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Spin-transfer and fieldlike torques in antiferromagnets
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The phenomenon of spin-transfer torque (STT) in an antiferromagnet (AFM) is reexamined in terms of the
incoming and outgoing spin currents. In contrast to the conventional approach, our model treats the STT as
a result of the electron spin angular momentum transfer to the entire monodomain magnetic structure rather
than to the individual sublattice magnetizations. This treatment enables the analysis to account for not only the
destructive role of electron spin relaxation but also the potentially incomplete loss of electron spin phases that can
either enhance the STT or suppress it depending on the structure parameters. Application of the developed model
to the dynamical equation of the AFM order parameter illustrates the qualitative and quantitative differences with
the conventional approach. Unlike the latter, our results predict a strong dependence of the STT on the orientation
of the electron spin polarization relative to the magnetic anisotropy axes of the AFM. A similar characteristic also
reveals a complex interplay in the Néel vector dynamics that can lead to a sublinear response of the oscillation
frequency to the strength of the spin current. The impact of the fieldlike torque that can arise likewise from the
spin injection is examined as well for a comprehensive account. The numerical calculations elucidate further the
conditions that can elicit efficient manipulation of the magnetic states in an AFM under a spin-polarized current.
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I. INTRODUCTION

During the past two decades, the spin-transfer torque
(STT) has been established as a highly reliable mechanism
of magnetization switching in a ferromagnet (FM) under an
electrical current [1]. The concept of STT supposes the recoil
effect of spin-polarized electrons injected into a ferromag-
netic layer [2,3]. Since the total angular momentum of the
system (consisting of the electron spins and localized spin mo-
ments) remains unaltered under their exchange interaction, the
change in the FM magnetization �M acquired during a (short)
time period δt is limited by the net spin angular momentum of
δN spin-polarized electrons incoming over the same duration
(thus, h̄

2 δN). Accordingly, the resulting torque τ (= �M/δt)
is proportional to the electrical current I (= qeδN/δt) through
the FM layer (where qe denotes the electron charge). Taking
into account that the exchange interaction with magnetic ions
does not affect the electron spin component along the mag-
netization M, the actual expression for the STT becomes [4]

τ = γ
h̄

2
η

I

VFM|qe||M|2 M × (M × p). (1)

Here γ is the gyromagnetic ratio, VFM represents the volume
of the free FM layer, and ηp (with p defined as a unit vector)
corresponds to the electron spin polarization P acquired in the
adjacent hard FM with a fixed magnetization.

This widely used formula [Eq. (1)] implicitly assumes that
the FM absorbs the transversal component Sin

⊥ of the incoming
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electron spin faster than the electron transit through the mag-
netic layer. On the other hand, the expression does not show
any dependence on the strength of the carrier-ion exchange
interaction. These shortcomings were addressed in part by
the subsequent, more advanced treatments which explicitly
accounted for the STT dependence on the finite penetration
and precession lengths as well as the detrimental impact of
spin relaxation [5–7]. The qualitative observation that the
electrons exiting with a finite value in the transversal spin
angular momentum Sout

⊥ can diminish or even amplify the
recoil effect (i.e., the angular momentum transfer) depending
on the sign of Sin

⊥ · Sout
⊥ suggests the importance of actual spin

dynamics as the electrons move through the magnetic layer.
Spin dynamics becomes particularly significant for elec-

trons traveling in an antiferromagnetic layer where the effect
of a spin-polarized current is not so obvious. While the
magnetization of an antiferromagnet (AFM) vanishes in the
equilibrium ground state as it is well known, the rotation of
the AFM order parameter (i.e., the Néel vector L) generates a
finite magnetization M proportional to the rate of its change.
Accordingly, once L starts to move, it continues to rotate
around M without any energy input or influence of the ex-
ternal magnetic fields until dissipation stabilizes the AFM in
the ground state.

The conventional description of the STT in the AFMs
presumes that the net impact of a spin current can be de-
scribed by superposing the effects of individual spin densities
sA and sB on AFM sublattices A and B, in which the sub-
lattices are treated as ferromagnetic compounds imbedded
in an antiferromagnetic bulk (see, for instance, Refs. [8–10]
and the references therein). A rigorous application of this
treatment leads to the condition that the Néel vector is subject
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FIG. 1. Schematics of the spin-polarized electron dynamics in-
jected into an AFM. The gray box represents the AFM, where
sublattice magnetizations MA and MB form the Néel vector L and
magnetization M. The synchronous rotation of MA and MB around
M is shown by the black dashed curves with arrows. Electron spins
injected with polarization Pin precess around M, while traveling
through the AFM (blue arrows with the thin blue curve showing
the trajectory). The instantaneous Cartesian coordinates (î, ĵ, k̂) are
defined such that k̂ aligns with M and ĵ is normal to the M-Pin plane.
A fraction of the difference in the incoming and outgoing momenta
�P (= Pin − Pout) is transmitted to the magnetization M triggering
the STT; the rest is relaxed via the interaction with the AFM lattice,
defects, etc.

