition mν ⊥ m0 can be included by rotating
the eigenvalue problem from the laboratory system {ex, ey, ez}
into the subspace spanned by {e1, e2} locally orthogonal to
the equilibrium direction m0(r) [26]. Then the eigenvalue
problem becomes

ων

ωM
m̃ν = D̂m̃ν (10)

with the mode profiles in the local coordinate system m̃ν =
R̂mν , the dynamic matrix D̂ including the aforementioned
rotation operator R̂ (see Appendix B). After this transforma-
tion, the dynamic matrix is only a 2 × 2 matrix and explicitly
only acts on the two dynamical components of the mode
profiles mν · e1,2, which are, again, locally orthogonal to the
equilibrium m0. In case the magnetic specimen is discretized
using n mesh nodes, the dynamic matrix is 2n × 2n dimen-
sional, whereas the mode profiles in the local basis have 2n
components. It follows that a maximum of 2n eigenvectors
can be obtained.

To calculate the dispersion of propagating spin waves,
which are characterized by their wave vector k (or wave
number k for propagation in only, without loss of generality,
the z direction), one arrives at the so-called propagating-wave
dynamic-matrix approach by making the replacements

mν → ηνk = mνe−ikz, (11)

D̂ → D̂k = e−ikzD̂eikz. (12)

The task of a numerical dynamic-matrix approach is now to
discretize the dynamic matrix D̂(k) and diagonalize it using
a suitable numerical solver. Over the past decades, a num-
ber of implementations of this method can be found which
have already been successfully applied to a large variety of
problems, both for standing [25–27] and propagating [28,29]
waves. The power of these approaches is that they yield the
spin-wave dispersion and mode profiles directly for a large
class of different geometries and interactions, since almost all
information about the spin-wave propagation is contained in
the magnetic tensor N̂(k). In the present paper, we shall apply
our method to a propagating-wave dynamic-matrix approach
which we have developed recently to obtain the spin-wave dis-
persion and mode profiles in infinite waveguides of arbitrarily
shaped finite cross section [29]. Note, however, that it can be
applied to any dynamic-matrix approach (e.g., by dropping
the index k in some of the equations below).

B. General form of spin-wave dispersion

In this section, we shall derive the general form of a spin-
wave dispersion, as already sketched in Eq. (1). Later, we will
show how to numerically obtain each individual term. We
shall proceed without a priori knowledge of the underlying
magnetic material, geometry, or involved interactions. That
is, we assume some arbitrary (but stable) equilibrium mag-
netization m0(r) and some (of course, Hermitian) magnetic
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tensor N̂. Let us assume that the spatial mode profiles, i.e., the
eigenvectors of Eq. (8), are also known as mν (r). Here, the
index ν may just be a simple index to count the eigenmodes
of the system, but may also be a collection of indices. In the
case of a quasi-infinite waveguide, one may take for example
ν = (k, α, β ) with k denoting the wave number along the
waveguide and α and β denoting two mode indices identifying
the lateral dependence of the mode profiles. To find a general
spin-wave dispersion, it proves useful to define the effective
spin-wave tensors N̂ν via

N̂
∑

ν

cν (t ) mν (r) =
∑

ν

cν (t ) N̂νmν (r) (13)

as the eigenvalues of the magnetic tensor with respect to the
mode profiles. The formalism of effective spin-wave tensors
has been introduced by Nazarov et al. [42] for plane waves
and is used for example in the theory of nonlinear spin-wave
dynamics [38,43]. However, we do not restrict the mode pro-
files to be plane waves, necessarily. These tensors represent
the effective magnetic field generated by each individual mode
profile. Moreover, the N̂ν only contain (in general complex)
numbers and are not integro-differential operators anymore.
This allows us to write the dynamic matrix for a given mode
ν as

D̂ν =
( −iN (21)

ν −i(N (22)
ν + h0)

i(N (11)
ν + h0) iN (12)

ν

)
(14)

with N (i j)
ν (here i, j = 1, 2) being the spin-wave tensor ele-

ments in the local basis {e1, e2}. Using the fact that all N̂ν

have to be Hermitian as well, i.e., N (21)
ν = (N (21)

ν )∗, we can
obtain the general spin-wave dispersion as the eigenvalues of
the dynamic matrix,

ων

ωM
= Im N (21)

ν

+
√(

N (11)
ν + h0

)(
N (22)

ν + h0
) − (

Re N (21)
ν

)2

≡ Aν +
√
BνCν − D2

ν .

