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Magnetic exchange interactions in yttrium iron garnet: A fully relativistic
first-principles investigation
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Magnetic isotropic and Dzyaloshinskii-Moriya interactions in yttrium iron garnet have been obtained by
ab initio fully relativistic calculations. The calculated coupling constants are in agreement with available
experimental data. Using linear spin-wave theory, we are able to reproduce the experimental magnon spectrum
including the spin-wave gap and stiffness. The way to calculate the exchange coupling constants using the
Korringa-Kohn-Rostoker formalism for large magnetic systems such as complex oxides is discussed in detail.
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I. INTRODUCTION

Yttrium iron garnet (YIG) is well known as a ferrimagnetic
insulator with the largest spin-wave lifetime and relatively
high Curie temperature [1]. Thus it is arguably the most
important material used in microwave and recent spintronic
devices [2]. While this has been known for some time, a resur-
gence in interest was caused after the discovery of electrically
injected spin waves into YIG and detection of their transmis-
sion over macroscopic distances [3]. It was also shown that
magnons, excited electrically, can diffuse over long distances
even at room temperatures [4]. The magnon polarization was
also directly measured for the first time in YIG, giving a direct
proof of its ferrimagnetic nature [5].

Models of the magnon spectrum of YIG have mostly been
based on neutron scattering, covering only three of the lowest
energy modes out of 20 distinct magnon branches [6]. The first
model covering all 20 magnon branches was obtained by time-
of-flight inelastic neutron scattering [7]. It was shown that the
magnetic interactions were long ranged and more complex [7]
than previously understood [1,6,8,9]. The full magnon disper-
sions, investigated using neutron scattering, were reproduced
by a model with three nearest-neighbor exchange integrals
[10]. With that being mentioned, the exchange constants re-
ported in literature vary considerably, since they depend on
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the experimental technique as well as on the fitting procedure
[1,6-10].

The complexity of YIG’s crystal structure makes accu-
rate ab initio calculations of exchange coupling constants
a formidable task. As a consequence, ab initio calculated
magnetic exchange couplings are scarce. In previous inves-
tigations [11], the exchange constants were determined by
fitting total energies of different collinear spin configura-
tions to the Heisenberg model. Including nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interactions, it was
found that the spin-wave spectrum of YIG is very sen-
sitive to small changes in the exchange interactions and
small changes appear to give dramatically different spec-
tra [11]. The most recent investigation was based on the
noninteracting transverse spin susceptibility from quasipar-
ticle self-consistent GW (QSGW) band structure calcu-
lations [12]. This state-of-the-art calculation demonstrates
a parameter-free multiscale modeling of YIG from first
principles.

No fully relativistic ab initio results have been reported,
and thus there has been no theoretical investigation of the anti-
symmetric Dzyaloshinskii-Moriya interaction (DMI) [13,14].
It should be noted that there has been one attempt to include
DMI in modeling of the magnon spectra in bulk YIG [7].
Models including DMI were found to destabilize the magnetic
structure for arbitrarily small perturbations when fitting to
the experimental magnon spectrum. Nevertheless, DMI is of
vital importance especially in systems with broken inversion
symmetry, where it could be responsible for the formation
of chiral magnetic structures. This is the case in deposited
ultrathin YIG films, where DMI-induced chiral propagation
of spin waves was recently observed by different experimental
groups [15,16].
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TABLE I. Crystal structure of YIG. The experimental structure
(upper half of table) and relaxed atomic positions (lower half of table)
are given.

Atom Wyckoff position X y Z
Y3FesOy,, a = 12.376 A, Refs. [17,18]
Fe® 16a 0.0000 0.0000 0.0000
FeT 24d 0.3750 0.0000 0.2500
Y 24c¢ 0.1250 0.0000 0.2500
(0) 96h 0.9726 0.0572 0.1492
Y;Fes0y,, a = 12.376 A, VASP

Fe® 16a 0.0000 0.0000 0.0000
FeT 24d 0.3750 0.0000 0.2500
Y 24c 0.1250 0.0000 0.2500
o 96h 0.9728 0.0570 0.1504

In this paper, the isotropic and Dzyaloshinskii-Moriya
interactions in YIG have been calculated within the frame-
work of the fully relativistic Korringa-Kohn-Rostoker (KKR)
Green’s function formalism. The critical temperature has been
estimated using the Metropolis Monte Carlo technique and the
magnon spectrum modeled by linear spin-wave theory. The
paper is organized as follows: Sec. II describes the methodol-
ogy and computational details of the calculations. Section III
presents the calculated results and discusses the physics of
magnetic interactions in YIG. The main conclusions are stated
in Sec. IV.

II. METHODOLOGY

The crystal structure of YIG has a bcc cubic cell (space
group Ia3d), which contains 160 atoms (80 atoms in the
primitive cell; see Table I and Fig. 1) [17,18]. The Y metal
ions occupy dodecahedral 24c sites, and the Fe atoms occupy
octahedral 16a sites and tetrahedral 24d sites. The Fe ions at
the 16a sites (denoted as Fe®) and the 24d sites (denoted as
Fe') form two magnetic sublattices that are ferrimagnetically
coupled. The structure can also be considered as an intercon-
nection of distorted octahedra, tetrahedra, and dodecahedra
with shared O atoms at the corners of the polyhedra.