to the staggered spin density δs = sA − sB = ξn × s, where
n = L/|L|, s = sA + sB, and ξ is the ratio between the spin
precession time around the magnetic moment of one sublattice
and the time the carriers spend in this sublattice. Conse-
quently, the carrier-ion exchange interaction induces the STT
τ ∼ n × δs whose expression resembles the torque on a FM
[Eq. (1)] but with the coefficient in front redefined to account
for ξ . As such, the quantitative result requires an accurate
analysis of electron spin dynamics related to each sublattice
to estimate parameter ξ—a rather challenging problem. At the
same time, the shortcomings of the conventional STT model
discussed earlier in relation to the FMs also apply similarly.
Of those, electron spin relaxation may be especially important
in the AFMs with compensated exchange fields of sublattices.
Manipulation of the AFM states by a spin-polarized current
has become a subject of intense study due, in part, to the antic-
ipated advantages in the operating speed and energy efficiency
over the FM counterparts [11].

In the present work we reexamine the theoretical de-
scription of the STT in the AFMs based on a higher-level
phenomenology in place of the individual sublattice responses
to the spin-polarized current. More specifically, the angular
momentum conservation attributed to the carrier-ion exchange
interaction is applied to only two variables, i.e., the net
AFM magnetization and the spin moments of the incom-
ing electrons as illustrated schematically in Fig. 1. Such
a treatment allows a universal description of electron spin
momentum transfer not limited by the particular manner
of the magnetic structure response including, for instance,
the creation/annihilation of thermal magnons [12], electron
reflection at the AFM/FM junctions [5], electron spin drift-
diffusion [6], or diffusive transport [7]. In doing so, only
the spin evolution during the electron exposure becomes
the subject of analysis in terms of the phenomenological
relaxation parameters involved in the Bloch equations. The re-
sulting imitative recoil effect drives the AFM order parameter.

To simplify the problem, an adiabatic approximation is used
that assumes a short electron transit time in the quasistable
(or quasistatic) AFM magnetic texture. Application to a mon-
odomain free layer reveals that this model can lead to the
results quantitatively and qualitatively different from the con-
ventional treatment, while the two also converge when the
underlying assumptions for the latter are satisfied. The impact
of the fieldlike torque that can arise similarly from the spin
injection is also examined for a comprehensive analysis.

II. THEORETICAL MODEL

A. Electron spin dephasing and relaxation

The Néel vector response to a spin-polarized electrical cur-
rent can be analyzed in an approach similar to the STT in a FM
layer. The main assumption is the adiabatic approximation
that can effectively separate the fast electron spin dynamics
(i.e., the ultrashort electron transit time) and the relatively
slow response of AFM sublattice magnetization. The evolu-
tion of the electron spin S in a quasistatic magnetic field B =
b|B| is adequately accounted for by the Bloch equations [13]

dS
dt

= γ S × B − b[S · b − S0(B)]

T1
− b × (S × b)

T2
. (2)

Here the second and third terms describe the relaxation of spin
components longitudinal and transversal to the magnetic field
with the characteristic time constants T1 and T2, respectively;
bS0(B) denotes the equilibrium state corresponding to the ef-
fective field B of the given instant. Note that the decoherence
of the electron spin considered in Eq. (2) originates from its
interaction (i.e., the loss of angular momentum) with the crys-
tal lattice rather than the magnetic texture. When an ensemble
of electron spins is involved as in the present case, additional
sources of the relaxation need to be accounted for. For in-
stance, the randomness in the carrier trajectories inside the
AFM layer evidently leads to a variation in their transit times,
resulting in the complete or partial loss of transversal spin
correlation in the course of precession around the exchange
field B and scattering on the defects, AFM imperfections,
and spin fluctuations. These effects can also be incorporated
into the Bloch equation by adding the dephasing rate 1/T ∗
to the third term via an effective transversal relaxation time
T ∗

2 = (1/T2 + 1/T ∗)−1. Considering the dependence of T ∗ on
B (i.e., the strength of the exchange interaction), it is reason-
able to expect that T ∗

2 is dominated by T2 as B → 0. Due to its
nontrivial dependence on the details of carrier dynamics, this
parameter (T ∗) is treated as a phenomenological constant for
simplicity.