(15)

This form is identical to the one, e.g., obtained by Cortés-
Ortunño and Landeros [12,44] for uniform films with bulk
DMI. Moreover, for N (21)

ν = 0, it reduces to the famous Kittel
formula [45].

Even without imposing any specific magnetic equilib-
rium, material, or involved interactions, we can make further
statements about the general form of Eq. (15) for the case
of propagating waves, where, e.g., N̂ν = N̂(k). In fact, as
shown in Appendix C, the imaginary part of the off-diagonal
spin-wave tensor element A(k) ≡ Im N (21)(k) has to be an
odd function of the wave vector k which means, in general,
A(−k) = −A(k). In other words, depending on the system at
hand, this term has to be either zero or lead to a dispersion
asymmetry. Because of this, it is denoted as the (here unitless)
magnetochiral stiffness field, which resonantly couples the
two independent components (indices 1 and 2) of the dynam-
ical magnetization. Furthermore, one can show that this field
is the only possible one leading to an asymmetry, as all other
terms have to be even in k (see again Appendix C). Therefore,

the dispersion asymmetry for plane waves can be given as

�ω(k) = ω(k) − ω(−k) = 2ωMA(k). (16)

It is clear that the real challenge of obtaining the spin-wave
dispersion lies in obtaining exactly the effective spin-wave
tensor elements N (i j)

ν . However, we will show here that, in-
deed, it is possible to obtain each of these terms individually
in a fully numerical approach.

III. METHOD

After having introduced the general ingredients of a
dynamic-matrix approach and having discussed the general
form of the spin-wave dispersion, we want to address the
issue of hybridization. For this purpose, we outline how to
numerically obtain the unhybridized spin-wave dispersion in
terms of modes with a given spatial profile or spatial symme-
try, solely based on the numerical dynamic-matrix approach.
We will see that the individual terms of the general dispersion
Eq. (15) are a natural outcome of the presented method-
ology. As announced, we present this methodology for a
propagating-wave dynamic-matrix approach to calculate the
dispersion of propagating modes in certain waveguides, where
the dynamic matrix D̂k is only solved in a single cross section
of the waveguide. However, the method can of course be ap-
plied to any dynamic-matrix approach. Again, for the reader’s
convenience, expressions for the plane-wave magnetic tensors
are found in Appendix A.

Modes with a given spatial profile or symmetry (e.g.,
“the first perpendicular-standing mode” or “the first radial
mode”) are in some works simply referred to as the actual
spin-wave modes. Recall that numerically diagonalizing the
dynamic matrix intrinsically outputs the (already hybridized)
normal modes of the given systems which may be mixtures
of these spin-wave modes. In most theoretical works, these
are taken synonymous with the completely unpinned (or par-
tially pinned) exchange modes of the system which are the
normal modes when no dynamic dipolar fields are present.
Since, in general, nondipolar interactions may also include
anisotropy, the DMI, and so forth, and, in order to avoid
confusion, here and henceforth, we will denote these modes as
nondipolar modes. To proceed further, the dynamic matrix is
projected onto a basis of these modes. The following strategy
has already been widely used in many analytical theories of
spin-wave propagation for systems where analytical expres-
sions for the spatial mode profiles are known (see for example
Refs. [8,20,35,46]). Let us note that it gives approximately
correct results only when the spatial dependence of both the
mode magnitude and precession ellipticity is not changed
considerably by the influence of the dynamic dipolar fields.
We shall later see an example where this method fails.

In a general case, finding the nondipolar spectrum analyt-
ically is cumbersome, and may involve spatial mode profiles
which do not have any closed analytical form (yet). For this
purpose, we shall obtain the nondipolar spectrum numerically
as solutions of the eigenvalue problem

ω(ND)
ν (k) sνk = ωMD̂(ND)

k sνk (17)

with D̂(ND)
k being the dynamic matrix of given magnetic spec-

imen with known equilibrium, including all interactions, but
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without the dynamic dipolar fields represented by N̂(dip)
k . Here,

sνk are the complex-valued spatial profiles of the nondipolar
modes and ν now denotes some lateral mode index which
counts the different dispersion branches. Note that the dipolar
equilibrium field should still be included in the equilibrium
field h0. Specifically, this matrix may also contain interactions
such as anisotropy or the DMI. The mode pinning of the basis
modes is determined by the boundary condition Eq. (4) and
possible surface anisotropy. Recall that the eigenvectors of
the spatially discretized Eq. (17) have 2n components. We can
construct a basis of nondipolar modes using the orthonormal
basis vector fields

g(1)
νk = 1√

N (1)
νk

(
(sνk · e1

0

)
, g(2)

