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Green’s function formalism for nonlocal elliptical magnon transport
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We develop a nonequilibrium Green’s function formalism to study magnonic spin transport through a strongly
anisotropic ferromagnetic insulator contacted by metallic leads. We model the ferromagnetic insulator as a finite-
sized one-dimensional spin chain, with metallic contacts at the first and last sites that inject and detect spin in
the form of magnons. In the presence of anisotropy, these ferromagnetic magnons become elliptically polarized,
and spin conservation is broken. We show that this gives rise to a novel parasitic spin conductance, which
becomes dominant at high anisotropy. Moreover, the spin state of the ferromagnet becomes squeezed in the
high-anisotropy regime. We show that the squeezing may be globally reduced by the application of a local spin
bias.
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I. INTRODUCTION

The controllable transport of spin through magnetic ma-
terials has recently attracted much attention, as it has the
potential to augment or supplant modern electronics with
high-frequency and low-dissipation computational elements
[1]. Various strategies have been envisioned to achieve
this goal, generally using either magnetic textures such as
skyrmions [2,3] or domain walls [4,5] as the carriers of in-
formation, or using spin waves or magnons to transport spin
angular momentum directly. The latter forms a broad field
of research known as magnonics [6]. In recent years, signifi-
cant milestones, both experimental and theoretical, have been
achieved in the field of magnonics, with nonlocal transport
of spin through ferromagnetic insulators [7–12] now com-
monly realized and fairly well described using theoretical
frameworks that range from drift-diffusion models to nonequi-
librium Green’s function formalism [13–16].

At the core of these theoretical models is the Holstein-
Primakoff (HP) magnon [17], a bosonic quasiparticle that
forms a natural approximation to low-energy excitations of
the Heisenberg (anti)ferromagnet [18]. The simplest variants
of the Heisenberg ferromagnet do not include any form of
anisotropy, or have at most a “natural” quantization axis, gen-
erally taken to be the z axis, set by an external magnetic field.
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This results in a circularly polarized magnon, which appears
to offer a sufficient approximation to adequately describe the
broad behavior of magnon transport [19], for example in ma-
terials such as yttrium iron garnet [20].

In this work, however, we explicitly consider the effects of
potentially large anisotropies, which break spin conservation
and generate elliptically polarized magnons. The breaking of
spin conservation is known to give rise to phenomena such
as magnon tunneling between weakly coupled ferromagnetic
insulators [21], which is prohibited when spin is conserved,
and super-Poissonian shot noise [20]. Such phenomena are
expected to arise whenever the ferromagnet under consider-
ation has sufficiently strong anisotropy, e.g., in iron thin films
[20] or exotic quantum magnets [22].

We develop a nonequilibrium Green’s function (NEGF)
formalism, also known as Keldysh formalism [23,24], to study
the anomalous or off-diagonal correlations that are generated
by the anisotropy terms and, as a proof of concept, apply it to
determine whether magnon ellipticity gives rise to observable
effects in local and nonlocal transport experiments.

We find that, given sufficiently strong anisotropy, at least
two potentially observable effects are produced: a novel para-
sitic spin resistance, and phase-space squeezing of magnons.
The parasitic spin resistance may provide experimental insight
into the anisotropy of the ferromagnet, provided a way can be
found to measure it directly. Squeezed magnons are predicted
to yield reduced shot noise in ferromagnet/conductor hybrids
[25], analogous to the application of squeezed light to reduce

2469-9950/2021/104(17)/174404(13) 174404-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6963-4242
https://orcid.org/0000-0002-5009-2164
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.174404&domain=pdf&date_stamp=2021-11-02
https://doi.org/10.1103/PhysRevB.104.174404


W. P. STERK et al. PHYSICAL REVIEW B 104, 174404 (2021)

FIG. 1. Cartoon representation of the system under considera-
tion. A one-dimensional chain of spins is terminated at either end
by heavy-metal leads, the left (right) lead having an electronic spin
accumulation μL(R) parallel to the magnetization axis, and temper-
ature T L(R). Spins precess elliptically due to the presence of high
anisotropy, and can transport angular momentum in the form of an
elliptical magnon or spin wave (yellow swirl).

quantum noise in optical lasers [26,27]. This effect may also
hypothetically find an application in the recently proposed
magnon laser [28].

The outline of this work is as follows: in Sec. II we recast
the continuum field theory briefly outlined by Rückriegel and
Duine [29] into a discrete, N-spin form using a bottom-up
approach (similar work has been done in contexts such as the
Bose-Hubbard model [30]), and in Sec. III show the results
we obtain from a numerical implementation of the framework.
In Sec. IV we provide some concluding remarks and outline
some potential further applications of the formalism devel-
oped in this work.

II. METHODS

In this section we give a description of our model system
and the implementation of the NEGF we use to investigate its
dynamics.

A. System and Hamiltonian

We aim to consider systems typically used in long-distance
transport experiments akin to Cornelissen et al. [7]: a ferro-
magnetic insulator with two heavy-metal leads, one of which
serves to inject magnons, and one acting as a magnon de-
tector. The system is biased by a constant electronic spin
accumulation in the leads, aligned parallel to the magnetiza-
tion so that there is no torque acting on the magnetization.
We assume spin transport in the ferromagnetic insulator is
quasi-one-dimensional, i.e., that magnons travel in a straight
line from emitter to detector, and the bulk of the ferromagnet
effectively consists of macroscopically many noninteracting
parallel copies of the spin chain making up the transport
channel for a single magnon. This allows us to treat the
ferromagnetic bulk as a one-dimensional (1D) spin chain.
A cartoon representation of this system is shown in Fig. 1.
Extension to a two- or three-dimensional cubic bulk is mathe-
matically simple (and tractable in the continuum limit), but
computationally challenging for finite-sized systems due to
the vast increase in lattice sites that must be taken into ac-
count.

We thus model our system using the 1D, N-particle Heisen-
berg [18] ferromagnetic insulator in the presence of quadratic
anisotropy terms. It is described by the Hamiltonian

H = HH + Hani, (1)

where

HH = − J̃

2

N−1∑
i=1

Ŝi · Ŝi+1 − hmag

N∑
i=1

Ŝz
i (2)

is the ordinary 1D Heisenberg Hamiltonian [18], and

Hani =
∑

ν∈{x,y,z}

N∑
i=1

Kν

(
Ŝν

i

)2
(3)

is the anisotropy Hamiltonian. Here J̃ > 0 is the exchange
constant, the Kν are the anisotropy energies in the three Carte-
sian directions, Ŝi = (Ŝx

i , Ŝy
i , Ŝz

i )T is the spin operator at site i,
and hmag is an externally applied magnetic field.