To solve Eq. (2) explicitly, it is convenient to introduce the
Cartesian coordinate system with unit vector k̂ pinned to the
direction of the exchange field b, î perpendicular to b on the
(b, p) plane, and ĵ normal to the (b, p) plane, i.e.,

î = p − b(p · b)√
1 − (p · b)2

= b × (p × b)√
1 − (p · b)2

,

ĵ = b × p√
1 − (p · b)2

, k̂ = b. (3)

As defined above, p corresponds to the direction of injected
electron spin polarization (thus, parallel to the fixed FM layer

174402-2



SPIN-TRANSFER AND FIELDLIKE TORQUES IN … PHYSICAL REVIEW B 104, 174402 (2021)

magnetization). Then the solution of Eq. (2) under a qua-
sistatic effective field B takes a simple form of S(t ) = îSi +
ĵS j + k̂Sk:

Si(t ) = S⊥(0)e−t/T ∗
2 cos γ Bt,

S j (t ) = −S⊥(0)e−t/T ∗
2 sin γ Bt,

Sk (t ) = S‖(0)e−t/T1 + S0(B)[1 − e−t/T1 ]. (4)

Here S⊥(0) and S‖(0) denote the electron spin components
transversal and longitudinal to B at time t = 0 (i.e., when
entering the free AFM layer). This expression for S(t ) can be
further specified by considering the conditions of the incom-
ing spin-polarized electrons. Assuming that δN electrons are
injected into the AFM over time δt with a spin-polarization
efficiency or fraction η, we obtain S‖(0) = h̄

2 ηδN (p · b) and

S⊥(0) = h̄
2 ηδN

√
1 − (p · b)2.

As for the effective field B that dictates the electron spin
precession, the net AFM magnetization is the appropriate
choice for the exchange field that acts on the conducting elec-
trons. The electrons, on average, experience the mutual action
of the localized spin moment ensemble belonging to both
AFM sublattices in the layer. Accordingly, we can express it
as

B = M
M�

Jex

γ h̄
. (5)

The constant Jex of the carrier-ion exchange interaction cor-
responds to the conduction-band spin splitting presuming a
virtual ferromagnetic alignment of AFM sublattice magne-
tizations Ms in the same direction. In the bipartite AFMs,
the total magnitude of collinear sublattice magnetizations be-
comes M� = 2Ms. Following Eq. (5), unit vector b can be
further defined as M/|M|.

With the obtained S(t ), the torque induced by the spin-
polarized electrons can be calculated. Electron spins, while
traversing the AFM layer, dispense �S = S(0) − S(tdr) of
their polarization through spin relaxation and dephasing pro-
cesses as discussed earlier. In other words, δN electrons can
exit the AFM layer with a finite amount of nonequilibrium
angular moment [i.e., S(tdr)] unlike the treatment in the con-
ventional approach. Moreover, the AFM angular moment
experiences the recoil effect only from the transversal spin
component �S∗ = �S − b(b · �S) as the longitudinal part
commutes with the former. Of �S∗, a fraction is transferred to
the AFM net angular moment via the carrier-ion exchange in-
teraction (∼ T2

T2+T ∗ ), while the rest is lost to the lattice through
the spin-orbital and nonsecular part of the spin-spin interac-
tion (∼ T ∗

T2+T ∗ ). If the injected electrons precess several times
around B during the stay in the AFM layer, they induce a
torque ∼ T2

T2+T ∗
�S∗
δt [4], i.e.,

τ (b) = T2

T2 + T ∗
γ h̄η j

2LAFM|qe|
× [b × (p × b)(1 − e−tdr/T ∗

2 cos γ Btdr)

+ (b × p)e−tdr/T ∗
2 sin γ Btdr], (6)

where j is the current density through the AFM and LAFM

denotes the corresponding layer thickness.

In the limit of short dephasing time T ∗ � tdr, T2 (thus
T ∗

2 ≈ T ∗), Eq. (6) reproduces the well-known result of the
STT in a FM metal [i.e., Eq. (1) with b replaced by the nor-
malized FM magnetization M/|M|]. In the opposite case of
a relatively long dephasing time T ∗

2 � tdr, the result suggests
that the torque can increase up to a factor of 2 at γ Btdr 	
(2k − 1)π or be suppressed to a small value when γ Btdr 	
2πk, k = 1, 2, . . . . Equation (6) also shows the self-evident
dependence of the effective torque on the carrier-ion ex-
change, leading to τ (b) → 0 through vanishing B and 1/T ∗.
Similarly, τ (b) tends to zero in the limit of extremely short
transit time tdr → 0 where the electron spins cannot affect the
magnet structure.

B. Application to AFM dynamical equations

To incorporate the torque τ (b) into the dynamical equation
for the AFM order parameter, the magnetization needs to be
expressed in terms of this order parameter. In the common
case of an AFM with collinear magnetizations MA and MB of
two sublattices A and B (MB = −MA in the equilibrium state),
the order parameter becomes the Néel vector L = MA − MB

while magnetization is M = MA + MB. To proceed further,
it is convenient to introduce dimensionless n = L/2Ms and
m = M/2Ms. This leads to |m| � |n| ≈ 1 when the system
does not deviate significantly from equilibrium. Using the
dimensionless variables and Newton’s notation ṅ ≡ d

dt n, the
magnetization takes the form [8]

m = 1

2ωex
ṅ × n + γ H0

2ωex
, (7)

where ωex = γ Hex with the exchange field Hex that establishes
antiferromagnetic correlations between sublattices A and B.
The carrier spin components longitudinal to the instantaneous
direction of the AFM magnetization mediate an exchange
field H0 (‖ m) at both sublattices, i.e.,

H0 = b(p · b)
ηzJex�ne

γ h̄
= m(p · m)

m2

ηzJex�ne

γ h̄
, (8)

where ηz is the spin polarization averaged over electron trajec-
tories in a monodomain AFM with the primitive cell volume
� and concentration ne of the injected electrons. The injected
electron density ne can be expressed further as δN

VAFM

tdr
δt .