The structure optimization has been performed using the
projector-augmented plane-wave method (PAW) [20] as im-
plemented in the Vienna ab initio simulation package (VASP)
[21]. The exchange-correlation functional was treated in the
local density approximation (LDA) as well as in the gener-
alized gradient approximation (GGA). The cutoff energy for
the plane-wave basis was set to 500 eV. The convergence
tolerance for the total energy was set to 107% eV/at., while
forces were minimized up to 10~ eV/A or less. With these
criteria, convergence of the k-point mesh was obtained for a
6 x 6 x 6 grid, in the Monkhorst and Pack scheme [22].

Since 3d electrons already show a noticeable degree of
localization, treatment in LDA or GGA may not be fully
adequate. To overcome this limitation, an on-site Coulomb
correction term was included for the 3d states, as in the
LDA+U or GGA+U approach [23]. We employ the formu-
lation of Dudarev et al. [24], in which the isotropic screened
on-site Coulomb interaction is given by an effective interac-

FIG. 1. YIG unit cell. The dodecahedrally coordinated Y ions
(green) occupy the 24c Wyckoft sites, the octahedrally coordinated
Fe® ions (gold) occupy the 16a sites, and the tetrahedrally coordi-
nated Fe ions (blue) occupy the 24d sites. The oxygen 96 sites
(red) are shown. This figure was created using VESTA [19].

tion parameter Uss = U — J, where U and J are the screened
Coulomb and exchange parameters, respectively [25]. We also
explored the usage of hybrid functionals, which can improve
the description of the electronic structure of insulators and
reproduce experimentally observed band gaps in a wide vari-
ety of materials [26]. Therefore we also performed PAW-VASP
calculations with the revised Heyd-Scuseria-Ernzerhof func-
tional HSEQ6 [27].

After having performed the structural relaxation of YIG,
we investigated the electronic and magnetic properties in more
detail. To this aim, we used the fully relativistic spin-polarized
KKR method, as implemented in the SPRKKR package [28,29],
which is known to give an accurate description of magnetic
properties. A characteristic feature of the KKR method is
that it allows for the separation of the potential aspects of
a material, embodied in the scattering ¢t matrices, from the
structural aspects, represented by the structure constants of
the underlying lattice, which describe electron propagation
between the atoms.

YIG, having 80 atoms in the primitive cell, is an open
system. To describe this system in the framework of the KKR
formalism within the atomic-sphere approximation (ASA), 32
empty spheres were included in the unit cell. This setup makes
it possible to minimize the overlap between all the atomic
spheres, filling the space without a large geometry violation.
All atomic radii including empty spheres have been rescaled
in order to keep the volume fixed. It should be noted that our
test calculations without empty spheres could not reproduce
the electronic structure of YIG (the density of states). More-
over, there was an artificially induced magnetic moment on
the O atoms, mo = 0.23 up/at.

For large-scale systems such as YIG, the computational
complexity of the simulations can be challenging. However,
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this issue can be circumvented by replacing the long-range
structure constants with more localized ones. This is achieved
in the screened KKR (SKKR) or the tight-binding KKR
(TB-KKR) method [28-31]. In this approach, the single-
site scattering ¢ matrix of the real system is replaced by its
tight-binding (TB) counterpart, t™®, which is derived from a
repulsive potential. One can then solve in a first step the cor-
responding multiple-scattering problem for this new reference
system.

In contrast to the free-electron Green’s function, this new
auxiliary Green’s function G™8(r, r’, E) decays very rapidly
in space, i.e., with increasing distance |r —r’|. As a con-
sequence, the corresponding scattering path operator 72 is
essentially zero if the distance between sites n and n’ is
greater than the next-nearest-neighbor distance. By applying
the Dyson equation, the multiple-scattering problem for the
real system can now be solved by using the Green’s function
of the new reference system [31]. Thus this efficient scheme
dealing with the auxiliary TB-reference system allows us to
treat large complex magnetic systems.

Now we can focus on the calculations of the magnetic ex-
change interactions for YIG, using the KKR Green’s function
method in the fully relativistic formulation. As was discussed
in the literature (e.g., Refs. [32,33]), the exchange coupling
parameters accounting for relativistic effects can be written in
a tensorial form, J; o giving access to the extended form of the
Heisenberg Hamiltonian

Ho=— s+ y K, (1)

i#] i
where the single-site anisotropy K is also included. The
elements of the exchange coupling tensor in the multiple-
scattering formalism in Ref. [32] are given by the expression

Er
I = ~LinTr f dE [T""(E) " (E) T (E) T/(E)],

T
@

with 79(E) being the matrix of the scattering path opera-
tor [34]. The matrix elements TV (E) in Eq. (2) [with
n(§) = x, y, z] characterize the perturbation due to infinites-
imal rotation of the exchange field on site i(j), E;(L:’ ). and have
the following form:

0 = [ @6 Boe B )20 G E). O
where Z} (7, E) and J}; (7, E) are functions representing the
regular and irregular solutions of the single-site Dirac equa-
tion, given in the («xu) representation. Here, A stands for
(kp), with  and pu being relativistic quantum numbers. B
is one of the standard 4 x 4 Dirac matrices, and &) is the
corresponding spin Pauli matrix [35]. The present version of
Egs. (2) and (3) restricts their use at the moment to a pure
local spin-density approximation (LSDA)-based Hamiltonian
for which B,. represents the difference in the spin-up and
spin-down LSDA exchange-correlation potentials. However,
it is straightforward to extend Egs. (2) and (3) to the LDA+U
or dynamical mean-field theory (DMFT) case [36].