As we are only interested in the behavior of the ferro-
magnet, we have omitted Hamiltonian terms originating from
coupling to the leads, and instead opt to directly write down
the relevant self-energy terms when we develop our Green’s
function formalism later on.

The second-order, spin-S Holstein-Primakoff transforma-
tion [17]

Ŝx
i =

√
S

2
(bi + b†

i ), (4a)

Ŝy
i = −i

√
S

2
(bi − b†

i ), (4b)

Ŝz
i = S − b†

i bi (4c)

is used to express the Hamiltonian (1) in terms of magnon
creation (annihilation) operators b†

i (bi) acting at site i, that
obey the bosonic commutation relations [bi, b j] = [b†

i , b†
j] =

0 and [bi, b†
j] = δi j . We additionally define the vector operator

φi ≡
(

bi

b†
i

)
(5)

and its conjugate transpose φ
†
i .

Note that the Holstein-Primakoff transformation is an
expansion around the ground state in which all spins are
aligned in the z direction. In the absence of an external field,
this puts constraints on the relative signs and strengths of
the anisotropy terms Kν , however a sufficiently strong field
hmag > 0 may always be used to guarantee alignment to the z
axis.

The Hamiltion of Eq. (1) may be simplified somewhat if
one defines the constants � ≡ S(Kx + Ky − 2Kz + J̃ ) + hmag,
J ≡ J̃S

2 , and K ≡ S
4 (Kx − Ky). Then, dropping unimportant

constant energy shifts, along with the additional boundary
terms −J (b†

1b1 + b†
N bN ) that originate from the fact that we

consider a finite-sized system (which we expect to be negli-
gible for sufficiently large systems), the Hamiltonian (1) may
be rewritten as

H = 1

2

∑
i j

φ
†
i hi jφ j, (6)

with the 2N × 2N matrix

hi j =
(

hi
i j Kδi j

Kδi j hi
i j

)
. (7)
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Here δi j is the N × N identity matrix, and

hi
i j = �δi j − J[δi, j+1 + δi+1, j] (8)

is the isotropic Hamiltonian submatrix. We thus see that � is
an on-site potential for the magnons. The rescaled exchange
energy J is a hopping parameter, governing the probability for
a magnon to hop from one site to the next.

The off-diagonal submatrices Kδi j govern the ellipticity
of the magnons, and we shall henceforth use the term “the
anisotropy” interchangeably with “the scalar constant K” (al-
ternatively, and equivalently, K could be called the “squeezing
factor” or “spin nonconservation factor”). Note, however, that
K is proportional to the difference in anisotropy energies in the
x and y directions, i.e., the principal directions perpendicular
to the spin quantization axis.

The presence of nonzero K breaks conservation of spin by
introducing terms of the form K[bibi + b†

i b†
i ]. The Hamilto-

nian of Eq. (7) therefore cannot be unitarily diagonalized (in
a physically meaningful way), and its eigenstates do not have
a well-defined spin. Rather, Eq. (7) describes a Hamiltonian
of the Bogoliubov form, which may be diagonalized using a
para-unitary transformation [31], i.e., a transformation matrix
Ti j obeying ∑

i

(σ3)i jT †
jk =

∑
i

T −1
i j (σ3) jk, (9)

where

(σ3)i j ≡
(

δi j 0
0 −δi j

)
(10)

is the 2N × 2N analog of the third Pauli matrix (referred to as
the para-identity matrix by Colpa [31]). The Hamiltonian (7)
allows us to choose Ti j to be real, such that it takes the simple
block structure

Ti j =
(
T (1)

i j T (2)
i j

T (2)
i j T (1)

i j

)
, (11)

where the individual N × N blocks T (1)
i j and T (2)

i j are not
symmetric.

The para-unitary diagonalization of hi j is performed an-
alytically for arbitrary N � 2 by leveraging the recurrent
structure of the characteristic equation det{hi j − (σ3)i jε} =
0, whereby the N-level equation can be expressed terms of
the (N − 1)- and (N − 2)-level equations. The characteristic
polynomial of the recurrence relation contains only terms
of degree N + 1, and is therefore easily solved analytically.
The quasiparticles are elliptical magnons with the dispersion
relation

εn =
√[

� − 2J cos
( n

N + 1

)]2
− K2, 1 � n � N. (12)

Here the natural number n is the quantum number, and εn

monotonically increases with n. The corresponding eigen-
states are plane waves [32], with the quantum number n
corresponding to the wave number k = n

L = n
Na for a spin

chain of physical length L = Na, with a the lattice constant.

B. Nonequilibrium Green’s function formalism

As stated in the previous subsection, diagonalization of
our anisotropic ferromagnetic insulator Hamiltonian may be
done analytically and results in free elliptical magnon modes.
We now seek to investigate the finite-temperature steady-state
behavior of such a system in the presence of two effects: (1)
coupling to one or more metallic leads and (2) bulk dissipation
of elliptical magnons in the form of Gilbert-like damping.