νk = 1√
N (2)

νk

(
0

sνk · e2

)
, (18)

with e1,2(r) being the basis vectors locally orthogonal to the
equilibrium magnetization m0(r). In this sense, g(1,2)

νk allows
us to treat the two components of the mode profiles individ-
ually. This is important, because at a later point when the
dipolar interaction is included, it may change the precession
ellipticity, i.e., the ratio between the dynamical components.
The normalization factors N (1,2)

νk are chosen with respect to
the cross-section area (or full volume) in the sense

N (i)
νk =

∫
S

dS′ |sνk (ρ′) · ei(ρ
′)|2 with S = A,V. (19)

The normalization with respect to either cross-section area A
or magnetic volume V has to be done depending on whether
one uses a propagating-wave or a full three-dimensional
dynamic-matrix approach, i.e., depending on the number of
dimensions in which the magnetic medium is discretized.
Now, we are ready to calculate the matrix elements of the
full dynamic matrix (including dipolar interaction) in the basis
spanned by g(1,2)

νk for all ν and have

D̂k =̂

⎛
⎜⎜⎜⎝

Ĉν1,k

Ĉν2,k
. . .

Ĉn,k

⎞
⎟⎟⎟⎠

+
⎛
⎝ Ŵνν ′,k

Ŵν ′ν,k

⎞
⎠ (20)

with the diagonal blocks

Ĉν,k =
(

C(11)
ν,k C(12)

ν,k

C(21)
ν,k C(22)

ν,k

)
(21)

with

C(i j)
ν,k =

∫
dA′ (g(i)

νk

)∗ · D̂k · g( j)
νk (22)

and the off-diagonal blocks Ŵνν ′,k accordingly. As the full
dynamic matrix has to be Hermitian it is clear that Ŵνν ′,k =
Ŵ†

ν ′ν,k . These off-diagonal blocks are responsible for the
mixing/hybridization of different spin-wave (nondipolar)
modes. The new unhybridized (or unperturbed) dipole-
exchange spectrum in terms of modes with the old mode
indices ν can now be obtained by setting all off-diagonal

blocks to zero. In this zeroth-order approximation, the disper-
sion is simply given by the eigenvalues of the diagonal blocks

det
(
D̂(0)

k − ω(0)Î2n
) =

∏
ν

det(Ĉνk − ω(0)Î2), (23)

which finally yields the explicit unperturbed dipole-exchange
dispersion neglecting hybridization

ω(0)
ν (k) = 1

2

(
C(11)

ν,k + C(22)
ν,k

)

+
√

C(12)
ν,k C(21)

ν,k −
[ i

2

(
C(11)

ν,k − C(22)
ν,k

)]2

. (24)

Accordingly, the first-order perturbation (considering two hy-
bridizing branches ν1 and ν2) can be obtained by

det

(
Ĉν1k − ω(1)Î2 Ŵν1ν2k

Ŵ†
ν1ν2k Ĉν2k − ω(1)Î2

)
= 0. (25)

However, of course the exact dipole-exchange spectrum is
obtained by strictly diagonalizing the full dynamic matrix D̂
numerically. Considering the diagonal blocks of Eq. (22) it is
clear that the zeroth-order dispersion in Eq. (24) is formally
identical to the general form of the spin-wave dispersion in
Eqs. (1) and (15) by identifying

Aν (k) = Im N (21)
νk = 1

2

(
C(11)

ν,k + C(22)
ν,k

)
, (26a)

Bν (k) = N (11)
νk + h0 = −iC(21)

ν,k , (26b)

Cν (k) = N (22)
νk + h0 = iC(12)

ν,k , (26c)

Dν (k) = Re N (21)
νk = i

2

(
C(11)

ν,k − C(22)
ν,k

)
. (26d)

Let us stress the point that the matrix elements C(i j)
ν,k are ob-

tained directly from numerics. As a result, we are now able to
fully numerically calculate the unperturbed dipole-exchange
spectrum in an arbitrary magnetic specimen and can even
disentangle the individual terms of the dispersion. Note that
the above-described procedure can of course also be done in
terms of the already hybridized mode profiles, i.e., in terms
of normal modes, by using the eigenvectors mν ′k of the full
matrix D̂k as a basis, instead of the nondipolar profiles sνk . Ob-
viously, taking this route changes the indexing of the modes
and renders the dynamic matrix in Eq. (20) block diagonal
from the beginning; i.e., all mixing blocks Ŵνν ′ vanish.