In an alternative scheme reported by Udvardi et al. [33],
the elements of the exchange tensor represented in spherical

coordinates are given by the expression
e 1 n . N . )
Jij ' =—ImTr f dE [M"*(E) T (E) M**/(E) T(E)],
T
“
with

i — 2RO, )R, 6, 5
AA'—aT“i[_( l’¢l)£i _( l’¢l)]AAH ( )
where ¢, is the single-site scattering matrix at site i, calculated
for collinear magnetic structure; R;(6;, ¢;) is a rotation matrix;
and o; = (6;, ¢;). As one can see, the latter scheme is asso-
ciated with the perturbation due to the infinitesimal rotation
of the single-site scattering # matrix that accounts for all the
exchange and correlation effects. This makes this scheme
suitable for calculations based on LDA+U or GGA+-U for
strongly correlated materials (e.g., Refs. [37,38]). Therefore
all discussion below concerns the exchange parameters calcu-
lated using the approach as formulated in Ref. [33].

Representing the exchange tensor Jg-’a’ in the Cartesian
frame of reference, the Hamiltonian in Eq. (1) can be reduced
to a more convenient form given by the expression

H=- Zjijﬁ’li M+ ZDU < (i X 1) + ZK(H%),
i i) i ©

with the isotropic exchange coupling parameters J;; =
%(J{j-x + J,y]) + Jf]z ) and the DMI vector 5,:,- with the compo-
nents ij = %E”E{(.’;}S — ij"), where €¢ is the Levi-Civita
tensor [39].

The KKR calculations were performed using an angu-
lar momentum cutoff of /,x = 3 for the expansion of the
Green’s function. The Brillouin zone was sampled with a
10 x 10 x 10 k-point mesh. The energy integration of the
Green’s function was done with 32 energy points along
a semicircle contour. The convergence of the results was
checked by increasing the k-point grid and the energy points.
The exchange-correlation potential was modeled in LSDA,
using the parametrization of Vosko, Wilk, and Nusair (VWN)
[40].

III. RESULTS AND DISCUSSION

A. Structure and ground-state properties

The optimized atomic positions were obtained by PAW-
VASP at the experimental atomic volume, using the GGA in
the parametrization by Perdew, Burke, and Ernzerhof (PBE)
[41]. The results are reported in Table I, in comparison to
the experimental crystallographic data [17,18]. The calculated
Wyckoff positions of Fe®, Fe™, and Y agree very well with the
experimental data, and the small discrepancies observed for
the Wyckoff positions of O are within the expected computa-
tional accuracy.

The relaxed atomic positions were used to calculate the
ground-state properties by the PAW and KKR methods. The
experimental lattice parameter was used for the KKR calcu-
lations including the calculations of the exchange coupling.
In the PAW calculations, however, the lattice parameter was
optimized. An overview of the calculated properties compared
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TABLE II. Overview of the ground-state properties of YIG, including lattice constant a(A) and the total magnetic moment at relevant sites,
Fe® and Fe”. Calculated values are reported alongside available experimental data.

Type Method Functional Details a (A) m (g /Feo) m (ug/Fe")
This paper VASP LDA 12.093* 3.30 3.34
VASP GGA 12.422* 3.70 3.64
VASP HSE06 12.375* 4.17 4.04
SPRKKR LDA+U U—-J=31eV 12.376 391 3.74
Experiment Ref. [42] 300 K 12.376
Ref. [43] 300K 12.392
Ref. [10] 295K, B>~0.1T 12.36 3.50+0.17 3.37+£0.17
Neutron diffraction [55] 4K 4.53 4.21
EMCD [47] Along (444) 484+0.2 424+0.3

2Optimized lattice constant obtained from ab initio calculations.

with experimental data is given in Table II. A more complete
overview of available experimental [10,42—47] and theoretical
[11,48-56] data for YIG can be found in Appendix A.

The theoretical lattice parameters obtained in GGA and
HSEO06 are in good agreement with the experimental val-
ues, considering also the fact that ab initio calculations were
performed for 0 K. As one can often observe, LDA-based
calculations tend to underestimate the lattice parameter, while
GGA leads to a slight overestimation. Overall, the hybrid
functional HSEO6 gives the best agreement with the available
experimental values. This is consistent with the fact that YIG
is a ferrimagnetic insulator, and therefore its physical prop-
erties are strongly affected by an improved description of the
exchange mechanism. It should be noted that for thin garnet
films the lattice constants can depend on the thicknesses of the
films as well as on the type of substrate [57]. Therefore one
should not expect a perfect quantitative agreement between
bulk crystals and thin films.

LDA calculations predict YIG to be a metal, in contrast
to the experimental observation that YIG is an insulator [56].
This is because the LDA theory fails to account for the strong
intra-atomic correlation of the localized Fe 3d electrons.
The inclusion of the intra-atomic correlation by LDA+U or
GGA+U allows for the opening of a band gap in YIG. The
dependence of the band gap on U is illustrated in Fig. 2,
as obtained from LDA+U and GGA+U calculations. The
values for Ugr = 0 eV correspond to the standard LDA and
GGA values. The result from HSEO6 calculations is also re-
ported. The experimental band gap reported in the literature is
around 2.9 eV, as can be inferred from the values of 2.81 eV
(magneto-optical spectra at 300 K [46]), 2.89 eV (optical
absorption and Faraday rotation at 6 K [46]), and 2.85 eV
(electrical measurements, in the band model [45]). Figure 2
illustrates that GGA+U calculations predict a band gap within
the experimental range only for very high U values. The
need for high values of U,y is supported by Ref. [58], in which
the optimal values (9.8 eV for Fe® and 9.1 eV for Fel) were
obtained by constrained density functional theory and linear
response theory. The hybrid functional, HSE06, provides a
good description of the experimentally observed band gap
without external parameters. It should be noted that, because
LDA calculations predict YIG to be a metal in contrast to
the experimental observation, one could expect magnetic mo-
ments in LDA to be smaller than for other schemes.