Combining Eqs. (7) and (8), we can express m via n,

m = (ṅ × n)

2ωex

[
1 + ηzJex�ne

h̄

p·(ṅ × n)

|ṅ × n|2
]
. (9)

This equation also explicitly defines the magnetization direc-
tion b = (ṅ × n)/|ṅ × n| as a function of the AFM vector
n. Substituting these expressions into Eq. (6) leads to the
effective torque in terms only of the Néel vector:

τ (n) = T2

T2 + T ∗
ηγ h̄ j

2LAFM|qe|
[(

p − ṅ × n
p · (ṅ × n)

|ṅ × n|2
)

× (1 − e−tdr/T ∗
2 cos γ Btdr)

+n(ṅ · p) − ṅ(n · p)

|ṅ × n| e−tdr/T ∗
2 sin γ Btdr

]
, (10)
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where the strength of the carrier-ion exchange field becomes

B = m
Jex

γ h̄
= Jex|ṅ × n|

2ωexγ h̄

[
1 + ηzJex�ne

h̄

p · (ṅ × n)

|ṅ × n|2
]
. (11)

Equation (11) clearly reveals that the phase of the outgo-
ing spin polarization γ Btdr not only depends on tdr but also
changes, in contrast to a FM, with the evolution of the Néel
vector.

Note that the conventional approach to the STT supposes a
simpler expression p − n(p · n) in place of those in the square
bracket of Eq. (10) along with the trivial prefactor T2

T2+T ∗ = 1,
i.e.,

τ0(n) = ηγ h̄ j

2LAFM|qe| [p − n(p · n)]. (12)

In this description, the exchange fields originating from the
respective sublattice magnetizations MA, MB (thus, ‖ n ap-
proximately) affect the electron spin dynamics individually
rather than the effective field from the net magnetization M
(‖ m) of the AFM. It also fails to consider the dependence of
the STT on the strength of carrier-ion exchange interaction,
resulting in a finite STT in the limit Jex → 0. In comparison,
the vanishing τ (n) in Eq. (10) is ascertained by zero B (∝ Jex)
which leads to the absence of spin precession and subse-
quently dephasing (1/T ∗ → 0) as discussed briefly above.
More importantly, the simple model predicts the strongest
STT effect when the injected spins polarize perpendicular
to the Néel vector (i.e., p · n = 0). In this configuration,
however, p can actually become collinear to the AFM mag-
netization m (∝ ṅ × n) that excludes electron spin precession
around it. The consequence is the failure of spin transfer to
the AFM, which evidently contravenes the prediction of the
earlier approach, while it is fully consistent with the current
treatment [i.e., Eq. (10)]. Additional discussions on this and
other particularities of the phenomenology developed above
are provided in Sec. III.

Along with the STT, H0 given in Eq. (13) can also con-
tribute to the Néel vector dynamics. Considering that the
electrons partially lose the longitudinal polarization with the
relaxation rate 1/T1 while traversing the AFM layer, the effec-
tive field can be written in terms of n as

H0 =
[

T1

tdr
(1 − e−tdr/T1 )η

]
neJex�0

γ h̄

p · (ṅ × n)

|ṅ × n|2 (ṅ × n). (13)

Here the expression given in the square brackets actually
corresponds to the mean value ηz of spin polarization used
in Eq. (8). Once the relevant parameters become known, the
STT and fieldlike torque (via H0) can be incorporated into the
dynamical equation for the AFMs for numerical solutions.

C. AFM dynamics under spin-transfer and fieldlike torques

As stated, both the STT and the fieldlike torque medi-
ated by the exchange field affect the AFM magnetization
m. Since this is a variable auxiliary to the Néel vector n, it
can be eliminated from the set of expressions starting with
the Landau-Lifshitz-Gilbert equation for each sublattice. Fol-
lowing the condition |m| � |n| and the identity H0 · n = 0,
the final equation of the Néel vector motion subject to the

spin-transfer and fieldlike torques reads [14][
n̈+ ω2

r

∂

∂n
W (n)

Ka
+ 2δr ṅ

]
× n+ γ Ḣ0+ 2ωex

τ (n)

Ms
= 0,

(14)
where W (n) is the density of anisotropy energy and δr is the
half-width of the AFM resonance. It is not surprising that τ (n)
induces an acceleration in the Néel vector (i.e., the second
time derivative) rather than its rotation (i.e., the first time
derivative, which is the case for a FM). This difference stems
from the dynamical nature of AFM magnetization vanishing
at a stationary Néel vector [see, for instance, Eq. (9)].