IV. APPLICATIONS

In the following, we would like to showcase the presented
methodology with three different examples. First, we will
show how to disentangle hybridized modes in a transversally
magnetized rectangular waveguide. This examples also high-
lights one of the shortcomings of this approach, namely the
assumption that the spatial dependencies of both the mode
magnitude and of the ellipticity are not affected by dynamic
dipolar fields. After this, we will present how the differ-
ent dynamic stiffness fields can be calculate separately, and,
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FIG. 2. (a) Schematics of a soft-magnetic rectangular waveguide
in the S state, with a transversally applied static external field of
μ0Hext = 50 mT. (b) Scan of the normalized equilibrium magneti-
zation across the width of the waveguide. The equilibrium state has
been obtained using an energy minimizer. (c) Scans of the lateral spa-
tial profiles (only out-of-plane component) for different nondipolar
modes in the waveguide (see text). (d) Hybridized dipole-exchange
spectrum (dashed) of the normal modes in the waveguides, overlayed
with the unhybridized spectrum (solid) in terms of nondipolar modes.
(e) Zoom-in of the same dispersion showing an anticrossing of two
different modes.

furthermore, how to resolve contributions from different mag-
netic interactions.

A. Unhybridized dispersion transversally
magnetized waveguide

One of the standard magnetic elements considered in
various spin-wave transport experiments is the transversally
magnetized rectangular waveguide [47–50]. Here, we con-
sider a soft-magnetic waveguide of 800 nm width and 50 nm
thickness shown in Fig. 2(a), with typical material parameters
of Ni80Fe20 (permalloy) summarized in Table I.

The waveguide is magnetized in an S state which is stabi-
lized by a static transversal field of μ0Hext = 50 mT. Such an
equilibrium state consists of a large transversally magnetized
domain in the center of the waveguide (here: bulk domain)

TABLE I. Parameters used for micromagnetic modeling.

Exchange stiffness, Aex 13 pJ/m

Saturation, Ms 796 kA/m
Reduced gyromagnetic ratio, γ /2π 28 GHz/T
Bulk DMI constant (only Sec. IV C), D 1 mJ/m2

and two small edge domains on either side where the magne-
tization tries to align parallel with the waveguide edges [see
Figs. 2(a) and 2(b)]. The spin waves propagating along such a
waveguide can be divided into the edge-domain modes, which
propagate only in the edge domains, the bulk (or fundamental,
or quasiuniform) mode which exhibits a mostly homogeneous
mode profile within the waveguide cross section, as well as
higher-order transversal modes which exhibit a standing-wave
character along the width of the waveguide. In Fig. 2(c),
we show the spatial profiles of these nondipolar modes, cal-
culated, as described in the previous section, according to
Eq. (17).

It is well known that the modes with the aforementioned
spatial profiles are actually not normal modes of this par-
ticular system. Instead, for example the bulk mode and the
higher-order transversal modes are hybridized by dynamic
dipolar fields. In Fig. 2(d), we show the actual dispersion
for the different hybridized normal modes as dashed lines,
calculated by numerically diagonalizing the full dynamic ma-
trix D̂k of the system. On top of it, as solid lines, we show
the unhybridized dispersion in terms of the nondipolar modes
(edge-domain, bulk, transversal) calculated using the numeri-
cal scheme presented in this paper. The bulk mode is crossing
several higher-order transversal modes and, as can be seen in
Fig. 2(e), hybridizes with some of them [51]. We see that, in
fact, one can completely recover the unhybridized dispersion
in terms of nondipolar modes from numerics. As a shortcom-
ing, there are significant deviations in the frequencies of the
edge-domain modes, when comparing the nondipolar with
the normal modes. This is due to the fact that the dynamic
dipolar fields influence the localization as well as the spatial
dependence of the ellipticity of these modes. Note, however,
that comparing numerical results for edge-domain modes with
experimental data can be ambiguous, as they are strongly
influenced by the quality of the edge.