In order to discuss the magnetic properties of YIG, we
present in Table II the calculated spin magnetic moments
of Fe, obtained within the VASP and SPRKKR calculations, in
comparison with the experimental results. As one can see,
the magnetic moments at the Fe® and FeT sites, obtained
within the GGA+U approach with U = 7.1 eV, lead to a
good agreement with the data obtained by neutron diffraction
experiments [55] and based on the measurements of electronic
magnetic circular dichroism (EMCD) [47]. On the other hand,
the calculations which do not include a specific correction for
the local Coulomb repulsion substantially underestimate the
magnetic moments, indicating a crucial impact of local cor-
relations on the magnetic properties of YIG. The dependence
of Fe spin magnetic moment on U has therefore been sys-
tematically investigated. The corresponding results are shown
in Fig. 3. Since the KKR calculations are based on a fully
relativistic formulation, the orbital contribution to the local
moment is also shown in the figure (for this method only).
The general trend of an increasing total moment for increasing
U, 1s expected, since it leads to a stronger localization of the
d electrons of Fe ions. It should be noted that the magnetic

3r Experimental value
s 9
Qo o
®
o L ] J
o
c
S 1- -
m B LDA+U, KKR

@ O GGA+U, KKR
- O GGA+U, PAW 4
A HESEO06
0 - —
| 1 | 1 | 1 1 L 1
0 2 4 6 8

U-J (eV)

FIG. 2. Band gap (eV) of YIG as a function of Uy = U — J. The
theoretical values were obtained using different exchange-correlation
functionals as implemented in VASP and SPRKKR. Experimental val-
ues of the band gap are represented by the gray bar (see Table IV in
Appendix A).
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FIG. 3. Total (m, = ms + my, top panel) and orbital (m, bot-
tom panel) magnetic moments of Fe atoms as a function of Uy =
U — J. Note that for PAW calculations, m,, = msg.

moments are larger in GGA+U than in LDA+U for the same
experimental lattice constant.

The orbital contribution to the magnetic moment is almost
completely quenched due to crystal field effects. Even so,
the small orbital moments show a U dependence. For Ueg
smaller than 4 eV, Fe® has a larger orbital moment which
decreases with increasing Uy, while FeT shows the opposite
trend. The orbital moments on both Fe sublattices converge to-
wards the same value for U larger than 4 eV. Our calculated
values for the orbital magnetic moments are close to previous
ab initio calculations [51]. The only available experimental
data on the orbital magnetism are obtained via EMCD [47]
(see Appendix A).

B. Magnetic exchange interactions

First of all, considering the interatomic exchange in-
teractions in YIG, we focus on the interactions between
the magnetic atoms, i.e., Fe, characterized by robust local
spin magnetic moments. This exchange can be associated
with the dominating superexchange mechanism [59], as it
often happens in transition-metal oxides, with oxygen p or-
bitals responsible for the mediation of the Fe-Fe exchange
interactions. This type of interaction leads usually to the
antiferromagnetic coupling, although it can also result in
a ferromagnetic coupling, according to the Goodenough-
Kanamori rules [60,61].

We shall now focus on the Fe-Fe interatomic exchange
interactions, obtained within the KKR formalism. Describing
the geometry for the exchange interaction, Fig. 4 presents the
first six nearest neighbors in 1/4 of the ferrimagnetic YIG
unit cell. Juq, Jyd» Jaas J,4, and J); correspond to the first five
coordination shells, respectively, while J,, and J, correspond
to the sixth shell.

Additional contributions to the Fe-Fe exchange interaction
can appear due to the induced spin magnetic moment on the
oxygen atoms. In this case, an interaction between the Fe and
O magnetic moments occurs, leading to an effective Fe-O-Fe
exchange interaction as discussed in Refs. [62,63]. Following
Refs. [62,63], the effective magnetic exchange interactions,

/
J ad aa

FIG. 4. One-fourth of the ferrimagnetic YIG unit cell. The solid
lines represent the first six next-nearest-neighbor exchange inter-
actions. The subscripts aa, dd, and ad are Fe®-Fe®, FeT-FeT, and
FeC-Fe! interactions, respectively. In the upper left corner, magnetic
octahedral and tetrahedral sites are shown, and they compose the
majority and minority spin sublattice of the ferrimagnet, respectively.

Jl%ff (which contain, besides the Fe-Fe exchange, the Fe-O
interactions as well), can be written as

2adidi 2didi;
DT/ DI

The i and j label Fe sites, k and [ label O sites, and Ji/k
represents the Fe-O exchange interactions between Fe site i
and O site k.

Before we discuss in detail the magnetic exchange inter-
actions in a YIG crystal, one has to stress once again some
technical aspects, which are crucial for accurate calculations
of the interatomic exchange interactions at long distances. As
discussed above, the large size of the unit cell for this material
leads to a daunting challenge for accurate computations due
to the long-range spatial dependence of the KKR structure
constants in real space. Therefore the TB-KKR method was
used in the present calculations, which allows an efficient
treatment of large systems due to the rapid convergence of the
KKR structure constants. Moreover, it should be noted that
the inclusion of Fe-O exchange interactions in the so-called
effective magnetic exchange interactions [62,63] improved
the agreement with the experimental data for the oxygen-
mediated coupling in YIG and decreased the scatter of values
of the exchange interactions.