To proceed further, it is convenient to establish the di-
mensionless time t → ωrt in terms of the frequency ωr of
zero-field AFM resonance. This characteristic frequency is
given as ωr = γ

√
2HexHa, where the effective anisotropy field

Ha = Ka/Ms is specified by the anisotropy constant Ka. Intro-
ducing the dimensionless anisotropy energy density w(n) =
W (n)/Ka and dimensionless magnetic field h = γ H0/ωr ,
Eq. (14) takes the canonical form[

n̈ + ∂w(n)

∂n
+ 2

δr

ωr
ṅ
]

× n + τST = −ḣ, (15)

where the spin torque in the dimensionless units becomes

τST = τ (n)

Msωr

√
2Hex

Ha
. (16)

The contribution of the longitudinal exchange field (i.e.,
the fieldlike torque) appears in Eqs. (14) and (15) as a time
derivative of H0. As such, the field effect is expected to be
negligible compared with the STT in a steady-state mode of
operation established after the damping of transient processes.
On the other hand, applying an input current pulse with a steep
leading edge (e.g., ωrtr � 1 with the characteristic rise time
tr) can make the term ḣ sufficiently strong to cause the Néel
vector motion in the course of transient processes. In an ideal
condition, this term can take the form of a δ function, i.e.,
ḣ = ph0δ(t ), where h0 = ηneJex�0/ωr h̄ is the pulse ampli-
tude. The impetus at t = 0 can set the Néel vector into rotation
which, with the aid of the characteristic inertial motion, can
lead to the switching into a desired energy minimum [15].
Nevertheless, the practically achievable concentration of the
injected spin-polarized electrons is limited in the current-
driven case and, thus, can mediate only a relatively slow Néel
vector rotation (compared to ωr). Furthermore, the configura-
tion most suitable for the fieldlike torque (e.g., p parallel to
the AFM hard axis) is highly undesirable for the STT. In the
general case of an arbitrary p direction, the fieldlike torque
just determines the initial conditions from which the Néel
vector evolves via the STT. Even this [thus, the ḣ term in
Eq. (15)] can be ignored conveniently when the asymptotic
AFM behavior at t → ∞ is the focus of the analysis, since
the initial conditions do not influence the final state.

III. RESULTS AND DISCUSSION

For further analysis, it is necessary to specify the properties
of the structure under consideration. As it is typical among
the metallic AFMs, the free AFM layer is assumed to have
an easy plane (say, x-y) with an additional preference in one
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of the in-plane directions resulting in an easy axis (e.g., x).
Such coexistence of easy and hard axes can be described by
the anisotropy energy density

W = 1
2

(
Kxn2

x + Kzn
2
z

)
, (17)

where Kz > 0 and Kx < 0 set the hard-z and easy-x axes,
respectively. Accordingly, |Kx| corresponds to the anisotropy
constant Ka defined earlier (thus, the anisotropy field Ha =
|Kx|/Ms). Considering the normalization condition |n| = 1, it
is convenient to adopt the polar-coordinate representation n =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) with the polar θ = θ (t ) and az-
imuthal ϕ = ϕ(t ) angles. Then Eq. (15) can be rewritten in
terms of θ and ϕ in two coupled equations as

θ̈ = 1
2 sin 2θ (ϕ̇2 + κz − κx cos2 ϕ)

− 2λθ̇ − (ḣx sin ϕ − ḣy cos ϕ) − τθ (18)

and

ϕ̈ = κx

2
sin 2ϕ − 2 cot θ θ̇ ϕ̇ − 2λϕ̇ + csc2 θ (ḣz + τϕ ), (19)

where λ = δr/ωr , κz = Kz/|Kx|, and κx = Kx/|Kx|. The terms
τθ and τϕ for the STT become rather complex functions of
angular variables. To solve Eqs. (18) and (19), the initial
conditions on θ , ϕ, θ̇ , and ϕ̇ are needed. Here the equilibrium
position of θ = π/2 and ϕ = 0 (i.e., along the easy x axis) is
used as the initial state, while the initial velocities in angular
variables ϕ̇(0) and θ̇ (0) are determined by the leading edge
of the driving current applied at t = 0 as discussed earlier. By
assuming an abrupt turn-on (thus a δ function for ḣ), Eq. (15)
gives ϕ̇(0) = pzh0 and θ̇ (0) = pyh0.