Albeit there is not a strict analytical model for the spin
waves in an S-state waveguide, both the bulk mode and the
transversal modes can be approximately described using the
dispersion of thin films provided by Kalinikos and Slavin in
Ref. [8] by numerically determining the magnetic ground state
and then extracting approximate values for the effective mag-
netic field and the effective width of the waveguide [49,50].

B. Identification of individual stiffness fields
in magnetic nanotubes

As a next example, we show that the above-presented
methodology easily allows us to individually determine the
different components of the effective spin-wave tensor N (i j)

νk
via Eq. (26), which are connected to the dynamic stiffness
fields Aν (k), Bν (k), Cν (k), and Dν (k) that make up the full
spin-wave dispersion. As seen in Fig. 3(a), we consider a
magnetic nanotube in the vortex state, with 20 nm inner and
30 nm outer radius and the same material parameters as in the
previous section. The vortex state is stabilized using an az-
imuthal field Bφ = 80 mT. The spin waves propagating along
such a tube have already been discussed extensively in the
literature by Otálora et al. [14–16] and are known to exhibit
a curvature-induced dispersion asymmetry, i.e., Aν (k) 
= 0,
which originates from the dipolar interaction. Here, for the
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FIG. 3. (a) Schematics of a thin-shell permalloy nanotube in
the vortex state. (b) Asymmetric spin-wave dispersion of the dif-
ferent azimuthal modes [∝ exp(iνφ)] propagating along the tube.
(c)–(e) Numerically obtained individual stiffness fields for the dif-
ferent modes, overlayed with the theoretical prediction according to
Ref. [14].

case of a thin-shell nanotube in the vortex state, Dν (k) ≡ 0
[14,52]. As a result, the dispersion reduces to

ων (k) = ωM[Aν (k) +
√
Bν (k)Cν (k)]. (27)

The spatial profile of the modes in the tube is well described
by ∝ exp[i(νφ + kz)], where ν ∈ Z denotes the number of
azimuthal periods. In Fig. 3(b) we show the numerically ob-
tained asymmetric dispersion of these modes together with the
predictions provided by the theory of Ref. [14]. Finally, the
individual (unitless) stiffness fields obtained numerically and
compared with the analytical model are shown in Figs. 3(c)
and 3(e).

As can be seen, the fully numerical methodology almost
perfectly reproduces the theoretical predictions. The devi-
ations in the stiffness field Cν (k) are insignificant as this
(unitless) field is close to unity; i.e., the overall influence
on the full dispersion remains negligible. In agreement with
our previous discussion on the general form of the spin-wave
dispersion in Sec. II B, only the magnetochiral field Aν (k) is
asymmetric (more precisely: odd) in k, and therefore, solely
induces the dispersion asymmetry. In this case, this mag-
netochiral field couples the z and the ρ components of the
dynamical magnetization δm(r, t ), whereas the Bν (Cν) field
is produced by the z (ρ) component and exclusively acts on
this specific component.

C. Disentanglement of various contributions
to the dispersion asymmetry

Since the magnetic tensor N̂, and therefore the full dynamic
matrix D̂, are additive in the various magnetic interactions,
of course, using this approach, the individual elements N (i j)

νk

FIG. 4. (a) Schematics of a thin-mantle magnetic nanotube in the
helical state with bulk DMI. (b) Asymmetric dispersion of the lowest-
order mode which has a homogeneous lateral mode profile. (c) Total
dispersion asymmetry and contributions of the individual magnetic
interactions as a function of wave vector.

of the effective spin-wave tensors, and, with these, the dif-
ferent stiffness fields, can be calculated for each interaction
individually, without any difficult coding. Therefore, as a last
application of this approach, we show that it is easily possible
to disentangle different contributions to any dispersion asym-
metry. Now we consider a magnetic nanotube, magnetized
in the helical state [see Fig. 4(a)], with the same material
parameters as before, however additionally with a nonzero
bulk DMI constant of D = 1 mJ/m2 (for expressions of the
magnetic tensor including bulk DMI, see Appendix A). The
helical state is stabilized using a field in both the z and the φ

directions, according to

Hext = Hext[sin(�H )eφ + cos(�H )ez] (28)

with the angle of the field with the z axis �H = 50◦ and the
magnitude μ0Hext = 200 mT. The equilibrium magnetization
in the helical state has the same mathematical form as the
external field but encloses an angle of �M = 30◦ with the
z axis.