Having set up a suitable approach to calculate accurate
interatomic exchange interactions, we have to decide upon
suitable values for the Coulomb interaction parameters. The
choice of Uy is a fundamental problem per se but becomes
particularly tedious for large systems such as YIG [64,65].
In this paper, these parameters have been chosen from the
estimation of the critical temperature T (Fig. 5) and the

I =T+

t

(N
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FIG. 5. Monte Carlo (MC) results for the critical temperature as
a function of Uy = U — J. The experimental critical temperature is
shown as a black solid line [67].

spin-wave stiffness constant D (Fig. 6) and their comparison
with available experimental data.

The critical temperature was obtained by solving for the
magnetic spin configuration governed by the isotropic part
of Eq. (6), using the Metropolis Monte Carlo technique. This
approach allows for a proper treatment of thermal fluctuations,
without the approximation of a mean-field approach. The sim-
ulation box considered for the calculations contained 10 240
atoms (an 8 x 8 x 8 supercell based on the 20-Fe-atom unit
cell). Test calculations for larger boxes show that this size is
large enough to avoid finite-size effects, in agreement with
Ref. [66]. It should be mentioned that the effect of the DMI
on the Curie temperature and spin-wave stiffness is negligible,
while it increases the computational complexity significantly.
This is the reason why the results presented here include only
the isotropic part of the exchange.

4000 . . .
Cherepanov (1993) 700
— = =Princep (2017)
3500 Shamoto (2018) 8
Man (2017) 650
[0 Xie, NN-model (2017)
3000 B Xie, NNN-model (2017) 7
—O— This work < 600
—~ 2500 | |
o
<
3 2000 | ,
£
Q 1500 |
1000 F |
500 F |
0 \ \ \ \ \ \
0 1 2 3 4 5 6 7

U-J(eV)

FIG. 6. Spin-wave stiffness constant D as a function of Uy =
U — J. The experimental values, obtained by different methods, are
shown by a gray bar [70]. Experimental data are from Princep et al.
[7], Shamoto et al. [10], and Man et al. [71]. Theoretical data are
from Cherepanov et al. [1] and Xie et al. [11].

The calculated critical temperature as a function of U
is shown in Fig. 5. The trend observed with respect to U
is well defined. The larger Uy is, the lower is T¢. This is
due to the fact that a large U leads to more localized orbitals,
which results in larger moments (see Fig. 3) but reduced
exchange interactions. With Uy = 4.1 eV, T¢ is 590 K,
in good agreement with the experimental value of 560 K
[67].

The spin-wave stiffness constant D was obtained from
low-temperature magnon spectra that were modeled by linear
spin-wave theory (LST) as implemented in SPINW [68,69] (see
also Appendix B). In this approach, the low-temperature spec-
trum is calculated by diagonalizing the Hamiltonian, which
should be identical to the classical solution up to a finite
zero-point energy shift at low temperatures. We add a small
external field B, = 0.01 T to specify a magnetization (spin
quantization) axis. Using a least-squares fit of the quadratic
energy dispersion relation, fiw = Dg?, the spin-wave stiffness
could be estimated. Since this approximation is only valid for
small g around the I" point, the interval used in the fitting
is decreased until convergence is obtained. The effect of the
DMI on the spin-wave stiffness is negligible. Figure 6 shows
the spin-wave stiffness constant D as a function of Ueg. The
stronger the Coulomb interaction is, the softer the spin waves
are (see Fig. 9 in Appendix B). This will be discussed in
more detail in the next section. For Uy values in the inter-
val 4.1-6.1 eV, the calculated D values are in the range of
the experimental values [7,10,70,71] and previously reported
theoretical values [1,11,12].

In conclusion, the previous analysis allows us to esti-
mate that Uy = 4.1 eV are the most appropriate Coulomb
interaction parameters for YIG. They provide both critical
temperature and spin-wave stiffness in agreement with ex-
perimental and theoretical values reported in the literature.
Moreover, they lead to a good estimate of magnetic moments
(Fig. 3) and band gap (Fig. 2) as well. The latter is, however,
slightly underestimated.

In the following, we focus on the analysis of the in-
teratomic exchange interactions for the chosen Coulomb
interaction parameters. Values obtained by means of the TB-
KKR approach, with and without the renormalization due to
the Fe-O terms [Eq. (7)], are reported in Table III and Fig. 7,
together with values extracted from experimental data [1,6,7],
as well as values acquired from previous calculations [11,12].
One should keep in mind that the experimental values have a
rather large uncertainty, since they are affected by the type of
experiment and by the choice of the empirical model used for
extracting the exchange interactions. In addition, one should
consider that exchange parameters from different models are
compared. Nevertheless, the experimental and calculated re-
sults, presented in Table III, are in reasonable agreement for
the first six coordination shells [6—8,10]. This is a further
proof that our procedure for setting an appropriate value for
U.sr provides a good description of the magnetic properties in
YIG.