To this end, we develop a nonequilibrium Green’s function
framework [33], also known as Keldysh formalism [23,24].
In what follows, we set h̄ = 1. The spectral properties of the
magnons are encoded in the single-particle retarded Green’s
function

gi j (t, t ′) = −iθ (t − t ′)〈[φi(t ), φ†
j (t ′)]〉 (13)

and advanced Green’s function

g†
i j (t, t ′) = iθ (t ′ − t )〈[φi(t ), φ†

j (t ′)]〉, (14)

where θ (t − t ′) is the Heaviside step function and [•, •] is the
commutator. The Keldysh Green’s function

gK
i j (t, t ′) = −i〈{φi(t ), φ†

j (t ′)}〉 (15)

encodes information about the occupation of the single-
particle states. Here {•, •} is the anticommutator. Using these
Green’s functions, one may construct the lesser Green’s func-
tion

g<
i j (t, t ′) = −i〈φ†

i (t )φ j (t
′)〉, (16)

which, at equal times t = t ′, contains the off-diagonal correla-
tions (for i �= j) and quasiparticle number density (for i = j),
up to a prefactor of −i. Together with the greater Green’s
function

g>
i j (t, t ′) = −i〈φi(t )φ†

j (t ′)〉, (17)

one obtains the relations [24]

gi j (t, t ′) = θ (t − t ′)[g>
i j (t, t ′) − g<

i j (t, t ′)], (18)

g†
i j (t, t ′) = −θ (t ′ − t )[g>

i j (t, t ′) − g<
i j (t, t ′)], (19)

gK
i j (t, t ′) = g>

i j (t, t ′) + g<
i j (t, t ′), (20)

and

gi j (t, t ′) − g†
i j (t, t ′) = g>

i j (t, t ′) − g<
i j (t, t ′). (21)

For simplicity we shall henceforth drop the subscripts
i, j, . . . on all matrices, as well as the explicit summations
in matrix products seen in Sec. II A, and work in the space of
2 × 2 matrices, of which the four components are themselves
N × N matrices. The presence of the N × N or 2N × 2N
identity matrix is implied when doing so does not lead to
ambiguity.

For the remainder of this work we shall only consider a
system in the steady state, i.e., g(t, t ′) = g(t − t ′) (and similar
for the other Green’s functions), and work with Fourier-
transformed Green’s functions. In particular, the retarded
Green’s function g(ω) satisfies the Dyson equation

g(ω) = [ωσ3 − h − 
(ω)]−1, (22)
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where 
(ω) is the retarded self-energy, and is easily obtained
by numerical matrix inversion.

Here we opt to stay in the HP basis (i.e., the basis of the
circular magnons defined by the operators φ and φ†) instead
of transforming to the elliptical basis, and thus h in Eq. (22)
is simply given by Eq. (7). Lead coupling and Gilbert-like
damping are to be incorporated into the (retarded) self-energy

.

The reason we choose to compute observables in the cir-
cular basis is twofold: (1) it provides a simple form for the
lead self-energies, which will be explained shortly, and (2)
experimental measurement of observables is generally done
electrically (through the spin Hall effect and its inverse)
[7,34], so that electron spin is the natural measurement basis
(see below).

In line with Zheng et al. [14], we take the self-energy
component arising from lead X to have the form


X (ω) = −iηX (ω − μX σ3)δi,iX δ j,iX , (23)

where δi,iX δ j,iX indicates that the self-energy is zero ev-
erywhere except for its diagonal components corresponding
to site iX [35], i.e., the index where lead X is attached.
The positive dimensionless real constant ηX determines the
strength of the lead’s coupling to the system, and μX is the
spin accumulation—i.e., the difference in chemical potential
between spin-up and spin-down electrons—in the lead, gen-
erated, for example, by the spin Hall effect. In this work we
attach at most two leads: the left lead (X = L) at iL = 1 and
optionally the right lead (X = R) at iR = N . We choose the
coupling for positive and negative modes to be equal-but-
opposite [indicated by μX σ3 in Eq. (23)], such that our system
reduces to the one considered by Zheng et al. [14] in the limit
K → 0 (up to the splitting into positive and negative modes it-
self, which, at K = 0, becomes a purely notational operation).
At the level of the approximations used by Zheng et al. [14],
the lead self-energy for this geometry is determined only by
the electrons in the metal and the interfacial interaction, and is
independent of the magnons and their particle-hole structure,
making the form of Eq. (23) a natural choice for our model.

The form of the lead self-energy given by Eq. (23) is only
valid when one assumes the spin basis is the natural basis for
the lead Hamiltonians, i.e., that the leads inject a well-defined
amount of spin into the ferromagnet. This is the case provided
the electron spin in the leads is polarized in the z direction
and a spin-flip scattering process at the interface is the source
of magnons: here a spin- 1

2 excitation in the leads is flipped
to − 1

2 , injecting a (spin-1) HP magnon into the ferromagnet.
In the presence of anisotropy, the circular HP magnon is a
superposition of elliptical magnons.

To find an expression for the Gilbert-like damping self-
energy, it is important to carefully consider what one would
expect the state of the system to be in thermal equilibrium.
Given that the lead contributions are local, acting on only one
or two sites of a much larger bulk, we assume our system
ultimately thermalizes to states close to the eigenstates of the
free anisotropic ferromagnet, i.e., the elliptical quasiparticles.
Thus, what is linearly damped in our system is the density
of elliptical magnons, which does not necessarily correspond
to the classical magnetization—hence our use of the term

“Gilbert-like damping,” as opposed to just “Gilbert damping”:
the latter, in the strict sense, refers to damping of the classical
magnetization only [36].

By this rationale we employ a simple linear damping self-
energy in the elliptical basis:


B,ell = −iαω. (24)

Here B stands for “bulk” (as this is the only bulk self-energy
we take into account), and α is the Gilbert-like damping
parameter.

Transforming to the spin basis, we find


B(ω) = −iαωT †T , (25)

where T †T becomes the identity matrix in the limit K → 0.
In this limit, the bulk self-energy reduces to standard Gilbert
damping, which has been addressed by Zheng et al. [14].

The total (retarded) self-energy in our model is then simply
the sum of the lead and bulk self-energies in the spin basis:


(ω) = 
B(ω) + 
L(ω) + 
R(ω). (26)

Under the assumption that the lead and bulk thermal baths
are sufficiently large to be undisturbed by coupling to the
spins, we may use the fluctuation-dissipation theorem [24] to
find the associated Keldysh self-energy:


K(ω) = 2
B(ω)T −1F B(ω)T
+ 2
L(ω)F L(ω) + 2
R(ω)F R(ω). (27)

Here we define the statistical matrix

F X (ω) ≡ diag

{
coth

(
ω − μX

2kBT X

)
,− coth

(−ω − μX

2kBT X

)}
,

(28)

with X ∈ {B, L, R}, kB the Boltzmann constant, and T X the
temperature of the subsystem X . We will further assume
the magnon chemical potential vanishes (μB = 0), such that
T −1F B(ω)T = coth( ω

2kBT B ) is a real number multiplying the
identity matrix.