In this case, it is strongly expected that both the curvature-
induced magnetic charges [53] and the DMI contribute to a
dispersion asymmetry [12]. This is a particularly complicated
example for which there is no analytical theory available yet.
In Fig. 4(b), we show the dispersion for the lowest-order
(ν = 0) mode, which exhibits a homogeneous profile within
the nanotube cross section. As can been seen, this dispersion
branch exhibits a strong dispersion asymmetry. Finally, by
obtaining the magnetochiral field A0(k) for each interaction
individually, one can disentangle their contributions to the
dispersion asymmetry �ω0(k) = 2ωMA0(k) in Fig. 4(c). As
expected, the bulk DMI contributes linearly as in thin films,
whereas the dipolar interaction contributes nonlinearly. Note
that both contributions are odd functions of the wave vector k.
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V. CONCLUSION

Based on a dynamic-matrix approach, we presented a
methodology to reverse-engineer spin-wave dispersions in a
fully numerical fashion. After having discussed the general
form of any spin-wave dispersion and their individual ingre-
dients, namely the stiffness fields, we have shown that these
fields can be calculated without having knowledge about the
mode profiles beforehand. We have shown that each stiff-
ness field in a dispersion can be obtained individually, for
each magnetic interaction separately. In particular, it becomes
possible to disentangle different contributions which lead to
an asymmetric dispersion, by evaluating the magnetochiral
stiffness field, which is shown to be the only one that can lead
to a dispersion asymmetry, for any interaction.

Furthermore, we have shown that the presented method-
ology allows us to easily disentangle dipole-dipole hybridized
modes, something which, in most cases, required an analytical
or semianalytical theory before. This was done by evaluating
the unperturbed/unhybridized dispersion in terms of numeri-
cally obtained nondipolar modes, which works well for modes
whose spatial profile is not changed significantly by the dy-
namic dipolar fields.

Although we have presented explicit examples using a
finite-element propagating-wave dynamic-matrix approach,
the method can be applied for any dynamic-matrix approach.
This means that the presented methodology is suitable for a
large number of different geometries and equilibrium states.
We believe that this work is of particular interest for the
study of spin waves in complex mesoscopic systems where
analytical models are not available yet. Moreover, it might
help in the development and verification of new analytical
theories.
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APPENDIX A: CONTRIBUTIONS TO THE MAGNETIC
TENSOR

Here, we briefly showcase the magnetic tensors for the
magnetic interactions considered in this paper. The magnetic
tensors N̂ for dipolar and exchange interaction are defined by

N̂(dip)mν = ∇φν, (A1)

N̂(ex) = −λ2
ex∇2, (A2)

with φν being the dipolar potential generated by the mode
ν and λex is the exchange length of the material [29]. In
the present paper, we used a propagating-wave dynamic-
matrix approach for infinitely extended waveguides where the
equilibrium magnetization is assumed to be translationally in-
variant along the z direction. In this case, the magnetic tensors
are transformed to plane-wave tensors N̂k by

N̂ → N̂k = e−ikzN̂eikz (A3)

as described for example in Ref. [28] or in our previous work
Ref. [29]. Here, we additionally present the plane-wave tensor
for the bulk Dzyaloshinskii-Moriya interaction. One starts
with the three-dimensional magnetic tensor for bulk DMI (in
crystals with T symmetry) [12,54], defined by

N̂mν = − 2D

M2
s

∇ × mν (A4)

with the bulk DMI constant D. By assuming the mode profile
to be

m(r) = ηνk (x, y)eikz (A5)

with some lateral profile ηνk , and by performing the transfor-
mation Eq. (A3), one arrives at

N̂kηνk = − 2D

M2
s

(
k�̂ηνk + ∇ × ηνk

)
= − 2D

M2
s

(
k�̂ + ∇ × . . .

)
ηνk,

(A6)

which now only acts on the lateral profiles ηνk (x, y) of the
plane waves with a given wave number k. The operator �̂ is
given in the laboratory system as

�̂ =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (A7)

The reader can convince themself that the plane-wave bulk
DMI tensor defined by Eq. (A6) is still self adjoint.