Figure 7 shows that the dominant exchange Fe-Fe in-
teraction is between nearest-neighbor Fe sites. This is an
antiferromagnetic coupling and is responsible for results in an
antiparallel alignment of the magnetic moments of Fe atoms,
placed in the octahedral (@) and tetrahedral (d) sites. The
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TABLE III. Magnetic exchange interaction parameters (meV). See Fig. 4 for the geometry and notation. Experimental and theoretical data
include Princep et al. [ 7], Shamoto et al. [10], Plant [6], Cherepanov et al. [1], Xie et al. [11], and Barker ez al. [12]. Positive values of exchange
interactions correspond to ferromagnetic ordering, while negative values refer to antiferromagnetic ordering. n is the number of coordination

shells. k, is the number of Fe atoms in the nth coordination shell.

This paper Ref. [11]
TB-KKR (eff), NN NNN
U-J =4.1eV model model
U-J = U-J = Ref. [12]
n Jij k, Ji Ref. [7] Ref. [10] Ref. [6] Ref. [1] 47 eV 3.7eV QSGW
1 Jaa 6 (Fe©) —6.34 —6.8 £ 0.2 —-580+0.14 —64 —6.89+0.3 —5.168 —5.834 —3.24
4 (Fe") —634
2 Jaa 4 —0.45 —0.52 + 0.04 —-0.70£0.16 —0.9 —2.31+£0.3 —0.320 —0.426 —0.07
3 Jua 8 —0.08 0.0 £ 0.1* 0.00 £0.10 0 —0.65+0.7 —0.182 —0.180 —0.02
—1.1 £ 0.3°
4 J, 4 (Fe%) 0.08 0.07 £ 0.02 —0.46 —0.436 —0.01
4 6 (Fe") 0.08
5 T 8 —0.32 —0.47 £ 0.08 —0.28 —0.456 —-0.13
6 J 0.02 0.09 £ 0.05 —1.5 —0.010
I, 6 —0.01
I, 2 0.11
7 J 8 —0.02
8 J!, 12 (Fe®)  —0.02
8 (Fe™)  —0.02
#Point group C,.
®Point group Ds.

ferrimagnetism in this system originates from the unequal
numbers of a (minority) and d (majority) Fe sites. For a
schematic view of the geometry of the magnetic interactions
in YIG, we refer the reader to Fig. 4.
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1 dd -
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-2 A A Barker 2020 (QSGW) _
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<3 <] Xie 2017 (NNN model) 4
> P> Xie 2017 (NN model)
Cherepanov 1993 (NS fit) —

Plant 1977 (exp)

%  Plant 1983 (exp) E
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Shamoto 2018 (exp) —
TB-KKR
%TB-KKR (Eff) _
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0.6

FIG. 7. Magnetic exchange interactions (meV) as a function of
the interatomic distance R scaled with YIG’s lattice constant a. The
results have been obtained within TB-KKR, with (filled squares)
and without (empty circles) the effective Fe-O interaction (Eff).
Experimental (exp) data are from Plant [6] (1977), Plant [8] (1983),
Princep et al. [7], and Shamoto ez al. [10]. Theoretical data are
from Cherepanov et al. [1], Xie et al. [11], and Barker et al. [12].
Vertical dashed lines show the coordination shells for Fe atoms. More
information can be found in Table III. NS fit refers to the neutron
scattering (NS) data fit.

The number of Fe neighbors for each of the first eight
coordination shells is given in Table III. Each Fe atom in an
octahedral position has six nearest-neighbor Fe atoms in tetra-
hedral positions, while each Fe atom in a tetrahedral position
has four nearest-neighbor Fe atoms in octahedral positions.
The second-nearest neighbors are four Fe atoms in tetrahedral
sites. Note that the distances for first and second coordination
shells are close to each other (see also Fig. 7).

According to Ref. [7], there are two distinct third-nearest-
neighbor bonds (J,,), which have identical length but differ
in symmetry. Our results show that the exchange coupling
constants for the third-nearest-neighbor shell have the same
values, i.e., there is no second solution. However, the sixth-
nearest-neighbor bonds correspond to two types of exchange
constants, J,, and J},, having six and two neighbors, respec-
tively (see Fig. 4). As can be seen from Table III and Fig. 7,
these exchange couplings have different values. Note that the
magnetic exchange couplings for the sixth coordination shell
are small; however, it was shown that even small features of
the exchange couplings can be important for describing the
experimentally observed magnon spectrum [7]. The reason
is that exchange coupling interactions are determined by the
local environment of the Fe sites. Our results support the
conclusion made in Ref. [7].

Using the TB-KKR setup described earlier, we also cal-
culate the Dzyaloshinskii-Moriya interactions (DMlIs). The
obtained values for the DMI vectors 5,- ; in the z direction
are D§; = 0.14 meV, D, = 0.10 meV, and D§; = 0.03 meV,
respectively. The DMIs for the atoms which are farther away
than the third coordination shell are negligible. The calculated
DMIs for the first neighboring Fe atoms are much smaller
than the isotropic exchange interactions (about a few percent),
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which is consistent with their relativistic origin. While DMI is
generally not expected for ordered systems with a center of
inversion symmetry, it can occur for complex structures [72].
The reason why it appears in YIG is because of the large unit
cell with magnetic ions in different octahedral and tetrahe-
dral oxygen surroundings. Hence DMI is the result of local
symmetry breaking in YIG due to the different environments.
While the antisymmetric exchange interactions are generally
expected to be proportional to the symmetric ones [14,72,73],
the magnitude of the calculated Fe-Fe DMI for the second
Fe coordination shell is rather significant. The slow decrease
of the DMI with increasing distance, when compared with
the isotropic exchange interactions, has been discussed in the
literature [32].