Finally, from the Keldysh self-energy, we compute the
Keldysh Green’s function [23,37]

gK(ω) = g(ω)
K(ω)g†(ω). (29)

Note that gK(ω) is symmetric and anti-Hermitian, and there-
fore pure imaginary.

C. Observables

Using the elements outlined in Sec. II B, we may compute
any physical observable of our system. As we are primarily
interested in steady-state behavior, the most obvious objects to
consider are the equal-time two-point functions of the creation
and annihilation operators of HP magnons. In the presence
of anisotropy we expect to obtain nonzero anomalous cor-
relations, e.g., 〈bib j〉, because the states in the system are a
superposition of HP magnon states (leading to nonconserva-
tion of spin). The normal and anomalous correlation functions
are conveniently collected in a single matrix through the vec-

174404-4



GREEN’S FUNCTION FORMALISM FOR NONLOCAL … PHYSICAL REVIEW B 104, 174404 (2021)

tor operator φ, e.g.,

ig>
i j (t ) = 〈φi(t )φ†

j (t )〉 =
〈(

bi(t )
b†

i (t )

)
⊗ (

b†
j (t ) b j (t )

)〉

=
(〈bi(t )b†

j (t )〉 〈bi(t )b j (t )〉
〈b†

i (t )b†
j (t )〉 〈b†

i (t )b j (t )〉
)

. (30)

Conversely, we may compute two-point functions of the
elliptical magnons 
 ≡ T φ ≡ (ψ, ψ†), e.g.,

〈
†(t )
(t )〉 = T ∗〈φ†(t )φ(t )〉T T. (31)

Here we expect the anomalous blocks to be nonzero only
when lead coupling and anisotropy are simultaneously
present: if only anisotropy is present, there are no damping
terms that try to push the system away from the native ellip-
tical magnon eigenstates (spin is not conserved, but there are
no explicit sources and sinks of spin). Conversely, if lead cou-
pling is present but anisotropy is absent, the elliptical magnons
are identical to the HP ones, there is no breaking of spin
conservation, and the system reduces to the case investigated
by Zheng et al. [14].

As stated in Sec. II B, the matrix ρμν = 〈φ†
μφν〉 (at some

arbitrary time in the steady state, and with the indices μ

and ν in the range [1, 2N]) containing number densities and
off-diagonal correlations may be computed through the lesser
Green’s function g<:

ρ = ig< = i
∫

dω

2
g<(ω)

= i

2

∫
dω

2
[gK(ω) − g(ω) + g†(ω)]. (32)

For the sake of brevity we shall refer to ρ as the density
matrix, although the off-diagonal components are in fact off-
diagonal correlations. Note also that by the symmetry of g
and gK, and anti-Hermiticity of the Keldysh Green’s function,
the lesser Green’s function is itself symmetric, anti-Hermitian,
and pure imaginary. One may alternatively work directly with
the Keldysh Green’s function, of which the corresponding ob-
servable is the semiclassical (SC) HP magnon density matrix

ρSC = i

2
gK − 1

2
= 1

2
〈{φ†, φ}〉 − 1

2

= i

2

∫
dω

2
gK(ω) − 1

2
. (33)

In equilibrium, the top-left and off-diagonal blocks corre-
spond directly to those of the true density matrix of Eq. (32).

From the density matrix ρ, we may compute the un-
certainty operators �S̄x and �S̄y for the corresponding
normalized spin operators S̄x and S̄y, which allow us to de-
termine whether the elliptical magnons are squeezed in phase
space [26]. From the normalized spin operators

S̄x
i = 1√

2
(bi + b†

i ), (34a)

S̄y
i = −i√

2
(bi − b†

i ), and S̄z
i = 1 − b†

i bi, (34b)

[i.e., the HP transformation with S set to 1, and applied in
reverse with respect to Eqs. (4)], we immediately find the
uncertainty operators

�S̄x
i ≡

√〈(
S̄x

i

)2〉 − 〈
S̄x

i

〉2
=

√
1

2
[〈bib

†
i 〉 + 〈b†

i bi〉 + 〈bibi〉 + 〈b†
i b†

i 〉]=
√

1

2
[I+ρIT+]ii

(35a)

and

�S̄y
i ≡

√〈(
S̄y

i

)2〉 − 〈
S̄y

i

〉2
=

√
1

2
[〈bib

†
i 〉 + 〈b†

i bi〉 − 〈bibi〉 − 〈b†
i b†

i 〉]

=
√

1

2
[I−ρIT−]ii, (35b)

where I± are the N × 2N matrices

I± ≡ δi j (1,±1). (35c)

Here the one-point functions 〈S̄x
i 〉 and 〈S̄y

i 〉 vanish, because
we do not explicitly couple to a pumping field and are not
considering Bose-Einstein condensates [19]. The Robertson
uncertainty principle [38] then states that �S̄x

i �S̄y
i � 1

2 . If
either �S̄x

i < 1√
2

or �S̄y
i < 1√

2
, the state is squeezed [26], and

the pattern of quantum fluctuations of the spin around the z
axis takes the form of an ellipse, rather than a circle [20]. As
noted by Kamra et al. [20], the purely quantum mechanical
squeezing should not be confused with the magnetization
trajectory of a classical elliptical spin wave: the latter concerns
coherent excited states, whereas squeezing persists even in the
ground state and affects properties such as entanglement.

In addition to the magnon density and the related observ-
ables, we may compute the spin currents in our system. These
follow from the continuity equation of the magnetization; a
brief outline of the derivation is given in the Appendix. The
total spin current jL

s,tot flowing out of the left lead comprises
three Landauer-Büttiker-type [39] terms:

jL
s,tot (t ) = jR→L

s + jB→L
s + jL

s , (36)

where

jX
s = −ReTr

∫
dω

2
ιX (ω). (37)

Here the integrands ιX are the tunneling term

ιR→L(ω) = g†(ω)σ3

L(ω)g(ω)
R(ω)[F R(ω) − F L(ω)],

(38a)

the bulk term

ιB→L(ω) = g†(ω)σ3

L(ω)g(ω)
B(ω)

×[T −1F B(ω)T − F L(ω)], (38b)

and the lead-local term

ιL(ω) = g†(ω)σ3

L(ω)g(ω)h

× [F L(ω)|μL=0 − F L(ω)]. (38c)

Conversely, the spin current out of the right lead consists
of the same expressions but with L and R swapped.
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FIG. 2. Resistor network diagrams of our model system. (a) In
the full diagram, each black dot represents a spin, each resistor R̃T

represents an interspin coupling, and each resistor R̃B represents a
coupling to the field(s) responsible for Gilbert-like damping. The
spin currents through the resistors RL/R are given by the lead-local
terms − jL/R. (b) By repeated application of the � − Y transform
[40], one may collapse the internal couplings (red and green blocks),
thereby reducing the N-spin resistor network to a five-resistor form.
In this reduced diagram, the current through RT (from right to left) is
given by jR→L and the currents through the left (right) resistors RB

are represented by the bulk terms − jB→L(R). The lead-local resistors
remain unchanged.