APPENDIX B: CONTRIBUTIONS TO THE DYNAMIC
MATRIX

The dynamic matrix, which is numerically diagonalized
to obtain the spin-wave spatial profiles and frequencies, is
expressed as

D̂ = i�̂R̂�̂R̂† (B1)

with the rotation operator

R̂ =
(

e1 · ex e1 · ey e1 · ez

e2 · ex e2 · ey e2 · ez

)
, (B2)

which transforms vectors from the laboratory system
{ex, ey, ez} to the basis {e1, e2} locally orthogonal to the direc-
tion of the equilibrium magnetization m0(r). This basis can be
obtained locally by

e1 = − m0 × e2

|m0 × e2| , e2 = ez × m0

|ez × m0| . (B3)

Note, that the operator R̂ is unitary for vectors orthogonal to
m0. This holds true in particular for all valid mode profiles,
since δm ⊥ m0. The operator �̂ represents the cross-product
operator m0 × . . . and, in the local basis, takes the simple form

�̂ =
(

0 −1
1 0

)
. (B4)

The operator �̂ is defined as in the main text.
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APPENDIX C: ASYMMETRY OF EFFECTIVE SPIN-WAVE
TENSOR ELEMENTS

In this Appendix we briefly discuss the asymmetry of the
matrix elements of the effective spin-wave tensors N̂ν upon
reversal of the wave vector. We will see the dispersion asym-
metry can only come from the imaginary part Im N (12) of the
effective spin-wave tensor written in the local basis {e1, e2},
independently of the magnetic interaction at hand.

Let us assume that the mode profiles are plane waves and
the effective spin-wave tensors N̂ν ≡ N̂(k) are defined by

−δh = N̂ · δm =
∑

k

N̂(k)ak(t )eikr (C1)

with δh again being the unitless effective field generated by
the dynamic magnetization δm and ak being a time-dependent
complex amplitude vector of the respective mode. In the case
of pure plane waves, we have two important properties:

(i) Since the full magnetic tensor is Hermitian, so have
to be the effective spin-wave tensors, N̂†(k) = (N̂∗)T(k) =
N̂(k). This holds true for all effective spin-wave tensors.

(ii) The dynamic effective field δh has to be real-valued.
Then, from Eq. (C1), it follows that N̂∗(k) = N̂(−k).

Let us now consider an effective spin-wave tensor written
in the local basis

N̂(k) =
(

N11(k) N12(k)
N21(k) N22(k)

)
. (C2)

For readability, in this section, we will write the indices as
subscripts. From (i), it follows directly that the diagonal com-
ponents N11, N22 have to be real. Then, from (ii) it follows that
they have to be even in k, i.e.,

N11(k)
(i)= N∗

11(k)
(ii)= N11(−k), (C3)

N22(k) = N∗
22(k) = N22(−k). (C4)

Now, let us focus on the off-diagonal element N21(k) =
N∗

21(k). Splitting it into real and imaginary parts, we can write

N∗
21(k) = {Re [N21(k)] + iIm [N21(k)]}∗

= Re [N21(k)] − iIm [N21(k)].
(C5)

Now, from (ii), we also have

N∗
21(k) = N21(−k)

= Re [N21(−k)] + iIm [N21(−k)]. (C6)

Comparing Eqs. (C5) and (C6) and using the fact that the real
and imaginary parts are linearly independent, we can conclude

Re [N21(k)] = Re [N21(−k)], (C7)

Im [N21(k)] = −Im [N21(−k)], (C8)

which means that, in fact, the only component of the effective
spin-wave tensor which can (and actually has to) produce a
dispersion asymmetry is the imaginary part of the off-diagonal
elements Im N21 = −Im N12. In the main text, this quantity is
referred to as the (unitless) magnetochiral field A.

This discussion can also be generalized for spin waves
which are not 3D plane waves; for example the modes in
a rectangular waveguide with small cross section might be
characterized by the wave vector k and two lateral mode
indices n and �. The same arguments as above can be made
in case the mode profiles can be written as

δm =
∑
ν,q

[
m(1)

ν,q(ρ) e1 + im(2)
ν,q(ρ) e2

]
e−iωt eiqs. (C9)

Here, m(1)
ν,q and m(2)

ν,q are real-valued functions and represent
the standing-wave part of the mode profiles which depends on
the generalized coordinates ρ = {ρ1, . . . , ρd} and can be char-
acterized using the mode indices ν = {ν1, . . . , νd}. Similarly,
the exponential propagating part depends on the generalized
coordinates s = {s1, . . . , sp} and is characterized by the gen-
eralized wave vector q = {q1, . . . , qp}. Obviously, the sum
d + p has be equal to the number of degrees of freedom. Then,
one can show the Im N21 has to be an odd function of all
components of q, or not depend on a specific component at
all.
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