A short comment on the magnetocrystalline anisotropy
energy is appropriate. In bulk YIG, due to its cubic structure
[74], the magnetocrystalline anisotropy energy is known to be
small, and therefore it is not addressed in this paper. However,
in thin YIG films, the magnetocrystalline anisotropy can be
tuned by strain. In the presence of strain-induced tetragonal
distortion, magnetocrystalline anisotropy has been induced in
thin YIG films grown on different substrates [75]. Moreover,
perpendicular magnetic anisotropy was obtained in epitaxial
YIG thin films [76].

C. Magnon spectrum

The calculated exchange interactions for the established
Coulomb interaction parameters (see Sec. III B) can be used
in the SPINW code [68,69] to obtain the spin-wave spectrum.
The effective spin Hamiltonian included a bilinear Heisenberg
exchange term and a Dzyaloshinskii-Moriya term, while the
cubic anisotropy energy was neglected, due to its almost van-
ishing value.

The calculated spin-wave spectra are shown in Fig. 8, to-
gether with experimental data from Refs. [6,7,10,71], taken at
various temperatures (10, 83, 100, and 295 K). The top panel
contains the spectrum calculated from the imaginary part of
the spin-spin correlation function S,,(Q, @) — S8, (Q, w). The
spin-wave dispersions are plotted as black lines, while the
intensity convoluted in energy with a 0.75-THz full width
at half maximum (FWHM) Gaussian is shown in red and
blue colors. Red and blue indicate the positive and negative
chirality (polarization) of the modes, respectively. The inten-
sity (thickness) of the lines gives an estimate of the magnon
density. For the sake of comparison, the adiabatic spectrum
obtained using exchange couplings extracted from recent ex-
perimental studies [7,10] is also presented in the bottom panel.
Note that only the low-temperature data should be compared
with the current theoretical model.

Let us discuss the dispersion relation of the acoustic mode.
At low energies, the acoustic mode has a parabolic behavior.
The slope of the calculated acoustic mode (Fig. 8) agrees
with the neutron-scattering data for low temperatures from
Refs. [10,71]; however, it differs slightly from the results
of Ref. [6]. The calculated spin-wave stiffness constant D,
which is governed by the second derivative of the energy
dispersion at the I' point, is in the range of experimental
values for the chosen value of U. (Fig. 6). It should be

30

Energy (THz)

30

25

20

Energy (THz)
o

10
This work
5 Shamoto (2018) ]
Princep (2017)
0

N r H
Momentum (r.L.u.)

FIG. 8. Top: calculated spin-wave spectrum compared with ex-
perimental data from Plant [6] (295 K, cyan filled squares; 83 K,
magenta filled circles), Shamoto et al. [10] (295 K, white filled
circles), and Man et al. [71] (10 K, green filled circles). Bottom:
adiabatic spin-wave spectrum, obtained using exchange couplings
from this paper (black thick lines) and from recent experimental
studies by Shamoto et al. [10] (red lines) and Princep et al. [7] (blue
lines). Here, r.Lu., reciprocal lattice units.

mentioned that the values for D reported in the literature, ob-
tained by different experimental methods and under different
conditions, have a wide scatter. At higher energies, instead,
the magnon dispersion starts deviating from the quadratic
function, in good agreement with the reported experimental
results [10].

As shown in Fig. 8, the highest-frequency mode of the
calculated spectrum is close to results obtained in Ref. [10].
However, the other high-frequency modes, between 22 and 24
THz, differ from those reported in Ref. [10]. For the middle
frequency range of the spectrum, 12-19 THz, the calculated
spin-wave modes are placed between branches generated from
magnetic interactions extracted from experiments [7,10].
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The spin-wave gap, which is defined as the energy differ-
ence between the two lowest modes (acoustic and first optical
mode) at the I" point, can be extracted from Fig. 8 and is about
9 THz. This value agrees well with the experimental data from
Refs. [7,10]. On the other hand, the experimental value from
Ref. [6] is about 8 THz. This lower value is most likely due
to the fact that the measurements were performed at a higher
temperature, namely, 83 K. It should also be mentioned that
the estimated value is an improvement compared with the
latest theoretical investigations [11,12,77].

The spin-wave dispersion spectrum consists of many
modes, in contrast to only two modes as might naively be
expected based on the cubic crystal structure and the ferri-
magnetic ordering of the compound. This magnon spectrum
reflects the complexity of the magnetic structure of YIG.

A final comment regards magnon-phonon coupling. Mag-
netoacoustic phenomena appear much brighter than in
usual ferromagnets because the magnetoelastic coupling
is enhanced by the exchange interlattice interactions. In
YIG, the magnon-phonon coupling is responsible for many

TABLE IV. Calculated properties of YIG compared with available data from theoretical and experimental investigations. The calculated
lattice constant a (A), band gap E, (eV), and total magnetic moment (up) are presented. For relativistic SPRKKR calculations, the orbital
magnetic moments my, are shown in parentheses. FLAPW, full-potential linearized augmented plane-wave method; PBEsol, revised PBE

exchange-correlation density functional.