Note that the terms in jL
s,tot contain the statistical matrices

F X (ω) in place of the scalar Bose-Einstein functions one
would normally find in Landauer-Büttiker equations. One may
exploit various symmetries of the components of the integrals
to recover the more familiar form (in the circular limit iden-
tical to the expressions given by Zheng et al. [14]), though
this requires the transmission functions to be written in terms
of the individual N × N blocks of the component 2N × 2N
matrices, as has been done by, e.g., Rückriegel and Duine [29].

To interpret the three spin current contributions, it is useful
to consider the system as a spin resistor network, shown in
Fig. 2(a). Here each node in the circuit represents a spin
in our chain, and each resistor represents a coupling either
between spins (tunneling resistors R̃T) or to a damping ele-
ment (Gilbert-like damping for the bulk resistors R̃B, and lead
damping for RL/R). The system is biased at either lead with
a spin accumulation (voltage) μL/R. In this resistor network
analogy, one may “integrate out” the bulk spins by repeated
application of the �-Y transform [40] to obtain Fig. 2(b). At
equal temperature (T L = T R = T B = T ), the spin currents jX

may then be interpreted as follows.
The tunneling term jR→L is the current flowing from right

to left through the resistor RT in Fig. 2(b), and corresponds to
the spin current flowing out of the left lead when a spin accu-
mulation is applied at the right lead. Physically, it is the term
corresponding to magnon-mediated nonlocal transport, and
roughly corresponds to the current measured experimentally
in a ferromagnetic insulator by Cornelissen et al. [7], although
our work considers the ballistic regime (μB = 0) rather than
the diffusive regime.

The bulk term jB→L corresponds to the current flowing out
of the left lead as a result of Gilbert-like damping in the bulk.
It is negative when a positive spin accumulation is applied to
the left lead, indicating spin current flows from the lead into
the bulk, where it is dissipated into the lattice. In Fig. 2(b),
− jB→L(R) is the current flowing to ground through the left
(right) resistor RB.

The lead-local term jL, corresponding to the current flow-
ing from ground upwards through RL in Fig. 2(b), is unique to
systems that exhibit the Bogoliubov structure described at the
start of this section. It is linear in K to lowest nonvanishing or-
der, and, at nonzero K , vanishes unless the system is driven by
the application of an electronic spin accumulation in the lead.
We may therefore conclude that it arises due to the mismatch
between the lead states, where spin is a good quantum number,
and the elliptical magnon eigenstates of the anisotropic ferro-
magnet. Ultimately, the mismatch is necessarily compensated
by the lattice [21]. As this term contributes directly to the spin
current flowing out of the lead to which a spin bias is applied,
it offers a way to probe the ellipticity of magnons through
local spin current measurements.

Taking the resistor network analogy further, the reduced
model of Fig. 2(b) provides us with a new set observables
more generic than the spin currents themselves, namely the
spin resistances RT, RL/R, and RB. Setting μR = 0 and for-
mally expanding the left-lead spin current terms in μL, we
obtain

jR→L
s = jR→L

s0 (T L, T R) − 1

RT
μL, (39a)

jB→L
s = jB→L

s0 (T L, T B) − 1

RB
μL, (39b)

jL
s = − 1

RL
μL. (39c)

Here jR→L
s0 (T L, T R) and = jB→L

s0 (T L, T B) are spin See-
beck effect [12,41] terms that vanish when T L = T R and
T L = T B, respectively.

III. NUMERICAL IMPLEMENTATION AND RESULTS

The framework outlined in the previous section is imple-
mented numerically for system sizes of order N = 20. At
low or moderate damping, the functions in our setup are
sharply peaked in the frequency domain; frequency integrals
are evaluated with an adaptive trapezoidal algorithm to avoid
missing such peaks. As the setup requires matrices of size
2N × 2N and the computation of observables includes one
matrix inversion and multiple dense matrix multiplications
per frequency sample, the numerical implementation scales
poorly with system size. However, as the qualitative differ-
ences between systems of size N = 40 and N = 20 turn out
to be minimal, we believe the latter to be a fair compromise
between manageable computation time and sufficient capture
of large-system behavior.

Our use of simplistic linear damping leads to a logarithmic
divergence if the frequency integrals in the expressions for ρ

or ρSC are taken from −∞ to ∞. We regularize the integrals
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FIG. 3. Tunneling conductance versus temperature at magnon
gap ε1/J = 0.025, for different values of the anisotropy K .

by restricting the integration interval to [−εmax, εmax], where

εmax = lim
N→∞

εN . (40)

We seek to investigate qualitative changes in the behav-
ior of our system as the anisotropy K is increased, while
mitigating the effects of changes to the energetics of the
ferromagnet’s eigenstates. To realize this, we shall keep the
elliptical magnon gap ε1, given by Eq. (12), fixed. Fur-
thermore, we keep the exchangelike constant J fixed, and
adjust the fieldlike parameter � = 2J cos( N+1 ) +

√
ε2

1 + K2

accordingly. Finally, we shall measure all energy scales rela-
tive to J , which is numerically realized by setting J = 1.

A. Spin conductances

We compute the spin conductances

GT ≡ 1

RT
, (41a)

GB ≡ 1

RB
, (41b)

and

GL ≡ 1

RL
(41c)

by fitting the components of jL
s,tot to Eqs. (39) for small values

of μL, setting T L = T R = T B = T and μR = 0. We consider
a system with parameters N = 20, α = 0.001, ε1 = 0.025J ,
and ηL = ηR = 8. (Here the values for ηL/R are chosen in
line with Zheng et al. [14], while our choices for α and
ε1 are fairly arbitrary within the low-damping and low-gap
regimes, respectively.) Note that because we have set h̄ = 1,
the conductances are dimensionless.