It is instructive to compare the evolution of the Néel vector
in terms of our [Eq. (10)] and conventional STT approaches
with the incoming spin polarization p oriented along the hard z
axis. In this configuration, the electron spins may transfer their
angular momenta as much as p deviates from the direction
of the net AFM magnetic moment m (⊥ n). As the Néel
vector n (thus, sublattice magnetizations MA and MB) starts
to rotate on the x-y plane [e.g., θ (0) = π/2 and θ̇ (0) = 0 with
py = 0 as given above], m is aligned along the z axis normal
to the x-y plane [15]. This minimizes the spin components
transversal to m and excludes the effect of STT from the
Néel vector dynamics, which is the case in our model (see
also the discussion in Sec. II B). The conventional treatment,
in contrast, considers the individual sublattice torques whose
sum does not vanish under an electric current with the spins
polarized along the hard axis. This qualitative difference can
be readily verified in the experiments.

The picture given above is further validated by the analysis
of τθ and τϕ in the limiting case. When T ∗ → 0 (i.e., rapid
spin dephasing analogous to the commonly adopted treat-
ment), the STT terms for p ‖ ẑ yield

τθ = ηγ h̄ jωex

LAFM|qe|Msωr

θ̇ ϕ̇ sin2 θ

sin2 θϕ̇2 + θ̇2
, (20)

τϕ = ηγ h̄ jωex

LAFM|qe|Msωr

(
1 − ϕ̇2 sin4 θ

ϕ̇2 sin2 θ + θ̇2

)
. (21)

As expected, the torque evidently becomes zero for the strong
anisotropy of the hard z axis which dictates the equilibrium
initial position of the Néel vector at θ = π/2 and θ̇ = 0.
Needless to say, the STT becomes nonzero in general for an
arbitrary direction of the electron spin polarization.

In the numerical solution of Eqs. (18) and (19), the
values typical for metallic AFMs are assumed for the mate-
rial parameters as follows [10,16]: T2 = 10 ps, T1 = 20 ps,
η = 0.4, LAFM = 6 nm, �0 = 0.05 nm3, Jex = 1 eV, Kx =
−3 × 104 erg/cm3, Kz = 1.5 × 105 erg/cm3, ωr = 1012 s−1,
Ms = 4π × 110 G, and λ = 0.1. Estimation of the electron
density ne is achieved by using the data for IrMn of ρ = 8.6 ×
10−5 � cm and electron mobility 50 cm2/V s [17]. This set of
parameters ensures the applicability of the model for the range
of the electrical current j ∼ 107–108 A/cm2 provided that
the electron transit time in the AFM layer is shorter than the
inverse of the resonant frequency, i.e., tdrωr � 1. On the other
hand, each electron spin can still rotate multiple times over
the duration tdr around the strong exchange field of polarized
sublattices (i.e., the carrier-ion exchange interaction). Since
the actual strength of the AFM magnetization evolves with
the Néel vector dynamics, the electron spin rotation is also a
variable in time. As such, a comparison of the conditions for
Néel vector reversal can provide a crucial example in high-
lighting the difference between the current and conventional
approaches. For simplicity of the analysis, it is convenient
to take T ∗ to be much shorter than tdr as it eliminates the
potential effects of spin relaxation which can complicate the
picture. This is what we adopt hereinafter.

Figure 2 highlights the drastic discrepancy between the two
treatments. As qualitatively discussed above, our approach
indeed reveals a strong dependence on the electron spin orien-
tation relative to the AFM magnetization m, which is clearly
visible in Fig. 2(a). With the current density fixed at a suf-
ficient large value of 6 × 107 A/cm2, the injected electron
spin polarization set along the +z hard axis [ψ = 0◦; thus,
p ‖ m(⊥ n)] fails to induce any change in the Néel vector as
anticipated, while the case of ψ = 45◦ (i.e., p ∦ m) rotates
it successfully by 180◦ (nx = +1 → nx = −1). By contrast,
the calculations based on the conventional model result in
the efficient Néel vector reversal for both orientations (not
shown). It is also noted that the existing model tends to predict
a lower current density for the operation than our approach.
As can be seen from Fig. 2(b), j = 107 A/cm2 is apparently
strong enough to cause the Néel vector flip in the former but
not in the latter even for ψ = 45◦.

Since the orientation of p becomes an important factor
for the efficient manipulation of the Néel vector (and also a
clearly distinguishing feature of the current model), its impact
on the Néel vector reversal is further examined. Figure 3 plots
the ranges of polar and azimuthal angles (ψ , φ) of p at which
the current pulse (of a fixed strength and optimally matched
duration) results in the Néel vector reversal. As shown, the
STT appears to be the most efficient at around 45◦ on the x-z
plane (i.e., the easy and hard axes, respectively). The allowed
range of reversal obviously increases with the driving current
density.