Total magnetic moment (i)

a(A) Fe© FeT Band gap (eV) Details Ref.
This paper

12.093* 3.30 3.34 0.00 LDA VASP

12.422% 3.70 3.64 0.71 GGA VASP
12.376 3.91 (my, = 0.022) 3.74 (my, = 0.017) 1.5 LDA+U;U —J =3.1eV SPRKKR

12.376 4.47 4.35 2.87 GGA+U; U —J =17.1eV VASP

12.375* 4.17 4.04 3.20 HSEO06 VASP

Other theoretical investigations

12.376 3.49 3.47 ~0.3 LDA [11]

12.376 ~0.5 GGA [11]

12.376 4.12 4.02 GGA+U; U —J =3.7eV; [11]

12.376 0.45-2.00 GGA+U; U —J =0.7-5.7eV [11]

12.178* LDA [48]

12.538* 4.2 4.1 GGA+U,U =4eV [49]

12.65* 0.652 GGA [50]

12.376 4.04 (mg = 0.018) 3.92 (my, =0.013) 1.12 LDA+U;U =3.5,J =0.8eV [51]

3.266 3.939 2.66 LDA+U; U =3.5¢eV,J =0.8¢eV [56]

0.62 1.56 LDA [52]

4.06 3.95 1.25 GGA+U [53]

12.468* 4.2 4.1 2.5 GGA+U;U =4.0eV [54]

3.308 3.146 0.25 FLAPW; 1.219 wp in interstitial region [55]

12.376 3.63 3.55 0.65 GGA [58]

12.376 4.27 4.16 2.77 GGA+U;U —J =9.8and 9.1 eV [58]

12.376 3.62 3.48 0.45 LDA [12]

12.376 4.17 3.93 34 QSGW [12]

Experimental studies

12.376 4+ 0.004 Room temperature [42]

12.392 Room temperature [43]

12.3563 4.11 5.37 10K, Ia3d [44]

12.3723 3.80 4.74 295 K, Ia3d [44]

2.85 Electrical measurements, the band model [45]

<3.15 Electrical measurements, the hopping model [45]

2.81 300 K, magneto-optic spectra [46]

2.89 6 K, optical absorption and Faraday rotation [46]

12.36 3.50 + 0.17 3.37+0.17 205K, B~0.1T [10]

4.53 4.21 4 K, neutron diffraction [55]

4.8+£0.2 42+0.3
(my =0.284+0.03) (my =0.31+£0.03) Electron magnetic circular dichroism, (444) alone [47]

#Optimized lattice constant from ab initio calculations.
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phenomena and effects that might be useful for future tech-
nologies [4,54,71,78-81]. This interesting and important issue
is beyond the scope of this paper and is left for future investi-
gations.

IV. CONCLUSIONS

Exchange coupling constants and Dzyaloshinskii-Moriya
interactions in yttrium iron garnet have been obtained by ab
initio fully relativistic calculations. The calculated isotropic
coupling constants are in agreement with available experi-
mental data. The sixth-nearest-neighbor bonds correspond to
two types of exchange constants between Fe atoms in octa-
hedral (a) and tetrahedral (d) positions. The reason is that
there are two distinct sixth-nearest-neighbor bonds, which
have identical length but differ in the symmetry of the local
environment of the Fe sites. The calculated Dzyaloshinskii-
Moriya contributions to the exchange are short ranged. The
screened KKR formalism seems to be a very promising tool
for the calculations of the exchange coupling constants in
complex magnetic oxides. The calculated effective magnetic
exchange interactions due to the oxygen-mediated coupling
in YIG can improve the agreement with experimental data. It
should be noted that the hybrid functional, HSE06, improves
the description of the electronic structure of YIG insulators
and reproduces the experimentally observed band gap in YIG.

The spin-wave dispersion has been modeled using linear
spin-wave theory with the calculated exchange parameters.
The inclusion of Dzyaloshinskii-Moriya interaction showed
anegligible effect. The calculated spin-wave stiffness is in the
range of experimental values. The magnon spectrum agrees
with experimental results, and the spin-wave gap is well re-
produced.

The present investigation has been performed for the mag-
netically ordered state, but the description of the magnetic
state for YIG at finite temperatures has not been included. The
questions of whether the effect of the magnetic disorder on
the magnetic exchange interactions is large or not, and how
to correctly take into account the correlation effects (and/or
define U,g) call for further investigations. Nevertheless, we
believe that the obtained results correctly describe qualitative
features of the magnetic exchange interactions in YIG.
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APPENDIX A: LITERATURE DATA FOR YIG

Table IV displays a comprehensive list of available ex-
perimental and theoretical data for YIG. The abbreviations
used in the table are defined in Sec. III of the main text. The
orbital magnetic moment my, values, reported in the EMCD
experiment [47], are 0.28 & 0.03 and 0.31 4 0.03 wp/at., for
the Fe® and Fe' sites, respectively. This large discrepancy
with our results might be due to the different orientation of
the magnetic moments in the experiment and ab initio calcu-
lations. In the calculations, the Fe orientation of the magnetic
moments was taken along the [001] direction and not relaxed.
In contrast, the measurements show the magnetic moments’
alignment within the 111 plane.

APPENDIX B: MAGNON SPECTRA AS A FUNCTION OF U

We simulated the spin-wave spectra of YIG at low temper-
atures by means of SPINW [69]. Figure 9 shows the acoustic
branch at low energy as a function of U (J = 0.9 eV) for
the N-I'-H direction. The larger the U, the softer the low-
energy ferromagnetic acoustic mode is. The calculated spectra
were used to estimate the spin-wave stiffness constant D (see
Fig. 6).
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FIG. 9. Adiabatic magnon spectrum: low-energy ferromagnetic
acoustic mode in the ferrimagnetic insulator YIG, as a function of U.
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