Figure 3 shows the tunneling conductance GT vs temper-
ature kBT at various values of K . In all cases, the tunneling
conductance vanishes at T = 0 (to numerical accuracy; the
highly nonlinear behavior at low temperature limits the fitting
accuracy) and slowly transitions to being linear with tempera-
ture. The effect of anisotropy is to suppress the conductance,
although this effect is small until K/J = O(0.1), i.e., very

FIG. 4. Bulk conductance versus temperature at magnon gap
ε1/J = 0.025, for different values of the anisotropy K .

large anisotropy (e.g., for yttrium-iron garnet, a comparison
of literature values [42–46] yields K/J = O(10−3–10−2), al-
though the range is highly variable between different materials
[47]). Physically, this may be understood by the fact that the
leads are not commensurate to the elliptical spin waves, which
causes an increase in reflection at the interface.

The bulk conductance GB, shown in Fig. 4, similarly van-
ishes at T = 0 and is suppressed by anisotropy. Unlike the
tunneling conductance, where the transition to a linear regime
is smeared out at higher anisotropies, the bulk conductance
transitions more abruptly, at kBT/J ∼ 0.005. The suppres-
sion with anisotropy is mild: at kBT/J = 0.1, increasing the
anisotropy from K/J = 1 × 10−7 to K/J = 1 × 10−1 sup-
presses the bulk conductance by roughly 8%. Our formalism
does not elucidate the physical mechanism underlying this
suppression, however, given its small magnitude, we believe
it to be a natural consequence of the anisotropy dependence
of the dispersion, rather than being the result of any nontrivial
effect.

The relatively abrupt transition to a linear regime is a
direct consequence of the low-μL behavior of the difference
of statistical matrices in the bulk spin current integrand (38b):

coth
( ω

2kBT

)
∓ coth

(±ω − μL

2kBT

)

≈ ± μL

kBT − kBT cosh
(

ω
kBT

) . (42)

Given that the most significant contribution to GB arises
from a narrow region of ιB→L centered around ω = ε1 (as
one would expect), we may judiciously substitute ω = ε1 =
0.025J in this expression. Dividing by μL, we then obtain a
function that exhibits a kink near kBT/J = 0.005, similar to
the bulk conductance. We may thus conclude, qualitatively,
that the kink is explained by the requirement for the tempera-
ture to overcome the finite gap.

In Fig. 5 it can be seen that the lead-local conductance GL

nearly vanishes at low anisotropy (as expected) and reaches
a magnitude roughly comparable to the bulk conductance at
the fairly high anisotropy value K/J = 1 × 10−2. However,
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FIG. 5. Lead-local conductance versus temperature at magnon
gap ε1/J = 0.025, for different values of the anisotropy K .

GL is vastly enhanced at the very high anisotropy value
K/J = O(0.1), becoming several times larger than the tunnel-
ing conductance, indicating most spin is lost to the lattice at
the left-lead interface. This bears similarity to the appearance

FIG. 6. Normal and anomalous spin densities for a system of
size N = 20 with only the left lead attached (ηL = 8, ηR = 0), low
Gilbert-like damping α = 1 × 10−3, temperature T/J = 0.1, gap
ε1/J = 0.025, and anisotropy K/J = 1 × 10−7. The horizontal axes
represent the site indices i and j. Insets: Heat maps of the corre-
sponding 3D plots: (a) normal density 〈b†

i (t )bj (t )〉 and (b) anomalous
density 〈b†

i (t )b†
j (t )〉.

FIG. 7. Normal and anomalous spin densities for a system with
high anisotropy, K/J = 5 × 10−2. All other parameters are equal to
those in Fig. 6: (a) normal density 〈b†

i (t )bj (t )〉 and (b) anomalous
density 〈b†

i (t )b†
j (t )〉.

of evanescent spin waves in anisotropic systems [48], how-
ever, rigorously showing the relation between these effects
requires reconstructing the classical wave picture from our
formalism, which is beyond the scope of this work. Like the
bulk conductance, the transition to a linear regime in the lead-
local conductance is relatively abrupt for the K/J = 1 × 10−1

curve.
Although the tunneling and bulk conductances are sup-

pressed by increasing anisotropy, the corresponding increase
in the lead-local conductance is greater than the decrease
in the sum of tunneling and bulk conductances. In other
words, the conductance of the parallel combination of the
three spin resistors RT, RB, and RL increases with increasing
anisotropy, while the individual conductances of RT and RB

decrease. Thus, although our model does not provide an obvi-
ous way to separate the bulk and lead-local contributions, it
suggests the presence of anisotropy causes the local spin
conductance to increase, while the nonlocal conductance de-
creases, thereby potentially providing an experimental way to
probe the anisotropy of a ferromagnetic insulator using spin
current measurements.

B. Correlation functions and squeezing

To gain insight into the distribution of spin and the profile
of spin nonconservation in the ferromagnet, we compute the
density matrix at low and high anisotropy. Figure 6(b) shows
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the spin density matrix 〈b†
i (t )b j (t )〉 in a low-damping (α =

1 × 10−3), low anisotropy (K/J = 1 × 10−7) system where
only the left lead is attached (ηL = 8, ηR = 0) and no bias-
ing is applied (μL = μR = 0). The temperature is taken to
be homogeneous at kBT L = kBT R = kBT B = 0.1J . The gap
is set to ε1 = 0.025J , which is a reasonable value for, e.g.,
yttrium-iron garnet [45,49].

In Fig. 6 the horizontal axes correspond to the site indices
i and j. The spin density is slightly elevated at the attached
lead, but primarily accumulates deep within the bulk, taking
the shape of the crest of a standing wave whose wavelength
is twice the sample size. Here it is immediately apparent that
the Holstein-Primakoff magnons are significantly delocalized,
as the correlations 〈b†

i (t )b j (t )〉 decrease only slowly as |i − j|
grows.

At low anisotropy, the leads and bulk try to drive the system
towards the same set of states, so the anomalous correlations
〈b†

i (t )b†
j (t )〉, shown in Fig. 6(b), vanish everywhere up to

numerical accuracy. The spin density plots remain virtually
unchanged with increasing anisotropy up until about K/J =
O(10−3).