The calculation results discussed thus far suppose a short
dephasing time T ∗ compared to the transit time tdr as men-
tioned earlier. For a more comprehensive understanding, we
also examine the impact of the spin relaxation/dephasing
on the STT by relaxing this condition. Our numerical in-
vestigation indicates that the T ∗

2 /tdr ratio does not affect the
Néel vector dynamics significantly once it becomes �0.4.
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FIG. 2. (a) Temporal evolution of the STT induced Néel vector
n(t ) dynamics calculated by our model for two different orienta-
tions of electron spin polarization. The current density j of 6 × 107

A/cm2 is assumed with the pulse duration of 3 ps. The polarization
orientation is varied from the hard z axis toward the easy x axis
in the x-z plane (thus, the azimuthal angle φ fixed at 0◦ with the
polar angle ψ varying). Curves 1, 2, 3 correspond to the x, y, z
components of the Néel vector for the case of ψ = 45◦, while curve 4
(dashed line) shows only the x component (i.e., nx) for ψ = 0◦. The
straight line for curve 4 (i.e., ψ = 0◦) indicates no change in n(t )
despite the applied STT. In contrast, curves 1, 2, 3 (i.e., ψ = 45◦)
illustrate the Néel vector reversal. (b) Comparison of the Néel vector
response between the conventional and our models at a lower current
density of 107 A/cm2 (pulse duration ∼1 ps) and spin polarization
of ψ = 45◦, φ = 0◦. Curves 1, 2, 3 denote nx , ny, nz obtained from
the conventional model, demonstrating the Néel vector reversal. By
comparison, curve 4 showing nx from our model indicates no rota-
tion. In both (a) and (b) the dephasing time is assumed to be much
shorter than the electron transit time.

As T ∗
2 /tdr increases above this value (for instance, by de-

creasing tdr), the result unexpectedly does not reproduce the
alternating strength of the STT despite the oscillatory term
(i.e., cos γ Btdr), which is unlike the case of the FM free
layer discussed earlier in Sec. II A. As it turns out, the phase
oscillations in the effective field B are intricately dependent
on the Néel vector evolution according to Eq. (11). A careful
analysis shows that the STT actually becomes suppressed
once T ∗

2 /tdr > 0.4, further highlighting the difference with the
conventional model (which provides no such dependence).
Accordingly, it is indeed crucial to ensure rapid dephasing of

FIG. 3. Range of injected electron spin polarization orientations
enabling the Néel vector reversal for two different values of the
current density (shaded regions in the polar ψ and azimuthal φ angle
representation). The dephasing time is assumed to be much shorter
than the electron transit time as in Fig. 2.

the injected electron spin polarization. Likewise, extending tdr

may be similarly beneficial (e.g., by controlling the sample
length and quality); however, this route is also limited by ω−1

r .
Along with the switching, another interesting phenomenon

associated with the STT is the excitation of steady Néel

FIG. 4. (a) Excitation of steady Néel vector oscillations by the
STT with the electron spin polarization ψ = 45◦, φ = 0◦, current
density j = 6.5 × 107 A/cm2, and damping parameter λ = 0.1.
(b) Néel vector oscillation frequency as a function of λ. The con-
ditions for p and j are the same as in (a).
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P

FIG. 5. Trajectory of Néel vector oscillation on the Bloch sphere
starting from the easy x axis for the time span of 0–15 ps (red curve).
The blue and red arrows denote the electron spin polarization P and
the Néel vector n, respectively. The driving conditions are the same
as in Fig. 4(a).

vector oscillations. In an AFM with biaxial anisotropy, the
oscillations appear if the spin current mediates an antidamp-
ing torque that exceeds the damping characterized by the
parameter λ (= δr/ωr) and anisotropy potential barrier in
Eqs. (18) and (19). The approach developed above indeed
reveals the possibility to generate the Néel vector oscilla-
tions with a driving current above a certain threshold value.
Figure 4(a) illustrates the Néel vector oscillations follow-
ing the initial transient phase (tωr < 10) under the current
density j = 6.5 × 107 A/cm2 and electron spin polarization
p = (45◦, 0◦). The steady precession around p appears to
have the Néel vector nearly lying on a plane normal to the
rotation axis as plotted in Fig. 5. The threshold value for the
onset of oscillations is estimated to be ≈6 × 107 A/cm2. As
j increases, the transient dynamics become shorter but the
oscillation frequency ω shows only a weak dependence.