At much greater anisotropy—K/J = 5 × 10−2 shown in
Fig. 7—the amplitude of the spin density at the center of the
sample increases significantly [Fig. 7(a)], but the qualitative
appearance of the profile remains broadly the same. However,
as shown in Fig. 7(b), the anomalous correlations now take a
large negative value, highlighting that the Holstein-Primakoff
magnons are no longer good basis states in the ferromagnetic
bulk.

In Figs. 8 and 9 we plot the equivalent matrices in the basis
of elliptical magnons: the horizontal axes now represent the
quantum number, and the diagonals of the plots are ordered
by increasing energy. In this basis, the ordinary block 〈ψ†

mψn〉
of the correlation function 〈
†

m
n〉 is almost exactly diagonal
at low anisotropy [K/J = 1 × 10−7 shown in Fig. 8(a)]. As
we keep the gap ε1 fixed, our chosen parameters lead to exci-
tation of the lowest few modes only, regardless of anisotropy,
with the overwhelming majority of quasiparticles being in the
ground state (as indicated by the large spike at m = n = 1).
In Fig. 8(b) it can be seen that the anomalous block 〈ψ†

mψ†
n 〉

nearly vanishes, as expected (the same is true for 〈ψmψn〉).
Figure 9(a) shows that the qualitative behavior of the ordi-

nary correlations 〈ψ†
mψn〉 does not change significantly even

at the high anisotropy value K/J = 5 × 10−2. However, the
anomalous block 〈ψ†

mψ†
n 〉, shown in Fig. 9(b), now exhibits

a small but noticeable deviation from zero, and becomes
asymmetric. This asymmetry ultimately stems from the fact
that 〈b†

i b j〉 �= 〈bib
†
j〉. The bosonic relations are nevertheless

preserved because the full matrix 〈
†
m
n〉 is symmetric.

As explained previously, we may use the density matrix
to directly compute uncertainty of the spin operators, which
we expect to become squeezed at high anisotropy. In Fig. 10
we plot the uncertainty amplitudes �S̄x

i and �S̄y
i for K/J =

1 × 10−7 and K/J = 1 × 10−1, with weak left-lead coupling
ηL = 0.1 and no right lead attached. In the case of zero bias
[μL = 0, Fig. 10(a)], it can be seen that high anisotropy causes
the magnons to become squeezed throughout the sample. At
site 1, where the left lead is attached, both �S̄x and �S̄y

are squeezed, in an apparent violation of the uncertainty

FIG. 8. Normal and anomalous elliptical magnon densities for
a system with low anisotropy, K/J = 1 × 10−7. All other param-
eters are equal to those in Fig. 6. The horizontal axes represent
the quantum numbers m and n: (a) normal density 〈ψ†

m(t )ψn(t )〉
and (b) anomalous density 〈ψ†

m(t )ψ†
n (t )〉. The minor (light green)

fluctuations are near the scale of numerical error (10−8) and may be
unphysical.

principle. However, this may be explained by the fact that
we only consider the lowest-order self-energy contribution of
the lead coupling: this ignores higher-order electronic con-
tributions to the total wave function at the interface, and it
stands to reason—although it remains to be verified—that the
uncertainty principle is not violated if higher-order contribu-
tions are taken into account.

Taking only sites i > 1 into account, we find that squeezing
commences at site 20 (the “far side” of the chain, where no
lead is attached) for K/J ≈ 3 × 10−2. Squeezing increases
with increasing anisotropy, with the effect being strongest
at the center of the sample, where the overall spin density
is the highest. By applying a spin bias at the attached lead
[μL/J = 0.1 shown in Fig. 10(b)], squeezing is diminished
throughout the sample, and the overall uncertainty markedly
increases. A local bias may thus be used to effect a global
change in the uncertainty.

IV. CONCLUSIONS AND OUTLOOK

We have developed and numerically implemented a
NEGF formalism to describe the transport of elliptically
polarized magnons in finite-sized ferromagnetic insulators
terminated by metallic leads. The presence of anisotropy
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FIG. 9. Normal and anomalous elliptical magnon densities for a
system with high anisotropy, K/J = 5 × 10−2. All other parameters
are equal to those in Fig. 6: (a) normal density 〈ψ†

m(t )ψn(t )〉 and
(b) anomalous density 〈ψ†

m(t )ψ†
n (t )〉.

in a ferromagnetic insulator can give rise to a novel
parasitic local spin resistance, and additionally acts to
suppress the spin conductance measured between the metal-
lic leads. However, our model predicts that these effects
are mild in ferromagnets with weak anisotropy, and be-
come significant only when the ferromagnet exhibits strong
anisotropy.

We have shown that the NEGF formalism allows theoret-
ical access to the anomalous correlation functions 〈bib j〉 and
〈b†

i b†
j〉, which may obtain a large amplitude in the presence

of anisotropy, and provide a measure for the degree of non-
conservation of spin and ellipticity of magnons. Likewise,
the correlation functions 〈ψmψn〉 and 〈ψ†

mψ†
n 〉 in the basis

of eigenstates of the free anisotropic ferromagnetic insulator
obtain a nonzero value in the presence of coupling to metallic
leads which inject a well-defined amount of spin, provided
the anisotropy is large and the lead coupling is sufficiently
strong. Moreover, strong anisotropy produces squeezing of
�S̄x, which may be observable in the form of reduced shot
noise [25] and find applications in quantum information sci-
ence.

Although we have focused on ferromagnets, where
anisotropy tends to be significantly weaker than the exchange
interaction, it stands to reason that much stronger observable
effects may be realized in antiferromagnets, where similar
anomalous Hamiltonian terms are introduced by coupling

FIG. 10. Uncertainty in the spin operators Sx (solid lines) and
Sy (dotted lines), for a system of size N = 20 with only the left
lead attached (ηL = 0.1, ηR = 0), low Gilbert-like damping α =
1 × 10−3, temperature kBT/J = 0.1, gap ε1/J = 0.025, and different
anisotropies. When the spin uncertainty drops below 1√

2
(dashed

line), the state is squeezed. At very high anisotropy, the magnons
become squeezed throughout the system. Note that the �S̄x and �S̄y

curves lie on top of each other at K/J = 1 × 10−7, indicating the
magnons are coherent at low anisotropy: (a) without applied bias
(μL = 0) and (b) with bias at left lead (μL/J = 0.1).

between sublattices, but are now governed by the exchange
interaction itself [20].

While we have provided some examples of effects pro-
duced by the introduction of anisotropy, our model is
simplistic, and omits several features one would expect to
find in a realistic system. A possible extension, for example,
would be the introduction of disorder, which can take the
form of spatial fluctuations in both � and K . Moreover, our
model considers only weak interactions between magnons
and the leads and lattice (i.e., lowest-order self-energy terms),
while higher-order contributions may be relevant to physical
systems. We have likewise neglected magnon-magnon inter-
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actions, while several real systems are known or believed to
violate this assumption [50–52].

Finally, the parameter space of our model (with or without
extensions) is quite large, and therefore remains mostly unex-
plored. Hence, it is plausible that more observable effects of
the spin-conservation breaking anisotropies can be found, for
example through the spin Seebeck effect.
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APPENDIX: DERIVATION OF THE
STEADY-STATE SPIN CURRENT

We define the total spin current as the negative time deriva-
tive of the total HP magnon number density (as each magnon
carries spin 1), i.e.,

jtot
s = −∂t Tr〈b†(t )b(t )〉

= − 1
2∂t [Tr{〈b†(t )b(t )〉 + 〈b(t )b†(t )〉} − N]

= − 1
2∂t Tr〈φ†(t )φ(t )〉 = −ReTr〈φ†(t )∂tφ(t )〉. (A1)

Note that the trace on the first two lines is over the spatial
indices alone and therefore has N terms, whereas on the last
line, it is over the full matrix and therefore has 2N terms. To
evaluate Eq. (A1) we introduce a stochastic field

ξ (ω) = −g(ω)φ(ω) (A2)

obeying

〈ξ (ω)ξ †(ω′)〉 = πδ(ω − ω′)
K(ω). (A3)

By construction, ξ is the Hubbard-Stratonovich field that
decouples the quantum-quantum term of the Schwinger-

Keldysh action for the continuum-limit field theory. A more
detailed derivation is given, e.g., by Kamenev [53].

Inserting Eq. (22) into Eq. (A2) and taking the Fourier
transform, we find the evolution equation

−i∂tφ(t ) = σ3hφ(t ) + σ3

∫
dt ′
(t − t ′)φ(t ′) − σ3ξ (t ),

(A4)

which we may plug into Eq. (A1) to obtain

jtot
s = −ImTr

{
〈φ†(t )σ3hφ(t )〉

+
〈
φ†(t )σ3

∫
dt ′
(t − t ′)φ(t ′)

〉

−〈φ†(t )σ3ξ (t )〉
}
. (A5)

Here the first term is the Hamiltonian evolution of the system,
and the second and third terms represent driving by external
factors: the second term concerns the interaction with the
lead electrons and with the field(s) responsible for Gilbert-like
damping, and the third term contains the effect of quantum
noise.

In the steady state, the total spin current vanishes by def-
inition, and thus the first term necessarily cancels against
the driving terms. In an experiment where the system is
held out of equilibrium by external driving, the net external
source/sink current are then given by the sum of the last two
terms of Eq. (A5). However, these terms, as given, sum over
all of the spin currents within the system, including unobserv-
able contributions that occur deep within the bulk and never
exit the ferromagnet, whereas the actually observable spin
currents are those which flow out of the leads. This quantity
is obtained when one replaces 
 with 
L/R and ξ with ξL/R

in Eq. (A5). Here we define ξL/R to be the stochastic field
obeying

〈ξL/R(ω)ξ †(ω′)〉 = 2πδ(ω − ω′)
L/R(ω)F L/R(ω), (A6)

where 2
L/R(ω)F L/R(ω) is the left/right lead term of the
Keldysh self-energy.

Thus, focusing now on the spin current flowing out of the
left lead (in the following derivation, one may obtain equiva-
lent expressions for the right lead by swapping L and R), we
find

jL,tot
s = −ImTr

{〈
φ†(t )σ3

∫
dt ′
L(t − t ′)φ(t ′)

〉
− 〈φ†(t )σ3ξ

L(t )〉
}

. (A7)

Next, by Fourier transforming and using Eq. (A2) to write φ in terms of ξ , we obtain

jL,tot
s = −ImTr

∫
dω

2

dω′

2
eit (ω′−ω){〈ξ †(ω)g†(ω)σ3


L(ω′)g(ω′)ξ (ω′)〉 + 〈ξ †(ω)g†(ω)σ3ξ
L(ω′)〉}. (A8)

Reordering terms using the properties of the trace and making use of Eqs. (A3), (A6), and (27), this gives

jL,tot
s = −ReTr

∫
dω

2
g†(ω)σ3


L(ω)g(ω){
L(ω)F L(ω) + 
R(ω)F R(ω) + 
B(ω)T −1F B(ω)T + g−1(ω)F L(ω)}. (A9)

Inserting the Dyson equation for g−1(ω), we find

jL,tot
s = −ReTr

∫
dω

2
{ιR→L(ω) + ιB→L(ω) + g†(ω)σ3


L(ω)g(ω)[ωσ3 − h]F L(ω)}, (A10)
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where ιR→L(ω) and ιB→L are given by Eqs. (38c) and (38b), respectively. By using that ReTrM = 1
2 Tr(M + M†) for an arbitrary

square matrix M, the term involving ωσ3 can easily be shown to vanish. In a similar vein, we find

−ReTr{g†(ω)σ3

L(ω)g(ω)hF L(ω)} = 1

2 Tr{g†(ω)σ3

L(ω)g(ω)[F L(ω), h]}. (A11)

In the absence of a spin accumulation, F L(ω) becomes a scalar function multiplying the identity matrix, causing the commutator
to vanish. Therefore, we may add the term

0 = Trg†(ω)σ3

L(ω)g(ω)hF L(ω)|μL=0, (A12)

thereby recovering Eq. (38c). Finally, in the limit K → 0, the Hamiltonian h becomes block-diagonal, so that the commutator in
Eq. (A11) causes ιL(ω) to vanish in absence of anisotropy.
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