In comparison, the conventional model predicts a more
significant influence of the driving current density on ω. The
reason for this difference lies in the fact that the net AFM
magnetization m is entirely mediated by the spin-polarized
current which actually draws the relatively small m closer
to the polarization P as the current density goes up. Such a
reorientation tends to suppress the STT as discussed above
(i.e., the decrease in the transversal component). By contrast,
the individual sublattice magnetization (i.e., AFM) or the
magnetization of a FM reveals intrinsic, inherent character-
istics whose magnitudes are hardly affected by the external
influence (thus, little/no impact on the torque applied to each
sublattice). This also explains why the calculations based on
the conventional approach predict the threshold current den-
sity significantly smaller at ∼107 A/cm2 along with higher
oscillation frequencies. A similar argument applies to the
reversal described above as well [i.e., Fig. 2(b)]. The com-
parison clearly suggests that the earlier model may have
overestimated the effectiveness of the current-driven STT in

FIG. 6. x component of the Néel vector demonstrating the STT-
induced steady oscillations following the initial transient phase in
a uniaxial AFM. A hard z axis with the anisotropy constant Kz =
1.5 × 105 erg/cm3 (as in other figures) is assumed along with an easy
x-y plane. (a) The comparison is between j = 106 A/cm2 (curve 1)
and j = 2 × 106 A/cm2 (curve 2), while T ∗ωr is fixed at 0.1. (b) The
dephasing time T ∗ωr is varied (0.1 and 0.3 for curves 1 and 2, respec-
tively) with j = 106 A/cm2. For both (a) and (b), the electron spin
polarization ψ = 45◦, φ = 0◦ and the damping parameter λ = 0.1
are used.

the AFMs. At the same time, our approach shows that the
oscillation frequency can be controlled more sensitively by
the damping parameter λ [Fig. 4(b)].

Actually, the configuration more amenable for the steady
Néel vector oscillations is the uniaxial easy-plane AFMs,
where the axial symmetry may support the helical wave for-
mation under a small local torque [18]. In the case of a
monodomain structure, this uniaxial symmetry merely corre-
sponds to the absence of the easy-axis anisotropy in Eq. (17),
i.e., keeping the hard z axis with Kz > 0 while setting Kx = 0.
The result shown in Fig. 6(a) clearly indicates the gener-
ation of steady Néel vector oscillations even with a small
current density j = 106 A/cm2 and electron spin polarization
p = (45◦, 0◦) as the STT does not need to overcome the
anisotropy barrier in the easy x-y plane. Moreover, the oscil-
lation frequency reveals a direct dependence on j, which can
be seen from the comparison between the cases with j = 106
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and 2 × 106 A/cm2. The current densities involved appear
to be too small to reorient sufficiently the magnetization m
toward the spin polarization p to induce the suppression of
the STT discussed earlier. We also examine the influence of
the dephasing time on the torque [Fig. 6(b)]. Surprisingly, a
relatively longer dephasing time (i.e., T ∗ωr = 0.3) appears
to enhance the STT (thus, the higher oscillation frequency)
unlike the biaxial case. Such characteristics of the Néel vector
dynamics cannot be described by the conventional model.

These and other properties of the STT predicted by our
model for the AFMs illustrate the need for a validation with
the measurements. However, experimental studies to-date on
the magnetization switching in the AFMs have focused almost
exclusively on the spin-orbit torques including the so-called
Néel spin-orbit torque (see, for a recent work, Ref. [19] as
well as the references therein). Very recently, an investigation
was reported on the STT-driven Néel vector dynamics in AFM
PtMn and IrMn [20]. While the structure adopted in this
measurement closely resembled the example considered here,
the necessary short spin current pulse was generated by the
ultrafast demagnetization of the optically excited FM layer
and subsequent spin diffusion instead of the usual bias-driven
spin-polarized electrical current. Furthermore, the detection
was via the magneto-optical Kerr effect, where the static Kerr
rotation signal was unknown [20]. The resulting gaps in the
knowledge render a direct comparison with the modeling re-
sults (from both the conventional and our approaches) yet to
be achieved. Further inquiry is called for.

IV. SUMMARY

A theoretical model for the STT is developed based on a
phenomenological treatment of the total angular momentum

conservation in a magnetic structure between the injected
carrier spins and the localized magnetic ion spins that consti-
tute the magnetization M. The electron spin dynamics S(t ) is
described by the Bloch equation in a quasistatic exchange field
approximation since the electron transit through a nanoscale
magnetic layer is generally much faster than the relatively
slow response of M. The damping of the injected spins in-
cluding the dephasing due to the dispersion of electron paths
can be accounted for via the characteristic time constants.
The resulting S as a function of time t enables us to obtain
the desired net angular momentum transfer to the magnetic
layer as the difference between incoming and outgoing elec-
tron spin momenta. The developed model is applied to the
dynamical equation of the AFM order parameter under a spin-
polarized electrical current for a comprehensive description.
The numerical solutions indicate a significant deviation from
the predictions of the conventional approach in a number of
aspects. The physical origin appears to be the discrepancy in
the treatment of the exchange field with which the injected
electron spins interact; namely, the AFM magnetization M
(our model) vs the sublattice magnetizations MA, MB (the
conventional approach). The fact that the AFM magnetization
is entirely mediated by the spin-polarized current further in-
troduces a complex interplay in the Néel vector dynamics.
Considering both qualitative and quantitative differences in
the characteristic features, it is anticipated that the accuracy of
the developed model can be assessed rather straightforwardly
through experimental studies.
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